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Preface

The hardest thing in life is to know which bridge to cross and which to burn.
—David Russell

In the early 1990s, Naiqi Wu was a visiting scholar at the School of Industrial
Engineering, at Purdue University, West Lafayette, Indiana, and worked in the field
of design, scheduling, and control of automated manufacturing systems (AMS).
One day, the paper “Deadlock Prevention and Deadlock Avoidance in Flexible
Manufacturing Systems Using Petri Net Models” (Viswanadham et al., IEEE
Transactions on Robotics and Automation, volume 6, pp. 713-723, 1990) attracted
his attention. It deals with a deadlock avoidance problem in flexible manufactur-
ing systems, an important issue in automated manufacturing processes. Wu decided
to study the subject. It is known that deadlocks in flexible manufacturing systems
are caused by a circular wait for resource competition, caused by limited shared
resources. At that time, he knew nothing about the Petri net theory. Then, Wu
read Peterson’s book Petri Net Theory and the Modeling of Systems (Englewood
Cliffs, NJ: Prentice-Hall, 1981), Murata’s paper “Petri Nets: Properties, Analysis
and Applications” (Proceedings of the IEEE, volume 77, pp. 541-580, 1989),
and some papers written by MengChu Zhou, Dr. Frank DiCesare, and their sizable
RPI Petri net research group at Rensselaer Polytechnic Institute. Soon thereafter it
was found that process-oriented Petri nets (POPNs) were almost exclusively used as
a net model of flexible manufacturing systems in the literature at that time. Although
the POPN methodology is powerful in system modeling, the resultant model easily
tends to be unmanageably large. Furthermore, it cannot explicitly describe circular
wait, the very nature of deadlock in any resource allocation system. Based on this
observation, a new way to model a flexible manufacturing system is considered such
that resource circuits behind circular wait can be explicitly described. To do so, one
can treat a resource in the system as a server and a part to be processed in the system
as a customer. The way in which customers (parts/jobs) visit servers (resources) can
in fact describe the dynamic behavior of the system. In 1997, Wu and Zhou met at
the IEEE International Conference on Robotics and Automation in Albuquerque,
New Mexico, and talked with each other regarding the emerging field of Petri nets
and their applications to automation. Wu presented his paper “Avoiding Deadlocks
in Automated Manufacturing Systems with Shared Material Handling System.” This
was the first time that he presented the idea of resource-oriented Petri nets and their
applications when a material handling system must be considered as a part of an AMS
in deadlock resolution. Listening to the presentation, Zhou became deeply interested
in the new modeling philosophy. He immediately realized the great significance a
modeling paradigm could bring to the solution of difficult deadlock problems, as he
had already worked in the process-oriented Petri net modeling field for 10 years and

xi



xii Preface

coauthored the first monograph* on the topic with his former advisor, Professor Frank
DiCesare. Since that meeting, Wu and Zhou began to communicate with each other
and worked together to obtain many new interesting results. Wu spent the summer of
2004 at the New Jersey Institute of Technology to conduct collaborative research with
Zhou, upon his invitation. Zhou also paid several visits to Wu and to Wu’s laboratory.
Some important results gained from this collaboration and related to this monograph
are explained as follows:

1. Our first joint paper, ‘“Resource-Oriented Petri Nets for Deadlock
Avoidance in Automated Manufacturing” (Proceedings of 2000 IEEE
International Conference on Robotics and Automation, San Francisco,
April 2000, pp. 3377-82), and its extended version, “Avoiding Deadlock and
Reducing Starvation and Blocking in Automated Manufacturing Systems
Based on a Petri Net Model” (IEEE Transactions on Robotics and Automation
17 (2001): 658—69) use resource-oriented Petri nets to address the benefit of
applying a “liveness” margin to improve the system productivity. The idea is
motivated by the stability margin in traditional feedback control systems. We
can also find some real-life examples to explain why it is so important to leave
an extra margin for the best performance. For example, consider a circular
highway with entrances and exits allowing vehicles to enter and exit freely.
When there are too many cars on it, all will be significantly slowed down, and
thus the number of cars flowing through any segment in a unit of time will be
decreased (called throughput). Yet we find no deadlock, only congestion, as
all the cars will be able to exit from the highway. On the contrary, if too few
cars are allowed to enter it, the throughput is very low, and each car reaches
its highest allowed speed. Clearly this will significantly lower the utilization.
Therefore, the best cases are those in which we have enough cars on the high-
way able to utilize their allowed high speed without yielding congestion. This
way we enjoy the highest throughput and highway utilization. This applies
to AMS as well. Our work has revealed this important fact: A maximally
permissive deadlock control policy may admit some congestion cases that
can lower productivity when rule-based or other heuristic scheduling policies
apply. As a result, a policy with some margin should be used such that those
congestion cases are completely excluded. The contents of these two papers
are described in Chapters 7 and 8 of this book.

