

Introduction to
High Performance

Computing for
Scientists and Engineers

K10600_FM.indd 1 6/1/10 11:51:56 AM

Chapman & Hall/CRC
Computational Science Series

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS, Georg Hager and Gerhard Wellein

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Associate Laboratory Director, Computing Sciences

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks.
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest
theories and experimentation. The scope of the series includes, but is not limited to, titles in the
areas of scientific computing, parallel and distributed computing, high performance computing,
grid computing, cluster computing, heterogeneous computing, quantum computing, and their
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil
exploration, and weather forecasting.

Introduction to
High Performance

Computing for
Scientists and Engineers

Georg Hager

Gerhard Wellein

K10600_FM.indd 2 6/1/10 11:51:56 AM

Chapman & Hall/CRC
Computational Science Series

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS, Georg Hager and Gerhard Wellein

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Associate Laboratory Director, Computing Sciences

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in the field of computational sci-
ence through the publication of a broad range of textbooks, reference works, and handbooks.
Books in this series will provide introductory as well as advanced material on mathematical, sta-
tistical, and computational methods and techniques, and will present researchers with the latest
theories and experimentation. The scope of the series includes, but is not limited to, titles in the
areas of scientific computing, parallel and distributed computing, high performance computing,
grid computing, cluster computing, heterogeneous computing, quantum computing, and their
applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate
modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil
exploration, and weather forecasting.

Introduction to
High Performance

Computing for
Scientists and Engineers

Georg Hager

Gerhard Wellein

K10600_FM.indd 3 6/1/10 11:51:57 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-1192-4 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Hager, Georg.
Introduction to high performance computing for scientists and engineers / Georg

Hager and Gerhard Wellein.
p. cm. -- (Chapman & Hall/CRC computational science series ; 7)

Includes bibliographical references and index.
ISBN 978-1-4398-1192-4 (alk. paper)
1. High performance computing. I. Wellein, Gerhard. II. Title.

QA76.88.H34 2011
004’.35--dc22 2010009624

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

K10600_FM.indd 4 6/1/10 11:51:57 AM

Dedicated to Konrad Zuse (1910–1995)

He developed and built the world’s first fully automated, freely programmable
computer with binary floating-point arithmetic in 1941.

Contents

Foreword xiii

Preface xv

About the authors xxi

List of acronyms and abbreviations xxiii

1 Modern processors 1

1.1 Stored-program computer architecture 1
1.2 General-purpose cache-based microprocessor architecture 2

1.2.1 Performance metrics and benchmarks 3
1.2.2 Transistors galore: Moore’s Law 7
1.2.3 Pipelining . 9
1.2.4 Superscalarity . 13
1.2.5 SIMD . 14

1.3 Memory hierarchies . 15
1.3.1 Cache . 15
1.3.2 Cache mapping . 18
1.3.3 Prefetch . 20

1.4 Multicore processors . 23
1.5 Multithreaded processors . 26
1.6 Vector processors . 28

1.6.1 Design principles . 29
1.6.2 Maximum performance estimates 31
1.6.3 Programming for vector architectures 32

2 Basic optimization techniques for serial code 37

2.1 Scalar profiling . 37
2.1.1 Function- and line-based runtime profiling 38
2.1.2 Hardware performance counters 41
2.1.3 Manual instrumentation 45

2.2 Common sense optimizations . 45
2.2.1 Do less work! . 45
2.2.2 Avoid expensive operations! 46
2.2.3 Shrink the working set! . 47

vii

viii

2.3 Simple measures, large impact . 47
2.3.1 Elimination of common subexpressions 47
2.3.2 Avoiding branches . 48
2.3.3 Using SIMD instruction sets 49

2.4 The role of compilers . 51
2.4.1 General optimization options 52
2.4.2 Inlining . 52
2.4.3 Aliasing . 53
2.4.4 Computational accuracy 54
2.4.5 Register optimizations . 55
2.4.6 Using compiler logs . 55

2.5 C++ optimizations . 56
2.5.1 Temporaries . 56
2.5.2 Dynamic memory management 59
2.5.3 Loop kernels and iterators 60

3 Data access optimization 63

3.1 Balance analysis and lightspeed estimates 63
3.1.1 Bandwidth-based performance modeling 63
3.1.2 The STREAM benchmarks 67

3.2 Storage order . 69
3.3 Case study: The Jacobi algorithm 71
3.4 Case study: Dense matrix transpose 74
3.5 Algorithm classification and access optimizations 79

3.5.1 O(N)/O(N) . 79
3.5.2 O(N2)/O(N2) . 79
3.5.3 O(N3)/O(N2) . 84

3.6 Case study: Sparse matrix-vector multiply 86
3.6.1 Sparse matrix storage schemes 86
3.6.2 Optimizing JDS sparse MVM 89

4 Parallel computers 95

4.1 Taxonomy of parallel computing paradigms 96
4.2 Shared-memory computers . 97

4.2.1 Cache coherence . 97
4.2.2 UMA . 99
4.2.3 ccNUMA . 100

4.3 Distributed-memory computers 102
4.4 Hierarchical (hybrid) systems . 103
4.5 Networks . 104

4.5.1 Basic performance characteristics of networks 104
4.5.2 Buses . 109
4.5.3 Switched and fat-tree networks 110
4.5.4 Mesh networks . 112
4.5.5 Hybrids . 113

ix

5 Basics of parallelization 115

5.1 Why parallelize? . 115
5.2 Parallelism . 116

5.2.1 Data parallelism . 116
5.2.2 Functional parallelism . 119

5.3 Parallel scalability . 120
5.3.1 Factors that limit parallel execution 120
5.3.2 Scalability metrics . 122
5.3.3 Simple scalability laws . 123
5.3.4 Parallel efficiency . 125
5.3.5 Serial performance versus strong scalability 126
5.3.6 Refined performance models 128
5.3.7 Choosing the right scaling baseline 130
5.3.8 Case study: Can slower processors compute faster? 131
5.3.9 Load imbalance . 137

