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Preface

Principal component analysis (PCA) neural networks, minor component anal-
ysis (MCA) neural networks and independent component analysis (ICA) neu-
ral networks can approximate a subspace of input data by learning. These
networks inspired by biology and psychology provide a novel way for parallel
online computation of a subspace. An input of these neural networks can be
used at once so that they can enable fast adaptation in a nonstationary envi-
ronment. Although these networks are almost linear neural models, they have
found many applications, including applications relating to signal and image
processing, video analysis, data mining, and pattern recognition.

The learning algorithms of these neural networks play a vital role in sub-
space learning. These subspace learning algorithms make these networks learn
low-dimensional linear and multilinear models in a high-dimensional space,
wherein specific statistical properties can be well preserved. The book will
be mainly focused on the convergence analysis of these subspace learning al-
gorithms and the ways to extend the use of these networks to fields such as
biomedical signal processing, biomedical image processing, and surface fitting
to name just a few.

A crucial issue of concern in a practical application is the convergence of
the subspace learning algorithms of these neural networks. The convergence of
these algorithms determines whether these applications can be successful. The
book will analyze the convergence of these learning algorithms by mainly using
discrete deterministic time (DDT) method. To guarantee their nondivergence,
invariant sets of some algorithms will be obtained and global boundedness of
some algorithms is studied. Then, the convergence conditions of these algo-
rithms will be derived. Cauchy convergence principle and inequalities analysis
method, and so on, will be used rigorously to prove the convergence. Fur-
thermore, the book establishes a relationship between an SDT algorithm and
the corresponding DDT algorithm by using block algorithms. This not only
can overcome the shortcomings of DDT method, but also can get a good
convergence and accuracy in practice. Finally, the chaotic and robust prop-
erties of some algorithms will also be studied. These results obtained lay the
sound theoretical foundation of these networks and guarantee the successful
applications of these algorithms in practice.

The book not only benefits the researcher of subspace learning algorithms,
but also improves the quality of data mining, image processing, and signal
processing. Besides its research contributions and applications, the book could
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also serve as a good example for pushing the latest technologies in neural
networks to some application community.

Scope and Contents of This Book

This book provides an analysis framework for convergence analysis of sub-
space learning algorithms of neural networks. The emphasis is on the analysis
method, which can be generalized to the study of other learning algorithms.
Our work builds a theoretical understanding of the convergence behavior of
some subspace learning algorithms through the analysis framework. In addi-
tion, this book uses real-life examples to illustrate the performance of learning
algorithms and instructs readers on how to apply them to practical applica-
tions. The book is organized as follows.

Chapter 1 provides a brief introduction to linear neural networks and sub-
space learning algorithms of neural networks. Some frequently used notations
and preliminaries are given. Basic discussions on the methods for convergence
analysis are presented which should lay the foundation for subsequent chap-
ters.

In the following chapters, convergence of subspace learning algorithms is
analyzed to lay the theoretical foundation for successful applications of these
networks. In Chapter 2, the convergence of Oja’s and Xu’s algorithms with
constant learning rates is studied in detail. The global convergence of Oja’s
algorithm with the adaptive learning rate is analyzed in Chapter 3. In Chapter
4, the convergence of Generalized Hebbian Algorithm (GHA) with adaptive
learning rates is studied. MCA learning algorithms and the Hyvärinen-Oja’s
ICA learning algorithm are analyzed in Chapters 5 and 6, respectively. In
Chapter 7, chaotic behaviors of subspace learning algorithms are presented.

Some problems concerning a practical application are discussed in chapters
8, 9, 10, 11, and some real-life examples are given to illustrate the performance
of these subspace learning algorithms.