2. Our second important work is on the use of resource-oriented Petri nets to
faithfully model automated guided vehicle (AGV) systems and derive the
deadlock control policies suitable for real-time implementation. They can
handle both bidirectional and unidirectional paths. The former offer addi-
tional flexibility, efficiency, and cost savings when compared with the lat-
ter. Yet, they exhibit more challenging AGV management problems. Unlike
jobs that can enter and leave an AMS, AGVs always stay in the system.
In AGV systems, a lane and a node may hold one—and only one—AGV.

* Zhou, M. C., and FE. DiCesare, Petri Net Synthesis for Discrete Event Control of Manufacturing
Systems (Boston: Kluwer, 1993).
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This leads to a single-capacity resource allocation system, invalidating
many elegant deadlock policies that require multiple-capacity resources.
By modeling nodes with places and lanes with transitions, the proposed
method can construct Petri net models for changing AGV routes. In addi-
tion to a deadlock control policy, our study also leads to a method that
finds the shortest time routes while avoiding both deadlock and blocking.
The method needs to perform rerouting whenever necessary. As a result,
the proposed method can offer better solutions than the existing ones.
For some cases, it can find a solution while the existing ones cannot. Our
work was published as “Modeling and Deadlock Control of Automated
Guided Vehicle Systems” (IEEE/ASME Transactions on Mechatronics 9
(2004): 50-57) and “Shortest Routing of Bidirectional Automated Guided
Vehicles Avoiding Deadlock and Blocking” (IEEE/ASME Transactions on
Mechatronics 12 (2007): 63-72). This part of the material is presented in
Chapter 9 of this book.

3. The deadlock problems are separately treated for parts in production and
transportation. Many techniques are developed for either problem. In gen-
eral, it is intractable to obtain maximally permissive control policies for
either one. Conventional thinking suggests that the combination of two
problems would complicate the issue. When we investigated the combined
problem for a flexible manufacturing system that adopted multiple AGVs
for material handling, we found that they brought the flexibility and oppor-
tunity to help resolve deadlocks for parts in production. More surprisingly,
we established a novel control policy for deadlock avoidance that was max-
imally permissive and had only polynomial computational complexity if
the complexity for controlling the part transportation by AGVs was lim-
ited. Thus, the complexity of deadlock avoidance for the whole system is
bounded by the complexity in controlling the AGV system. It is known that
most AGV systems in practice seem to be easily controlled because of (1) lim-
ited number of AGVs in a system, (2) the prior known configuration, and (3)
some special designs. Note that general AGV systems have nonpolynomial
complexity for their optimal control. Our work appeared in “Modeling and
Deadlock Avoidance of Automated Manufacturing Systems with Multiple
Automated Guided Vehicles” (IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 35 (2005): 1193-202). We have dedicated
Chapter 10 to this topic.

4. Multiple AGVs can create opportunities to help resolve those otherwise
deadlock situations, partially due to their mobility. Robots in most industrial
settings are often fixed while serving one or multiple machines within their
reach. The question is whether they can also create some opportunity to ease
deadlock issues. Our joint work proves this by extending resource-oriented
Petri net models to model both parts in production and their transfers from
one machine to another. We are able to eliminate some deadlocks in the
corresponding process-oriented models by simply using such models in fact.
We have published the results in a paper entitled “Deadlock Resolution in
Automated Manufacturing Systems with Robots” (IEEE Transactions on
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Automation Science and Engineering 4 (2007): 474-80). Chapter 11 dis-
cusses the details of the extended models and their application results.