6 Shared-memory parallel programming with OpenMP 143

6.1 Short introduction to OpenMP . 143
6.1.1 Parallel execution . 144
6.1.2 Data scoping . 146
6.1.3 OpenMP worksharing for loops 147
6.1.4 Synchronization . 149
6.1.5 Reductions . 150
6.1.6 Loop scheduling . 151
6.1.7 Tasking . 153
6.1.8 Miscellaneous . 154

6.2 Case study: OpenMP-parallel Jacobi algorithm 156
6.3 Advanced OpenMP: Wavefront parallelization 158

7 Efficient OpenMP programming 165

7.1 Profiling OpenMP programs . 165
7.2 Performance pitfalls . 166

7.2.1 Ameliorating the impact of OpenMP worksharing constructs 168
7.2.2 Determining OpenMP overhead for short loops 175
7.2.3 Serialization . 177
7.2.4 False sharing . 179

7.3 Case study: Parallel sparse matrix-vector multiply 181

8 Locality optimizations on ccNUMA architectures 185

8.1 Locality of access on ccNUMA 185
8.1.1 Page placement by first touch 186
8.1.2 Access locality by other means 190

8.2 Case study: ccNUMA optimization of sparse MVM 190
8.3 Placement pitfalls . 192

8.3.1 NUMA-unfriendly OpenMP scheduling 192

x

8.3.2 File system cache . 194
8.4 ccNUMA issues with C++ . 197

8.4.1 Arrays of objects . 197
8.4.2 Standard Template Library 199

9 Distributed-memory parallel programming with MPI 203

9.1 Message passing . 203
9.2 A short introduction to MPI . 205

9.2.1 A simple example . 205
9.2.2 Messages and point-to-point communication 207
9.2.3 Collective communication 213
9.2.4 Nonblocking point-to-point communication 216
9.2.5 Virtual topologies . 220

9.3 Example: MPI parallelization of a Jacobi solver 224
9.3.1 MPI implementation . 224
9.3.2 Performance properties . 230

10 Efficient MPI programming 235

10.1 MPI performance tools . 235
10.2 Communication parameters . 239
10.3 Synchronization, serialization, contention 240

10.3.1 Implicit serialization and synchronization 240
10.3.2 Contention . 243

10.4 Reducing communication overhead 244
10.4.1 Optimal domain decomposition 244
10.4.2 Aggregating messages . 248
10.4.3 Nonblocking vs. asynchronous communication 250
10.4.4 Collective communication 253

10.5 Understanding intranode point-to-point communication 253

11 Hybrid parallelization with MPI and OpenMP 263

11.1 Basic MPI/OpenMP programming models 264
11.1.1 Vector mode implementation 264
11.1.2 Task mode implementation 265
11.1.3 Case study: Hybrid Jacobi solver 267

11.2 MPI taxonomy of thread interoperability 268
11.3 Hybrid decomposition and mapping 270
11.4 Potential benefits and drawbacks of hybrid programming 273

A Topology and affinity in multicore environments 277

A.1 Topology . 279
A.2 Thread and process placement . 280

A.2.1 External affinity control 280
A.2.2 Affinity under program control 283

A.3 Page placement beyond first touch 284

xi

B Solutions to the problems 287

Bibliography 309

Index 323

Foreword

Georg Hager and Gerhard Wellein have developed a very approachable introduction
to high performance computing for scientists and engineers. Their style and descrip-
tions are easy to read and follow.

The idea that computational modeling and simulation represent a new branch of
scientific methodology, alongside theory and experimentation, was introduced about
two decades ago. It has since come to symbolize the enthusiasm and sense of im-
portance that people in our community feel for the work they are doing. Many of us
today want to hasten that growth and believe that the most progressive steps in that di-
rection require much more understanding of the vital core of computational science:
software and the mathematical models and algorithms it encodes. Of course, the
general and widespread obsession with hardware is understandable, especially given
exponential increases in processor performance, the constant evolution of processor
architectures and supercomputer designs, and the natural fascination that people have
for big, fast machines. But when it comes to advancing the cause of computational
modeling and simulation as a new part of the scientific method there is no doubt that
the complex software “ecosystem” it requires must take its place on the center stage.

At the application level science has to be captured in mathematical models, which
in turn are expressed algorithmically and ultimately encoded as software. Accord-
ingly, on typical projects the majority of the funding goes to support this translation
process that starts with scientific ideas and ends with executable software, and which
over its course requires intimate collaboration among domain scientists, computer
scientists, and applied mathematicians. This process also relies on a large infrastruc-
ture of mathematical libraries, protocols, and system software that has taken years to
build up and that must be maintained, ported, and enhanced for many years to come if
the value of the application codes that depend on it are to be preserved and extended.
The software that encapsulates all this time, energy, and thought routinely outlasts
(usually by years, sometimes by decades) the hardware it was originally designed to
run on, as well as the individuals who designed and developed it.

This book covers the basics of modern processor architecture and serial optimiza-
tion techniques that can effectively exploit the architectural features for scientific
computing. The authors provide a discussion of the critical issues in data movement
and illustrate this with examples. A number of central issues in high performance
computing are discussed at a level that is easily understandable. The use of parallel
processing in shared, nonuniform access, and distributed memories is discussed. In
addition the popular programming styles of OpenMP, MPI and mixed programming
are highlighted.

xiii

xiv

We live in an exciting time in the use of high performance computing and a pe-
riod that promises unmatched performance for those who can effectively utilize the
systems for high performance computing. This book presents a balanced treatment of
the theory, technology, architecture, and software for modern high performance com-
puters and the use of high performance computing systems. The focus on scientific
and engineering problems makes it both educational and unique. I highly recom-
mend this timely book for scientists and engineers, and I believe it will benefit many
readers and provide a fine reference.

