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Foreword

Parallel computing is almost as old as computing itself, but until quite recently it
had been interesting only to a small cadre of aficionados. Today, the evolution of
technology has elevated it to central importance. Many “true believers” including
me were certain it was going to be vital to the mainstream of computing eventually. I
thought its advent was imminent in 1980. What stalled its arrival was truly spectacular
improvements in processor performance, due partly to ever-faster clocks and partly to
instruction-level parallelism. This combination of ideas was abetted by increasingly
abundant and inexpensive transistors and was responsible for postponing the need to
do anything about the von Neumann bottleneck—the requirement that the operations
in a program must appear to execute in linear order—until now.

What some of us discovered about parallel computing during the backwater period
of the 1980s formed a foundation for our current understanding. We knew that
operations that are independent of each other can be performed in parallel, and so
dependence became a key target for compiler analysis. Variables, formerly a benign
concept thanks to the von Neumann bottleneck, became a major concern for some of
us because of the additional constraints needed to make variables work. Heterodox
programming models such as synchronous languages and functional programming
were proposed to mitigate antidependences and data races. There was a proliferation
of parallel languages and compiler technologies aimed at the known world of appli-
cations, and very few computational problems escaped the interest and zeal of those
of us who wanted to try to run everything in parallel.

Soon thereafter, though, the worlds of parallel servers and high-performance com-
puting emerged, with architectures derived from interconnected workstation or per-
sonal computer processors. The old idea of totally rethinking the programming model
for parallel systems took a backseat to pragmatism, and existing languages like For-
tran and C were augmented for parallelism and pressed into service. Parallel program-
ming got the reputation of being difficult, even becoming a point of pride for those
who did it for a living. Nevertheless, this body of practice became parallel comput-
ing in its current form and dominated most people’s thinking about the subject until
recently.

With the general realization that the von Neumann bottleneck has arrived at last,
interest in parallelism has exploded. New insights are emerging as the whole field of
computing engages with the challenges. For example, we have an emerging under-
standing of many common patterns in parallel algorithms and can talk about parallel
programming from a new point of view. We understand that a transaction, i.e., an
isolated atomic update of the set of variables that comprise the domain of an invari-
ant, is the key abstraction needed to maintain the commutativity of variable updates.

vii



viii Foreword

Language innovations in C++, Microsoft .NET, and Java have been introduced to
support task-oriented as well as thread-oriented programming. Heterogeneous paral-
lel architectures with both GPUs and CPUs can deliver extremely high performance
for parallel programs that are able to exploit them.

Now that most of the field is engaged, progress has been exciting. But there is much
left to do. This book paints a great picture of where we are, and gives more than an
inkling of where we may go next. As we gain broader, more general experience with
parallel computing based on the foundation presented here, we can be sure that we
are helping to rewrite the next chapter—probably the most significant one—in the
amazing history of computing.

Burton J. Smith
Seattle, Washington
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Chapter 1

Introduction

Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter F. Tichy
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1.1 Where We Are Today

Multicore chips are about to dramatically change software development. They are
already everywhere; in fact, it is difficult to find PCs with a single, main processor.
As of this writing, laptops come equipped with two to eight cores. Even smartphones
and tablets contain multicore chips. Intel produces chips with 48 cores, Tilera with
100, and Nvidia’s graphical processor chips provide several hundred execution units.
For major chip manufacturers, multicore has already passed single core in terms of
volume shipment. The question for software developers is what to do with this embar-
rassment of riches.

Ignoring multicore is not an option. One of the reasons is that single processor
performance is going to increase only marginally in the future; it might even decrease
for lowering energy consumption. Thus, the habit of waiting for the next processor
generation to increase application performance no longer works. Future increases
of computing power will come from parallelism, and software developers need to
embrace parallel programming rather than resist it.

Why did this happen? The current sea change from sequential to parallel process-
ing is driven by the confluence of three events. The first event is the end of exponen-
tial growth in single processor performance. This event is caused by our inability to
increase clock frequencies without increasing power dissipation. In the past, higher
clock speeds could be compensated by lower supply voltages. Since this is no longer

1



2 Fundamentals of Multicore Software Development

possible, increasing clock speeds would exceed the few hundred watts per chip that
can practically be dissipated in mass-market computers as well as the power available
in battery-operated mobile devices.

The second event is that parallelism internal to the architecture of a processor
has reached a point of diminishing returns. Deeper pipelines, instruction-level par-
allelism, and speculative execution appear to offer no opportunity to significantly
improve performance.