5. The massive need for various chips used in consumer electronics, auto-
mobiles, and other engineering systems has greatly promoted the area of
semiconductor manufacturing automation. In particular, the development
of cluster tools and track systems has helped the industry achieve high yield
with high product quality. The modeling, control, and scheduling of these
highly integrated flexible automated systems become a very challenging
task. Our work has successfully associated time delays with the places and
transitions in their resource-oriented Petri net models and derived deadlock-
free optimal or near-optimal schedules. The work was published in the fol-
lowing articles: “Real-Time Deadlock-Free Scheduling for Semiconductor
Track Systems Based on Colored Timed Petri Nets” (OR Spectrum 29
(2007): 421-43), “Deadlock Modeling and Control of Semiconductor Track
Systems Using Resource-Oriented Petri Nets” (International Journal of
Production Research 45 (2007): 3439-56), and “A Petri Net Method for
Schedulability and Scheduling Problems in Single-Arm Cluster Tools with
Wafer Residency Time Constraints” (/EEE Transactions on Semiconductor
Manufacturing 21 (2008): 224-37). The majority of these published articles
are combined and presented in Chapter 12.

6. Automated flexible assembly systems represent one of the hardest systems
in terms of deadlock resolution. This extreme difficulty is due to their par-
ticular features that other automated manufacturing systems do not have.
For example, deadlocks can take place in both the flows of base components
and parts to be mounted onto the former. The assembly operations can also
result in a deadlock due to inappropriate allocation of different types of
parts or fixtures. The optimal solution to this deadlock avoidance problem
is computationally infeasible. Our work uses heuristics to well address this
challenge and greatly outperforms the existing method. A short version of
this work was presented at the 16th IFAC World Congress, Prague, Czech
Republic, and a full version, “Resource-Oriented Petri Net for Deadlock
Avoidance in Flexible Assembly Systems,” appeared in IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans (38
(2008): 56—69). Chapter 13 covers this topic with an industrial example.

We have continued our collaboration on the extension of resource-oriented Petri
net models to deal with hybrid systems. For example, we have studied the short-term
scheduling issues for oil refineries. We have obtained some significant results that
we have published in IEEE Transactions on Automation Science and Engineering,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, and International Journal of Intelligent Control and Systems. We cannot
include the results in this book due to space limitations and the lack of a close rela-
tion with the topics of automated manufacturing systems—the focus of this book.

Chapter 1 of this book introduces a modeling process, contemporary automated
manufacturing systems, and a historic perspective on Petri net studies as related
to automation. Chapter 2 presents the fundamentals of Petri net theory with the
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definitions and examples known to the Petri net research community. Chapter 3
presents the classical colored Petri nets and their definitions. Chapter 4 presents pro-
cess-oriented Petri net models and modeling methodologies. Some examples from
manufacturing automation are given to illustrate them. We used “Resource-Oriented
Petri Nets in Deadlock Prevention and Avoidance,” our jointly published chapter
in Deadlock Resolution in Computer-Integrated Systems (M. C. Zhou and M. P.
Fanti, eds. (New York: Marcel Dekker, 2005), 349-406), in Chapter 5. It covers the
basics of resource-oriented Petri net models, the colored version, and the related
characteristics. In particular, it presents the necessary and sufficient deadlock-free
conditions for the class of automated manufacturing systems represented with the
proposed models. This significant result was obtained by Naiqi Wu in his 1999
paper “Necessary and Sufficient Conditions for Deadlock-Free Operation in Flexible
Manufacturing Systems Using a Colored Petri Net Model” (IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29 (1999):
192-204). We compare resource- and process-oriented Petri net modeling method-
ologies and resulting models in Chapter 6. We discuss their advantages and disad-
vantages in the design of discrete event systems.

Finally, we hope that this monograph will stimulate more engineers and research-
ers to investigate and apply resource-oriented Petri nets for modeling, analysis,
performance evaluation, simulation, control, and scheduling of their particular engi-
neering systems. We hope that the work serves as a beginning step toward the better
understanding and modeling of increasingly complex engineering systems and even-
tually toward the better design of such systems to benefit humankind.