Jack Dongarra

University of Tennessee
Knoxville, Tennessee

USA

Preface

When Konrad Zuse constructed the world’s first fully automated, freely pro-
grammable computer with binary floating-point arithmetic in 1941 [H129], he had
great visions regarding the possible use of his revolutionary device, not only in sci-
ence and engineering but in all sectors of life [H130]. Today, his dream is reality:
Computing in all its facets has radically changed the way we live and perform re-
search since Zuse’s days. Computers have become essential due to their ability to
perform calculations, visualizations, and general data processing at an incredible,
ever-increasing speed. They allow us to offload daunting routine tasks and commu-
nicate without delay.

Science and engineering have profited in a special way from this development.
It was recognized very early that computers can help tackle problems that were for-
merly too computationally challenging, or perform virtual experiments that would
be too complex, expensive, or outright dangerous to carry out in reality. Computa-
tional fluid dynamics, or CFD, is a typical example: The simulation of fluid flow in
arbitrary geometries is a standard task. No airplane, no car, no high-speed train, no
turbine bucket enters manufacturing without prior CFD analysis. This does not mean
that the days of wind tunnels and wooden mock-ups are numbered, but that com-
puter simulation supports research and engineering as a third pillar beside theory and
experiment, not only on fluid dynamics but nearly all other fields of science. In re-
cent years, pharmaceutical drug design has emerged as a thrilling new application
area for fast computers. Software enables chemists to discover reaction mechanisms
literally at the click of their mouse, simulating the complex dynamics of the large
molecules that govern the inner mechanics of life. On even smaller scales, theoreti-
cal solid state physics explores the structure of solids by modeling the interactions of
their constituents, nuclei and electrons, on the quantum level [A79], where the sheer
number of degrees of freedom rules out any analytical treatment in certain limits and
requires vast computational resources. The list goes on and on: Quantum chromody-
namics, materials science, structural mechanics, and medical image processing are
just a few further application areas.

Computer-based simulations have become ubiquitous standard tools, and are in-
dispensable for most research areas both in academia and industry. Although the
power of the PC has brought many of those computational chores to the researcher’s
desktop, there was, still is and probably will ever be this special group of people
whose requirements on storage, main memory, or raw computational speed cannot
be met by a single desktop machine. High performance parallel computers come to
their rescue.

xv

xvi

Employing high performance computing (HPC) as a research tool demands at
least a basic understanding of the hardware concepts and software issues involved.
This is already true when only using turnkey application software, but it becomes
essential if code development is required. However, in all our years of teaching and
working with scientists and engineers we have learned that such knowledge is volatile
— in the sense that it is hard to establish and maintain an adequate competence level
within the different research groups. The new PhD student is all too often left alone
with the steep learning curve of HPC, but who is to blame? After all, the goal of
research and development is to make scientific progress, for which HPC is just a
tool. It is essential, sometimes unwieldy, and always expensive, but it is still a tool.
Nevertheless, writing efficient and parallel code is the admission ticket to high per-
formance computing, which was for a long time an exquisite and small world. Tech-
nological changes have brought parallel computing first to the departmental level and
recently even to the desktop. In times of stagnating single processor capabilities and
increasing parallelism, a growing audience of scientists and engineers must be con-
cerned with performance and scalability. These are the topics we are aiming at with
this book, and the reason we wrote it was to make the knowledge about them less
volatile.

Actually, a lot of good literature exists on all aspects of computer architecture,
optimization, and HPC [S1, R34, S2, S3, S4]. Although the basic principles haven’t
changed much, a lot of it is outdated at the time of writing: We have seen the decline
of vector computers (and also of one or the other highly promising microprocessor
design), ubiquitous SIMD capabilities, the advent of multicore processors, the grow-
ing presence of ccNUMA, and the introduction of cost-effective high-performance
interconnects. Perhaps the most striking development is the absolute dominance of
x86-based commodity clusters running the Linux OS on Intel or AMD processors.
Recent publications are often focused on very specific aspects, and are unsuitable
for the student or the scientist who wants to get a fast overview and maybe later dive
into the details. Our goal is to provide a solid introduction to the architecture and pro-
gramming of high performance computers, with an emphasis on performance issues.
In our experience, users all too often have no idea what factors limit time to solution,
and whether it makes sense to think about optimization at all. Readers of this book
will get an intuitive understanding of performance limitations without much com-
puter science ballast, to a level of knowledge that enables them to understand more
specialized sources. To this end we have compiled an extensive bibliography, which
is also available online in a hyperlinked and commented version at the book’s Web
site: http://www.hpc.rrze.uni-erlangen.de/HPC4SE/.

Who this book is for

We believe that working in a scientific computing center gave us a unique view
of the requirements and attitudes of users as well as manufacturers of parallel com-
puters. Therefore, everybody who has to deal with high performance computing may

xvii

profit from this book: Students and teachers of computer science, computational en-
gineering, or any field even marginally concerned with simulation may use it as an
accompanying textbook. For scientists and engineers who must get a quick grasp of
HPC basics it can be a starting point to prepare for more advanced literature. And
finally, professional cluster builders can definitely use the knowledge we convey to
provide a better service to their customers. The reader should have some familiarity
with programming and high-level computer architecture. Even so, we must empha-
size that it is an introduction rather than an exhaustive reference; the Encyclopedia

of High Performance Computing has yet to be written.