The third event is really a continuing trend: Moore’s law projecting an exponen-
tial growth in the number of transistors per chip continues to hold. The 2009
International Technology Roadmap for Semiconductors (http://www.itrs.net/Links/
2009ITRS/Home2009.htm) expects this growth to continue for another 10 years;
beyond that, fundamental limits of CMOS scaling may slow growth.

The net result is that hardware designers are using the additional transistors to
provide additional cores, while keeping clock rates constant. Some of the extra pro-
cessors may even be specialized, for example, for encryption, video processing, or
graphics. Specialized processors are advantageous in that they provide more per-
formance per watt than general-purpose CPUs. Not only will programmers have
to deal with parallelism, but also with heterogeneous instruction sets on a single
chip.

1.2 How This Book Helps

This book provides an overview of the current programming choices for multi-
cores, written by the leading experts in the field. Since programmers are the ones that
will put the power of multicores to work, it is important to understand the various
options and choose the best one for the software at hand.

What are the current choices? All mainstream programming languages (C++,
Java, .NET, OpenMP) provide threads and synchronization primitives; these are all
covered in this book. Parallel programming patterns such as pipelines and thread
pools are built upon these primitives; the book discusses Intel’s Threading Building
Blocks, Microsoft’s Task Parallel Library, and Microsoft’s PLINQ, a parallel query
language.

Graphics processing units (GPUs) require specialized languages; CUDA is the
example chosen here. Combined with a chapter on IBM’s Cell, the reader can get
an understanding of how heterogeneous multicores are programmed.

As to future choices, additional chapters introduce automatic extraction of paral-
lelism, auto-tuning, and transactional memory. The final chapter provides a survey of
future applications of multicores, such as recognition, mining, and synthesis.

Most of today’s multicore platforms are shared memory systems. A particular topic
is conspicuously absent: distributed computing with message passing. Future multi-
cores may well change from shared memory to distributed memory, in which case
additional programming techniques will be needed.
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1.3 Audience

This book targets students, researchers, and practitioners interested in parallel pro-
gramming, as well as instructors of courses in parallelism. The authors present the
basics of the various parallel programming models in use today, plus an overview of
emerging technologies. The emphasis is on software; hardware is only covered to the
extent that software developers need to know.

1.4 Organization

• Part I: Basics of Parallel Programming (Chapters 2 and 3)

• Part II: Programming Languages for Multicore (Chapters 4 through 6)

• Part III: Programming Heterogeneous Processors (Chapters 7 and 8)

• Part IV: Emerging Technologies (Chapters 9 through 12)

1.4.1 Part I: Basics of Parallel Programming

In Chapter 2, Barry Wilkinson presents the fundamentals of multicore hardware
and parallel programming that every software developer should know. It also talks
about fundamental limitations of sequential computing and presents common clas-
sifications of parallel computing platforms and processor architectures. Wilkinson
introduces basic notions of processes and threads that are relevant for the understand-
ing of higher-level parallel programming in the following chapters. The chapter also
explains available forms of parallelism, such as task parallelism, data parallelism, and
pipeline parallelism. Wilkinson concludes with a summary of key insights.

In Chapter 3, Tim Mattson presents how the concept of design patterns can be
applied to parallel programming. Design patterns provide common solutions to recur-
ring problems and have been used successfully in mainstream object-oriented pro-
gramming. Applying patterns to parallel programming helps programmers cope with
the complexity by reusing strategies that were successful in the past. Mattson intro-
duces a set of design patterns for parallel programming, which he categorizes into
software structure patterns and algorithm strategy patterns. The end of the chapter
surveys with work in progress in the pattern community.

1.4.2 Part II: Programming Languages for Multicore

In Chapter 4, Hans Boehm shows how C++, one of the most widely used pro-
gramming languages, supports parallelism. He describes how C++ started off with
platform-dependent threading libraries with ill-defined semantics. He discusses the
new C++0x standard that carefully specifies the semantics of parallelism in C++
and the rationale for adding threads directly to the language specification. With these
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extensions, parallel programming in C++ becomes less error prone, and C++ imple-
mentations become more robust. Boehm’s chapter concludes with a comparison of
the current standard to earlier standards.

In Chapter 5, Judy Bishop describes parallelism in .NET and Java. The chapter
starts with a presentation of .NET. Bishop outlines particular features of the Task
Parallel Library (TPL) and the Parallel Language Integrated Queries (PLINQ), a lan-
guage that allows declarative queries into datasets that execute in parallel. She also
presents examples on how to use parallel loops and futures. Then she discusses paral-
lel programming in Java and constructs of the java.util.concurrent library, including
thread pools, task scheduling, and concurrent collections. In an outlook, she sketches
proposals for Java on fork-join parallelism and parallel array processing.

