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Richly illustrated in color, Statistics and Data Analysis for 
Microarrays Using R and Bioconductor, Second Edition provides 
a clear and rigorous description of powerful analysis techniques 
and algorithms for mining and interpreting biological information. 
Omitting tedious details, heavy formalisms, and cryptic notations, 
the text takes a hands-on, example-based approach that explains 
the basics of R and microarray technology as well as how to choose 
and apply the proper data analysis tool to specific problems.

New to the Second Edition
Completely updated and double the size of its predecessor, this 
timely second edition replaces the commercial software with the open 
source R and Bioconductor environments. Fourteen new chapters 
cover such topics as the basic mechanisms of the cell, reliability 
and reproducibility issues in DNA microarrays, basic statistics and 
linear models in R, experiment design, multiple comparisons, quality 
control, data pre-processing and normalization, gene ontology 
analysis, pathway analysis, and machine learning techniques. 
Methods are illustrated with toy examples and real data, and the R 
code for all routines is available on an accompanying CD-ROM.

With all the necessary prerequisites included, this best-selling 
book guides readers from very basic notions to advanced analysis 
techniques in R and Bioconductor. The first half of the text presents 
an overview of microarrays and the statistical elements that form the 
building blocks of any data analysis. The second half introduces the 
techniques most commonly used in the analysis of microarray data.
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Art is science made clear.

—Jean Cocteau

Any good poet, in our age at least, must begin with the scientific view of
the world; and any scientist worth listening to must be something of a
poet, must possess the ability to communicate to the rest of us his sense
of love and wonder at what his work discovers.

—Edward Abbey, The Journey Home

The most erroneous stories are those we think we know best - and there-
fore never scrutinize or question.

—Stephen Jay Gould

My definition of an expert in any field is a person who knows enough
about what’s really going on to be scared.

—P.J. Plauger
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Preface

Although the industry once suffered from a lack of qualified targets and
candidate drugs, lead scientists must now decide where to start amidst
the overload of biological data. In our opinion, this phenomenon has
shifted the bottleneck in drug discovery from data collection to data anal-
ysis, interpretation and integration.

—Life Science Informatics, UBS Warburg Market Report, 2001

One of the most promising tools available today to researchers in life sci-
ences is the microarray technology. Typically, one DNA array will provide
hundreds or thousands of gene expression values. However, the immense po-
tential of this technology can only be realized if many such experiments are
done. In order to understand the biological phenomena, expression levels need
to be compared between species or between healthy and ill individuals or at
different time points for the same individual or population of individuals. This
approach is currently generating an immense quantity of data. Buried under
this humongous pile of numbers lays invaluable biological information. The
keys to understanding phenomena from fetal development to cancer may be
found in these numbers. Clearly, powerful analysis techniques and algorithms
are essential tools in mining these data. However, the computer scientist or
statistician that does have the expertise to use advanced analysis techniques
usually lacks the biological knowledge necessary to understand even the sim-
plest biological phenomena. At the same time, the scientist having the right
background to formulate and test biological hypotheses may feel a little un-
comfortable when it comes to analyzing the data thus generated. This is be-
cause the data analysis task often requires a good understanding of a number
of different algorithms and techniques and most people usually associate such
an understanding with a background in mathematics, computer science, or
statistics.

Because of the huge amount of interest around the microarray technology,
there are quite a few books available on this topic. Many of the few available
texts concentrate more on the wet lab techniques than on the data analysis
aspects. There are several books that review the topic in a somewhat super-
ficial manner, covering everything there is to know about data analysis of
microarrays in a couple of hundred pages or less. Other available books focus
on excruciating details that only developers of analysis packages find useful.
Others are simple proceedings of conferences, gathering together unrelated

xxxix
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papers that focus on very specific aspects and topics. Overall, I felt there
was a need for a good, middle-of-the-road book that would cover topics in
sufficient details to make it possible for readers to really understand what is
going on, but without overwhelming details or intimidating heavy formalisms
or notations.

At the same time, the R environment has started to dominate heavily
everything that is done in terms of data analysis in this area. Again, while
many good books on R as a programming and analysis language are available,
I felt that a book that would allow the reader to become competent in the
analysis of microarray data by providing: i) everything needed to learn the
basics of R, ii) the basics of the microarray technology, as well as iii) the
understanding necessary in order to apply the right tools to the right problems
would be beneficial.

Audience and prerequisites

The goal of this book is to fulfill this need by presenting the main computa-
tional techniques available in a way that is useful to both life scientists and
analytical scientists. The book tries to demolish the imaginary concrete wall
that separates biology and medicine from computer science and statistics and
allow the biologist to be a refined user of the available techniques, as well as
be able to communicate effectively with computer scientists and statisticians
designing new analysis techniques. The intended audience includes as a cen-
tral figure the researcher or practitioner with a background in the life sciences
that needs to use computational tools in order to analyze data. At the same
time, the book is intended for the computer scientists or statisticians who
would like to use their background in order to solve problems from biology
and medicine. The book explains the nature of the specific challenges that
such problems pose as well as various adaptations that classical algorithms
need to undergo in order to provide good results in this particular field.

Finally, it is anticipated that there will be a shift from the classical com-
partmented education to a highly interdisciplinary approach that will form
people with skills across a range of disciplines crossing the borders between
traditionally unrelated fields, such as medicine or biology and statistics or com-
puter science. This book can be used as a textbook for a senior undergraduate
or graduate course in such an interdisciplinary curriculum. The book is suit-
able for a data analysis and data mining course for students with a background
in biology, molecular biology, chemistry, genetics, computer science, statistics,
mathematics, etc.

Useful prerequisites for a biologist include elementary calculus and alge-
bra. However, the material is designed to be useful even for readers with
a shaky mathematical foundation since those elements that are crucial for
the topic are fully discussed. Useful prerequisites for a computer scientist or
mathematician include some elements of genetics and molecular biology. Once
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again, such knowledge is useful but not required since the essential aspects of
the technology are covered in the book.

Aims and contents

The first and foremost aim of this book is to provide a clear and rigorous
description of the algorithms without overwhelming the reader with
the usual cryptic notation or with too much mathematical detail.
The presentation level is appropriate for a scientist with a background in life
sciences. Little or no mathematical training is needed in order to understand
the material presented here. Those few mathematical and statistical facts that
are really needed in order to understand the techniques are completely ex-
plained in the book at a level that is fully accessible to the non-mathematically
minded reader. The goal here was to keep the level as accessible as possible.
The mathematical apparatus was voluntarily limited to the very basics. The
most complicated mathematical symbol throughout the book is the sum of n
terms:

∑n
i=1 xi. In order to do this, certain compromises had to be made. The

definitions of many statistical concepts are not as comprehensive as they could
be. In certain places, giving the user a powerful intuition and a good under-
standing of the concept took precedence over the exact, but more difficult to
understand, formalism. This was also done for the molecular biology aspects.
Certain cellular phenomena have been presented in a simplified version, leav-
ing out many complex phenomena that we considered not to be absolutely
necessary in order to understand the big picture.

A second specific aim of the book is to allow a reader to learn the
R environment and programming language using a hands-on and
example-rich approach. From this perspective, the book should be equally
useful to a large variety of readers with very different backgrounds. No previous
programming experience is required or expected from the reader. The book
includes chapters that describe everything from the basic R commands and
syntax to rather sophisticated procedures for quality control, normalization,
data analysis and machine learning. Everything from the simplest commands
to the most complex procedures is illustrated with R code. All analysis results
shown in the book are actual results produced by the code shown in the text
and therefore, all code shown is free from spelling or syntax errors.

A third specific aim of the book is to allow a microarray user to be
in a position to make an informed choice as to what data analysis
technique to use in a given situation, even if using other analysis
packages. The existing software packages usually include a very large num-
ber of techniques, which in turn use an even larger number of parameters.
Thus, the biologist trying to analyze DNA microarray data is confronted with
an overwhelming number of possibilities. Such flexibility is absolutely crucial
because each data set is different and has specific particularities that must be
taken into account when selecting algorithms. For example, data sets obtained
in different laboratories have different characteristics, so the choice of normal-
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ization procedures is very important. However, such wealth of choices can be
overwhelming for the life scientist who, in most cases, is not very familiar with
all intricacies of data analysis and ends up by always using the default choices.
This book is designed to help such a scientist by emphasizing at a high level
of abstraction the characteristics of various techniques in a biological context.

As a text designed to bridge the gap between several disciplines, the book
includes chapters that would give all the necessary information to readers with
a variety of backgrounds. The book is divided into two parts. The first part is
designed to offer an overview of microarrays and to create a solid foundation
by presenting the elements from statistics that constitute the building blocks
of any data analysis. The second part introduces the reader to the details of
the techniques most commonly used in the analysis of microarray data.

Chapter 2 presents a short primer on the central dogma of molecular biol-
ogy and why microarrays are useful. This chapter is aimed mostly at analytical
scientists with no background in life sciences. Chapter 3 briefly presents the
microarray technology. For the computer scientist or statistician, this consti-
tutes a microarray primer. For the microarray user, this will offer a bird’s-
eye view perspective on several techniques emphasizing common as well as
technology-specific issues related to data analysis. This is useful since many
times the users of a specific technology are so engulfed in the minute details
of that technology that they might not see the forest for the trees.

Chapter 4 discusses a number of important issues related to the reliabil-
ity and reproducibility of microarray data. This discussion is important both
for the life scientist who needs to understand the limitations of the technol-
ogy used, as well as for the computer scientist or statistician who needs to
understand the intrinsic level of noise present in this type of data.

Chapter 5 constitutes a short primer on digital imaging and image pro-
cessing. This chapter is mostly aimed at the life scientists or statisticians who
are not familiar with digital image processing.

Chapter 6 is an introduction to the R programming language. This chap-
ter discusses basic concepts from the installation of the R environment to the
basic syntax and concepts of R.

Chapter 7 presents the Bioconductor project and briefly illustrates its
capabilities with some simple examples. This chapter was contributed by one
of the founders of the Bioconductor project, Vincent Carey, currently an As-
sociate Professor of Medicine (Biostatistics) at Harvard Medical School, and
an Associate Biostatistician in the Department of Medicine at the Brigham
and Women’s Hospital in Boston.

Chapters 8, 9, and 11 focus on some elementary statistics notions. These
chapters will provide the biologist with a general perspective on issues very
intimately related to microarrays. The purpose here is to give only as much
information as needed in order to be able to make an informed choice during
the subsequent data analysis. The aim of the discussion here is to put things in
the perspective of somebody who analyzes microarray data rather than offer a
full treatment of the respective statistical notions and techniques. Chapter 9



Preface xliii

discusses several important distributions, Chapter 11 discusses the classical
hypothesis testing approach, and Chapter 12 applies it to microarray data
analysis. Chapter 10 uses R to illustrated the basic statistical tools available
in R for descriptive statistics and basic built-in distributions.

Chapter 13 presents the family of ANalysis Of VAriance methods in-
tensively used by many researchers to analyze microarray data. Chapter 14
discusses the more general linear models and illustrates them in R. Chapter
15 uses some of the ANOVA and linear model approaches in the discussion
of various techniques for experiment design.

Chapter 16 discusses several issues related to the fact that microarrays
interrogate a very large number of genes simultaneously and its consequences
regarding data analysis.

Chapters 17 and 18 present the most widely used tools for microarray
data analysis. In most cases, the techniques are presented using real data.
Chapter 17 includes several techniques used in exploratory analysis, when
there is no known information about the problem and the task is to identify
relevant phenomena as well as the parameters (genes) that control them. The
main techniques discussed here include box plots, histograms, scatter plots,
volcano plots, time series, principal component analysis (PCA), and indepen-
dent component analysis (ICA). The clustering techniques described in Chap-
ter 18 include K-means, hierarchical clustering, biclustering, partitioning-
around-medoids, and self-organizing feature maps. Again, the purpose here
is to explain the techniques in an unsophisticated yet rigorous manner. The
all-important issue of when to use a specific technique is discussed on var-
ious examples emphasizing the strengths and weaknesses of each individual
technique.

Chapter 19 discusses specific quality control issues characteristic to
Affymetrix and Illumina data. These are illustrated using R functions and
packages applied on real data sets. Tools such as intensity distributions, box
plots, RNA degradation curves, and quality control metrics are used to il-
lustrate problems ranging from array saturation, to RNA degradation, and
annotation issues. Plots illustrating various problems are shown side-by-side
with plots showing clean data such that the reader can understand and learn
what to look for in such plots.

Chapter 20 concentrates on data preparation issues. Although such is-
sues are crucial for the final results of the data mining process, they are often
ignored. Issues such as color swapping, color normalization, background cor-
rection, thresholding, mean normalization, etc., are discussed in detail. This
chapter will be extremely useful both to the biologist, who will become aware
of the different numerical aspects of the various preprocessing techniques, and
to the computer scientist, who will gain a deeper understanding of various bio-
logical aspects, motivations, and meanings behind such preprocessing. Again,
all normalization issues are illustrated using R functions and packages applied
on real data sets.
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Chapter 21 presents several methods used to select differentially regu-
lated genes in comparative experiments.

Chapter 22 discusses the Gene Ontology, including its goal, structure, an-
notations, and some statistics about the data currently available in it. Chap-
ter 23 shows how GO can be used to translate lists of differentially expressed
genes into a better understanding of the underlying biological phenomena.
Just when you think this is easy, Chapter 24 comes to tell you about the
many mistakes and issues that could appear in this GO profiling.Chapter 25
reviews more than a dozen tools that are currently available for this type of
functional analysis.

Chapter 26 somehow reverses the direction considering the problem of
how to select the microarrays that are best suited for investigating a given
biological hypothesis.

Chapter 27 discusses some of the problems that can be caused by the
fact that the same biological entity may have different IDs in different public
databases. Some tools that allow a mapping from one type of ID to another
are discussed and compared.

Chapter 28 takes the analysis to the next level, using a systems biology
approach that aims to take into consideration the way genes are known to
interact with each other. This type of knowledge is captured in collections
of signaling pathways available from various sources. This chapter discusses
various approaches currently available for the analysis of signaling pathways.