What’s in this book, and what’s not

High performance computing as we understand it deals with the implementations
of given algorithms (also commonly referred to as “code”), and the hardware they
run on. We assume that someone who wants to use HPC resources is already aware
of the different algorithms that can be used to tackle their problem, and we make
no attempt to provide alternatives. Of course we have to pick certain examples in
order to get the point across, but it is always understood that there may be other, and
probably more adequate algorithms. The reader is then expected to use the strategies
learned from our examples.

Although we tried to keep the book concise, the temptation to cover everything is
overwhelming. However, we deliberately (almost) ignore very recent developments
like modern accelerator technologies (GPGPU, FPGA, Cell processor), mostly be-
cause they are so much in a state of flux that coverage with any claim of depth would
be almost instantly outdated. One may also argue that high performance input/out-
put should belong in an HPC book, but we think that efficient parallel I/O is an
advanced and highly system-dependent topic, which is best treated elsewhere. On
the software side we concentrate on basic sequential optimization strategies and the
dominating parallelization paradigms: shared-memory parallelization with OpenMP
and distributed-memory parallel programming with MPI. Alternatives like Unified
Parallel C (UPC), Co-Array Fortran (CAF), or other, more modern approaches still
have to prove their potential for getting at least as efficient, and thus accepted, as
MPI and OpenMP.

Most concepts are presented on a level independent of specific architectures,
although we cannot ignore the dominating presence of commodity systems. Thus,
when we show case studies and actual performance numbers, those have usually been
obtained on x86-based clusters with standard interconnects. Almost all code exam-
ples are in Fortran; we switch to C or C++ only if the peculiarities of those languages
are relevant in a certain setting. Some of the codes used for producing benchmark
results are available for download at the book’s Web site: http://www.hpc.rrze.uni-

erlangen.de/HPC4SE/.
This book is organized as follows: In Chapter 1 we introduce the architecture of

modern cache-based microprocessors and discuss their inherent performance limi-

xviii

tations. Recent developments like multicore chips and simultaneous multithreading
(SMT) receive due attention. Vector processors are briefly touched, although they
have all but vanished from the HPC market. Chapters 2 and 3 describe general opti-
mization strategies for serial code on cache-based architectures. Simple models are
used to convey the concept of “best possible” performance of loop kernels, and we
show how to raise those limits by code transformations. Actually, we believe that
performance modeling of applications on all levels of a system’s architecture is of
utmost importance, and we regard it as an indispensable guiding principle in HPC.

In Chapter 4 we turn to parallel computer architectures of the shared-memory and
the distributed-memory type, and also cover the most relevant network topologies.
Chapter 5 then covers parallel computing on a theoretical level: Starting with some
important parallel programming patterns, we turn to performance models that ex-
plain the limitations on parallel scalability. The questions why and when it can make
sense to build massively parallel systems with “slow” processors are answered along
the way. Chapter 6 gives a brief introduction to OpenMP, which is still the dominat-
ing parallelization paradigm on shared-memory systems for scientific applications.
Chapter 7 deals with some typical performance problems connected with OpenMP
and shows how to avoid or ameliorate them. Since cache-coherent nonuniform mem-
ory access (ccNUMA) systems have proliferated the commodity HPC market (a fact
that is still widely ignored even by some HPC “professionals”), we dedicate Chap-
ter 8 to ccNUMA-specific optimization techniques. Chapters 9 and 10 are concerned
with distributed-memory parallel programming with the Message Passing Interface
(MPI), and writing efficient MPI code. Finally, Chapter 11 gives an introduction to
hybrid programming with MPI and OpenMP combined. Every chapter closes with
a set of problems, which we highly recommend to all readers. The problems fre-
quently cover “odds and ends” that somehow did not fit somewhere else, or elaborate
on special topics. Solutions are provided in Appendix B.

We certainly recommend reading the book cover to cover, because there is not a
single topic that we consider “less important.” However, readers who are interested
in OpenMP and MPI alone can easily start off with Chapters 6 and 9 for the basic
information, and then dive into the corresponding optimization chapters (7, 8, and
10). The text is heavily cross-referenced, so it should be easy to collect the missing
bits and pieces from other parts of the book.

Acknowledgments

This book originated from a two-chapter contribution to a Springer “Lecture
Notes in Physics” volume, which comprised the proceedings of a 2006 summer
school on computational many-particle physics [A79]. We thank the organizers of
this workshop, notably Holger Fehske, Ralf Schneider, and Alexander Weisse, for
making us put down our HPC experience for the first time in coherent form. Al-
though we extended the material considerably, we would most probably never have
written a book without this initial seed.

xix

Over a decade of working with users, students, algorithms, codes, and tools went
into these pages. Many people have thus contributed, directly or indirectly, and some-
times unknowingly. In particular we have to thank the staff of HPC Services at Er-
langen Regional Computing Center (RRZE), especially Thomas Zeiser, Jan Treibig,
Michael Meier, Markus Wittmann, Johannes Habich, Gerald Schubert, and Holger
Stengel, for countless lively discussions leading to invaluable insights. Over the last
decade the group has continuously received financial support by the “Competence
Network for Scientific High Performance Computing in Bavaria” (KONWIHR) and
the Friedrich-Alexander University of Erlangen-Nuremberg. Both bodies shared our
vision of HPC as an indispensable tool for many scientists and engineers.

We are also indebted to Uwe Küster (HLRS Stuttgart), Matthias Müller (ZIH
Dresden), Reinhold Bader, and Matthias Brehm (both LRZ München), for a highly
efficient cooperation between our centers, which enabled many activities and col-
laborations. Special thanks goes to Darren Kerbyson (PNNL) for his encouragement
and many astute comments on our work. Last, but not least, we want to thank Rolf
Rabenseifner (HLRS) and Gabriele Jost (TACC) for their collaboration on the topic
of hybrid programming. Our Chapter 11 was inspired by this work.