In Chapter 6, Barbara Chapman and James LaGrone overview OpenMP. The chap-
ter starts with describing the basic concepts of how OpenMP directives parallelize
programs in C, C++, and Fortran. Numerous code examples illustrate loop-level
parallelism and task-level parallelism. The authors also explain the principles of how
an OpenMP compiler works. The chapter ends with possible future extensions of
OpenMP.

1.4.3 Part III: Programming Heterogeneous Processors

In Chapter 7, Michael Garland, Vinod Grover, and Kevin Skandron discuss scalable
manycore computing with CUDA. They show how throughput-oriented computing
can be implemented with GPUs that are installed in most systems along multicore
CPUs. The chapter presents the basics of the GPU machine model and how to pro-
gram GPUs in the CUDA language extensions for C/C++. In particular, the reader
is introduced to parallel compute kernel design, synchronization, task coordination,
and memory management handling. The chapter also shows detailed programming
examples and gives advice for performance optimization.

In Chapter 8, Christoph Kessler discusses programming approaches for the Cell
processor, which is a heterogeneous processor built into Sony’s PlayStation� 3.
Kessler first outlines the hardware architecture of the Cell processor. Programming
approaches for the Cell are introduced based on IBM’s software development kit. In
particular, Kessler discusses constructs for thread coordination, DMA communica-
tion, and SIMD parallelization. The chapter also provides an overview of compilers,
libraries, tools, as well as relevant algorithms for scientific computing, sorting, image
processing, and signal processing. The chapter concludes with a comparison of the
Cell processor and GPUs.

1.4.4 Part IV: Emerging Technologies

In Chapter 9, David I. August, Jialu Huang, Thomas B. Jablin, Hanjun Kim, Thomas
R. Mason, Prakash Prabhu, Arun Raman, and Yun Zhang introduce techniques for
automatic extraction of parallelism from sequential code. The chapter thoroughly
describes dependence analysis as a central building block for automatic parallelization.
Numerous examples are used to explain compiler auto-parallelization techniques,
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such as automatic loop parallelization, speculation, and pipelining techniques. The
chapter concludes by discussing the role of auto-parallelization techniques and future
developments.

In Chapter 10, Christoph Schaefer, Victor Pankratius, and Walter F. Tichy intro-
duce the basics of automatic performance tuning for parallel applications. The chapter
presents a classification of auto-tuning concepts and explains how to design
tunable parallel applications. Various techniques are illustrated on how programmers
can specify tuning-relevant information for an auto-tuner. The principles of several
well-known auto-tuners are compared. An outlook on promising extensions for auto-
tuners ends this chapter.

In Chapter 11, Tim Harris presents the basics of the transactional memory program-
ming model, which uses transactions instead of locks. The chapter shows how trans-
actional memory is used in parallel programs and how to implement it in hardware and
software. Harris introduces a taxonomy that highlights the differences among exist-
ing transactional memory implementations. He also discusses performance issues and
optimizations.

In Chapter 12, Pradeep Dubey elaborates on emerging applications that will benefit
from multicore systems. He provides a long-term perspective on the most promising
directions in the areas of recognition, mining, and synthesis, showing how such appli-
cations will be able to take advantage of multicore processors. He also outlines new
opportunities for enhanced interactivity in applications and algorithmic opportunities
in data-centric applications. Dubey details the implications for multicore software
development based on a scalability analysis for various types of applications. The
chapter concludes by highlighting the unprecedented opportunities that come with
multicore.
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2.1 Introduction

In this chapter, we will describe the background to multicore processors, describe
their architectures, and lay the groundwork for the remaining of the book on program-
ming these processors. Multicore processors integrate multiple processor cores on the
same integrated circuit chip (die), which are then used collectively to achieve higher
overall performance. Constructing a system with multiple processors and using them
collectively is a rather obvious idea for performance improvement. In fact, it became
evident in the early days of computer design as a potential way of increasing the
speed of computer systems. A computer system constructed with multiple processors

9
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that are intended to operate together is called a parallel computer historically, and
programming the processors to operate together is called parallel programming. Par-
allel computers and parallel programming have a long history. The term parallel
programming is used by Gill in 1958 (Gill 1958), and his definition of parallel pro-
gramming is essentially the same as today.