Chapter 29 is a brief review of several machine learning techniques that
are widely used with microarray data. Since unsupervised methods are dis-
cussed in Chapter 18, this chapter focuses on supervised methods including
linear discriminants, feed-forward neural networks, and support vector ma-
chines.

Finally, the last chapter of the book presents some conclusions as well as
a brief presentation of some novel techniques expected to have a great impact
on this field in the near future.

Road map

This book can be used in several ways, depending on the background of the
reader and the goals pursued. The chapters can be combined in various ways,
allowing an instructor to tailor a course to the specific background and expec-
tations of a given audience.

Some of the courses (with or without a laboratory component) that can
be easily taught using this book include:

1. Introduction to statistics: Chapters 8, 9, 11, 12, 13, 14, 15, 16

2. Introduction to R and Bioconductor: Chapters 6, 7, 10, 14, 17, 18, 29
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3. Microarray data analysis for life scientists: Chapters 3 – 30

4. Microarray data analysis for computer scientists (including R and Bio-
conductor): Chapter 2 – 30

5. Quality control and normalization techniques: Chapters 19, 20

6. Interpretation of high-throughput data: GO profiling and pathway anal-
ysis: Chapters 22 – 28

This book focuses on R and Bioconductor. The reader is advised to install
the software and actually use it to perform the analysis steps discussed in the
book. The accompanying CD includes all code used throughout the book.
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Chapter 1

Introduction

If we begin with certainties, we shall end in doubts; but if we begin with
doubts, and are patient in them, we shall end in certainties.

—Francis Bacon

1.1 Bioinformatics – an emerging discipline

Life sciences are currently at the center of an informational revolution. Dra-
matic changes are being registered as a consequence of the development of
techniques and tools that allow the collection of biological information at an
unprecedented level of detail and in extremely large quantities. The human
genome project is a compelling example. Initially, the plan to sequence the hu-
man genome was considered extremely ambitious, on the border of feasibility.
The first serious effort was planned over 15 years at a cost of $3 billion. Soon
after, the schedule was revised to last only 5 years. Eventually, the genome was
sequenced in less than 3 years, at a cost much lower than initially expected
[361]. The nature and amount of information now available open directions

1
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of research that were once in the realm of science fiction. Pharmacogenomics
[359], molecular diagnostics [86, 125, 260, 360, 376, 455] and drug target iden-
tification [302] are just a few of the many areas [163] that have the potential
to use this information to change dramatically the scientific landscape in the
life sciences.

During this informational revolution, the data-gathering capabilities have
greatly surpassed the data analysis techniques. If we were to imagine the Holy
Grail of life sciences, we might envision a technology that would allow us to
fully understand the data at the speed at which it is collected. Sequencing,
localization of new genes, functional assignment, pathway elucidation, and
understanding the regulatory mechanisms of the cell and organism should be
seamless. Ideally, we would like knowledge manipulation to become tomorrow
the way goods manufacturing is today: high automatization producing more
goods, of higher quality, and in a more cost-effective manner than manual pro-
duction. In a sense, knowledge manipulation is now reaching its pre-industrial
age. Our farms of sequencing machines and legions of robotic arrayers can
now produce massive amounts of data but using them to manufacture highly
processed pieces of knowledge still requires skilled masters painstakingly forg-
ing through small pieces of raw data one at a time. The ultimate goal in life
science research is to automate this knowledge discovery process.

Bioinformatics is the field of research that presents both the opportunity
and the challenge to bring us closer to this goal. Bioinformatics is an emerging
discipline situated at the interface between analytical sciences such as statis-
tics, mathematics, and computer science on one side, and biological sciences
such as molecular biology, genomics, and proteomics on the other side. Ini-
tially, the term bioinformatics was used to denote very specific tasks such as
the activities related to the storage of data of biological nature in databases.
As the field evolved, the term has started to also encompass algorithms and
techniques used in the context of biological problems. Although there is no
universally accepted definition of bioinformatics, currently the term denotes
a field concerned with the application of information technology techniques,
algorithms, and tools to solve problems in biological sciences. The techniques
currently used have their origins in a number of areas, such as computer sci-
ence, statistics, mathematics, etc. Essentially, bioinformatics is the science
of refining biological information into biological knowledge using computers.
Sequence analysis, protein structure prediction, and dynamic modeling of com-
plex biosystems are just a few examples of problems that fall under the general
umbrella of bioinformatics. However, new types of data have started to emerge.
Examples include protein–protein interactions, protein–DNA interactions, sig-
naling and biochemical pathways, population-scale sequence data, large-scale
gene expression data, and ecological and environmental data [191].

A subfield of particular interest today is genomics. The field of genomics
encompasses investigations into the structure and function of very large num-
ber of genes undertaken in a simultaneous fashion. The term genomics comes
from genome, which is the entire set of genes in a given organism. Structural



Introduction 3

genomics includes the genetic mapping, physical mapping, and sequencing
of genes for entire organisms (genomes). Comparative genomics deals with
extending the information gained from the study of some organisms to other
organisms. Functional genomics is concerned with the role that individual
genes or subsets of genes play in the development and life of organisms.

Just as genomics refers to the large-scale studies involving the properties
and functions of many genes, proteomics is concerned with the large-scale
study of proteins. The proteome of an organism is the set of all proteins
in the given organism. Following the same lines of linguistic synthesis, the
“-omics” suffix has been appended to a number of other terms generating a
large variety of novel terms. Among those, some have been well accepted by
the community, such as transcripts → transcriptome → transcriptomics,
metabolite→ metabolome→metabolomics, etc. In all cases, the“X-ome,”
represents the set of all entities of type X in a given organism, while the “X-
omics” represents the field of research studying them using high-throughput
approaches.

Currently, our understanding of the role played by various genes and their
interactions seems to be lagging far behind the knowledge of their sequence
information. Table 1.1 presents some data that reflect the relationship between
sequencing an organism and understanding the role of its various genes [311].
The yeast is an illustrative example. Although the 6,200 genes of its genome
have been known since 1997, only approximately 94% of them have inferred
functions. The situation is similar for E. coli, C. elegans, Drosophila, and
Arabidopsis.1

Most researchers agree that the challenge of the near future is to analyze,
interpret, and understand all data that are being produced [56, 148, 290, 440].
In essence, the challenge faced by the biological scientists is to use the large-
scale data that are being gathered to discover and understand fundamental
biological phenomena. At the same time, the challenge faced by computer sci-
entists is to develop new algorithms and techniques to support such discoveries
[191].

The explosive growth of computational biology and bioinformatics has just
started. Biotechnology and pharmaceutical companies are channeling many re-
sources towards bioinformatics by starting informatics groups. The tendency
has been noted by the academic world, and there are a number of universi-
ties that have declared bioinformatics a major research priority. The need for
bioinformatics-savvy people as well as experts in bioinformatics is enormous
and will continue to accentuate in the near future. Two important phenomena
are at play here. On the one hand, modern life science research has irreversibly
adopted the use of very large throughput technologies such as DNA microar-
rays, mass-spectrometry, high-throughput sequencing, etc. These techniques
generate terabytes of data on a daily basis. On the other hand, the academic

1Even genomes that are considered substantially complete, in reality may still have small
gaps [6]. Until we understand better the function of various genes, we cannot discount the
functional relevance of the genetic material in those gaps.
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Organism Number of
genes

Genes with
inferred func-
tion

Genome Com-
pletion date

S. cerevisiae 6,201 94% 1996 [181]
E. coli 4,467 62% 1997 [55]
C. elegans 21,185 63% 1998 [448]
D. melanogaster 18,462 82% 1999 [6]
A. thaliana 33,264 76% 2000 [370]
Homo sapiens 39,920 46% 2001 [437]
B. anthracis 5,415 80% 2002 [351]
Rattus norvegicus 37,533 37% 2004 [173]

TABLE 1.1: The unbalance between obtaining the data and understand-
ing it. Although the complete genomes of several simpler organisms are avail-
able, understanding the role of various genes lags far behind. Saccharomyces
cerevisiae is the baker’s yeast; Escherichia coli is a bacterium that lives in the
gut of worm-blooded animals (and some of its varieties sometimes infect the
human food chain); C. elegans is a nematode (worm); Drosophila melanogaster
is the fruit fly; Arabidopsis thaliana is a plant; Bacillus anthracis is the an-
thrax pathogen; Rattus norvegicus is the Norwegian brown rat, and Homo
sapiens is the human. The yeast, fruit fly, C. elegans, arabidopsis, and the rat
are often used as model organisms.

system is not yet able to produce enough people with the truly multidisci-
plinary background and knowledge requested in areas such as bioinformatics.
Hence, there is a large gap between the need to effectively analyze the moun-
tains of data being generated continuously and the number of people able to
perform such analyses in the best possible ways. Bioinformatics experts able
to analyze data are and will continue to be very valuable to many employers.
It is hope that this book will help you get closer to becoming such an expert.

The avalanche of data resulting from the progress in the field of molecu-
lar biology was started by understanding the nature of molecular information
in living organisms and the development of new and precise high through-
put screening methods. Molecular biology deals primarily with the informa-
tion that macromolecules, such as the deoxyribonucleic acid (DNA) and
the ribonucleic acid (RNA) carry, their interrelationship, and role in cells.
Therefore, a brief description of the cell and its very basic mechanisms follows
in the next chapter. Although these concepts are not absolutely necessary in
order to understand the data analysis methods and techniques presented in
the rest of the book, it is always better if one has a basic understanding of
where the numbers analyzed come from and what they actually mean.



Chapter 2

The cell and its basic mechanisms

. . . I could exceedingly plainly perceive it to be all perforated and porous,
much like a Honey-comb, but that the pores of it were not regular. . .
. these pores, or cells, . . . were indeed the first microscopical pores I
ever saw, and perhaps, that were ever seen, for I had not met with any
Writer or Person, that had made any mention of them before this. . .

—Robert Hooke, Micrographia, 1665

2.1 The cell

The cell is the building block of all organisms. Fig. 2.1 shows a typical eukary-
otic cell as well as a typical prokaryotic cell. A eukaryotic cell (top panel in
Fig. 2.1) has a nucleus and is found in more evolved organisms. A prokary-
otic cell (bottom panel in Fig. 2.1) does not have a nucleus and is always
single-cellular, e.g., bacteria. As shown in these figures, each cell is a very
complex system that includes a number of parts and structures.

The main parts of a eukaryotic cell include the membrane, the cyto-
plasm, the mitochondria, the microtubules, the lysosomes, the ribo-

5
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FIGURE 2.1: Two cells. A eukaryotic cell (top panel) has a nucleus and
is found in more evolved organisms. A prokaryotic cell (bottom panel) does
not have a nucleus and is mostly found in bacteria. The eukaryotic cell figure
is from Life on Earth, Audesirk et al., Prentice Hall. Printed with permis-
sion. The prokaryotic cell is copyrighted Michael W. Davidson. Printed with
permission.
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FIGURE 2.2: Cross section of the different structures that phospholipids
can take in an aqueous solution. The circles are the hydrophilic heads and
the wavy lines are the fatty acid side chains. The bilayer appears in the cell
membrane, nuclear membrane, vesicles, etc. Author: Mariana Ruitz, released
in the public domain.

somes, the smooth and rough endoplasmic reticula, etc. In a eukaryotic
cell, there is also a nucleus that hosts a nucleolus and the chromatin within
a nuclear envelope that features some pores. In the following, we will briefly
discuss these.

The cellular membrane generally consists of two layers of phospholipid
molecules. Each such molecule has a polar hydrophilic head and two non-polar
(hydrophobic) tails. Since both the cytoplasm inside the cell as well as the ex-
tracellular environment contain a lot of water, the membrane molecules are
aligned in a double layer, each layer presenting the hydrophilic head on the
surface of the membrane (both inside and outside the cell), while all the hy-
drophobic tails point towards each other within the membrane. Fig. 2.2 shows
the basic structure of a membrane, as well as those of two other structures
that can be formed by the phospholipid bilayer. However, the cellular mem-
brane has a structure that is far more complex than a simple phospholipid
bilayer. Among other molecules, it also includes some proteins called integral
membrane proteins. These can appear on the inside surface of the membrane,
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FIGURE 2.3: The cell membrane generally consists of two layers of phospho-
lipid molecules (the basic bilayer shown in Fig. 2.2) but also has a number of
other features, including surface proteins present either on the inside or on the
outside surface of the membrane, integral proteins of various types crossing
both layers of the membrane, channel-forming proteins acting like gateways
for certain molecules, transmembrane proteins that have receptors on the out-
side surface and are able to trigger specific intracellular responses when their
target ligand is present in the extracellular space, etc. Author: Mariana Ruitz,
released in the public domain.

on its outside surface or crossing the membrane (in which case they are called
transmembrane proteins). The outside part of such a protein is called a recep-
tor. Its role is to bind to a given molecule, called ligand, when this molecule
is present outside the cell. Generally, when this happens, the transmembrane
protein will initiate an intracellular response. Other transmembrane proteins
act as gateways, allowing certain molecules from outside the cell to enter the
cell through a channel formed by the protein. The Fig. 2.3 shows a crosscut
through the cellular membrane illustrating some of these additional features
of the cellular membrane. The membrane is involved in several very important
processes such as cell adhesion, cell signaling, and ion channel conductance.

The cytoplasm includes everything that is in the cell (organelles, wa-
ter, other chemical molecules, etc.), except the nucleus. The nucleoplasm
includes everything that is in the nucleus. Together, the cytoplasm and the
nucleoplasm form the protoplasm.

Organelles are specialized sub-cellular structures of the cytoplasm. In
some sense, the organelles do for the cell what the organs do for complex
organisms: each organelle has a very specific function in the complex mech-
anisms that keep the cell alive. Some authors define the organelles as being
membrane-bound structures that have some specific function in the cell. Other
authors use a less restrictive definition considering that any structure that
carries out a particular and specialized function is an organelle, whether it is
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membrane-bound or not. For instance, the ribosome (see details below) is an
organelle according to the latter definition, but not according to the former.