Several companies, through their first-class technical support and willingness
to cooperate even on a nonprofit basis, deserve our gratitude: Intel (represented by
Andrey Semin and Herbert Cornelius), SGI (Reiner Vogelsang and Rüdiger Wolff),
NEC (Thomas Schönemeyer), Sun Microsystems (Rick Hetherington, Ram Kunda,
and Constantin Gonzalez), IBM (Klaus Gottschalk), and Cray (Wilfried Oed).

We would furthermore like to acknowledge the competent support of the CRC
staff in the production of the book and the promotional material, notably by Ari
Silver, Karen Simon, Katy Smith, and Kevin Craig. Finally, this book would not
have been possible without the encouragement we received from Horst Simon
(LBNL/NERSC) and Randi Cohen (Taylor & Francis), who convinced us to embark
on the project in the first place.

Georg Hager & Gerhard Wellein

Erlangen Regional Computing Center
University of Erlangen-Nuremberg

Germany

About the authors

Georg Hager is a theoretical physicist and holds a PhD in
computational physics from the University of Greifswald. He
has been working with high performance systems since 1995,
and is now a senior research scientist in the HPC group at Er-
langen Regional Computing Center (RRZE). Recent research
includes architecture-specific optimization for current micro-
processors, performance modeling on processor and system
levels, and the efficient use of hybrid parallel systems. His
daily work encompasses all aspects of user support in high per-
formance computing such as lectures, tutorials, training, code
parallelization, profiling and optimization, and the assessment
of novel computer architectures and tools.

Gerhard Wellein holds a PhD in solid state physics from the
University of Bayreuth and is a professor at the Department for
Computer Science at the University of Erlangen. He leads the
HPC group at Erlangen Regional Computing Center (RRZE)
and has more than ten years of experience in teaching HPC
techniques to students and scientists from computational sci-
ence and engineering programs. His research interests include
solving large sparse eigenvalue problems, novel parallelization
approaches, performance modeling, and architecture-specific
optimization.

xxi

List of acronyms and abbreviations

ASCII American standard code for information interchange
ASIC Application-specific integrated circuit
BIOS Basic input/output system
BLAS Basic linear algebra subroutines
CAF Co-array Fortran
ccNUMA Cache-coherent nonuniform memory access
CFD Computational fluid dynamics
CISC Complex instruction set computer
CL Cache line
CPI Cycles per instruction
CPU Central processing unit
CRS Compressed row storage
DDR Double data rate
DMA Direct memory access
DP Double precision
DRAM Dynamic random access memory
ED Exact diagonalization
EPIC Explicitly parallel instruction computing
Flop Floating-point operation
FMA Fused multiply-add
FP Floating point
FPGA Field-programmable gate array
FS File system
FSB Frontside bus
GCC GNU compiler collection
GE Gigabit Ethernet
GigE Gigabit Ethernet
GNU GNU is not UNIX
GPU Graphics processing unit
GUI Graphical user interface

xxiii

xxiv

HPC High performance computing
HPF High performance Fortran
HT HyperTransport
IB InfiniBand
ILP Instruction-level parallelism
IMB Intel MPI benchmarks
I/O Input/output
IP Internet protocol
JDS Jagged diagonals storage
L1D Level 1 data cache
L1I Level 1 instruction cache
L2 Level 2 cache
L3 Level 3 cache
LD Locality domain
LD Load
LIKWID Like I knew what I’m doing
LRU Least recently used
LUP Lattice site update
MC Monte Carlo
MESI Modified/Exclusive/Shared/Invalid
MI Memory interface
MIMD Multiple instruction multiple data
MIPS Million instructions per second
MMM Matrix–matrix multiplication
MPI Message passing interface
MPMD Multiple program multiple data
MPP Massively parallel processing
MVM Matrix–vector multiplication
NORMA No remote memory access
NRU Not recently used
NUMA Nonuniform memory access
OLC Outer-level cache
OS Operating system
PAPI Performance application programming interface
PC Personal computer
PCI Peripheral component interconnect
PDE Partial differential equation
PGAS Partitioned global address space

xxv

PLPA Portable Linux processor affinity
POSIX Portable operating system interface for Unix
PPP Pipeline parallel processing
PVM Parallel virtual machine
QDR Quad data rate
QPI QuickPath interconnect
RAM Random access memory
RISC Reduced instruction set computer
RHS Right hand side
RFO Read for ownership
SDR Single data rate
SIMD Single instruction multiple data
SISD Single instruction single data
SMP Symmetric multiprocessing
SMT Simultaneous multithreading
SP Single precision
SPMD Single program multiple data
SSE Streaming SIMD extensions
ST Store
STL Standard template library
SYSV Unix System V
TBB Threading building blocks
TCP Transmission control protocol
TLB Translation lookaside buffer
UMA Uniform memory access
UPC Unified parallel C

Chapter 1

Modern processors

In the “old days” of scientific supercomputing roughly between 1975 and 1995,
leading-edge high performance systems were specially designed for the HPC mar-
ket by companies like Cray, CDC, NEC, Fujitsu, or Thinking Machines. Those sys-
tems were way ahead of standard “commodity” computers in terms of performance
and price. Single-chip general-purpose microprocessors, which had been invented in
the early 1970s, were only mature enough to hit the HPC market by the end of the
1980s, and it was not until the end of the 1990s that clusters of standard workstation
or even PC-based hardware had become competitive at least in terms of theoretical
peak performance. Today the situation has changed considerably. The HPC world
is dominated by cost-effective, off-the-shelf systems with processors that were not
primarily designed for scientific computing. A few traditional supercomputer ven-
dors act in a niche market. They offer systems that are designed for high application
performance on the single CPU level as well as for highly parallel workloads. Conse-
quently, the scientist and engineer is likely to encounter such “commodity clusters”
first and only advance to more specialized hardware as requirements grow. For this
reason, this chapter will mostly focus on systems based on standard cache-based mi-
croprocessors. Vector computers support a different programming paradigm that is
in many respects closer to the requirements of scientific computation, but they have
become rare. However, since a discussion of supercomputer architecture would not
be complete without them, a general overview will be provided in Section 1.6.