In this chapter, we will first explore the previous work and will start by establishing
the limits for performance improvement of processors operating in parallel to satisfy
ourselves that there is potential for performance improvement. Then, we will look at
the different ways that a system might be constructed with multiple processors. We
continue with an outline of the improvements that have occurred in the design of the
processors themselves, which have led to enormous increase in the speed of individual
processors. These improvements have been so dramatic that the added complexities
of parallel computers have limited their use mostly to very high-performance com-
puting in the past. Of course, with improvements in the individual processor, so paral-
lel computers constructed with them also improve proportionately. But programming
the multiple processors for collective operation is a challenge, and most demands out-
side scientific computing have been satisfied with single processor computers, relying
on the ever-increasing performance of processors. Unfortunately, further improve-
ments in single processor designs hit major obstacles in the early 2000s, which we
will outline. These obstacles led to the multicore approach. We describe architectural
designs for a multicore processor and conclude with an outline of the methods for pro-
gramming multicore systems as an introduction to subsequent chapters on multicore
programming.

2.2 Potential for Increased Speed

Since the objective is to use multiple processors collectively for higher perfor-
mance, before we can explore the different architectures structures one might device,
let us first establish the potential for increased speed. The central question is how
much faster does the multiprocessor system perform over a single processor system.
This can be encapsulated in the speedup factor, S( p), which is defined as

S( p) = Execution time using a single processor (with the best sequential algorithm)

Execution time using a multiprocessor system with p processors

= ts
tp

(2.1)

where
ts is the execution time on a single processor
tp is the execution time on system with p processors

Typically, the speedup factor is used to evaluate the performance of a parallel
algorithm on a parallel computer. In the comparison, we should use the best-known
sequential algorithm using a single processor because the parallel algorithm is likely
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not to perform as well on a single processor. The execution times could be empir-
ical, that is, measured on real computers. It might be measured by using the Linux
time command. Sometimes, one might instrument the code with routines that return
wall-clock time, one at the beginning of a section of code to record the start time, and
one at the end to record the end time. The elapsed time is the difference. However,
this method can be inaccurate as the system usually has other processes executing
concurrently in a time-shared fashion. The speedup factor might also be computed
theoretically from the number of operations that the algorithms perform. The classi-
cal way of evaluating sequential algorithms is by using the time complexity notation,
but it is less effective for a parallel algorithm because of uncertainties such as com-
munication times between cooperating parallel processes.

A speedup factor of p with p processors is called linear speedup. Conventional
wisdom is that the speedup factor should not be greater than p because if a problem
is divided into p parts each executed on one processor of a p-processor system and
tp < ts/p, then the same parts could be executed one after the other on a single pro-
cessor system in time less than ts. However, there are situations where the speedup
factor is greater than p (superlinear speedup). The most notable cases are

• When the processors in the multiprocessor system have more memory (cache or
main memory) than the single processor system, which provides for increased
performance.

• When the multiprocessor has some special feature not present in the single
processor system, such as special instructions or hardware accelerators.

• When the algorithm is nondeterministic and happens to provide the solution in
one of the parallel parts very quickly, whereas the sequential solution needs to
go through many parts to get to the one that has the solution.

The first two cases are not fair hardware comparisons, whereas the last certainly can
happen but only with specific problems.

In 1967, Amdahl explored what the maximum speed up would be when a sequen-
tial computation is divided into parts and these parts are executed on different pro-
cessors. This not comparing the best sequential algorithm with a particular parallel
algorithm—it is comparing a particular computation mapped onto a single computer
and mapped onto a system having multiple processors. Amdahl also assumed that a
computation has sections that cannot be divided into parallel parts and these must be
performed sequentially on a single processor, and other sections that can be divided
equally among the available processors. The sections that cannot be divided into par-
allel parts would typically be an initialization section of the code and a final section
of the code, but there may be several indivisible parts. For the purpose of the analysis,
they are lumped together into one section that must be executed sequentially and one
section that can be divided into p equal parts and executed in parallel. Let f be the
fraction of the whole computation that must be executed sequentially, that is, cannot
be divided into parallel parts. Hence, the fraction that can be divided into parts is 1−f .
If the whole computation executed on a single computer in time ts, fts is indivisible
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Serial section Parallelizable section

tp = fts + (1 – fts)/p

fts

(1 – fts)/p

(1 – fts)

ts

FIGURE 2.1: Amdahl’s law.

and (1 − f )ts is divisible. The ideal situation is when the divisible section is divided
equally among the available processors and then this section would be executed in
time (1 − f )ts/p given p processors. The total execution time using p processors is
then fts + (1 − f )ts/p as illustrated in Figure 2.1. The speedup factor is given by

S( p) = ts
fts + (1 − f )ts/p

= 1

f + (1 − f )/p
= p

1 + ( p − 1)f
(2.2)

This famous equation is known as Amdahl’s law (Amdahl 1967). The key observation
is that as p increases, S( p) tends to and is limited to 1/f as p tends to infinity. For
example, suppose the sequential part is 5% of the whole. The maximum speed up
is 20 irrespective of the number of processors. This is a very discouraging result.
Amdahl used this argument to support the design of ultrahigh speed single processor
systems in the 1960s.

