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Preface

The main aims of this book are to provide an introduction to the princi-
ples of modelling as applied to longitudinal data from panel and related
studies with the necessary statistical theory, and to describe the applica-
tion of these principles to the analysis of a wide range of examples using
the Sabre software (http://sabre.lancs.ac.uk/) from within R.

This material on multivariate generalized linear mixed models arises
from the activities at the Economic and Social Research Council
(ESRC)-funded Colaboratory for Quantitative e-Social Science (CQeSS)
at Lancaster University from 2003 to 2008. Sabre is a program for the
statistical analysis of multi-process event/response sequences. These re-
sponses can take the form of binary, ordinal, count and linear recurrent
events. The response sequences can also be of different types, for ex-
ample, a linear response (wages) and a binary one (trade union mem-
bership). Such multi-process data are common in many research areas,
for example, in the analysis of work and life histories from the British
Household Panel Survey or the German Socio-Economic Panel Study
where researchers often want to disentangle state dependence (the effect
of previous responses or related outcomes) from any omitted effects that
might be present in recurrent behaviour (for example, unemployment).
Understanding the need to disentangle these generic substantive issues
dates back to the study of accident proneness in the 1950s and has since
been discussed in many applied areas, including consumer behaviour
and voting behaviour. These issues, and others relating to the analysis
of longitudinal or event history data, are discussed in more detail in the
following text:

e Shahtahmasebi, S. and Berridge, D. (2010) Conceptualizing Human
Behaviour in Health and Social Research: A Practical Guide to
Data Analysis, New York: Nova

Some key contributions in the References, including a number of
Heckman’s seminal works, have been reprinted in the following series:

1. Penn, R. and Berridge, D. (2010) Social Statistics Volume 1: The
Fundamentals of Descriptive Social Statistics, London: Sage

2. Penn, R. and Berridge, D. (2010) Social Statistics Volume 2: The
Development of Statistical Modelling, London: Sage

Xix
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3. Penn, R. and Berridge, D. (2010) Social Statistics Volume 3: Sta-
tistical Modelling of Longitudinal Data, London: Sage

4. Penn, R. and Berridge, D. (2010) Social Statistics Volume 4: Sta-
tistical Modelling of Ordinal Categorical Data, London: Sage

Those contributions appearing in this series are indicated by asterisks
in the References. One asterisk indicates Volume 1, two asterisks indicate
Volume 2, and so on.

Sabre can also be used to model collections of single sequences such as
may occur in medical trials on the number of headaches experienced over
a sequence of weeks, or in single-equation descriptions of cross-sectional
clustered data such as the educational attainment of children in schools.

Sabre is available in three forms: (1) stand-alone (as discussed in
Shahtahmasebi and Berridge, 2010), (2) the R plugin (as discussed in
the current text), and (3) the Stata plugin (as discussed on the Sabre
web page — see above).

The class of models that can be estimated by Sabre may be termed
Multivariate Generalized Linear Mixed Models (MGLMMs). These mod-
els have special features to help them disentangle state dependence from
the incidental parameters (omitted or unobserved effects). The incidental
parameters can be treated as random or fixed. The random effects mod-
els can be estimated with standard Gaussian quadrature or adaptive
Gaussian quadrature. Quadrature methods (and particularly adaptive
Gaussian quadrature) are the most reliable way of handling random ef-
fects in MGLMMs, as the adequacy of the numerical integration can be
improved by adding more quadrature points. The number of quadrature
points required will depend on the model being estimated. If additional
quadrature points fail to improve the log likelihood, then we have found
an accurate evaluation of the integral. Even though the linear model
integral has a closed form solution, we do not use it as it cannot eas-
ily be used in multivariate models when some of the joint sequences
do not have interval level responses. Also current computational facili-
ties on many desktop computers often make the delay involved in using
numerical integration for the linear model negligible for many small to
medium-sized data sets. ‘End effects’ can also be added to the models to
accommodate ‘stayers’ or ‘non-susceptibles’. The fixed effects algorithm
we have developed uses code for large sparse matrices from the Harwell
Subroutine Library; see http://www.cse.scitech.ac.uk/nag/hsl/.

Also included in Sabre is the option to undertake all the calculations
using increased accuracy. Numerical underflow and overflow often occur
in the estimation process for models with incidental parameters. We
suppose that many of the alternative software systems truncate their
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calculations without informing the user when this happens as there is
little discussion of this in their respective user manuals.

This book is written in a way that we have found appropriate for
some of our short courses. The book starts by discussing members of the
family of generalized linear models and gradually adds complexity to the
modelling framework by incorporating random effects. We then review
the generalized linear model notation before illustrating a range of more
substantively appropriate random effects models, for example, the three-
level model, multivariate (in particular, bivariate and trivariate) models,
endpoint, event history and state dependence models. The MGLMMs are
estimated using either standard Gaussian quadrature or adaptive Gaus-
sian quadrature. The book compares two-level fixed and random effects
linear models. Additional information on quadrature, model estimation
and endogenous variables is included in Appendix A. Appendix B con-
tains an introduction to R and some examples of using R to pre-process
the data for Sabre.