1.1 Stored-program computer architecture

When we talk about computer systems at large, we always have a certain architec-
tural concept in mind. This concept was conceived by Turing in 1936, and first imple-
mented in a real machine (EDVAC) in 1949 by Eckert and Mauchly [H129, H131].
Figure 1.1 shows a block diagram for the stored-program digital computer. Its defin-
ing property, which set it apart from earlier designs, is that its instructions are num-
bers that are stored as data in memory. Instructions are read and executed by a control
unit; a separate arithmetic/logic unit is responsible for the actual computations and
manipulates data stored in memory along with the instructions. I/O facilities enable
communication with users. Control and arithmetic units together with the appropri-
ate interfaces to memory and I/O are called the Central Processing Unit (CPU). Pro-
gramming a stored-program computer amounts to modifying instructions in memory,

1

2 Introduction to High Performance Computing for Scientists and Engineers

Figure 1.1: Stored-program computer ar-
chitectural concept. The “program,” which
feeds the control unit, is stored in memory
together with any data the arithmetic unit
requires.

Memory

In
p

u
t/

O
u

tp
u

t

CPU

Control

unit

Arithmetic

logic

unit

which can in principle be done by another program; a compiler is a typical example,
because it translates the constructs of a high-level language like C or Fortran into
instructions that can be stored in memory and then executed by a computer.

This blueprint is the basis for all mainstream computer systems today, and its
inherent problems still prevail:

• Instructions and data must be continuously fed to the control and arithmetic
units, so that the speed of the memory interface poses a limitation on compute
performance. This is often called the von Neumann bottleneck. In the follow-
ing sections and chapters we will show how architectural optimizations and
programming techniques may mitigate the adverse effects of this constriction,
but it should be clear that it remains a most severe limiting factor.

• The architecture is inherently sequential, processing a single instruction with
(possibly) a single operand or a group of operands from memory. The term
SISD (Single Instruction Single Data) has been coined for this concept. How it
can be modified and extended to support parallelism in many different flavors
and how such a parallel machine can be efficiently used is also one of the main
topics of this book.

Despite these drawbacks, no other architectural concept has found similarly
widespread use in nearly 70 years of electronic digital computing.

1.2 General-purpose cache-based microprocessor architecture

Microprocessors are probably the most complicated machinery that man has ever
created; however, they all implement the stored-program digital computer concept
as described in the previous section. Understanding all inner workings of a CPU is
out of the question for the scientist, and also not required. It is helpful, though, to
get a grasp of the high-level features in order to understand potential bottlenecks.
Figure 1.2 shows a very simplified block diagram of a modern cache-based general-
purpose microprocessor. The components that actually do “work” for a running ap-
plication are the arithmetic units for floating-point (FP) and integer (INT) operations

Modern processors 3

M
e
m

o
ry

in
te

rf
a
c
e

cache

cache

mask
shift

INT
op

LD

ST

FP
mult

FP
add

M
a
in

 m
e
m

o
ry

L
2
 u

n
if

ie
d

 c
a
c
h

e

M
e
m

o
ry

 q
u

e
u

e
IN

T
/F

P
 q

u
e
u

e

IN
T

 r
e
g

.
fi

le
F

P
 r

e
g

.
fi

le

L1 data

L1 instr.

Figure 1.2: Simplified block diagram of a typical cache-based microprocessor (one core).
Other cores on the same chip or package (socket) can share resources like caches or the mem-
ory interface. The functional blocks and data paths most relevant to performance issues in
scientific computing are highlighted.

and make up for only a very small fraction of the chip area. The rest consists of ad-
ministrative logic that helps to feed those units with operands. CPU registers, which
are generally divided into floating-point and integer (or “general purpose”) varieties,
can hold operands to be accessed by instructions with no significant delay; in some
architectures, all operands for arithmetic operations must reside in registers. Typical
CPUs nowadays have between 16 and 128 user-visible registers of both kinds. Load
(LD) and store (ST) units handle instructions that transfer data to and from registers.
Instructions are sorted into several queues, waiting to be executed, probably not in
the order they were issued (see below). Finally, caches hold data and instructions to
be (re-)used soon. The major part of the chip area is usually occupied by caches.

A lot of additional logic, i.e., branch prediction, reorder buffers, data shortcuts,
transaction queues, etc., that we cannot touch upon here is built into modern pro-
cessors. Vendors provide extensive documentation about those details [V104, V105,
V106]. During the last decade, multicore processors have superseded the traditional
single-core designs. In a multicore chip, several processors (“cores”) execute code
concurrently. They can share resources like memory interfaces or caches to varying
degrees; see Section 1.4 for details.

1.2.1 Performance metrics and benchmarks

All the components of a CPU core can operate at some maximum speed called
peak performance. Whether this limit can be reached with a specific application code
depends on many factors and is one of the key topics of Chapter 3. Here we introduce
some basic performance metrics that can quantify the “speed” of a CPU. Scientific
computing tends to be quite centric to floating-point data, usually with “double preci-

4 Introduction to High Performance Computing for Scientists and Engineers

�����
�����
�����

�����
�����
�����

��
��
��
��
��

��
��
��
��
��

�������
�������
�������
�������

Registers

"DRAM gap"

Arithmetic units

L2 cache

L1 cache

C
P

U
 c

h
ip

Main memory
Figure 1.3: (Left) Simpli-
fied data-centric memory
hierarchy in a cache-based
microprocessor (direct ac-
cess paths from registers
to memory are not avail-
able on all architectures).
There is usually a separate
L1 cache for instructions.
(Right) The “DRAM gap”
denotes the large discrep-
ancy between main mem-
ory and cache bandwidths.
This model must be mapped
to the data access require-
ments of an application.