The chromatin is a structure made of proteins and highly packed DNA.
The DNA contains the genes that code for all proteins, as well as other
functional and control elements. A prokaryotic cell does not have a nucleus,
and the DNA material is found directly in the cytoplasm.

The mitochondria (singular mitocondrion) are the power plants of the
cell (see the eukaryotic cell in Fig. 2.1). Their main role is to produce energy for
the cell. There are several fascinating facts about mitochondria. First, the mi-
tochondria have their own DNA (called mitochondrial DNA or mtDNA),
which is circular, very much like the DNA of a bacteria. Based on this as well
as other data, it has been suggested that the mitochondria are in fact what
is left from a small prokaryote cell that was swallowed millions of years ago
by an eukaryote, or perhaps a larger prokaryote [299]. Rather than digesting
the smaller prokaryote, the bigger cell found out that a symbiotic partnership
would be much better for both of them. The smaller cell benefits from the free
basic fuel, as well as the safe environment provided by the larger cell. In turn,
the larger cell benefits from the energy produced by the smaller cell. This is
an example of mutualism, a type of symbiosis in which both organisms benefit
and neither is harmed. This partnership is so strong now that eukaryotic cells
cannot survive without mitochondria, and the endosymbionts (the smaller
cells which were incorporated in the eukaryotic cell) also cannot survive on
their own. The same mutualism is found in plants and algae whose cells con-
tain chloroplasts, organelles able to transform sunlight into energy during the
process of photosynthesis.

The second fascinating fact about mitochondria is that in most multicel-
lular organisms (including human), the mitochondrial DNA is inherited from
mother to child. This is unlike the DNA in the nucleus, which is formed in
the offspring by combining the nucleic DNA from both mother and father. In
fact, this very unusual property of the mitochondrial DNA is at the center
of a book by Bryan Sykes, titled The Seven Daughters of Eve. In this book,
the author describes how the entire population of Europe can be traced back
to only seven women (hence the title) using this property of the mtDNA. In
fact, in the same book, Bryan Sykes uses the same argument to refute Thor
Heyerdahl’s hypothesis that the population of Polynesia originated in South
America and reached the Polynesian islands by crossing the Pacific on primi-
tive bamboo rafts.1

1This hypothesis may seem rather far-fetched, but actually in 1947, Thor Heyerdahl
built such a bamboo raft and sailed it more than 4,300 miles (8,000 Kms) from South
America to the Tuamotu Islands. The raft, Kon-Tiki, was built using exclusively materials
and technologies available at a time to those populations. For instance, since those materials
and technologies did not include either iron or nails, the logs of the raft were held together
with manually weaved hemp ropes [207]. Even though his theory regarding the origins of
the Polynesian population was ultimately proved incorrect, Thor Heyerdahl will remain in
history for the courage and determination to put his life on the line in order to prove the
feasibility of his scientific hypothesis.
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Since the mitochondria have their own DNA, it follows that they can re-
produce independently of the host cell. Thus, the number of mitochondria
can vary in time within a given cell or cell type. Various treatments such as
some antifungal treatments can actually kill many mitochondria. After the
treatment is stopped, the mitochondria will start multiplying again and their
population will eventually recover to normal levels. Recently, it has been dis-
covered that mitochondria also play an essential role in mechanisms other
than energy generation. For instance, mitochondria can be the target of the
immune system response [301]. Thus, it has recently been shown that the
killer T cells of the immune system can trigger the programmed cell death (or
apoptosis) of virus-infected or cancer cells by releasing two serine proteases
called granzymes in the target cells. One of these, Granzyme A, targets a
certain protein NDUFS3 which is degraded. In turn, this causes mitochon-
dria to produce damaging reactive oxygen which eventually causes cell death.
The other granzyme, Granzyme B, causes the breakdown of the outer mi-
tochondrial membrane which releases a number of death-promoting proteins
activating a chain-reaction known as the caspase protease cascade resulting in
massive DNA damage and cell death.

The microtubules are cylindrical hollow structures with a diameter of
approximately 25 nm and length varying from 200 nanometers to 25 microm-
eters, which are found in the cytoplasm of eukaryotic cells (see Fig. 2.4). They
are part of the cytoskeleton of the cell, providing structural support (e.g., giv-
ing the cell its shape), and assisting in cellular locomotion, transport, and cell
division.

The lysosomes are vesicles that contain digestive enzymes called acid
hydrolases. The term lysosome comes from lysis (dissolution or destruction in
Greek) and soma (body in Greek). The lysosome is involved in the breakdown
of various materials such as food particles, viruses, or bacteria that managed to
penetrate into the cell. Because the lysosome membrane isolates the contents
of the lysosome from the rest of the cell, the inside of the lysosome can be
maintained at a pH that is much more acidic (around 4.5–4.8) than the neutral
pH (7.0) of the intracellular fluid, or cytosol. This acidic pH is necessary for
the functioning of the hydrolases. This plays the role of a safety mechanism
since if the digestive enzymes are released in the cell by accident they will not
harm it, as long as the pH in the cytosol is normal. However, if the cell is dead,
dying, or injured, the acid hydrolases released from lysosomes can self-digest
the cell in a process of autolysis. This is why sometimes lysosomes are also
called suicide bags.

The ribosomes are complexes of RNA and proteins whose main role is to
translate messenger RNA (mRNA) into chains of polypeptides using amino
acids delivered by the transfer RNA (tRNA) molecules. The term ribosome
comes from ribonucleic acid (RNA) and soma (body in Greek). The role of
ribosomes will be discussed in more detail in Section 2.3.

The endoplasmic reticulum (plural endoplasmic reticula) (ER) is an
interconnected structure composed of tubules, vesicles, and cisternae. A



The cell and its basic mechanisms 11

FIGURE 2.4: A microtubule is a hollow cylindrical structure made out of
the α and β tubulin proteins. The microtubules have many roles, including
providing structural support, assisting in cellular locomotion, and cell division.
Image in the public domain.

tubule is a small tube-like structure. A vesicle is a small sac surrounded by
a membrane similar to the cellular membrane. Vesicles store, transport, or
digest various cellular products or waste. A cisterna (plural cisternae) is a
flattened disc surrounded by a membrane. They also carry proteins. The ERs
are involved in the translation of certain specialized proteins, the transport of
proteins to be used in the cell membrane or to be secreted from the cell, se-
questration of calcium, and production and storage of certain macromolecules.
The ERs can be subdivided into rough endoplasmic reticula, smooth en-
doplasmic reticula, and sarcoplasmic reticula, each having some slightly
different characteristics and roles.

Fig. 2.5 shows the endomembrane system (from endo meaning internal in
Greek, and membrane) in a eukaryotic cell, including the rough and smooth
endoplasmic reticula, secretory vesicles, lysosomes, the Golgi apparatus, etc.

The nucleus (plural nuclei) is the largest organelle in the cell. In mam-
malian cells, the nucleus measures about 11–22 micrometers in diameter and
occupies about 10% of its volume. The nucleus contains most of the cell’s nu-
clear genetic material. This is in the form of very long linear DNA molecules
organized most of the time into a DNA-protein complex structure called chro-
matin, which is essentially very tightly packed double-stranded DNA. During
cell division, the chromatin forms well-defined structures called chromosomes.
Each chromosome contains many genes as well as long sequences of intergenic
DNA. The main roles of the nucleus are to protect the nucleic DNA, to control
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FIGURE 2.5: The endomembrane system is a system of intracellular mem-
branes that divide the eukaryotic cells into various organelles. The endomem-
brane system includes the cell membrane itself, the nuclear envelope that
separates the nucleus from the cytoplasm, the smooth and rough endoplasmic
reticula, the Golgi apparatus, the lysosomes, vesicles, etc.
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the gene expression process, and to mediate the replication of DNA during
the cell cycle.

The nucleus is surrounded by a nuclear membrane that separates it from
the cytoplasm. Since this membrane is impenetrable to most molecules, it
has a number of small orifices, or pores, which allow certain small, water-
soluble molecules to penetrate the nuclear membrane in very specific condi-
tions. Larger molecules such as proteins must be transported in a very carefully
controlled way by specialized transporter proteins. The surface of the nucleus
is also studded with ribosomes much like the surface of the rough endoplas-
mic reticulum which continues it. Although the interior of the nucleus is not
separated by other membranes, its content is not uniform. Fig. 2.6 shows that
the nucleus has a central part called nucleolus, which is mainly involved in the
assembly of ribosomes, and two types of chromatin: heterochromatin and
euchromatin. The euchromatin is the less dense of the two and contains those
genes that are expressed often by the cell. The structure of the euchromatic
resembles that of a set of beads on a string (see Fig. 2.7 and Fig. 2.8). The
heterochromatin is the more compact form and contains genes that are tran-
scribed only infrequently, as well as chromosome constitutive elements such
as telomeres (repetitive DNA that appears at the end of the chromosomes
protecting them from destruction) and centromeres (the central region of a
chromosome, where the arms of the chromosome are joined together).

2.2 The building blocks of genomic information

2.2.1 The deoxyribonucleic acid (DNA)

DNA is most commonly recognized as two paired chains of chemical bases,
spiraled into what is commonly known as the double helix. DNA is a large
polymer with a linear backbone of alternating sugar and phosphate residues.
The sugar in DNA molecules is a 5 carbon sugar (deoxyribose); successive
sugar residues are linked by strong (covalent) phosphodiester bonds. A ni-
trogenous base is covalently attached to carbon atom number 1′ (one prime)
of each sugar residue. There are four different kinds of bases in DNA, and
this why it simple to understand its basic function and structure. The order
in which the bases occur determines the information stored in the region of
DNA being looked at.

The four types of bases in DNA are adenine (A), cytosine (C), guanine
(G), and thymine (T) each consisting of heterocyclic rings of carbon and
nitrogenous atoms. The bases are divided into two classes: purines (A and G)
and pyrimidines (C and T). When a base is attached to a sugar, we speak
of a nucleoside. If a phosphate group is attached to this nucleoside, then it
becomes a nucleotide. The nucleotide is the basic repeat unit of a DNA strand.
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FIGURE 2.6: The nucleus is the largest organelle in a cell. The nucleus has
a central part called nucleolus, which is mainly involved in the assembly or
ribosomes, and two types of chromatin: heterochromatin and euchromatin.
The nucleus is surrounded by a nuclear membrane that separates it from the
rest of the cytoplasm. This membrane is studded with pores and ribosomes.
The pores allow certain small, water-soluble molecules to penetrate the nuclear
membrane in very specific conditions. Author: Mariana Ruiz, released in the
public domain.
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FIGURE 2.7: The DNA material in the nucleus is tightly packed in a com-
plex way. The very long double-stranded DNA that contains the genes is some-
times compared with a string. From place to place along this string, there are
cylindrical structures called histones. The scale is such that if the DNA is
compared with a string, the histones could be compared with some beads on
this string, only that instead of the string going through each bead, the string
is wrapped around each bead. The double-stranded DNA wrapped around a
histone forms a nucleosome. The“beads on a string”structure can be further
folded and packed even tighter in loops of DNA fiber that are further folded
and compacted to form the chromatin. In order to be transcribed, the DNA
encoded for a gene needs to be accessible so the location of a gene in relation-
ship with the histones and other structures may be important for the gene
expression process. Figure from Molecular Cell Biology, 5th Edition (2004),
Lodish, H., et al., printed with permission.
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FIGURE 2.8: The scales of various structures used in chromatin packing.
Figure from Molecular Cell Biology, 5th Edition (2004), Lodish, H., et al.,
printed with permission.

The formation of the double helix is due to the hydrogen bonding that oc-
curs between laterally opposed bases. Two bases form a base pair (bp). The
chemical structure of the bases is such that adenine (A) specifically binds to
thymine (T) and cytosine (C) specifically binds to guanine (G). These are the
so called Watson-Crick rules. Since no other interactions are possible between
any other combination of base pairs, it is said that A is complementary to
T and C is complementary to G.2 Two strands are called complementary if,
for any base on one strand, the other strand contains this base’s complement.
Two complementary single-stranded DNA chains that come into close prox-
imity react to form a stable double helix (see Fig. 2.9) in a process known
as hybridization or annealing. Conversely, a double-stranded DNA can be
split into two complementary, single-stranded chains in a process called de-
naturation or melting. Hybridization and denaturation play an extremely
important role both in the natural processes that happen in the living cells
and in the laboratory techniques used in genomics. Because of the base com-
plementarity, the base composition of a double-stranded DNA is not random.
The amount of A equals the amount of T, and the amount of C is the same
as the amount of G.

Let us look at the backbone of the DNA strand again. Phosphodiester

2In fact, other interactions are possible but the A-T and C-G are the ones that occur
normally in the hybridization of two strands of DNA. This is because the A-T and C-G
pairings are the ones that introduce a minimal distortion to the geometrical orientation of
the backbones.
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FIGURE 2.9: A short fragment (10 base pairs) of double-stranded DNA.
Image obtained with Protein Explorer.
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FIGURE 2.10: Each end of a single strand of DNA is identified by the
carbon atom that terminates the strand (5′ or 3′). Two strands of DNA always
associate or anneal in such a way that the 5′ → 3′ direction of one DNA strand
is the opposite to that of its partner.

bonds link carbon atoms number 3′ and 5′ of successive sugar residues. This
means that in the terminal sugar the 5′ is not linked to a neighboring sugar
residue. The other end is termed 3′ end, and it is characterized by the lack of
a phosphodiester bond on that particular carbon atom. This gives a unique
direction to any DNA strand. By convention, the DNA strand is said to run
from the 5′ end to the 3′ end. The two strands of a DNA duplex are considered
to be antiparallel. They always associate or anneal in such a way that the
5′ → 3′ direction of one DNA strand is the opposite to that of its partner (see
Fig. 2.10).

The two uprights of the DNA ladder are a structural backbone, supporting
the rungs of the ladder. These are also the information-carrying parts of the
DNA molecule. Each rung of the ladder is made up of two bases that are
paired together. This is what makes the steps of the spiral staircase. The two-
paired bases are called a base pair as described earlier. The length of any DNA
fragment is measured in base pairs (bp), similarly to how we measure length
in inches. However, since the DNA is formed with base pairs, the length of a
DNA fragment can only be a discrete number of such pairs, unlike a length
which can include fractions of an inch.