Naiqi Wu, PhD
Gangdong University of Technology, Guangzhou, Gangdong, China
University of Technology of Troyes, Troyes, France

MengChu Zhou, PhD
New Jersey Institute of Technology, Newark, New Jersey, United States
Xidian University, Xi’an, Shanxi, China
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Introduction to Petri
Net Modeling

1.1 THE MODELING PROCESS

A modeling process is a method by which people understand a concerned object,
system, or phenomenon. Various modeling methods, tools, and models have been
developed since people started to design man-made and engineering systems to
benefit human beings. It is well known that mathematical modeling helps one to
understand, analyze, evaluate, simulate, and control the systems under consider-
ation. Traditionally, a resulting mathematical model is a description of a system in
terms of equations. These equations are derived based on physical laws, such as
Newton’s laws, using continuous variables driven by time. Discrete time models
are driven by clocks such that values of a variable at discrete times are observed,
studied, analyzed, and used. The last type of models are discrete event driven. In
other words, they represent the evolution of system states as driven by events that
are often asynchronous. This asynchrony distinguishes the last class of models from
the other two types. As a result, differential or difference equations cannot be used
to describe them. We have to seek new models in order to well describe asynchro-
nous event-driven dynamics. Additional features include concurrency, choices, and
mutually exclusive use of shared resources. In reality, hybrid models may be used to
describe the components/subsystems, interactions among components/subsystems,
and the entire system.

In ancient times, the Chinese observed the season, sun, and moon changes and
developed the lunar calendar, which has greatly helped farmers for more than 1,000
years. A lunar calendar can be viewed as a rough model of the seasonal changes over
time in a year. It defines proper times for people to perform all farming activities to
ensure a higher likelihood of a successful crop harvest.

A typical electronic circuit consists of resistors, capacitors, inductors, and sources.
Each element is characterized by a certain law. For example, a linear resistor satisfies
Ohm’s law that the voltage across its two ends is proportional to the current flow-
ing through it. A linear capacitor can be described by a model in which the current
through it is proportional to the first derivative of the voltage across its two ends. For
an electronic circuit containing such elements, one needs to use interconnection laws
to characterize the entire circuit, for example, Kirchhoff’s voltage law and current
law. Modeling such a system takes two steps: First, we build a model for each indi-
vidual element. Next, we use interconnection laws to build the entire system model.
This approach certainly works for discrete event system models as well, which will
be discussed in this book.
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Another widely used modeling idea is to start and then keep adding to it to make
it more complex. Initially, one may ignore most details by just focusing on major
aspects of the system. Then, step by step, we add more features to the model to
describe more details of a system. This can help one identify some important prob-
lems at an early stage without wasting too much time in unnecessary details. Only
after the design satisfies the desired properties can one continue with more fine
details to make the design better. This modeling strategy will be used when we build
Petri net models for the system considered in this book.

In most engineering design, an accurate mathematical model becomes indispens-
able for designers. It is indeed the first step toward the development of any efficient
and sustainable man-made system. This book contributes to the field of discrete event
systems by presenting their modeling and analysis using a novel Petri net model.

1.2  AUTOMATED MANUFACTURING SYSTEMS

Conventional manufacturing has such features as mass production, sales from stock,
long pipeline, and cost of inventory. Modern manufacturing calls for mass customiza-
tion or eventually one-of-a-kind production. For example, a computer company now
allows customers to select from a range of possibilities to specify their own computer
and collects the payment from the customers up front. This minimizes a company’s
risk in overproducing unwanted or obsolete computers. As a sports wear company,
Adidas has a project called miAdidas. It uses laser scanning techniques to create a
three-dimensional model of a customer’s feet. The model is then used to produce shoes
that fit the customer perfectly. It is expensive and used primarily by professionals, but it
may become common for average consumers after such value-added service becomes
less expensive. For example, if we could use a webcam, available in many personal
computers, and related software to catch a precise three-dimensional model, we could
then lower the cost to produce such highly individualized products.

As a result, automated manufacturing systems must be designed and developed
with new characteristics, i.e., flexibility, agility, and reconfigurability, in mind.
Gaining these characteristics requires reconfigurable fixtures, material handling
devices and systems, storage space, tools and machines, and more importantly, the
use of advanced computer, communication, and management technologies to design
reconfigurable control systems. A typical automated manufacturing system (AMS)
consists of the following hardware entities:

1. Programmable computer-numerically-controlled components such as machines.

2. Automated material handling system that allows parts to flow freely from
one station to another. Programmable robots and automated guided vehicles
are often required.