Later, Gustafson (1988) described how the conclusion of Amdahl’s law might be
overcome by considering the effect of increasing the problem size. He argued that
when a problem is ported onto a multiprocessor system, larger problem sizes can be
considered, that is, the same problem but with a larger number of data values. The
starting point for Gustafson’s law is the computation on the multiprocessor rather than
on the single computer. In Gustafson’s analysis, the parallel execution time is kept
constant, which we assume to be some acceptable time for waiting for the solution.
The computation on the multiprocessor is composed of a fraction that is computed
sequentially, say f ′, and a fraction that contains parallel parts, (1 − f ′).

This leads to Gustafson’s so-called scaled speedup fraction, S′( p), given by

S′( p) = f ′tp + (1 − f ′)ptp
tp

= p + (1 − p)f ′ (2.3)
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The fraction, f ′, is the fraction of the computation on the multiprocessor that cannot
be parallelized. This is different to f previously, which is the fraction of the compu-
tation on a single computer that cannot be parallelized. The conclusion drawn from
Gustafson’s law is that it should be possible to get high speedup if we scale up the
problem size. For example, if f ′ is 5%, the scaled speedup computes to 19.05 with 20
processors, whereas with Amdahl’s law with f = 5%, the speedup computes to 10.26.
Gustafson quotes results obtained in practice of very high speedup close to linear on
a 1024-processor hypercube.

Others have explored speedup equations over the years, and it has reappeared with
the introduction of multicore processors. Hill and Marty (2008) explored Amdahl’s
law with different architectural arrangements for multicore processors. Woo and Lee
(2008) continued this work by considering Amdahl’s law and the architectural arrange-
ments in the light of energy efficiency, a key aspect of multicore processors. We will
look at the architectural arrangements for multicore processors later.

2.3 Types of Parallel Computing Platforms

If we accept that it should be worthwhile to use a computer with multiple proces-
sors, the next question is how should such a system be constructed. Many parallel
computing systems have been designed since the 1960s with various architectures.
One thing they have in common is they are stored-program computers. Processors
execute instructions from a memory and operate upon data. Flynn (1966) created a
classification based upon the number of parallel instruction streams and number of
data streams:

• Single instruction stream-single data stream (SISD) computer

• Multiple instruction stream-multiple data stream (MIMD) computer

• Single instruction stream-multiple data stream (SIMD) computer

• Multiple instruction stream-single data stream (MISD) computer

A sequential computer has a single instruction stream processing a single data stream
(SISD). A general-purpose multiprocessor system comes under the category of a mul-
tiple instruction stream-multiple data stream (MIMD) computer. Each processor has
its own instruction stream processing its own data stream. There are classes of prob-
lems that can be tackled with a more specialized multiprocessor structure able to per-
form the same operation on multiple data elements simultaneously. Problems include
low-level image processing in which all the picture elements (pixels) need to be
altered using the same calculation. Simulations of 2D and 3D structures can involve
processing all the elements in the solution space using the same calculation. A single
instruction stream-multiple data stream (SIMD) computer is designed specifically for
executing such applications efficiently. Instructions are provided to perform a speci-
fied operation on an array of data elements simultaneously. The operation might be to
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add a constant to each data element, or multiply data elements. In a SIMD computer,
there are multiple processing elements but a single program. This type of design is
very efficient for the class of problems it addresses, and some very large SIMD com-
puters have been designed over the years, perhaps the first being the Illiac IV in 1972.
The SIMD approach was adopted by supercomputer manufacturers, most notably by
Cray computers. SIMD computers are sometimes referred to as vector computers as
the SIMD instructions operate upon vectors. SIMD computers still need SISD instruc-
tions to be able to construct a program.

SIMD instructions can also be incorporated into regular processors for those times
that appropriate problems are presented to it. For example, the Intel Pentium series,
starting with the Pentium II in 1996, has SIMD instructions, called MMX (Multi-
Media eXtension) instructions, for speeding up multimedia applications. This design
used the existing floating-point registers to pack multiple data items (eight bytes,
four 16-bit numbers, or two 32-bit numbers) that are then operated upon by the same
operation. With the introduction of the Pentium III in 1999, Intel added further SIMD
instructions, called SSE (Streaming SIMD extension), operating upon eight new 128-
bit registers. Intel continued adding SIMD instructions. SSE2 was first introduced
with the Pentium 4, and subsequently, SSE3, SSE4, and SSE5 appeared. In 2008, Intel
announced AVX (Advanced Vector extensions) operating upon registers extended to
256 bits. Whereas, large SIMD computers vanished in the 1990s because they could
not compete with general purpose multiprocessors (MIMD), SIMD instructions still
continue for certain applications. The approach can also be found in graphics cards.