Each nucleotide has a discrete identity. The sequence of the nucleotides in
a DNA can be read by the “machinery” inside the cell. Genes, which represent
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large sequences of DNA, can be looked at as instructions telling the cell how
much protein to make, when it should be made, and the sequence that can be
used to make it. The information in the DNA is like a library. In the library,
you will find books, and they can be read and reread many times, but they
are never used up or given away. They are retained for further use. Similarly,
the information in each gene is read (see below), perhaps millions of times in
the life of an organism, but the DNA itself is never used up.

2.2.2 The DNA as a language

Each base can be thought of as a specific letter of a 4-letter alphabet, com-
bining to form words and sentences. In essence, a gene is a recipe for making
a protein. Let us consider for example the following very simple recipe for
making an omelette:

Take three eggs; scramble; add oil in a pan; heat it up; add the eggs; get
the omelette.

From a syntactic perspective, this is a simple string of characters from a
set that includes the 52 alphabetic characters in the English language (lower
and upper case) plus some special characters (space, semicolon, period, etc.).
Usual grammatical conventions tells us to start a phrase using a capital letter
and end it using a period. If we were to be minimalistic and restrict ourselves
to the 26 lower-case characters, we can give up the spaces and be explicit
about the initial capital letter and the final period. In this case, we could
write the recipe as:

capitaltakethreeeggsscraambleaddoilinapanheatitupaddtheeggsgettheomeletteper
iod

In the coding above, the “capital” and “period” markers are there just to
indicate to us when a recipe starts and ends, in case we want to put together
a collection including many such recipes. Similarly, since one chromosome
contains many genes in a unique, very long DNA sequence, the beginning and
end of a gene are indicated by special markers called start and stop codons.

Furthermore, in a digital computer system, the recipe above would be
stored in a binary format, usually using 8 bits (or one byte) for every alphanu-
meric and special character. The recipe above would now look something like
this:

01100011 01100001 01110000 01101001 01110100 01100001 ...
c a p i t a ...

From this, it follows that any time such a recipe is accessed in the memory
of a computer, a translation has to take place from the binary alphabet {0,1}
used by the computer to the English alphabet used by humans. Similarly, since
a protein is a sequence of amino acids, and its recipe is stored as a sequence of
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DNA bases, every time a protein is produced a translation has to take place
that would map the recipe written in the 4-letter alphabet of the DNA, to the
necessary protein sequence that uses amino acids from a 20 letter alphabet.

The DNA bases are grouped in triplets, or codons, for the same reason bits
are grouped in octets, or bytes: if each symbol is limited to only two values (in
the binary alphabet), or four values (in the DNA alphabet), groups of several
symbols are needed in order to represent symbols from larger alphabets such
as the set of 20 amino acids (for proteins) or the set of 26 letters of the
English alphabet (for text). In fact, soon after the discovery of the DNA, the
existence of a three-letter code to map from the DNA alphabet to the amino
acid alphabet was postulated by George Gamov based on the fact that n=3
is the smallest value of n that satisfies 4n > 20. In other words, n=3 is the
smallest size of a tuple for which there are more tuples than the 20 amino
acids that needed to be coded for.

Each triplet of DNA nucleotides, or each codon, corresponds to a certain
amino acid. Fig. 2.11 shows the correspondence between all possible codons
and their respective amino acids, as well as some structural information, chem-
ical properties and post-translational modifications of the various amino acids.
The mapping from codons to amino acids is known as the genetic code. There
is a start codon that indicates where the translation should start and several
end codons that indicate the end of a coding sequence. Note that since there
are 43 = 64 different codons and only 20 different amino acids, it follows that
either several different codons have to code for the same amino acid or many
codons have to code for no amino acids at all. In fact, the former is true, with
most amino acids being coded for by more than one codon. This may be more
easily visible in Fig. 2.12. For instance, if a codon has the first two nucleotides
C and T3, the codon will be translated into leucine independently of the third
nucleotide. Similarly, the CC* codon will be translated into proline, etc.

It turns out that there is another level of complexity about the genetic
code. At the same time with the protein coding information, the genome has
to also carry other types of signals such as regulatory signals telling the cell
when to start and stop protein production for each protein, signals for splicing,
etc. It has been shown recently that when these additional requirements are
taken into consideration, the universal genetic code that we know is nearly
optimal with respect to all other possible codes [15]. The optimality here was
defined as the ability to minimize the effects of the most disastrous type of
errors, the frame-shifts, as well as the property that close codons (codons that
differ by only one letter) are mapped to either the same amino-acid or to
chemically related ones. This means that, if a translation process misreads a
single letter, the error introduced will have no or little consequences. In the
same context, it has also been noted that amino acids with a simple chemical
structure tend to have more codons assigned to them [177].

3For reasons that will be explained soon, the CT tuple appears as CU in Fig. 2.11.
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FIGURE 2.11: The genetic code is the mapping between the 4 letter-
alphabet of the DNA/RNA nucleotides that appear in the genes, and the
20 letter-alphabet of the amino acids that form the proteins coded for by
the genes. In this image, one starts in the middle with the first nucleotide
of a codon and goes outwards following the remaining nucleotides. The figure
also shows some structural information, chemical properties, as well as various
possible post-translational modifications. Original image in public domain by
Kosi Gramatikoff courtesy of Abgent; modified by Seth Miller and the author.
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Second Position

T C A G
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TTT Phe [F] TCT Ser [S] TAT Tyr [Y] TGT Cys [C] T

T
h
ir
d
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o
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o
n

T TTC Phe [F] TCC Ser [S] TAC Tyr [Y] TGC Cys [C] C
TTA Leu [L] TCA Ser [S] TAA Ter [end] TGA Ter [end] A
TTG Leu [L] TCG Ser [S] TAG Ter [end] TGG Trp [W] G
CTT Leu [L] CCT Pro [P] CAT His [H] CGT Arg [R] T

C CTC Leu [L] CCC Pro [P] CAC His [H] CGC Arg [R] C
CTA Leu [L] CCA Pro [P] CAA Gln [Q] CGA Arg [R] A
CTG Leu [L] CCG Pro [P] CAG Gln [Q] CGG Arg [R] G
ATT Ile [I] ACT Thr [T] AAT Asn [M] AGT Ser [S] T

A ATC Ile [I] ACC Thr [T] AAC Asn [N] AGC Ser [S] C
ATA Ile [I] ACA Thr [T] AAA Lys [K] AGA Arg [R] A
ATG Met [M] ACG Thr [T] AAG Lys [K] AGG Arg [R] G
GTT Val [V] GCT Ala [A] GAT Asp [D] GGT Gly [G] T

G GTC Val [V] GCC Ala [A] GAC Asp [D] GGC Gly [G] C
GTA Val [V] GCA Ala [A] GAA Glu [E] GGA Gly [G] A
GTG Val [V] GCG Alo [A] GAG Glu [E] GGG Gly [G] G

FIGURE 2.12: Another view of the genetic code. In this figure, it may be
easier to see the redundancy intrinsic to the code. For instance, if a codon has
the first two nucleotides C and T, the codon will be translated into leucine
independently of the third nucleotide. Similarly, the CC* codon will be trans-
lated into proline, etc. There are 3 stop codons that mark the end of a coding
sequence (“end” above) and one start codon marking the begining of a coding
sequence (“M ” above).
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2.2.3 Errors in the DNA language

The DNA sequence of a chromosome can also contain errors. There are several
types of errors as follows:

1. Mutations. A mutation is an situation in which one nucleotide is sub-
stituted by another one. For instance, in our original recipe:

...takeeggsscrambleaddoil...

a mutation could substitute the second “g” with an “o” to yield:

...takeegosscrambleaddoil...

leading to a rather different result:

...take egos scramble add oil...

Mutations as above are also known as single point mutations or single
nucleotide mutations. Since the genetic code is such that different codons
can correspond to the same amino acid, a single point mutation in the
DNA sequence of a gene may not change at all the structure of the
protein coded for by the given protein. However, it is also possible that
a single point mutation is extremely disruptive or even lethal for a given
organism.

2. Deletions. A deletion is a situation in which one of the nucleotides is
missing. For instance, in our original recipe:

...takeeggsscrambleaddoilinapanheatitupaddegsandgetomellette ...

a deletion could remove the highlighted “h” to yield:

...takeeggsscrambleaddoilinapaneatitupaddegsandgetomellette...

leading again to a departure from the intended outcome, in this case, an
early consumption of the rather raw dish:

...take eggs, scramble, add oil in a pan, eat it up...

3. Insertions. An insertion is a situation in which an additional nucleotide
is inserted in the middle of an existing sequence. For instance, in our
original recipe:

...takeeggsscrambleaddoil...

an insertion could add the highlighted “s” to yield:

...takeeggsscrambleaddsoil...

leading to the consumption of something rather different from the in-
tended omelette:

...take eggs scramble add soil...

4. Frame shifts. A frame shift is a situation in which the DNA sequence
is shifted. Such a shift can be caused for instance by an insertion or
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deletion. Because of this shift, the identity of all subsequent codons will
be changed. For instance, in our original binary-coded recipe above:

01100011 01100001 01110000 01101001 01110100 01100001 ...
c a p i t a ...

a frame shift can cause the reading to start at the second digit instead
of the first one, which will mean that the same bits will be grouped, and
hence interpreted, very differently:

...0 11000110 11000010 11100000 11010010 11101000 11000010

ä - Ó Ê |u –

In this example, a frame shift mutation that moved the start point by
just one position to the right, caused changes so substantial in the sub-
sequent bytes that all the characters became special characters and the
text fragment itself became completely unintelligible. Similarly, most
frame shift mutations in a DNA sequence will cause very substantial
changes in the corresponding amino acid sequence. In fact, this is how
the organization of the protein-coding DNA in triplets was originally
proven. In a 1961 experiment, Crick, Brenner et. al. [105] showed that
either inserting or deleting only one or two nucleotides prevents the pro-
duction of a functional protein while inserting or deleting 3 nucleotides
at a time still allows the functional protein to be produced.

Together, DNA works with protein and RNA (ribonucleic acid) in a man-
ner that is similar to the way a computer works with programs and data. DNA
has a code that is continuously active, having instructions and commands such
as “if-then,”“go to,” and “stop” statements. It is involved with regulating pro-
tein levels, maintaining quality control, and providing a database for making
proteins. The best analogy to use when describing DNA and its function in
cells is to look at a cell as a little factory. In a cell, much like in a factory, spe-
cific items are produced in specific places. There is a certain flow of materials
through the cell, and there are various communication and feedback mech-
anisms regulating the speed with which various processes happen in various
parts of the cell. Such communication and feedback mechanisms also allow
the cell to adapt the speed of its internal processes to the demands of the
environment much like a factory can adjust its production in response to the
changing needs of the market.

2.2.4 Other useful concepts

A gene is a segment or region of DNA that encodes specific instructions, that
allow a cell to produce a specific product. This product is typically a protein,
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such as an enzyme. There are many different types of proteins. Proteins are
used to support the cell structure, to break down chemicals, to build new chem-
icals, to transport items, and to regulate production. Every human being has
about 22,000 putative genes4 that produce proteins. Many of these genes are
totally identical from person to person, but others show variation in different
people. The genes determine hair color, eye color, sex, personality, and many
other traits that in combination make everyone a unique entity. Some genes
are involved in our growth and development. These genes act as tiny switches
that direct the specific sequence of events that are necessary to create a human
being. They affect every part of our physical and biochemical systems, acting
in a cascade of events, turning on and off the expression, or production, of key
proteins that are involved in the different steps of development.

The key term in growth and development is differentiation. Differentia-
tion involves the act of a cell changing from one type of cell, when dividing
through mitosis, into two different types of cells. The most common cells used
to study differentiation are the stem cells. These are considered to be the
“mother cells,” and are thought to be capable of differentiating into any type
of cell. It is important to understand the value of differentiation when learning
about genetics and organism development. Everyone starts life as one single
cell, which divides several times before any differentiation takes place. Then,
in a specific stage, differentiation begins to take place, and internal organ cells,
skin cells, muscle cells, blood cells, etc. are created.

Another very important process is the DNA replication. The DNA repli-
cation is the process of copying a double-stranded DNA molecule to create
two identical double-stranded molecules. The original DNA strand is called
the template DNA. Each strand of the double-stranded template DNA be-
comes half of a new DNA double helix. Because of this, the DNA replication
is said to be semi-conservative. This process, illustrated in Fig. 2.13, must
take place before a cell division can occur.

The replication process starts at some fixed locations on the DNA strand
called replication origins. These replication origins have certain features
such as repeats of a short sequence that create a pattern that is recognized by
an initiation protein. Once this protein binds to the double strand, the tem-
plate DNA is unwound and separated into the two component single strands
(see the topoisomerase and the helicase in Fig. 2.13). This region is called the
replication fork and travels along the DNA sequence as the replication takes
place. The single-stranded regions are trapped by single-stranded binding
proteins making them accessible to the DNA polymerase. The DNA poly-
merase is an enzyme that can add single nucleotides to the 3′ end of an existing
single strand by matching the nucleotides in the template. However, the DNA
polymerase needs an existing sequence with a free 3′ end before it can do its
job. The short nucleotide sequence that provides the starting point for the

4Initially, the number of human genes was estimated at 100,000 to 140,000. Subsequently,
the estimate was revised down to about 20,000 to 30,000. At the moment of this writing,
there still exists a controversy over this number [340].
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FIGURE 2.13: The main processes involved in the DNA replication. The
topoisomerase is an enzyme that facilitates the unwinding of the double-
stranded DNA, allowing the helicase enzyme to separate the two DNA strands.
These single strands are kept apart by certain single-strand binding proteins
allowing the DNA polymerase and the other enzymes to have access to the
single strands. The construction of the new strands starts from primers built
by a primase enzyme. On the lower strand, called the leading strand, the
newly constructed strand is continuously elongated by the DNA polymerase
that adds new nucleotides to the free 3′ end of the new strand (left to right in
this figure), replicating the template. On the upper strand, called the lagging
strand, the new strand is elongated intermittently by adding new Okazaki
fragments which are continuously constructed by The gaps are repaired by a
DNA ligase enzyme. Image in public domain by Mariana Ruiz, modified by
the author.
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DNA polymerase is called a primer. During the cell replication, the primer
is constructed ex novo by an enzyme called primase. The primase actually
synthesizes an RNA primer that will be later removed by an enzyme called
RNase H, allowing the polymerase to add the correct DNA nucleotides in-
stead.