There are two other related SabreR booklets available from the Sabre
web page:

e Exercises for SabreR
e Solutions Manual for SabreR Exercises

These booklets contain the exercises and solutions on small data sets
that have been written to accompany this book. These exercises will run
quickly on a desktop PC.

Drafts of the chapters of this book were developed and revised in the
process of preparing and delivering short courses in ‘Statistical Mod-
elling using Sabre’, ‘Multilevel Modelling’ and ‘Event History Analysis’
given at CQeSS and the Department of Mathematics and Statistics at
Lancaster University and elsewhere. We are grateful to many of the stu-
dents of these courses who are from a range of backgrounds (for example,
computational science and the social sciences) and whose comments and
criticisms improved these early drafts. We think that the book should
serve as a training manual for postgraduate Masters and research stu-
dents, and as a self-teaching manual for data analysts.

If you have any suggestions as to how this book could be improved—
for instance by the addition of other material—please let us know via
the Sabre mailing list, sabre@lancaster.ac.uk.

We accept no liability for anything that might happen as a conse-
quence of your use of Sabre, though we are happy to accept recognition
of its successful use.

Dr. Damon M. Berridge and Professor Robert Crouchley
Lancaster University
February 2011
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1

Introduction

A major objective of this book is to provide data analysts with the tools
to analyze large and complex datasets using methodologically sound
models, thereby enabling them to answer increasingly complex research
questions. The statistical software used in this book is SabreR. This is a
version of the package Sabre, for the statistical analysis of multi-process
event /response sequences, which has been implemented within the R
environment.

These responses can take the form of binary, ordinal, count and linear
recurrent events. The response sequences can also be of different types,
for example, a linear response (wages) and a binary response (trade union
membership). Such multi-process data are common in many research
areas, for example, in the analysis of work and life histories from the
British Household Panel Survey or the German Socio-Economic Panel
Study where researchers often want to disentangle state dependence (the
effect of previous responses or related outcomes) from any omitted effects
that might be present in recurrent behaviour (unemployment).

Understanding of the need to disentangle these generic substantive
issues dates back to the study of accident proneness [14] and has been
discussed in many applied areas, including consumer behaviour [75] and
voting behaviour [34].

SabreR can also be used to model collections of single sequences
such as those that may occur in medical trials, for example, headaches
and epileptic seizures [29,30], or in single-equation descriptions of cross-
sectional clustered data such as the educational attainment of children
in schools.

The class of models that can be estimated by SabreR may be called
multivariate generalized linear mixed models. These models have special
features added to standard models to help us disentangle state depen-
dence from the incidental parameters (omitted or unobserved effects).
The incidental parameters can be treated as random or fixed, the ran-
dom effects models being estimated using standard Gaussian quadrature
or adaptive Gaussian quadrature. ‘End effects’ can also be added to the
models to accommodate ‘stayers’ or ‘non-susceptibles’; resulting in a
more parsimonious model which provides a better fit to the data with
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fewer parameters than a non-parametric specification of the random ef-
fects. The fixed effects algorithm we have developed uses code for large
sparse matrices from the Harwell Subroutine Library [49].

SabreR also includes the option to undertake all of the calculations
using increased accuracy. This is important because numerical under-
flow and overflow often occur in the estimation process for models with
incidental parameters.

Chapters 2 and 3 cover the analysis of single-level data of various
types: continuous, binary, ordinal and count data using univariate gen-
eralized linear models. The material covered in these chapters is sum-
marized in Chapter 4. Chapters 5 to 8 extend these models to handle
multi-level, specifically two-level, data of various types: continuous, bi-
nary, ordinal and count data, using univariate generalized linear mixed
models. The models considered in Chapters 5 to 8 are summarized in
Chapter 9, and are generalized to handle three-level data in Chapter 10.

A key feature of this book is the emphasis on the application of sta-
tistical models to real-life examples. At the heart of each chapter will be
a fully worked example. In addition, readers will have the opportunity
to apply these statistical models and to interpret the resulting output
through a large number of exercises spanning a wide variety of areas
of application. The exercises illustrating the use of models for continu-
ous/interval scale data in Chapters 2 and 5 are based on the following
examples:

Example 1.1. Psychological distress

Twelve students completed the twelve-item version of Goldberg’s
General Health Questionnaire (GHQ) [42]. The questionnaire was com-
pleted by each student on two different occasions, separated by three
days. A psychological distress score was computed, on the basis of the
twelve GHQ items, for each student on each of the two occasions [39].
These student-occasion-specific scores are saved in the file ghqg2.tab.