3. Automated storage and retrieval system and buffering spaces where raw, inter-
mediate, and final pieces can be stored until required for further processing.

4. A supervisory control system to monitor, coordinate, and control all the
involved entities and release jobs into such an AMS. It has to ensure that the
system is deadlock-free and can achieve its highest productivity and best
product quality.
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Contemporary manufacturing systems have had different goals over the past sev-
eral decades. These goals are reflected through programmability, flexibility, agility,
and reconfigurability, as described below:

1. Programmability: The early automated machines were implemented by
rigid electromechanical devices, which resulted in so-called wired solu-
tions. Such solutions suffered from many limitations, e.g., bulky size,
rigidity in terms of any changes, low scalability, difficulty to debug and
maintain, and inability to handle complex functions. Around 1970 the
automobile industry realized their limitations and hence developed and
adopted programmable logic controllers (PLCs) for their production lines,
to keep pace with technical evolution and a growing number of new car
models demanded by customers. The invention and use of PLCs greatly
moved forward the automation technology and made the control system
of a manufacturing system programmable. A PLC can be viewed as a spe-
cial computing system. Its functionality has been vastly expanded since
its early models. Today’s PLCs have much computing and communica-
tion power, allowing them to accomplish not only control tasks but also
communicating tasks with others and the Internet. This further allows
engineers to develop remote diagnosis and maintenance capability for
automated manufacturing facilities.

2. Flexibility: With the advent and wide use of PLCs and computers in control
systems, flexible manufacturing is a current reality; its origins can be traced
back to the 1960s with the Ingersoll-Rand factory in Roanoke, Virginia.
The concept of manufacturing flexibility refers to manufacturing system
designs that can adapt when external (likely uncertain) changes occur.
According to Browne et al. (1984) and Sethi and Sethi (1990), we have the
following eleven types of flexibility:

* Machine flexibility: The different operation types that a machine can
perform. It can be partly measured by the number of tool types.

* Material handling flexibility: The ability to move the raw material
pieces, parts, and products within a manufacturing facility.

* Operation flexibility: The ability to produce a product in different ways.

* Process flexibility: The set of products that the system can produce.

* Product flexibility: The ability to add new products in the system.

* Routing flexibility: The different routes (through machines and work-
shops) that can be used to produce a product in the system.

* Volume flexibility: The ease with which the output of an existing sys-
tem can be profitably increased or decreased.

» Expansion flexibility: The ability to build out the capacity of a
system.

e Program flexibility: The ability to run a system automatically.

e Production flexibility: The number of products a system currently
can produce.

* Market flexibility: The ability of the system to adapt to market demands.
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3. Agility: Agile manufacturing was initially proposed to deal with the pro-
duction of military products, as different technologies often led to very
different products. Consequently, the agility to manufacture products from
one generation to the next is highly desired. It requires both flexible manu-
facturing capability and the capability to respond to the rapid changes of
customer needs and market demands. For example, Motorola developed an
automated factory with the ability to produce physically different pagers
on the same production line. Panasonic can manufacture different bicycles
from combinations of a group of core parts. Agile manufacturing has been
seen as the next step after Lean manufacturing in the evolution of produc-
tion paradigms. The former is like an athletic person, and the latter a thin
one. Thus, agile manufacturing is beneficial if the customer order cycle
(the time the customers are willing to wait) is short. Lean manufacturing
becomes possible if the supplier has a short lead time. Goldman et al. (1995)
suggest that agility has four underlying components:

e Delivering value to the customer

¢ Being ready for rapid change

e Valuing human knowledge and skills
e Forming virtual partnerships

4. Reconfigurability: Reconfigurable manufacturing has become famous
due to the a vast amount of work performed by the Engineering Research
Center for Reconfigurable Manufacturing Systems (RMSs) at the University
of Michigan College of Engineering, which is sponsored by the National
Science Foundation and many manufacturing companies, especially those
in the automobile industry. Reconfigurable manufacturing systems (Koren
et al., 1999; Mehrabi et al., 2000) have the following single goal statement:
exactly the capacity and functionality needed, exactly when needed. They
must be designed at the outset for rapid change in their structure, as well as
in their hardware and software components, in order to quickly adjust their
production capacity and functionality within a part family in response to
sudden market changes or intrinsic system changes. Their characteristics
include modularity, integrability, customized flexibility, scalability, con-
vertibility, and diagnosability.