As stated above, the DNA polymerase can only add nucleotides to the 3′

end of a strand. Hence, it follows that a DNA strand can only be constructed in
one direction, from the 3′ to the 5′ end. However, an examination of Fig. 2.13
shows that apparently both new strands grow at the same time. The new
strand being constructed in the lower part of the figure grows from the 5′

end to the 3′ end with new nucleotides being added, as expected to the free
3′ end of the newly formed strand. However, the strand being constructed in
the upper part of the figure appears to grow from the 3′ end by extending
its 5′ end which we know the polymerase cannot do. In fact, this strand does
grow by extending its 5′ end, but the job is not done by the polymerase.
The polymerase only constructs short fragments of DNA, still going right to
left, by extending the free 3′ end. These short fragments are called Okazaki
fragments after the Japanese scientists who discovered them in 1968. These
short fragments attach themselves to the template strand as dictated by the
complementarity rules. Finally, the DNA ligase, an enzyme that can suture
or ligate, gaps in double-stranded DNA comes and adds the missing link in
the newly constructed strand. In essence, the lower strand in Fig. 2.13 is being
elongated continuously, seamlessly by the DNA polymerase, while the upper
strand is elongated by concatenating short Okazaki fragments.

Another important concept related to genes is that of a single nucleotide
polymorphism or SNP (pronounced “snip”). A SNP is a single nucleotide
difference between different individuals of the same species, or between paired
chromosomes of an individual. For instance, if the DNA sequence of most
individuals of a species at a certain location reads ACGTTACG while another
specific individual has the sequence ACGTAACG at the same location, it is
said that this individual has a SNP at that particular location. In essence, a
SNP is a mutation that is more widespread in the population (and perhaps not
very harmful). The two alternatives associated to a SNP location are called
alleles. Sometimes a combination of alleles at multiple loci are transmitted
together from one generation to another. Such a combination of alleles is called
a haplotype, a term obtained from contracting words “haploid genotye.”The
set of all alleles of an individual, in other words the entire set of differences
characteristic to this individual, is called the genotype of that individual. The
term genotype is also used to refer to a subset of genetic traits, sometimes a
single such trait. In contrast, the phenotype is one (or more) observable
characteristic(s) of an organism. In general, the phenotype is determined by
the genotype as well as environmental and developmental conditions. However,
there are certain phenotypes that are determined directly by the genotype,
sometime by a single gene.

Organisms such as Homo sapiens, which are diploid, that is their genomes
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contain two copies of each chromosome (with the exception of the sex chromo-
somes), can also have SNPs between the two copies of a given chromosome.
These are also referred to as alleles. Most SNPs have only two alleles. The
allele that is less frequent is called the minor allele.

If a phenotype is determined by a single gene and this gene has, let us say,
two alleles, sometime the presence of one of these in any one of the two copies of
the chromosome determines the phenotype independently of the allele present
on the other copy of the chromosome. In this case, this allele is called the
dominant allele. By convention, dominant alleles are written in uppercase
letters, and recessive alleles in lowercase letters. For instance, A is dominant
to a (and a is recessive to A), which means that two individuals with the AA
and Aa genotypes have the same phenotype, while a third individual with the
aa genotype has a different phenotype. There are also other, more complex
mechanisms of inheritance.

2.3 Expression of genetic information

Genes make up only a subset of the entire amount of DNA in a cell. The
human genome, for instance, contains approximatively 3.1 billion base pairs.
However, less that 2% of the genome codes for proteins. Active research in the
past 20 years has identified signals (specific sequences of bases) that delimit
the beginning and ending of genes. These signaling areas can be thought of as
regulatory elements. They are used to control the production of protein, and
work as a biofeedback system. They are usually located near the beginning of a
sequence that is used to code for a protein. Through protein-DNA interactions
they are used to turn on and off the production of proteins. Noncoding DNA
conveys no known protein-coding or regulatory information and makes up the
bulk of the DNA in our cells. These intergenic regions can include highly repet-
itive sequences. Although this DNA is sometimes called “junk DNA,” several
functions have been proposed for it, including playing a role in reshaping and
rearranging the genes in the genome, acting as a buffer to decrease the dam-
age introduced by random mutations, or acting as a spacer such that genes
that are transcribed often are accessible to the DNA polymerase and the other
enzymes involved in transcription after all the twists, turns, and folding of the
double-stranded DNA into the chromatin structure.

The flow of genetic information is from DNA to RNA to proteins. This
one-way process is the expression of genetic information in all cells and has
been described as the central dogma of molecular biology.

To make products from a gene, the information in the DNA is first copied,
base for base, into a similar kind of information carrier, called a transcript,
or messenger RNA (mRNA). The RNA copy of the gene sequence acts as a
messenger, taking information from the nucleus (where the DNA is found in its
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chromosomal form) and transporting it into the cytoplasm of the cell (where
the machinery for making gene products is found). Once in the cytoplasm,
the messenger RNA is translated into the product of the gene, a protein. The
sequence of the protein is defined by the original sequence of the DNA bases
found in the gene.

DNA is the hereditary material in all present-day cells. However, in early
evolution, it is likely that RNA served this role. As a testimony for this,
there still exist organisms, such as RNA viruses, that use RNA instead of
DNA to carry the hereditary information from one generation to another.
Retroviruses such as the Human Immunodefficiency Virus (HIV) are a subclass
of RNA viruses, in which the RNA replicates via a DNA intermediate, using
the enzyme reverse transcriptase (RT). This enzyme is an RNA-dependent
DNA polymerase that, simply said, makes DNA from RNA. This enzyme plays
a very important role in microarray technology as will be discussed later.

Let us re-examine the several processes that are fundamental for life and
important to understand the need for microarray technology and its emer-
gence. Every cell of an individual organism contains the same DNA, carrying
the same information.5 In fact, this is the very basis of the use of DNA as
evidence in criminal cases: a single droplet of bodily fluid, a single hair, or a
few cells can uniquely identify an individual. However, in spite of carrying the
very same DNA, a liver cell is obviously different from a muscle cell, for exam-
ple. These differences occur because not all genes are expressed in the same
way in all cells. The differentiation between cells is given by different patterns
of gene activations, which in turn, control the production of proteins. Much as
studying the different levels of expression of various genes in different tissues
can help us understand why the tissues are different, studying the different
levels of expression between the same tissue in different conditions can help
us understand the differences between those conditions.

Proteins are long, linear molecules that have a crucial role in all life pro-
cesses. Proteins are chains of amino acid molecules. As previously discussed,
there are 20 amino acid molecules that can be combined to build proteins. The
number of all possible sequences of amino acids is staggering. For instance, a
sequence with length 10 can contain 2010 = 10, 240 billion different combina-
tions of amino acids, which is a very large number indeed. Although proteins
are linear molecules, they are folded in complex ways. The protein-folding
process is a crucial step since a protein has to be folded into a very specific

5Like many other things in life sciences, this is true most of the time, rather than al-
ways. There could be, in fact, individuals of various species, including humans, that can
be composed of two or more populations of genetically distinct cells, that originated from
different zygotes. Such an individual is called chimera, after a mythological creature that
had a body composed of parts of different animals. Chimeras are extremely rare.
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way for it to function properly.6 Enzymes are specialized proteins7 that act as
catalysts and control the internal chemistry of the cells. This is usually done
by binding to specific molecules in a very precise way such as certain atoms
in the molecules can form bonds. Sometimes, the molecules are distorted in
order to make them react more easily. Some specialized enzymes process DNA
by cutting long chains into pieces or by assembling pieces into longer chains.
A gene is active, or expressed, if the cell makes the gene product (e.g. protein)
encoded by the gene. If a lot of gene product is produced, the gene is said to
be highly expressed. If no gene product is produced, the gene is not expressed
(unexpressed).

2.3.1 Transcription

The process of using the information encoded into a gene to produce a protein
involves reading the DNA sequence of the gene. The first part of this process is
called transcription and is performed by a specialized enzyme called RNA
polymerase. Essentially, the transcription process converts the information
coded into the DNA sequence of the gene into an RNA sequence. This “expres-
sion” of the gene will be determined by various internal or external factors.
The objective of researchers is to detect and quantify gene expression levels
under particular circumstances.

The RNA molecule is a long polynucleotide very similar to DNA, but with
several important differences. First, the backbone structure of RNA is not the
same. Second, RNA uses the base uracil (U) instead of thymine (T).8 And
finally, RNA molecules in cells exist as single stranded entities, in contrast to
the double helix structure of DNA.

The transcription process is somewhat similar to the DNA replication.
Much like in the DNA replication, the part of the DNA sequence that contains
the gene to be transcribed has to be unfolded and accessible, the two DNA
strands are temporarily separated and the RNA polymerase moves along one
strand, reading its succession of bases and constructing an RNA sequence
containing the same information. The enzyme RNA polymerase attaches itself
to a specific DNA nucleotide sequence situated just before the beginning of
a gene. This special sequence is called a promoter and it works by setting
up the RNA polymerase on the correct DNA strand and pointing in the right
direction. The two DNA strands are separated locally such that the RNA
polymerase can do its work and transcribe DNA into RNA. The RNA molecule

6The so-called “mad cow disease” is apparently caused by a brain protein folded in an
unusual way. When a wrongly folded protein comes into contact with a normal protein, it
induces the normal protein to fold itself abnormally. This abnormal folding prevents the
protein from performing its usual role in the brain, which leads to a deterioration of brain
functions and, eventually, death.

7Most but not all enzymes are proteins. Some RNA molecules called ribozymes act like
enzymes.

8This is why the CT tuple appears as CU in Fig. 2.11 which shows the mapping from
RNA to codons, rather than DNA to codons.
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is synthesized as a single strand, with the direction of transcription being 5′ →
3′. The RNA polymerase starts constructing RNA using ribonucleotides freely
available in the cell. The RNA sequence constructed will be complementary
to the DNA sequence read by the RNA polymerase. When the DNA sequence
contains a G for instance, the polymerase will match it with a C in the newly
synthesized RNA molecule; likewise, an A will be matched with a U in the
chain under construction (because U substitutes for T in the RNA molecule),
etc. The process will continue with the RNA polymerase moving into the gene,
reading its sequence, and constructing a complementary RNA chain until the
end of the gene is reached. The end of the gene is marked by a special sequence
that signals the polymerase to stop. When this sequence is encountered, the
polymerase ends the synthesis of the RNA chain and detaches itself from the
DNA sequence.

The RNA sequence thus constructed contains the same information as the
gene. This information will be used to construct the protein coded for by the
gene. However, the structure of the protein is not yet completely determined
by the RNA sequence synthesized directly from the DNA sequence of the
gene. The RNA chain synthesized by the RNA polymerase is called a primary
transcript or pre-mRNA and is only the initial transcription product. In fact,
the sequence of nucleotides in a gene may not be used in its entirety to code for
the gene product. Thus, for more complex organisms, a great part of the initial
RNA sequence is disposed of during a splicing process to yield a smaller RNA
molecule called messenger RNA or mRNA. Its main role is to carry this
information to some cellular structures outside the nucleus called ribosomes
where proteins will be synthesized. The non-coding stretches of sequence that
are eliminated from the primary transcript to form a mature mRNA are called
introns. Conversely, the regions that will be used to build the gene product
are called coding regions, or exons. Thus, RNA molecules transcribed from
genes containing introns are longer than the mRNA that will carry the code
for the construction of the protein.

The mechanism that cuts the transcribed RNA into pieces, eliminates the
introns, and reassembles the exons together into mRNA is called RNA splic-
ing. The RNA splicing takes place in certain places determined by a specific
DNA sequence that characterizes the intron/exon boundaries. Fig. 2.14 shows
the consensus sequence for the intron/exon boundaries. In general, the splicing
is carried out by small, nuclear RNA particles (snRNPs, pronounced snurps)
that get together with some proteins to form a complex called spliceosome.
During the splicing, at each splicing site, the spliceosome bends the intron
to be eliminated in the shape of a loop called lariat, bringing together the
two exon ends to be connected. In a subsequent step, the two exon ends are
connected, the lariat is cut off, and the spliceosome detaches from the mRNA.

Depending on the circumstances, the pre-mRNA can be cut into different
pieces, and these pieces can be assembled in different ways to created different
proteins. This mechanism that allows the construction of different mRNAs
from the same DNA sequence is called alternative splicing. The mechanism
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FIGURE 2.14: The consensus sequence of a splicing site. The symbol R
denotes any puRine (A or G); the symbol Y denotes any pYrimidine (C or U);
the symbol N stands for aNy of A, C, G, or U. The lines stand for arbitrary
sequences. The blue color represents the ends of the exons. As shown in the
figure, there is a lot of variability in these sites with the exception of the bases
in red which are required in order for the splicing to occur. During the splicing,
the spliceosome bends the intron to be eliminated in the shape of a loop called
lariat, bringing together the two exon ends to be connected. In a subsequent
step, the two exon ends are connected, the lariat is cut off and the spliceosome
detaches from the mRNA.

of alternative splicing greatly increases the protein coding abilities of genes by
allowing a gene to code for more than one protein. Fig. 2.15 shows a number of
alternative splice variants encoded by a single gene. The pre-mRNA shown
at the top of Fig. 2.15 includes a number of introns and exons. An mRNA
is obtained in each case by eliminating some introns and concatenating the
remaining exons. Which particular mRNA is constructed at any one time
depends on the circumstances and is controlled through a number of mecha-
nisms. Depending on their effect, these mechanisms are divided into enhancers
and silencers, and subdivided by their target into exon-splicing enhancers and
silencers, or intron-splicing enhancers and silencers.