Example 1.2. Essay grading (continuous response)

Johnson and Albert [66] analyzed data on the grading of essays by
several experts. Essays were graded on a scale between 1 and 10, with a
score of 10 corresponding to ‘excellent’. In this example, we consider a
subset of the data limited to the grades given to 198 essays by markers 1
and 4. This subset of data is stored in the data file grader1l.tab which
may be found on the Sabre web page. The grades given by markers 1 and
4 are stacked in a single column grade in the file grader2.tab. This file
also includes an identifier which distinguishes between the two graders,
in other words, the variable dg4 which takes value 1 if the grader is
number 4, and value 0 otherwise. Alternative treatments of the response
are considered in Ezamples 1.7 and 1.11.
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Ezxample 1.3. Educational attainment

Garner and Raudenbush [41] and Raudenbush and Bryk [93] studied
the role of school and/or neighbourhood effects on the educational at-
tainment of young people, from one Scottish Local Education Authority,
who left school between 1984 and 1986. The primary outcome of inter-
est is a young person’s combined end-of-school educational attainment
as measured by his/her grades.

Explanatory variables are available at two levels: (i) the individ-
ual young person level and (ii) the school and/or neighbourhood level.
Most explanatory variables present in the dataset are specific to each
young person. These variables include: young person’s gender; verbal
reasoning quotient and reading ability as measured by tests in pri-
mary school at age 11-12; father’s occupation and education. The one
school/neighbourhood-specific explanatory variable is an index of social
deprivation for the local community within which the young person lived.
The data are stored in the file neighbourhood.tab on the Sabre web

page.

Ezxample 1.4. Unemployment claims

Indiana’s enterprise zone programme provided tax credits for cities
with high poverty and unemployment levels. In a bid to establish whether
those cities targetted by the programme had significantly lower unem-
ployment claims than those cities lying outside enterprise zones, Papke
[85] analyzed annual data from 1980 to 1988. The dataset (ezunem2.tab)
comprises the number of unemployment claims in 22 cities, and whether
each city was located within an enterprise zone, in each of the nine years
1980 to 1988.

Ezxample 1.5. Wage determinants

Vella and Verbeek [103] analyzed annual data on 545 males from the
Youth Sample of the US National Longitudinal Survey for the period
1980 to 1987. The version of the data used in this book (wagepan.tab)
was obtained from Wooldridge [106]. We wish to relate the outcome of
primary interest, log hourly wage (in US dollars), to a time-invariant fac-
tor (ethnicity) and a variety of time-dependent explanatory variables.
Those variables allowed to vary over time include respondent demo-
graphics (marital status, region of US lived in, rural/urban area lived
in), education (years of schooling), labour market experience and trade
union membership. These data are re-considered in Fzxample 1.8, where
trade union membership is regarded as the binary response of interest.

Having analyzed these data in Chapters 2 and 5, we will return to
this dataset on further occasions in this book. In Chapter 11, in the
context of bivariate models, we will estimate a joint model for wages and
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trade union membership. We will allow trade union membership to be
endogenous in the wage equation. In Chapter 14, we will use the data on
trade union membership to illustrate Wooldridge’s [107] treatment of the
initial conditions problem in first-order Markov models. In Chapter 15,
we compare and contrast the inferences made when we first assume fixed
effects and then proceed under the assumption of random effects. We will
use these data to relate log wages to time-varying explanatory variables
such as number of years of labour market experience, marital status and
trade union membership, and to time-invariant factors including race
and education.

Example 1.6. Pupil rating of school managers

856 pupils in 94 schools were asked to rate the performance of their
school managers/directors on the basis of six questions, each response
recorded on a four-point scale [64]. The response to each item given by
each pupil is presented in the dataset manager.tab. Pupil-specific ex-
planatory variables are gender and school year. School-specific factors
are gender of the school manager/director and type of school which is
classified into the following three categories: ‘general (AVO)’, ‘profes-
sional (MBO&T)’ and ‘day/evening’.

The exercises illustrating the use of models for binary data in Chap-
ters 3 and 6 are based on the following examples:

Ezxample 1.7. Essay grading (binary response)

In an extension to Fxample 1.1, we use data on the grades given
to 198 essays by markers 1 to 5. Essays were graded on a scale from 1
to 10, with 10 classified as ‘excellent’. For the purposes of the current
example, the original essay grading variable is converted into a binary
response variable, labelled as pass in the dataset essays2.tab. The
variable pass takes the value 1 for grades 5 to 10, and value 0 for grades
1 to 4. The primary objective in this example is to test for significant
differences in this binary response between markers, whilst adjusting for
six explanatory variables which characterize the 198 essays.

Four of these factors are lexical in nature: average word length
(wordlength), square root of the number of words (sqrtwords), aver-
age sentence length (sentlength) and proportion of words in the essay
which are prepositions (prepos). A fifth explanatory variable is related
to punctuation: number of commas, multiplied by 100 and divided by
the total number of words in the essay (commas). The sixth factor is the
percentage of words in the essay which are spelt incorrectly (errors).

Ezxample 1.8. Trade union membership
In Ezample 1.5, we related data from the Youth Sample of the US