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

Application data

Computation

sion” (DP). The performance at which the FP units generate results for multiply and
add operations is measured in floating-point operations per second (Flops/sec). The
reason why more complicated arithmetic (divide, square root, trigonometric func-
tions) is not counted here is that those operations often share execution resources
with multiply and add units, and are executed so slowly as to not contribute signif-
icantly to overall performance in practice (see also Chapter 2). High performance
software should thus try to avoid such operations as far as possible. At the time of
writing, standard commodity microprocessors are designed to deliver at most two or
four double-precision floating-point results per clock cycle. With typical clock fre-
quencies between 2 and 3 GHz, this leads to a peak arithmetic performance between
4 and 12 GFlops/sec per core.

As mentioned above, feeding arithmetic units with operands is a complicated
task. The most important data paths from the programmer’s point of view are those
to and from the caches and main memory. The performance, or bandwidth of those
paths is quantified in GBytes/sec. The GFlops/sec and GBytes/sec metrics usu-
ally suffice for explaining most relevant performance features of microprocessors.1

Hence, as shown in Figure 1.3, the performance-aware programmer’s view of a
cache-based microprocessor is very data-centric. A “computation” or algorithm of
some kind is usually defined by manipulation of data items; a concrete implementa-
tion of the algorithm must, however, run on real hardware, with limited performance
on all data paths, especially those to main memory.

Fathoming the chief performance characteristics of a processor or system is one
of the purposes of low-level benchmarking. A low-level benchmark is a program that
tries to test some specific feature of the architecture like, e.g., peak performance or

1Please note that the “giga-” and “mega-” prefixes refer to a factor of 109 and 106, respectively, when
used in conjunction with ratios like bandwidth or arithmetic performance. Since recently, the prefixes
“mebi-,” “gibi-,” etc., are frequently used to express quantities in powers of two, i.e., 1 MiB=220 bytes.

Modern processors 5

Listing 1.1: Basic code fragment for the vector triad benchmark, including performance
measurement.

1 double precision, dimension(N) :: A,B,C,D

2 double precision :: S,E,MFLOPS

3

4 do i=1,N !initialize arrays

5 A(i) = 0.d0; B(i) = 1.d0

6 C(i) = 2.d0; D(i) = 3.d0

7 enddo

8

9 call get_walltime(S) ! get time stamp

10 do j=1,R

11 do i=1,N

12 A(i) = B(i) + C(i) * D(i) ! 3 loads, 1 store

13 enddo

14 if(A(2).lt.0) call dummy(A,B,C,D) ! prevent loop interchange

15 enddo

16 call get_walltime(E) ! get time stamp

17 MFLOPS = R*N*2.d0/((E-S)*1.d6) ! compute MFlop/sec rate

memory bandwidth. One of the prominent examples is the vector triad, introduced
by Schönauer [S5]. It comprises a nested loop, the inner level executing a multiply-
add operation on the elements of three vectors and storing the result in a fourth (see
lines 10–15 in Listing 1.1). The purpose of this benchmark is to measure the perfor-
mance of data transfers between memory and arithmetic units of a processor. On the
inner level, three load streams for arrays B, C and D and one store stream for A are
active. Depending on N, this loop might execute in a very small time, which would be
hard to measure. The outer loop thus repeats the triad R times so that execution time
becomes large enough to be accurately measurable. In practice one would choose R
according to N so that the overall execution time stays roughly constant for different
N.

The aim of the masked-out call to the dummy() subroutine is to prevent the
compiler from doing an obvious optimization: Without the call, the compiler might
discover that the inner loop does not depend at all on the outer loop index j and drop
the outer loop right away. The possible call to dummy() fools the compiler into
believing that the arrays may change between outer loop iterations. This effectively
prevents the optimization described, and the additional cost is negligible because the
condition is always false (which the compiler does not know).

The MFLOPS variable is computed to be the MFlops/sec rate for the whole loop
nest. Please note that the most sensible time measure in benchmarking is wallclock
time, also called elapsed time. Any other “time” that the system may provide, first
and foremost the much stressed CPU time, is prone to misinterpretation because there
might be contributions from I/O, context switches, other processes, etc., which CPU
time cannot encompass. This is even more true for parallel programs (see Chapter 5).
A useful C routine to get a wallclock time stamp like the one used in the triad bench-

6 Introduction to High Performance Computing for Scientists and Engineers

Listing 1.2: A C routine for measuring wallclock time, based on the gettimeofday()

POSIX function. Under the Windows OS, the GetSystemTimeAsFileTime() routine
can be used in a similar way.

1 #include <sys/time.h>

2

3 void get_walltime_(double* wcTime) {

4 struct timeval tp;

5 gettimeofday(&tp, NULL);

6 *wcTime = (double)(tp.tv_sec + tp.tv_usec/1000000.0);

7 }

8

9 void get_walltime(double* wcTime) {

10 get_walltime_(wcTime);

11 }

mark above could look like in Listing 1.2. The reason for providing the function with
and without a trailing underscore is that Fortran compilers usually append an under-
score to subroutine names. With both versions available, linking the compiled C code
to a main program in Fortran or C will always work.

Figure 1.4 shows performance graphs for the vector triad obtained on different
generations of cache-based microprocessors and a vector system. For very small
loop lengths we see poor performance no matter which type of CPU or architec-
ture is used. On standard microprocessors, performance grows with N until some
maximum is reached, followed by several sudden breakdowns. Finally, performance
stays constant for very large loops. Those characteristics will be analyzed in detail in
Section 1.3.