Another important reaction that occurs at this stage is called polyadeny-
lation. This reaction produces a long sequence of A nucleotides concatenated
onto the 3′ end of a mature mRNA. This reaction is of interest because some
protocols in microarray technology use the final product of polyadenylation.
Transcription of the RNA is known to stop after the enzymes (and some
specialized small nuclear RNAs) responsible for the transcription process rec-
ognize a specific termination site. Cleavage of the RNA molecule occurs at
a site with sequence AAUAAA and then about 200 adenylate (i.e., AMP)
residues are sequentially added in mammalian cells by the enzyme poly(A)
polymerase to form a poly(A) tail. This tail is used as a target in the process
of reverse transcription.

2.3.2 Translation

After the post-transcriptional processing, the mRNA transcribed from the
genes in the nuclear DNA leaves the nucleus and moves into the cytoplasm.
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FIGURE 2.15: Alternative splice variants encoded by a single gene. The
pre-mRNA shown at the top of the figure includes a number of introns and
exons. The mRNA is obtained in each case by eliminating some introns and
concatenating the remaining exons. In general, the splicing is carried out by
small, nuclear RNA particles (snRNPs, pronounced snurps) that get together
with some proteins to form a complex called spliceosome. UTRs represent
untranslated regions. The mechanism of alternative splicing greatly increases
the protein-coding abilities of genes by allowing a gene to code for more than
one protein.

The mRNA containing the sequence coding for the protein attaches to ri-
bosomes (see Section 2.1). Here, the information contained in the mRNA is
mapped from a sequence of RNA nucleotides into a sequence of amino acids
forming the protein. This process is called translation. As a mnemonic help,
this process translates the information necessary in order to construct a pro-
tein from the 4 base alphabet of the DNA/RNA to the 20 letter alphabet of
the amino acids.

The ribosome attaches to the messenger RNA near a specific start codon
that signals the beginning of the coding sequence. The various amino acids
that form the protein are brought to the ribosome by molecules of RNA that
are specific to each type of amino acid (see Fig. 2.16). This RNA is called
transfer RNA (tRNA). The tRNA molecules recognize complementary-
specific codons on the mRNA and attach to the ribosome. The first tRNA to
be used will have a sequence complementary to the sequence of the first codon
of the mRNA. In turn, this first tRNA molecule will bring to the ribosome the
first amino acid of the protein to be synthesized. Subsequently, a second tRNA
molecule with a sequence complementary to the second codon on the mRNA
will attach to the existing ribosome-mRNA-tRNA complex. The shape of the
complex is such that the amino acids are brought into proximity and they
bind to each other. Then, the first tRNA molecule is released and the first two
amino acids linked to the second tRNA molecule are shifted on the ribosome
bringing the third codon into position. The tRNA bringing the third amino
acid can now attach to the third codon because of its complementary sequence
and the process is repeated until the whole protein molecule is synthesized.
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FIGURE 2.16: The protein translation process. The tRNA molecules recog-
nize complementary-specific codons on the mRNA and attach to the ribosome.
Each such tRNA molecule brings the amino acid corresponding to its respec-
tive codon, which is attached to the newly-formed polypeptide chain that will
become the protein. Once the amino acid has been attached, its corresponding
tRNA molecule is detached, and the process is repeated for the next amino
acid, until the entire protein is assembled.

The process stops when a special stop codon is encountered, which signals
the mRNA to fall off the ribosome together with the newly constructed pro-
tein.9 After it is released, the protein may suffer a set of final changes called
post-translational modifications. Such modifications might include cleavage,
folding, phosphorylation, methylation, etc. Once these are done, the protein
starts performing the cellular function for which it was designed. At this stage,
it is said that the protein is active.

It must be mentioned that the process described above is greatly simplified.
For instance, the complex between tRNA molecules and their corresponding
amino acids is in turn controlled by another enzyme called aminoacyl-tRNA
synthetase. There is at least one type of synthetase for each type of amino-acid.
Since other complex steps, such as tRNA–amino acid reaction, are involved in
the protein synthesis, it is clear that the amount of protein produced in the
cell is also dependent on the successful completion of all these intermediate
steps. Furthermore, as explained above, post-translational modifications can
be crucial in making a protein active. Having abundant amounts of inactive
protein will not help the cell perform the necessary functions. However, in

9See [121] for an excellent introduction to DNA and gene cloning for the nonspecialist
and [406] for a more complete treatment of the subject.
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general, there is a quantitative correspondence between the amount of mRNA
produced by the enzyme reading the gene and the amount of protein produced.
Therefore, the amount of mRNA produced from various genes is usually di-
rectly proportional to the amount of protein produced from that mRNA, i.e.
to the expression level of that gene. This is the main assumption at the basis
of most experiments that try to characterize the gene’s expression levels using
DNA microarrays. Nevertheless, one should keep in mind that the measured
levels of mRNA do not always map to proportional levels of protein, and even
if they did, not all those proteins may be in an active form, etc. A number
of other techniques are available to obtain information at other levels of this
complex process. For instance, proteomics techniques can provide information
about the amounts of proteins available, phosphorylation assays can provide
information about the amount of phosphorylated protein available, etc. A
complete understanding of the cellular processes will inevitably require the
integration of many heterogeneous types of data.

2.3.3 Gene regulation

The regulation of gene expression is the process that living cells use to control
the amount of a gene product that is produced in the cell at any one time. As
discussed above, most gene products are proteins. However, there are genes
that produce RNA that is never translated into protein and yet they play
some role in the cell. This process of controlling the amount of gene product
is also called gene modulation. Gene regulation is continuously active for
many genes in many cells. Because of gene regulation, a cell or organism can
modify its response depending on environmental factors, signals from other
cells or organisms, and even time of the day. For instance, E. coli is able to
use various types of nutrients such as lactose and glucose. However, glucose is
much more energy efficient so E. coli prefers to consume it if it’s available. If
glucose is not available but lactose is, E. coli regulates several of its genes to
produce an enzyme, β-galactosidase, which is able to digest lactose. Similarly,
the yeast can switch between a metabolism that uses oxygen to one that does
not (beer versus bread).

Gene regulation can happen during any stage of the process that leads from
a gene to a functional protein. During transcription, for instance, regulation
can happen through one or more of the following mechanisms:

1. Transcription factors – these are proteins that bind DNA and control
the production of RNA from DNA. These can be subdivided into:

(a) Repressors – bind to the DNA strand nearby or overlapping the
promoter region, preventing the RNA polymerase from transcribing
the gene

(b) Activators – bind to the DNA strand nearby of overlapping the
promoter region facilitating the interaction between the RNA poly-
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merase and a particular promoter, increasing the expression of the
given gene

2. Regulatory elements – these are sites on the DNA helix that are
involved in transcription control and regulation. These can be:

(a) Promoters – - are the sites on the DNA helix that the activators
bind to. Promoters are usually found close to the beginning of the
gene

(b) Enhancers – are also sites on the DNA helix that are bound by
activators; an enhancer may be located upstream or downstream
of the gene that it regulates. Furthermore, an enhancer does not
need to be located near to the transcription initiation site to affect
the transcription of a gene,

Gene regulation can also happen during RNA processing as well as af-
ter translation, through post-translational modifications. These post-
translational modifications are chemical modifications that happen to the pro-
tein after it is translated. Such modifications usually involve the addition or
removal of a functional group such as phosphate (phosphorylation), acetate
(acetylation), lipids, carbohydrates, etc., or by making structural changes.
Many proteins have an active form, in which they can perform their role
in the cell, and an inactive form, in which they cannot perform their usual
activity.

A more recently discovered mechanism of gene regulation involves RNA
interference performed either through micro-RNAs (miRNA) [365] or
small interfering RNAs (siRNA) [149]. The miRNAs are short (21–23
nucleotides), single-stranded, RNA molecules that are partially complemen-
tary to one or more mRNA sequences corresponding to other genes. Since
the miRNA molecules will bind to their target mRNA molecules, fewer such
molecules will be available for subsequent translation so the effect of the miR-
NAs will be to down-regulate their target genes. The siRNAs are short (20–25
base pairs), double-stranded RNA molecules that can interfere with the pro-
cess of gene transcription-translation of other genes, either by degradation of
the targeted RNA, or by histone and DNA methylation.

2.4 The need for high-throughput methods

Why bother measuring the expression of all genes? A simple answer involves
the fact that the genomes of many model organisms have been sequenced,
and we would like to simply have the luxury of looking at the whole genome
expression profile under the influence of a particular factor. Several methods
have long been available to measure expression levels but, alas, only for a
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few genes at a time. Large-scale screenings of gene expression signatures were
not possible the way they are routinely performed nowadays with microarrays.
Therefore, a need for a quick snapshot of all or a large set of genes was pressing.
Another important reason for the emergence of microarrays is the necessity to
understand the networks of biomolecular interactions at a global scale. Each
particular type of cell (e.g., tissue) will be characterized by a different pattern
of gene expression levels, i.e. each type of cell will produce a different set of
proteins in very specific quantities. A typical method in genetics was to use
some method to render a gene inactive (knock it out) and then study the
effects of this knockout in other genes and processes in a given organism. This
approach, which was for a long time the only approach available, is terribly
slow, expensive, and inefficient for a large-scale screening of many genes. Mi-
croarrays allow the interrogation of thousands of genes at the same time. Being
able to take a snapshot of a whole gene expression pattern in a given tissue
opens innumerable possibilities. One can compare various tissues with each
other, or a tumor with the healthy tissue surrounding it. One can also study
the effects of drugs or stressors by monitoring the gene expression levels. Gene
expression can be used to understand the phenomena related to aging or fetal
development. Screening tests for various conditions can be designed if those
conditions are characterized by specific gene expression patterns. Drug de-
velopment, diagnosis, comparative genomics, functional genomics, and many
other fields may benefit enormously from a tool that allows accurate and rel-
atively inexpensive collection of gene expression information for thousands of
genes at a time.10

2.5 Summary

Deciphering the genomes of several organisms, including that of humans, led
to an avalanche of data that needed to be analyzed and translated into bi-
ological meaning. This sparked the emergence of a new scientific field called
bioinformatics. This term is generally used to denote computer methods, sta-
tistical and data mining techniques, and mathematical algorithms that are
used to solve biological problems. The field of bioinformatics combines the
efforts of experts from various disciplines who need to communicate with each
other and understand the basic terms in their corresponding disciplines. This
chapter was written for computer engineers, statisticians, and mathematicians
to help them refresh their biological background knowledge. The chapter de-

10This is not to be interpreted that microarrays will substitute gene knockouts. Knocking
out a gene allows the study of the more complex effects of the gene, well beyond the
mRNA abundance level. Microarrays are invaluable as screening tools able to simultaneously
interrogate thousands of genes. However, once interesting genes have been located, gene
knockouts are still invaluable tools for a focused research.
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scribed the basic components of a cell, the structure of DNA and RNA, and
the process of gene expression. There are 4 types of DNA building blocks called
nucleotide bases: A, C, G, and T. These 4 bases form the genetic alphabet. The
genetic information is encoded in strings of variable length formed with letters
from this alphabet. Genetic information generally flows from DNA to RNA
to proteins; this is known as the central dogma of molecular biology. Genetic
information is stored in various very long strings of DNA. Various substrings
of such a DNA molecule constitute functional units called genes and con-
tain information necessary to construct proteins. The process of constructing
proteins from the information encoded into genes is called gene expression.
First, the information is mapped from DNA to RNA. RNA is another type
of molecule used to carry genetic information. Similarly to DNA, there are
4 types of RNA building blocks and a one-to-one mapping from the 4 types
of DNA bases to the 4 types of RNA bases. The process of converting the
genetic information contained in a gene from the DNA alphabet to the RNA
alphabet is known as transcription. The result of the transcription is an RNA
molecule that has the informational content of a specific gene. In higher organ-
isms, the transcription process takes place in the cell’s nucleus, where DNA
resides. The RNA molecules are subsequently exported out of the cell nucleus
into the cytoplasm where the information is used to construct proteins. This
process, known as translation, converts the message from the 4-letter RNA
alphabet to the 20-letter alphabet of the amino acids used to build proteins.
The amounts of protein generated from each gene determine both the mor-
phology and the function of a given cell. Small changes in expression levels can
determine major changes at the organism level and trigger illnesses such as
cancer. Therefore, comparing the expression levels of various genes between
different conditions is of extreme interest to life scientists. This need stim-
ulated the development of high throughput techniques for monitoring gene
expression such as microarrays.



Chapter 3

Microarrays

If at first you don’t succeed, you are running about average.

—M. H. Alderson

3.1 Microarrays – tools for gene expression analysis

In its most general form, a DNA array is usually a substrate (nylon membrane,
glass or plastic) on which one deposits single-stranded DNAs (ssDNA)with
various sequences. Usually, the ssDNA is printed in localized features that are
arranged in a regular grid-like pattern. In this book, we will conform with the
nomenclature proposed by Duggan et al. [139], and we will refer to the ssDNA
printed on the solid substrate as a probe.

What exactly is deposited depends on the technology used and on the
purpose of the array. If the purpose is to understand the way a particular set
of genes function, the surface will contain a number of regions dedicated to
those individual genes. However, arbitrary strands of DNA may be attached
to the surface for more general queries or DNA computation. The array thus
fabricated is then used to answer a specific question regarding the DNA on
its surface. Usually, this interrogation is done by washing the array with a so-
lution containing ssDNA, called a target, that is generated from a particular
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FIGURE 3.1: A general overview of the DNA array used in gene expression
studies. The mRNA extracted from tissue is transformed into complementary
DNA (cDNA), which is hybridized with the DNA previously spotted on the
array.

biological sample under study as described below. The idea is that the DNA
in the solution that contains sequences complementary to the sequences of the
DNA deposited on the surface of the array will hybridize to those complemen-
tary sequences. The key to the interpretation of the microarray experiment is
in the DNA material that is used to hybridize on the array. Since the target
is labeled with a fluorescent dye, a radioactive element, or another method,
the hybridization spot can be detected and quantified easily.