General-purpose multiprocessor systems (MIMD computers) can be divided into
two types:

1. Shared memory multiprocessor

2. Distributed memory multicomputer

Shared memory multiprocessor systems are a direct extension of single processor sys-
tem. In a single processor system, the processor accesses a main memory for program
instructions and data. In a shared memory multiprocessor system, multiple processors
are arranged to have access to a single main memory. This is a very convenient con-
figuration from a programming prospective as then data generated by one processor
and stored in the main memory is immediately accessible by other processors. As in
a single processor system, cache memory is present to reduce the need to access main
memory continually, and commonly two or three levels of cache memory. However,
it can be difficult to scale shared memory systems for a large number of processors
because the connection to the common memory becomes a bottleneck. There are sev-
eral possible programming models for a shared memory system. Mostly, they revolve
around using threads, which are independent parallel code sequences within a pro-
cess. We shall look at the thread programming model in more detail later. Multicore
processors, at least with a small number of cores, usually employ shared memory
configuration.

Distributed memory is an alternative to shared memory, especially for larger sys-
tems. In a distributed memory system, each processor has its own main memory and
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the processor-memory pair operates as an individual computer. Then, the comput-
ers are interconnected. Distributed memory systems have spawned a large number
of interconnection networks, especially in the 1970s and 1980s. Notable networks in
that era include

• 2D and 3D Mesh networks with computing nodes connected to their nearest
neighbor in each direction.

• Hypercube network—a 3D (binary) hypercube is a cube of eight nodes, one
at each corner. Each node connects to one other node in each dimension. This
construction can be extended to higher dimensions. In an n-dimensional binary
hypercube, each node connects to n other nodes, one in each dimension.

• Crossbar switch network—nodes connect to all other nodes, each through a
single switch (N2 switches with N nodes, including switches to themselves).

• Multiple bus network—an extension of a bus architecture in which more than
one bus is provided to connect components.

• Tree (switching) network—A network using a tree construction in which the
vertices are switches and the nodes are at the leaves of the tree. A path is made
through the tree to connect one node to another node.

• Multistage interconnection network—a series of levels of switches make a con-
nection from one node to another node. There are many types of these net-
works characterized by how the switches are interconnected between levels.
Originally, multistage interconnection networks were developed for telephone
exchanges. They have since been used in very large computer systems to inter-
connect processors/computers.

Beginning in the late 1980s, it became feasible to use networked computers as a
parallel computing platform. Some early projects used existing networked labora-
tory computers. In the 1990s, it became cost-effective to interconnect low-cost com-
modity computers (PCs) with commodity interconnects (Ethernet) to form a high-
performance computing cluster, and this approach continues today. The programming
model for such a distributed memory system is usually a message-passing model in
which messages pass information between the computers. Generally, the program-
mer inserts message-passing routines in their code. The most widely used suite of
message-passing libraries for clusters is MPI. With the advent of multicore computer
systems, a cluster of multicore computers can form very high-performance comput-
ing platform. Now the programming model for such a cluster may be a hybrid model
with threads on each multicore system and message passing between systems. For
example, one can use both OpenMP for creating threads and MPI for message pass-
ing easily in the same C/C++ program.

Distributed memory computers can also extend to computers that are not physically
close. Grid computing refers to a computing platform in which the computers are
geographically distributed and interconnected (usually through the Internet) to form a
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collaborative resource. Grid computing tends to focus on collaborative computing and
resource sharing. For more information on Grid computing, see Wilkinson (2010).

2.4 Processor Design

From the early days of computing, there has been an obvious desire to create
the fastest possible processor. Amdahl’s law suggested that this would be a better
approach than using multiple processors. A central architectural design approach
widely adopted to achieve increased performance is by using pipelining. Pipelining
involves dividing the processing of an instruction into a series of sequential steps and
providing a separate unit within the processor for each step. Speedup comes about
when multiple instructions are executed in series. Normally, each unit operates for
the same time performing its actions for each instruction as they pass through and the
pipeline operates in lock-step synchronous fashion. Suppose there are s pipeline units
(stages) and n instructions to process in a series. It takes s steps to process the first
instruction. The second instruction completes in the next step, the third in the next
step and so on. Hence, n instructions are executed in s + n− 1 steps, and the speedup
compared to a non-pipeline processor is given by