* Modularity is the degree to which a system is modularized, e.g., machines,
tools, control systems, and material handling systems. Modular compo-
nents can be replaced or upgraded to better suit new applications.

» Integrability is the ability to integrate modules by a set of mechanical,
informational, and control interfaces that enable integration and com-
munication. The machine modules are integrated via material handling
systems (such as conveyors and gantry robots), and their controllers are
integrated into a factory control system.

* Customized flexibility is the ability of a system to produce a prod-
uct or part family, fulfilling the mass customization or one-of-a-kind
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production. This characteristic distinguishes reconfigurable manufac-
turing systems from flexible manufacturing systems (FMS) and allows a
reduction in investment cost. Examples of product families are all types
of Boeing 747 and all sizes of Adidas tennis shoes. A product family is
defined as all products that have similar geometric features and shapes,
have the same level of tolerances, require the same processes, and are
within the same range of cost.

* Scalability is the ability to scale up the system size in terms of the
number of machines, robots, and other resources or their process-
ing capabilities in order to produce a larger quantity of products.
Scalability is achieved by the additional resources or the improve-
ment of the modules, e.g., conveyor’s speed, motor speed, or better
tools.

e Convertibility is the ability to transform the functionality of existing
systems, machines, and controls to suit new production requirements.
For example, RMS can switch the production between two members of
a product family.

* Diagnosability is the ability to identify and use the current and past
states of a system for detecting and diagnosing the root cause of out-
put product defects and, subsequently, correcting operational defects
quickly. Higher diagnosability means higher capability of detecting
machine failure and unacceptable part quality. It requires reconfigurable
product quality measurement systems.

It should be noted that flexibility, agility, and reconfigurability share some
significant characteristics, such as programmability and modularity. They all
emphasize the system’s ability to respond to market and demand changes. Their
differences, in fact, seem smaller than these terms imply. Consider RMS and
FMS. FMS aims at increasing the variety of parts produced. RMS aims at increas-
ing the speed of responsiveness to markets and customers. RMS requires only
limited flexibility that is confined only to what is necessary to produce a product
family. It is not the general flexibility that FMS offers. RMS tends to offer rapid
scalability to the desired volume and convertibility, which are obtained within
reasonable cost to manufacturers. Similar goals can be achieved by FMS with its
high volume flexibility and expansion flexibility. The best application of an FMS
is found in manufacturing small sets of products. With RMS, manufacturers
can vary their production volume from small to large for a product family. RMS
has introduced a new dimension, i.e., diagnosability, which becomes critically
important.

RMS and FMS can only be implemented through a programmable control sys-
tem, which has to rapidly configure itself when needed. Their design requires a
powerful modeling tool that can rigorously reveal their intrinsic discrete event char-
acteristics, such as sequential, concurrent, and mutually exclusive relations among
activities, potential conflicts, and deadlock states. This monograph offers a resource-
oriented Petri net framework to facilitate the modeling, deadlock analysis and control,
and scheduling for them.
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1.3 HISTORICAL PERSPECTIVE OF PETRI NETS IN AUTOMATION

A Petri net is a graphical tool invented by Carl Adam Petri. Its origins can be traced
back to August 1939 when, at the age of 13, Petri created the graphics to describe
chemical processes that produced a final compound from various elements through
some intermediate compounds. The net-like representations were formalized in his
doctoral thesis, “Communication with Automata,” at the Technical University of
Darmstadt, Germany, in 1962. The rules for transition enabling and firing, also called a
token game, were defined. The algebraic aspect of distributed systems was described in
detail. His thesis argued that the theory of automata had to be replaced by a new theory
that respected the results of modern physics, e.g., the relativity theory and uncertainty
principle. The new models were applicable to distributed systems. Thereafter, Petri
and his collaborators published a number of papers applying their nets to such areas
as economics, mechanics, computer science, logic, organization, biology, and telecom-
munication protocols, with a purpose to create a net tool for interdisciplinary transfer
of structural knowledge. General net theory has been their primary research focus.