When used in gene expression studies, the DNA target used to hybridize
the array is obtained by reverse transcription of the mRNA extracted from
a tissue sample to a double stranded complementary DNA (cDNA) (see
Fig. 3.1). This DNA is fluorescently labeled with a dye, and a subsequent
illumination with an appropriate source of light will provide an image of the
array of features (sets of probes on GeneChips, spots on cDNA arrays, or
beads on Illumina arrays). The intensity of each spot or the average difference
between matches and mismatches can be related to the amount of mRNA
present in the tissue and, in turn, with the amount of protein produced by the
gene corresponding to the given feature.

This step can also be accomplished in many different ways. For instance,
the labeling can be done with a radioactive substance and the image obtained
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by using a photosensitive device. Or several targets can be labeled with differ-
ent dyes and used at the same time in a competitive hybridization process in a
multichannel experiment. A typical case is a two-channel experiment using cy3
and cy5 as dyes, but other dyes can also be used. After an image-processing
step is completed, the result is a large number of expression values. Typically,
one DNA array will provide expression values for hundreds or thousands of
genes.

3.2 Fabrication of microarrays

Two main approaches are used for microarray fabrication: deposition of DNA
fragments and in situ synthesis. The first type of fabrication involves two
methods: deposition of PCR-amplified cDNA clones, and printing of already
synthesized oligonucleotides. In situ manufacturing can be divided into pho-
tolithography, ink-jet printing, and electrochemical synthesis.

3.2.1 Deposition

In deposition-based fabrication, the DNA is prepared away from the chip.
Robots dip thin pins into the solutions containing the desired DNA material
and then touch the pins onto the surface of the arrays. Small quantities of DNA
are deposited on the array in the form of spots. Unlike in situ manufacturing
in which the length of the DNA sequence is limited, spotted arrays can use
small sequences, whole genes or even arbitrary PCR products.

As discussed in Chapter 2, the living organism can be divided into two large
categories: eukaryotes and prokaryotes. The group of eukaryotes includes the
organisms whose cells have a nucleus. Prokaryotes are organisms whose cells do
not have a nucleus, such as bacteria. In general, eukaryotes have a much more
complex intracellular organization than prokaryotes. Gene expression in most
eukaryotes is studied by utilizing complementary DNA (cDNA) clones, which
allow the amplification of sufficient quantities of DNA for deposition. Mature
mRNA is reverse transcribed into short cDNAs and introduced into bacterial
hosts, which are grown, isolated, then selected out if they carry foreign DNA.
As discussed in Chapter 2, bacteria are prokaryotes, which, unlike eukaryotes,
do not have a nucleus and do not have introns in their DNA. Therefore the
prokaryotic gene expression machinery is different, and it is less complicated
to amplify their genes.

The cloning strategy leverages bacterial properties in order obtain large
quantities of eukaryotic DNA. Single-pass, inexpensive sequencing of entire
clone libraries results in sets of expressed sequence tags (ESTs), which are
partial sequences of the clone inserts that are long enough to uniquely identify
the gene fragments. The polymerase chain reaction (PCR) is used to am-
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plify clones containing desired fragments, using primers flanking the inserts, or
oligonucleotide primers designed specifically for selective amplification. Once
the cDNA cloned inserts are amplified by PCR, they are purified, and the final
PCR products are then spotted on a solid support.

Another method of microarray fabrication is the attachment of short, syn-
thesized oligonucleotides to the solid support. One advantage of this method is
that oligonucleotide probes can be designed to detect multiple variant regions
of a transcript or the so-called splice variants (see Fig. 2.15). These oligonu-
cleotides are short enough to be able to target specific exons. Measuring the
abundance of specific splice variants is not possible with spotted cDNA arrays
because cDNA arrays contain probes of long and variable length, to which
more than one different splice variant might hybridize.

3.2.1.1 The Illumina technology

A more recent technology for the fabrication of microarrays is the BeadArray
technology, developed by Illumina (see Fig. 3.2). This technology uses Bead-
Chips, which are microarrays composed of very small (3 µm) silica beads that
are placed in small wells etched out in one of two substrates: fiber-optic bun-
dles or planar silica slides. These beads are randomly self-assembled on the
substrate in a uniform pattern that places the beads approximately 5.7 mi-
crons apart. Each bead is covered with hundreds of thousands of copies of a
given nucleotide sequence forming the probe specific to the given assay. Each
such oligonucleotide sequence is approximately 50 bp long and is concatenated
with another custom-made sequence that can be used as an address. This ad-
dress sequence is used to locate the position of each bead on the array and to
uniquely associate each bead with a specific target site.

After the self-assembly is complete, individual bead types are decoded
and identified. Figure 3.3 illustrates how the decoding process works in a
simplified example using 16 different bead types. The randomly assembled
array is sequentially hybridized to 16“decoder oligonucleotides,”each of which
is a perfect match for one of the assay oligos bound to a particular bead
type. In this example, the first four decoder oligos are labeled with the same
blue fluorescent dye, and the second set of four decoder oligos are labeled
with a green dye, and so on. The array is hybridized to the first set of 16
decoder oligos, labeled as described above, then imaged and stripped. The
second hybridization includes the same 16 decoder oligos, labeled in a different
order with fluorescent dyes. Following the second round of hybridization and
imaging, it is simple to precisely identify the exact bead type in each position
on the array. For example, a location that is blue in the first round and then
yellow in the second round is bead type number 3, while a location that is
yellow in the first round and then green in the second round is bead type
number 10.

Since the space needed for each bead is so small, a high density can be
achieved on the array, allowing thousands, or even millions, of target sites to
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FIGURE 3.2: The Illumina BeadArray Technology. Very small (approxi-
mately 3 microns) silica beads are placed in small wells etched out of either
optical fibers or a silicon wafer. The beads are held in place by Van der Waals
forces as well as hydrostatic interactions with the walls of the well. The surface
of each bead is covered with multiple (hundreds of thousands) copies of the
sequence chosen to represent a gene. Courtesy of Illumina, Inc.
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FIGURE 3.3: Decoding the Illumina bead types. The array is hybridized
twice with the colors shown on the top. The combinations of colors that a
given bead has in the two hybridization allows the unique identification of
their type. For instance, the bead near the top left corner was blue in the first
hybridization and yellow in the second one. The only type that matches this
is 3. The second bead shown was yellow in the first hybridization and green
in the second one yielding type 10. Courtesy of Illumina, Inc.
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FIGURE 3.4: An Illumina Direct Hybridization probe is more similar to
the probes used in other manufacturing technologies with the difference that
the probe is attached to a bead, rather than to a flat surface. The beads are
either fixed in optical fibers or distributed across a silicon wafer as shown in
Fig. 3.2. The labeled target cDNA reverse-transcribed from the sample RNA
hybridizes to the probe as usual. Courtesy of Illumina, Inc.

be analyzed simultaneously. Furthermore, the arrays can be formatted to test
several samples in parallel.

Illumina produces whole-genome arrays, as well as more focused arrays
that include probes for a subset of genes related to the specific condition. There
are either one or two probes per gene, depending on the type of array (focused
set or whole genome). For gene expression analysis, the Illumina arrays come
in two flavors, using slightly different approaches. The Direct Hybridization
Assay, illustrated in Fig. 3.4, uses a single DNA sequence per bead much like in
all other technologies. This single-stranded sequence is meant to hybridize with
the labeled target sequence present in the sample. The amount of fluorescence
produced will provide a measure of the amount of target present in the sample.

The other approach to expression level measurements is called DASL,
which stands for cDNA-mediated Annealing, Selection, Extension and
Ligation [153]. This approach is described in Fig. 3.5 and Fig. 3.6. In the
Whole-Genome DASL HT (WG DASL) Assay,1 a pair of oligonucleotides is
annealed to each target site, and more than 29,000 oligonucleotide pairs can
be multiplexed together in a single reaction. A high specificity is obtained
by requiring that both members of an oligonucleotide pair must hybridize in
close proximity for the assay to generate a strong signal. The main advantage
of the DASL approach with respect to other commercially available assays
is related to the quality of the mRNA that can be evaluated. Since the WG
DASL Assay uses two short sequences that in the gene are separated by a
gap, there is a lot of flexibility in choosing the sequences. Furthermore, since
these probes span only about 50 bases, partially degraded RNA, such as that
from formalin-fixed paraffin-embedded (FFPE) samples, can be used in the

1More information about the WG DASL can be found at: http://www.illumina.com/
documents/products/datasheets/datasheet_whole_genome_dasl_ht.pdf
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FIGURE 3.5: The IlluminaWT DASL Technology. A pair of oligonucleotides
is annealed to each target site. A high specificity is obtained by requiring that
both members of an oligonucleotide pair must hybridize in close proximity
for the assay to generate a strong signal. Since these probes span only about
50 bases, partially degraded RNA, such as that from formalin-fixed paraffin-
embedded (FFPE) samples, can be used in the assay. Courtesy of Illumina,
Inc.

assay. There are estimated to be more than 400 million of these FFPE samples
archived in North America for cancer alone. Many of these samples represent
clinical outcomes with the potential to provide critical insight into expression
profiles associated with complex disease development. Unfortunately, FFPE
archival methods often lead to partial RNA degradation, often limiting the
amount of information that can be derived from such samples. In contrast to
the WG DASL arrays, cDNA arrays using very long sequences require good
quality RNA that can only be obtained from fresh tissue, or tissue frozen very
soon after collection.

Genotyping with Illumina Arrays. In addition to gene expression anal-
ysis, the Illumina BeadArray platform can also be used for genotyping appli-
cations as well. The genotyping arrays span a much larger multiplex range
than the expression arrays (up to 5 million markers per sample). Illumina
offers two genotyping assays with the BeadArray platform: the GoldenGate
Assay for custom, low-multiplex studies, and the Infinium HD Assay for high-
multiplex studies.

The GoldenGate Assay. The Illumina GoldenGate Genotyping Assay
is a flexible, pre-optimized assay that uses a discriminatory DNA polymerase
and ligase to interrogate up to 3,072 SNP loci simultaneously (see Section 2.2.4
for more details about SNPs). This assay is illustrated in Fig. 3.7. The genomic
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FIGURE 3.6: An Illumina DASL probe. The address is a short sequence
that is specific to each targeted site. The address is used to attach the probes
to the beads. In the DASL assay, each targeted site is represented by two
sequences, one from upstream of the targeted site and one from downstream
of it. Because each targeted site is represented by two short sequences that
can be separated by an arbitrary gap, this assay is better able to work with
partially degraded RNA, such as the one coming from older formalin-fixed
paraffin-embedded samples. In contrast, cDNA arrays using long sequences
usually require good-quality mRNA. Courtesy of Illumina, Inc.

DNA (gDNA) sample used in this assay is first fragmented and then bound to
paramagnetic particles in preparation for hybridization with the assay oligonu-
cleotides. Three oligonucleotides are designed for each SNP locus. Two oligos
are specific to each allele of the SNP site, called the Allele-Specific Oligos
(ASOs). A third oligo that hybridizes several bases downstream from the SNP
site is the Locus-Specific Oligo (LSO). All three oligonucleotide sequences con-
tain regions of genomic complementarity and universal PCR primer sites; the
LSO also contains a unique address sequence that targets a particular bead
type on the array. Up to 3,072 SNPs may be interrogated simultaneously in
this manner using GoldenGate technology. During the hybridization process,
the assay oligonucleotides hybridize to the genomic DNA sample bound to
paramagnetic particles. Because hybridization occurs prior to any amplifica-
tion steps, no amplification bias can be introduced into the assay. Following
hybridization, extension of the appropriate ASO (the one containing the com-
plementary SNP) and ligation of the extended product to the LSO joins infor-
mation about the genotype present at the SNP site to the address sequence on
the LSO. These joined, full-length products provide a template for PCR using
universal PCR primers P1, P2, and P3.Universal PCR primers P1 and P2
are Cy3- and Cy5-labeled. After downstream-processing, the single-stranded,
dye-labeled DNAs are hybridized to their complement bead type through their
unique address sequences. Hybridization of the GoldenGate Assay products
onto the BeadChip allows for the separation of the assay products in solution,
onto a solid surface for individual SNP genotype readout. After hybridiza-
tion, a high-precision scanner is used to analyze fluorescence signal on the
BeadChip, which is in turn analyzed using software for automated genotype
clustering and calling. The GoldenGate assay is designed for low-plex, custom
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studies. It should be mentioned that the DASL assay described above actually
uses the GoldenGate extension/ligation chemistry.

The Infinium HD Assay. The Infinium HD assay is designed for high-
multiplex studies, with the ability to assay up to 5 million markers simulta-
neously. This assay is illustrated in Fig. 3.8.

Genomic markers are interrogated though a two-step detection process.
Carefully designed 50-mer probes selectively hybridize to the loci of interest,
stopping one base before the interrogated marker. Marker specificity is con-
ferred by enzymatic single-base extension to incorporate a labeled nucleotide.
Subsequent dual-color florescent staining allows the labeled nucleotide to be
detected by Illumina’s imaging scanners, which identify both color and signal
intensity. For genotyping assays, the red and green color signals specify each
allele, where homozygotes are indicated by red/red or green/green signals,
and heterozyotes are indicated by red/green (yellow) signals. Signal intensity
information can be used to detect structural aberrations, such as copy number
variants, inversions, or translocations.

3.2.2 In situ synthesis

During array fabrication based on in situ synthesis, the probes are photo-
chemically synthesized on the chip. There is no cloning, no spotting, and no
PCR carried out, which is advantageous since these steps introduce a lot of
noise in the cDNA system.

Probe selection is performed based on sequence information alone. This
means that every probe synthesized on the array is known in contrast to
cDNA arrays, which deal with expressed sequence tags, and, in many cases, the
function of the sequence corresponding to a spot is unknown. Additionally, this
technology can distinguish and quantitatively monitor closely related genes
just because it can avoid identical sequence among gene family members.