s( p) = sn

s + n − 1
(2.4)

assuming the non-pipelined processor must complete all s steps of one instruction
before starting the next instruction and the steps take the same time. This is a very
approximate comparison as the non-pipelined processor probably can be designed
to complete the processing of one instruction in less time than s time steps of the
pipelined approach. The speedup will tend to s for large n or tend to n for large s.
This suggests that there should be a large number of uninterrupted sequential instruc-
tions or a long pipeline. Complex processors such as the Pentium IV can have long
pipelines, perhaps up to 22 stages, but long pipelines also incur other problems that
have to be addressed such as increased number of dependencies between instructions
in the pipeline. Uninterrupted sequences of instructions will depend upon the pro-
gram and is somewhat limited, but still pipelining is central for high-performance
processor design. Pipelining is a very cost-effective solution compared to duplicating
the whole processor.

The next development for increased single processor design is to make the pro-
cessor capable of issuing multiple instructions for execution at the same time using
multiple parallel execution units. The general term for such a design is a superscalar
processor. It relies upon instruction-level parallelism, that is, being able to find mul-
tiple instructions in the instruction stream that can be executed simultaneously. As
one can imagine, the processor design is highly complex, and the performance gains
will depend upon how many instructions can actually be executed at the same time.
There are other architectural improvements, including register renaming to provide
dynamically allocated registers from a pool of registers.
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Apart from designs that process a single instruction sequence, increased perfor-
mance can be achieved by processing instructions from different program sequences
switching from one sequence to another. Each sequence is a thread, and the technique
is known as multithreading. The switching between threads might occur after each
instruction (fine-grain multithreading) or when a thread is blocked (coarse-grain mul-
tithreading). Fine-grain multithreading suggests that each thread sequence will need
its own register file. Interleaving instructions increases the distance of related instruc-
tions in pipelines and reduces the effects of instruction dependencies. With advent of
multiple-issue processors that have multiple execution units, these execution units
can be utilized more fully by processing multiple threads. Such multithreaded pro-
cessor designs are called simultaneous multithreading (SMT) because the instructions
of different threads are being executed simultaneously using the multiple execution
units. Intel calls their version hyper-threading and introduced it in versions of the
Pentium IV. Intel limited its simultaneous multithreading design to two threads. Per-
formance gains from simultaneous multithreading are somewhat limited, depending
upon the application and processor, and are perhaps in the region 10%–30%.

Up to the early 2000s, the approach taken by manufacturers such as Intel was
to design a highly complex superscalar processor with techniques for simultaneous
operation coupled with using a state-of-the-art fabrication technology to obtain the
highest chip density and clock frequency. However, this approach was coming to an
end. With clock frequencies reaching almost 4 GHz, technology was not going to
provide a continual path upward because of the laws of physics and increasing power
consumption that comes with increasing clock frequency and transistor count.

Power consumption of a chip has a static component (leakage currents) and a
dynamic component due to switching. Dynamic power consumption is proportional
to the clock frequency, the square of the voltage switched, and the capacitive load
(Patterson and Hennessy 2009, p. 39). Therefore, each increase in clock frequency
will directly increase the power consumption. Voltages have been reduced as a neces-
sary part of decreased feature sizes of the fabrication technology, reducing the power
consumption. As the feature size of the chip decreases, the static power becomes
more significant and can be 40% of the total power (Asanovic et al. 2006). By the
mid-2000s, it had become increasing difficult to limit the power consumption while
improving clock frequencies and performance. Patterson calls this the power wall.

Wulf and McKee (1995) identified the memory wall as caused by the increasing
difference between the processor speed and the memory access times. Semiconductor
main memory has not kept up with the increasing speed of processors. Some of this
can be alleviated by the use of caches and often nowadays multilevel caches, but
still it poses a major obstacle. In addition, the instruction-level parallelism wall is
caused by the increasing difficulty to exploit more parallelism within an instruction
sequence. These walls lead to Patterson’s “brick wall”:

Power wall + Memory wall + Instruction-Level wall = Brick wall

for a sequential processor. Hence, enter the multicore approach for using the ever-
increasing number of transistors on a chip. Moore’s law originally predicted that the
number of transistors on an integrated circuit chip would double approximately every
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year, later predicting every two years, and sometimes quoted as doubling every 18
months. Now, a prediction is that the number of cores will double every two years or
every fabrication technology.