Petri net theory and applications were greatly advanced by the Computation
Structure Group at MIT in the early 1970s. The first conference related to Petri nets
was, in fact, held at MIT in 1975. A more sizable Petri net conference was held in
Hamburg, Germany, in October 1979, and was attended by about 135 researchers,
mostly from European countries. It included a 2-week advanced course on general
net theory of processes and systems. The first Petri net conference proceeding was
published by Springer-Verlag in 1980 and contained seventeen papers (Brauer, 1980).
The first European Workshop on Applications and Theory of Petri Nets was held in
Strasbourg, France, in 1980. Since then, every year there is such a Petri net confer-
ence, and selected papers are compiled and published normally in the following year,
as edited volumes called Advances in Petri Nets. In 1981, Peterson published the first
Petri net book, Petri Net Theory and the Modeling of Systems, by Prentice-Hall. It
has greatly popularized Petri nets as a tool for the modeling of various systems. In
particular, it has attracted many noncomputer scientists to consider Petri nets for
their specific applications.

Dr. M. Silva of the University of Zaragoza, Spain, has led his group since the
early 1980s and produced significant research results related to Petri nets and
their applications to automation. His Spanish book Petri Nets in Automation and
Computer Engineering was published by Editorial AC, Madrid, Spain, in 1985. In
the same year, Dr. W. Reisig’s 1982 book Petrinetze, in German, was translated and
published as an English book by Springer-Verlag. Petri Nets: An Introduction, Dr. T.
Murata’s award-winning paper “Petri Nets: Properties, Analysis and Applications”
was published in 1989. It is the most cited paper in the area of Petri nets accord-
ing to SCOPUS—the most extensive database covering all engineering and science
research papers in the world. The paper has well documented the key research results
prior to 1989, including behavioral and structural properties, marked graphs, free-
choice nets, analysis methods (reachability analysis, invariant analysis, and reduc-
tion), timed Petri nets, stochastic Petri nets, and high-level Petri nets (predicate/
transition nets, colored Petri nets, and nets with individual tokens). Several influ-
ential Petri net tools were developed to help various researchers in the 1980s. The
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theories of generalized stochastic Petri nets (SPNs) and GreatSPN as a simulation
and performance analysis tool were developed in the early 1980s by an Italian group
(Ajmore Marsan et al., 1995). Stochastic Petri net package (SPNP), another stochas-
tic timed Petri net tool for performance analysis, was generated by the group led by
K. S. Trevidi with two key developers, G. Ciardo and J. Dugan, at Duke University.
In the late 1980s, CPN was developed by a group led by K. Jensen, with some sup-
port from the U.S. government, and has been used to specify and simulate colored
Petri nets for the design of complex systems.

The aforementioned publications and tools strongly affected academic researchers
and industrial engineers when selecting a powerful model to deal with various issues
in the design and implementation of more and more complex man-made systems,
especially computer-integrated manufacturing systems. The traditional approaches
based on finite state machine or automata were proved inadequate, since the state
explosion problems would be met at the beginning of the system design. In addition,
any design flaws or mistakes could invalidate the entire system design and the per-
formance analysis results. Any system specification changes could require tremen-
dous effort to modify the design. As result, it is extremely difficult, if not impossible,
to use such traditional approaches to design modern manufacturing systems with
high flexibility, agility, and reconfigurability.

In the mid-1980s, Prof. N. Viswanadham and Y. Narahari and their group in
India made great contributions to the Petri net theory and applications to automated
manufacturing systems. Their work dealt with performance modeling and analy-
sis, bottom-up modeling methods, invariant analysis, and deadlock control. They
detailed some of their Petri net work in their 1992 book, Performance Modeling of
Automated Manufacturing Systems, published by Prentice Hall.