There are currently three approaches to in situ probe synthesis. The first
method is photolithographic (Affymetrix, Santa Clara, CA) and is similar to
the technology used to build very large scale integrated (VLSI) circuits used
in modern computers. This fabrication process uses photolithographic masks
for each base. If a probe should have a given base, the corresponding mask
will have a hole allowing the base to be deposited at that location. Subsequent
masks will construct the sequences base by base. This technology allows the
fabrication of very high density arrays but the length of the DNA sequence
constructed is limited. This is because the probability of introducing an error
at each step, while very small, is different from zero. In order to limit the
overall probability of an error, one needs to limit the length of the sequences.
To compensate for this, a gene is represented by several such short sequences.
The particular sequences must be chosen carefully to avoid cross-hybridization
between genes.

The second approach is the ink-jet technology (Agilent, Protogene, etc.),
which employs the technology used in ink-jet color printers. Four cartridges
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FIGURE 3.7: The Illumina Golden Gate assay. The GoldenGate assay is
based on the BeadArray technology: assay oligonucleotides, containing an ad-
dress sequence, hybridize to gDNA to identify the allele at a given loci. After
processing and amplification, the amplified product binds to a bead on the ar-
ray that contains a complementary address sequence. Dual-color fluorescence
dyes, specific to each ASO, indicate the genotype of the SNP from the gDNA
fragment. Courtesy of Illumina, Inc.
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FIGURE 3.8: The Illumina Infinium assay. Genomic markers are interro-
gated though a two-step detection process. 50-mer probes selectively hybridize
to the loci of interest, stopping one base before the interrogated marker. Sub-
sequent dual-color fluorescent staining allows the labeled nucleotide to be de-
tected by Illumina’s imaging scanners, which identify both color and signal
intensity. Courtesy of Illumina, Inc.
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are loaded with different nucleotides (A, C, G, and T). As the print head moves
across the array substrate, specific nucleotides are deposited where they are
needed.

Finally, the electrochemical synthesis approach (CombiMatrix, Bothel,
WA) uses small electrodes embedded into the substrate to manage individual
reaction sites. Solutions containing specific bases are washed over the surface
and the electrodes are activated in the necessary positions in a predetermined
sequence that allows the sequences to be constructed base by base.

The Affymetrix technology includes the steps outlined in Figs. 3.9, 3.10,
and 3.11. Synthetic linkers modified with photochemical removable protecting
groups are attached to a glass surface. Light is shed through a photolitho-
graphic mask to a specific area on the surface to produce a localized pho-
todeprotection (Fig. 3.9). The first of a series of hydroxyl-protected deoxynu-
cleosides is incubated on the surface. In this example, it is the protected de-
oxynucleoside T. In the next step, the mask is directed to another region of the
substrate by a new mask, and the chemical cycle is repeated (Fig. 3.10). Thus,
one nucleotide after another is added until the desired chain is synthesized.
Recall that the sequence of this nucleotide corresponds to a part of a gene in
the organism under scientific investigation. The synthesized oligonucleotides
are called probes. The material that is hybridized to the array (the reverse
transcribed mRNA) is called the target, or the sample.

The gene expression arrays have a match/mismatch probe strategy.
This is illustrated in Fig. 3.11. Probes that match the target sequence exactly
are referred to as reference probes. For each reference probe, there is a probe
containing a nucleotide change at the central base position – such a probe
is called a mismatch. These two probes – reference and mismatch – are al-
ways synthesized adjacent to each other to control for spatial differences in
hybridization. Additionally, the presence of several such pairs per gene (each
pair corresponding to various parts – or exons – of the gene) helps to enhance
the confidence in detection of the specific signal from background in case of
weak signals.

More recently, technological advances allowed the fabrication of oligonu-
cleotide arrays with extremely large numbers of features. At the same time, the
sequencing of the entire genome has been completed for several organisms of
interest, including Homo sapiens. Given both facts above, one could envisage
arrays that cover the entire genome of a given organism. In fact, Affymetrix
currently manufactures and sells such arrays, called tiling arrays. Affymetrix
tiling arrays use short sequences, currently 25-mer oligonucleotides, that are
equally spaced across the entire genome (see Fig. 3.12). The gap between two
such sequences in the genome is referred to as the resolution of the tiling
array. At the moment of this writing, Affymetrix offers tiling arrays with a
resolution of 35 base pairs.

Unlike the expression arrays where probes are designed considering the
direction of the strand each gene is on, tiling arrays are designed based on
the direction of the genome, rather than that of a particular transcript. Tiling
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FIGURE 3.9: Photolithographic fabrication of microarrays. Synthetic linkers
modified with photochemical removable protecting groups are attached to a
glass surface. Light is shed through a photolithographic mask to a specific
area on the surface to produce a localized photodeprotection. The first of a
series of hydroxyl-protected deoxynucleosides is incubated on the surface. In
this example, it is the protected deoxynucleoside C. The surface of the array
is protected again, and the array is ready for the next mask.
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FIGURE 3.10: Photolithographic fabrications of microarrays. The second
mask is applied and light is used to deprotect the areas that are designed
to receive the next nucleoside (A). The fabrication process would generally
require 4 masking steps for each element of the probes. Several steps later,
each area has its own sequence as designed.
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FIGURE 3.11: The principles of the Affymetrix technology. The probes cor-
respond to short oligonucleotide sequences thought to be representative for
the given gene. Each oligonucleotide sequence is represented by two probes:
one with the exact sequence of the chosen fragment of the gene (perfect match
or PM) and one with a mismatch nucleotide in the middle of the fragment
(mismatch or MM). For each gene, the value that is usually taken as repre-
sentative for the expression level of the gene is the average difference between
PM and MM. Reprinted from S. Draghici, “Statistical intelligence: effective
analysis of high-density microarray data” published in Drug Discovery Today,
Vol. 7, No. 11, p. S55–S63, 2002, with permission from Elsevier.
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cDNA arrays Oligonucleotide arrays

Long sequences Short sequences due to the limitations
of the synthesis technology

Spot unknown sequences Spot known sequences
More variability in the system More reliable data
Easier to analyze with appropri-
ate experimental design

More difficult to analyze

TABLE 3.1: A comparison between cDNA and oligonucleotides arrays.

arrays labeled with “F”are complementary to the forward direction (+), while
tiling arrays labeled with “R” are complementary to the reverse (−) strand of
the given genome. At the time of this writing, there are several tiling arrays
available. The GeneChip Human Tiling 1.0R Array Set is a set of 14 arrays
that include both a perfect match as well as a mismatch probe for each target
location on the genome. These arrays can be used for both transcript map-
ping as well as in chromatin immunoprecipitation (ChIP) experiments.
The GeneChip Human Tiling 2.0R Array Set is a set of 7 arrays that include
only the perfect match probes for each location. Both sets cover the genomic
sequence left after the repetitive elements were removed by RepeatMasker.
Each array within the sets above contain more than 6.5 million probes. An-
other tiling array, the GeneChip Human Promoter 1.0R, uses the same tiling
technique but focuses only on the known human promoter regions. This array
includes approximatively 4.6 million probes covering 22,500 known promoter
regions.

3.2.3 A brief comparison of cDNA and oligonucleotide tech-
nologies

It is difficult to make a judgment as to the superiority of a given technology.
At this point in time, the cDNA technology seems to be more flexible, allowing
spotting of almost any PCR product whereas the Affymetrix technology seems
more reliable and easier to use. This field is so dynamic that this situation
might change rapidly in the near future. Table 3.1 summarizes the advantages
and disadvantages of cDNA and high-density oligonucleotide arrays. Table 3.2
shows the current performance of the Affymetrix oligonucleotides arrays [36,
286].
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FIGURE 3.12: Tiling arrays cover the entire length of the genome after
the repetitive elements have been removed. Probes of 25 oligonucleotides are
tiled at an average resolution of 35 bps, with an average gap of 10 bps. Some
tiling array sets contain both perfect match and mismatch sequences. Others
contain only perfect matches.
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Current limit Practical use

Density (genes/array) 40,000 20,000
Gene representation (probe pairs/gene) 4 2
Linear dynamic range 4 logs 3 logs
Fold change detection 10% 100%
Similar sequences separation 93% identical 70–80% identical
Starting material 2ng total RNA 5µg total RNA
Detection specificity 1 : 106 1 : 105

TABLE 3.2: The performance of the Affymetrix technology.

3.3 Applications of microarrays

Microarrays have been used successfully in a range of applications, includ-
ing sequencing [373], SNP detection [152, 443], genotyping, disease associa-
tion [386, 463], genetic linkage, genomic loss and amplification (copy number
variation (CNV)) [388, 442, 449], detection of chromosomal rearrangements,
etc. However, this book will focus on the (arguably) mainstream application
for microarrays, which is the investigation of the genetic mechanisms in the
living cells through expression analysis [147, 289, 374, 373, 384, 183, 413]. A
few typical examples would include comparing healthy and malignant tissue
[14, 183, 16, 54, 339], studying cell phenomena over time [113, 400] as well as
study the effect of various factors such as interferons [112], cytomegalovirus
infection [488], and oncogene transfection [260] on the overall pattern of ex-
pression. Perhaps even more important than the success in any individual
application, the large number of papers reporting results obtained with mi-
croarrays (and subsequently validated) have increased the overall confidence
that microarrays are tools that can be used to generate accurate, precise, and
reliable gene expression data [84, 479, 373, 392, 391].

Microarrays can also be used for purely computational purposes such as in
the field of DNA computing [249]. In these cases, the microarray can contain
sequences of DNA encoding various possible solutions of the problem to be
solved. Several successive steps are performed in order to solve the problem.
Each such step consists of three sub-steps: a hybridization, the destruction of
the single-stranded DNA not hybridized, and a denaturation that will prepare
the chip for the next computational step. The role of the DNA used in each
step is to prune the large number of potential solutions coded on the surface
of the array. Specific sequences added in a specific step hybridize to the single-
stranded DNA attached to the surface. This marks the partial solutions by
binding them in double strands. Subsequently, the chip is washed with a so-
lution that destroys the single-stranded DNA. A denaturation step will break
the double-stranded DNA and bring the chip to a state in which it is ready
for the next computational step.



58 Statistics and Data Analysis for Microarrays Using R and Bioconductor

In this book, we will concentrate on the use of microarrays in gene expres-
sion studies, focusing on specific challenges that are related to this particular
application. Although the microarray data will be our main motivation and
source of examples, the concepts discussed in this book, as well all analysis
methods presented, are general and can be applied to a very large class of
data.

3.4 Challenges in using microarrays in gene expression
studies

Compared to other molecular biology techniques, microarrays are relatively
new. As such, their users are challenged by a number of issues as follows:

1. Noise.

Because of their nature, microarrays tend to be very noisy. Even if an
experiment is performed twice with exactly the same materials and
preparations in exactly the same conditions, it is likely that after the
scanning and image processing steps, many genes will probably be char-
acterized by different quantification values. In reality, noise is introduced
at each step of various procedures2 [377]: mRNA preparation (tissues,
kits, and procedures vary), transcription (inherent variation in the reac-
tion, enzymes), labeling (type and age of label), amplification, pin type
(quill, ring, ink-jet), surface chemistry, humidity, target volume (fluc-
tuates even for the same pin), slide inhomogeneities (slide production),
target fixation, hybridization parameters (time, temperature, buffering,
etc.), unspecific hybridization (labeled cDNA hybridized on areas that
do not contain perfectly complementary sequences), nonspecific back-
ground hybridization (e.g., bleeding with radioactive materials), artifacts
(dust), scanning (gain settings, dynamic range limitations, inter-channel
alignment), segmentation (feature/background separation), quantifica-
tion (mean, median, percentile of the pixels in one spot), etc.

The challenge appears when comparing different tissues or different ex-
periments. Is the variation of a particular gene due to the noise or is it a
genuine difference between the different conditions tested? Furthermore,
when looking at a specific gene, how much of the measured variance is
due to the gene regulation and how much to noise? The noise is an in-
escapable phenomenon and the only weapon that the researcher seems
to have against it is replication (Chapters 13 and 21).

2Not all steps apply to all types of arrays.
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2. Normalization.

The aim of the normalization is to account for systematic differences
across different data sets (e.g. overall intensity) and eliminate artifacts
(e.g., nonlinear dye effects). The normalization is crucial if results of
different experimental techniques are to be combined. While everybody
agrees on the goal of normalization, the consensus seems to disappear
regarding how exactly the normalization should be done. Normaliza-
tion can be necessary for different reasons such as different quantities of
mRNA (leading to different mean intensities), dye nonlinearity and sat-
uration towards the extremities of the range, etc. Normalization issues
and procedures are discussed in detail in Chapter 20.

3. Experimental design.

The experimental design is a crucial but often neglected phase in mi-
croarray experiments. A designed experiment is a test or several tests
in which a researcher makes purposeful changes to the input variables
of a process or a system in order to observe and identify the reasons for
changes in the output response. Experiment design issues are discussed
in details in Chapter 15.

4. Large number of genes.

The fact that microarrays can interrogate thousands of genes in parallel
is one of the features that led to the wide adoption of this technology.
However, this characteristic is also a challenge. The classical metaphor
of the needle in the haystack can easily become an accurate description
of the task at hand when tens of thousands of genes are investigated.
Furthermore, the sheer number of genes can change the quality of the
phenomenon and the methods that need to be used. The classical exam-
ple is that of the p-values in a multiple testing situation (Chapter 16).

5. Significance.

If microarrays are used to characterize specific conditions (e.g., [14, 183]),
a crucial question is whether the expression profiles differ in a significant
way between the groups considered. The classical statistical techniques
that were designed to answer such questions (e.g., chi-square tests) can-
not be applied directly because in microarray experiments the number of
variables (usually thousands of genes) is much greater than the number
of experiments (usually tens of experiments). Novel techniques need to
be developed in order to address such problems.

6. Biological factors.

In spite of their many advantages, microarrays are not necessarily able
to completely substitute other tools in the arsenal of the molecular biolo-
gist. For instance, knocking out genes is slow and expensive but offers an
unparalleled way of studying the effects of a gene well beyond its mRNA