The contents of this book are mainly based on our research publications
on this subject, which over the years have accumulated into a complete and
unified coverage of the topic. It will serve as an interesting reference for post-
graduates, researchers, and engineers who may be keen to use these neural
networks in applications. Undoubtedly, there are other excellent works in this
area, which we hope to have included in the references for the readers. We
should also like to point out that at the time of this writing, many problems
relating to subspace learning remained unresolved, and the book may contain
personal views and conjecture of the authors that may not appeal to all sec-
tors of readers. To this end, readers are encouraged to send us criticisms and
suggestions, and we look forward to discussion and collaboration on the topic.
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1

Introduction

1.1 Introduction

Subspace leaning neural networks provide a parallel online automated learn-
ing of low-dimensional models in a nonstationary environment. It is commonly
known that automated learning of low-dimensional linear or multilinear mod-
els from training data has become a standard paradigm in computer vision
[54, 55]. Thus, these neural networks used to learning a low-dimensional model
have many important applications in computer vision, such as structure from
motion, motion estimation, layer extraction, objection recognition, and object
tracking [18, 19, 50, 56, 55].

Subspace learning algorithms used to update the weights of these net-
works pay a vital important role in applications. This book will focus on the
subspace learning algorithms of principal component analysis (PCA) neural
networks, minor component analysis (MCA) neural networks, and indepen-
dent component analysis (ICA) neural networks. Generally, they are linear
neural networks.

1.1.1 Linear Neural Networks

Inspired by biological neural networks, a simple neural model is designed to
mimic its biological counterpart, the neuron. The model accepted the weighted
set of input x responds with an output y, as shown in Figure 1.1. The vital
effect of synapse between neurons is presented by the weights w. The mathe-
matical model of a linear single neuron is as follows:

y(k) = wT (k)x(k), (k = 0, 1, 2, . . .), (1.1)

where y(k) is the network output, the input sequence

{x(k) |x(k) ∈ Rn(k = 0, 1, 2, . . .)} (1.2)

is a zero-mean stochastic process, each w(k) ∈ Rn(k = 0, 1, 2, . . .) is a weight
vector.

Consider input output relation

y(k) = WTx(k), (1.3)
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2 Subspace Learning of Neural Networks

where

y(k) = [y1(k), y2(k), . . . , ym(k)]T

and

W =







w11 w12 . . . w1m

w21 w22 . . . w2m

. . . . . . . . . . . .
wn1 wn2 . . . wnm






.

This is a multineuron linear model, as shown in Figure 1.2.
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FIGURE 1.1

A single neuron model.
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FIGURE 1.2

A multineuron model.

These linear networks have been widely studied [25, 28, 70] and used for
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many fields involving signal processing [66], prediction [80], associative mem-
ory [167], function approximation [180], power system [15, 153], chemistry
[196], and so on. The weight of these neural networks, which represents the
strength of the connection between neurons, pays a very important role in
the different applications. A variety of learning algorithms are used to up-
date the weight so that the networks have the different applications with the
corresponding weight. For instance, the adaptive linear neuron (ADALINE)
network is one of the most widely used neural networks in practical applica-
tions, which was introduced by Widrow and M. Hoff in 1960 [181]. The least
mean square (LMS) algorithm is used to update the weight so that ADALINE
can be used as a adaptive filter [75].

In this book, these linear networks are used to extract the principal com-
ponents, or minor components, or independent components from input data.
It is required that these networks must approximate a low-dimensional model.

1.1.2 Subspace Learning Algorithms

Subspace learning algorithms are used to update the weights of these linear
networks so that these networks intend to approximate a low-dimensional
linear model. Generally, an original stochastic discrete time (SDT) algorithm
is formulated as

w(k + 1) = w(k) ± η(k) △ w(k), (1.4)

where η(k) is learning rate and △w(k) determines the change at time k.
This book will mainly discuss the following subspace learning algorithms:

PCA learning algorithms, MCA learning algorithms, and ICA learning algo-
rithms.

1.1.2.1 PCA Learning Algorithms

Principal component analysis (PCA) is a traditional statistical technique in
multivariate analysis, stemming from the early work of Pearson [141]. It is
closely related to Karhunen-Loève (KL) transform, or the Hotelling transform
[82]. The purpose of PCA is to reduce the dimensionality of a given data set,
while retaining as much as possible of the information present in the data set.

Definition 1.1 A vector is called the first principal component direction if
the vector is along the eigenvector associated with the largest eigenvalue of
the covariance matrix of a given data set, and a vector is called the second
principal component direction if the vector is along the eigenvector associated
with the second largest eigenvalue of the covariance matrix of a given data set,
and so on.

Definition 1.2 Principal components are the variances that are obtained by
projecting the given data onto the principal component directions.