Vector processors (dotted line in Figure 1.4) show very contrasting features. The
low-performance region extends much farther than on cache-based microprocessors,

Figure 1.4: Serial vector
triad performance ver-
sus loop length for sev-
eral generations of In-
tel processor architec-
tures (clock speed and
year of introduction is
indicated), and the NEC
SX-8 vector processor.
Note the entirely differ-
ent performance charac-
teristics of the latter.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N

0

1000

2000

3000

4000

M
F

lo
p

s
/s

e
c

Netburst 3.2 GHz (2004)

Core 2 3.0 GHz (2006)

Core i7 2.93 GHz (2009)

NEC SX-8 2.0 GHz

Modern processors 7

but there are no breakdowns at all. We conclude that vector systems are somewhat
complementary to standard CPUs in that they meet different domains of applicability
(see Section 1.6 for details on vector architectures). It may, however, be possible to
optimize real-world code in a way that circumvents low-performance regions. See
Chapters 2 and 3 for details.

Low-level benchmarks are powerful tools to get information about the basic ca-
pabilities of a processor. However, they often cannot accurately predict the behavior
of “real” application code. In order to decide whether some CPU or architecture is
well-suited for some application (e.g., in the run-up to a procurement or before writ-
ing a proposal for a computer time grant), the only safe way is to prepare application
benchmarks. This means that an application code is used with input parameters that
reflect as closely as possible the real requirements of production runs. The decision
for or against a certain architecture should always be heavily based on application
benchmarking. Standard benchmark collections like the SPEC suite [W118] can only
be rough guidelines.

1.2.2 Transistors galore: Moore’s Law

Computer technology had been used for scientific purposes and, more specifi-
cally, for numerically demanding calculations long before the dawn of the desktop
PC. For more than thirty years scientists could rely on the fact that no matter which
technology was implemented to build computer chips, their “complexity” or general
“capability” doubled about every 24 months. This trend is commonly ascribed to
Moore’s Law. Gordon Moore, co-founder of Intel Corp., postulated in 1965 that the
number of components (transistors) on a chip that are required to hit the “sweet spot”
of minimal manufacturing cost per component would continue to increase at the indi-
cated rate [R35]. This has held true since the early 1960s despite substantial changes
in manufacturing technologies that have happened over the decades. Amazingly, the
growth in complexity has always roughly translated to an equivalent growth in com-
pute performance, although the meaning of “performance” remains debatable as a
processor is not the only component in a computer (see below for more discussion
regarding this point).

Increasing chip transistor counts and clock speeds have enabled processor de-
signers to implement many advanced techniques that lead to improved application
performance. A multitude of concepts have been developed, including the following:

1. Pipelined functional units. Of all innovations that have entered computer de-
sign, pipelining is perhaps the most important one. By subdividing complex
operations (like, e.g., floating point addition and multiplication) into simple
components that can be executed using different functional units on the CPU,
it is possible to increase instruction throughput, i.e., the number of instructions
executed per clock cycle. This is the most elementary example of instruction-
level parallelism (ILP). Optimally pipelined execution leads to a throughput of
one instruction per cycle. At the time of writing, processor designs exist that
feature pipelines with more than 30 stages. See the next section on page 9 for
details.

8 Introduction to High Performance Computing for Scientists and Engineers

2. Superscalar architecture. Superscalarity provides “direct” instruction-level
parallelism by enabling an instruction throughput of more than one per cycle.
This requires multiple, possibly identical functional units, which can operate
currently (see Section 1.2.4 for details). Modern microprocessors are up to
six-way superscalar.

3. Data parallelism through SIMD instructions. SIMD (Single Instruction Multi-

ple Data) instructions issue identical operations on a whole array of integer or
FP operands, usually in special registers. They improve arithmetic peak per-
formance without the requirement for increased superscalarity. Examples are
Intel’s “SSE” and its successors, AMD’s “3dNow!,” the “AltiVec” extensions
in Power and PowerPC processors, and the “VIS” instruction set in Sun’s Ul-
traSPARC designs. See Section 1.2.5 for details.

4. Out-of-order execution. If arguments to instructions are not available in regis-
ters “on time,” e.g., because the memory subsystem is too slow to keep up with
processor speed, out-of-order execution can avoid idle times (also called stalls)
by executing instructions that appear later in the instruction stream but have
their parameters available. This improves instruction throughput and makes it
easier for compilers to arrange machine code for optimal performance. Cur-
rent out-of-order designs can keep hundreds of instructions in flight at any
time, using a reorder buffer that stores instructions until they become eligible
for execution.

5. Larger caches. Small, fast, on-chip memories serve as temporary data storage
for holding copies of data that is to be used again “soon,” or that is close to
data that has recently been used. This is essential due to the increasing gap
between processor and memory speeds (see Section 1.3). Enlarging the cache
size does usually not hurt application performance, but there is some tradeoff
because a big cache tends to be slower than a small one.

6. Simplified instruction set. In the 1980s, a general move from the CISC to the
RISC paradigm took place. In a CISC (Complex Instruction Set Computer),
a processor executes very complex, powerful instructions, requiring a large
hardware effort for decoding but keeping programs small and compact. This
lightened the burden on programmers, and saved memory, which was a scarce
resource for a long time. A RISC (Reduced Instruction Set Computer) features
a very simple instruction set that can be executed very rapidly (few clock cycles
per instruction; in the extreme case each instruction takes only a single cycle).
With RISC, the clock rate of microprocessors could be increased in a way that
would never have been possible with CISC. Additionally, it frees up transistors
for other uses. Nowadays, most computer architectures significant for scientific
computing use RISC at the low level. Although x86-based processors execute
CISC machine code, they perform an internal on-the-fly translation into RISC
“µ-ops.”

In spite of all innovations, processor vendors have recently been facing high obsta-
cles in pushing the performance limits of monolithic, single-core CPUs to new levels.