In the late 1980s, Dr. Frank DiCesare and Dr. Alan A. Desrochers established a
sizable research group at Rensselaer Polytechnic Institute to tackle the design issues
in computer-integrated manufacturing systems. They chose Petri nets as their major
modeling tool and generated many interesting results in Petri net theory and applica-
tions to automated manufacturing. Their research was supported by such industrial
firms as IBM, GM, Johnson & Johnson, Sun Microsystems, and Digital Equipment
Corporation (now HP) via an 8-year-long Computer Integrated Manufacturing
Research Program of the Center for Manufacturing Productivity and Technology
Transfer at Rensselaer Polytechnic Institute. The following contributions by the
Rensselaer group are summarized:

e Its first doctoral graduate was Dr. Robert Al-Jaar, whose 1989 disserta-
tion was entitled “Performance Evaluation of Automated Manufacturing
Systems Using Generalized Stochastic Petri Nets.” He used the above-
mentioned GreatSPN and SPNP tools to study the transfer lines with varying
buffer sizes. He and his advisor, Dr. A. A. Desrochers, published a mono-
graph, “Applications of Petri Nets in Manufacturing Systems: Modeling,
Control and Performance,” through IEEE Press in 1994.

e The second doctoral graduate was the second author of this book, MengChu
Zhou, whose 1990 dissertation was called “A Theory for the Synthesis and
Augmentation of Petri Nets in Automation.” His dissertation work included
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the development of new concepts, e.g., parallel and sequential mutual exclu-
sions for shared resource modeling, formulation of top-down, bottom-up,
and hybrid methodologies for net synthesis, Petri net augmentation and its
applications in error recovery, Petri net modeling of buffers, and design
of discrete event controllers for flexible manufacturing systems. With his
advisor, Dr. DiCesare, he published the monograph Petri Net Synthesis
for Discrete Event Control of Manufacturing Systems through Kluwer
Academic Publisher in 1993. Two years later, he edited a volume, “Petri
Nets in Flexible and Agile Automation,” through the same publisher. In
1998, with his first doctoral graduate, Dr. K. Venkatesh, he published
the book Modeling, Simulation and Control of Flexible Manufacturing
Systems: A Petri Net Approach published by World Scientific.

Dr. Fei-Yue Wang graduated with his doctoral dissertation, “A Coordination
Theory of Intelligent Machines,” supervised by Dr. G. N. Saridis, in 1990.
He has applied Petri nets to design intelligent machines and has built an
intelligent control foundation. He has also contributed to the Petri net mod-
eling and analysis of a communication protocol for manufacturing mes-
sage specification. He later made a great contribution to the development of
modified reachability trees for liveness analysis of unbounded Petri nets.
Dr. Desrochers’ second doctoral graduate, Jagdish S. Joshi, completed
his work in the Petri net area in 1991. Dr. Joshi’s dissertation title was
“Design and Performance Prediction of Computer Resources for Real-Time
Computer Integrated Manufacturing Systems.” His work dealt with the per-
formance modeling and analysis of computer network and database trans-
actions in a computer-integrated manufacturing environment.

Dr. 1. Koh, the next doctoral graduate of Dr. DiCesare, finished his
dissertation, “A Transformation Theory for Petri Nets and Their Applications
to Manufacturing Automation,” in 1991. His work perfected the bottom-up
approach to the synthesis of Petri nets with desired behavioral properties.
Dr. MuDer Jeng was the third doctoral graduate of Dr. DiCesare in the
area of Petri nets and completed his dissertation, “Theory and Applications
of Resource Control Petri Nets for Automated Manufacturing Systems,”
in 1992. He was the primary inventor of a new class of Petri nets called
extended resource control net (ERCN)-merged nets. They are still being
cited and used by many researchers today. Dr. Jeng has continued his Petri
net research. He has made many significant contributions in the areas of
Petri net methods for deadlock analysis, discrete event control, scheduling of
flexible manufacturing systems, analysis of unbounded Petri nets, and mod-
eling, simulation, and scheduling of semiconductor manufacturing systems.
In 1992, Dr. DiCesare graduated Alessandro Giua, whose doctoral thesis
was entitled “Petri Nets as Discrete Event Models for Supervisory Control.”
This work fully opened the door to the supervisory control study in a frame-
work of Petri nets when most of supervisory control theory was based on
automata. Dr. Giua made many theoretical contributions in the area, from
Petri net language to general mutual exclusion constraints. His work has