2.5 Multicore Processor Architectures

2.5.1 General

The term multicore processor describes a processor architecture that has multiple
independent execution units (cores). (The term many-core indicates a large number of
cores are present, but we shall simply use the term multicore.) How does a multicore
approach get around Patterson’s brick wall? With instruction-level parallelism at its
limit, we turn to multiple processors to process separate instruction sequences. If we
simply duplicated the processors on a chip and all processors operated together, the
power would simply increase proportionally and beyond the limits of the chip. There-
fore, power consumption must be addressed. The processor cores have to be made
more power efficient. One approach used is to reduce the clock frequency, which can
result in more than proportional reduction on power consumption. Although reduc-
ing the clock frequency will reduce the computational speed, the inclusion of multiple
cores provides the potential for increased combined performance if the cores can be
used effectively (a big “if”). All multicore designs use this approach. The complexity
of each core can be reduced, that is, not use a processor of an extremely aggressive
superscalar design. Power can be conserved by switching off parts of the core that are
not being used. Temperature sensors can be used to reduce the clock frequency and
cut off circuits if the power exceeds limits.

2.5.2 Symmetric Multicore Designs

The most obvious way to design a multicore processor is to replicate identical
processor designs on the die (integrated circuit chip) as many times as possible. This
is known as a symmetric multicore design. Existing processor designs might be used
for each core or designs that are based upon existing designs. As we described, the
tendency in processor design has been to make processors complex and superscalar
for the greatest performance. One could replicate complex superscalar processors on
the chip, and companies such as Intel and AMD have followed this approach as their
first entry into multicore products, beginning with dual core.

The processor is of course only one part of the overall system design. Memory is
required. Main semiconductor memory operates much slower than a processor (the
memory wall), partly because of its size and partly because of the dynamic memory
design used for high capacity and lower costs. Hence, high-speed cache memory is
added near the processor to hold recently used information that can be accessed much
more quickly than from the main memory. Cache memory has to operate much faster
than the main memory and uses a different circuit design. Speed, capacity, and cost in
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FIGURE 2.2: Symmetric multicore design.

semiconductor are related. As memory capacity is increased on a memory chip, the
tendency is for the device to operate slower for given technology in addition to its cost
increasing. This leads to a memory hierarchy with multiple levels of cache memory,
that is, an L1 cache, an L2 cache, and possibly an L3 cache, between the processor and
main memory. Each level of caches is slower and larger than the previous level and
usually includes the information held in the previous level (although not necessarily
depending upon the design).

Figure 2.2 shows one possible symmetric multicore design in which each processor
core has its own L1 cache fabricated on-chip and close to the core and a single shared
external L2 between the multicore chip and the main memory. This configuration
would be a simple extension of single processor having an on-chip L1 cache. The
L2 cache could also be fabricated on the chip given sufficient chip real estate and an
example of such a design is the Intel Core Duo, with two cores on one chip (die) and
a shared L2 cache. An L3 cache can be placed between the L2 cache and the main
memory as indicated in Figure 2.2 There are several possible variations, including
having each core have its own L2 cache and groups of cores sharing an L2 cache
on-chip. The Intel Core i7, first released in November 2008, is designed for four, six,
or eight cores on the same die. Each core has its own data and instruction L1 caches,
its own L2 cache and a shared L3 cache, all on the same die. The cores in the Intel
Core i7 also use simultaneously multithreading (two threads per core).

The design shown in Figure 2.2 will not currently scale to a very large number
of processors if complex processors are used. However, in a symmetric multicore
design, each core need not be a high-performance complex superscalar core. An alter-
native is to use less complex lower-performance lower-power cores but more of them.
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FIGURE 2.3: Symmetric multicore design using a mesh interconnect.

This approach offers the possibility of fabricating more cores onto the chip, although
each core might not be as powerful as a high-performance complex superscalar core.
Figure 2.3 shows an arrangement using a 2D bus structure to interconnect the cores.
Using a large number of less complex lower-performance lower-power cores is often
targeted toward a particular market. An example is the picaChip designed for wireless
infrastructure and having 250–300 DSP cores. Another example is TILE64 with 64
cores arranged in a 2D array for networking and digital video processing.

2.5.3 Asymmetric Multicore Designs

In an asymmetric multicore design, different cores with different functionality are
placed on the chip rather than have one uniform core design. Usually, the configu-
ration is to have one fully functional high-performance superscalar core and large
number of smaller less powerful but more power-efficient cores, as illustrated in
Figure 2.4. These designs are often targeted toward specific applications. An exam-
ple is the Sony/Toshiba/IBM Cell Broadband Engine Architecture (cell) used in the
PlayStation 3 game console. (Asymmetric design is used in Microsoft’s Xbox 360
video game console.) Cell processors are combined with dual-core Opteron


