

Saunder October 20, 2010 10:25 K10186˙C000

Saunder October 20, 2010 10:25 K10186˙C000

Saunder October 20, 2010 10:25 K10186˙C000

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140529

International Standard Book Number-13: 978-1-4398-0332-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Saunder October 20, 2010 10:25 K10186˙C000

To Antonio

To Barbara

Saunder October 20, 2010 10:25 K10186˙C000

Saunder October 20, 2010 10:25 K10186˙C000

Contents

Preface ... xiii
Acknowledgments... xv
About the Authors .. xvii

1 Introduction ...1
1.1 Complex Safety-Critical Systems ..1

1.1.1 A Steady Trend toward Complexity.......................................2
1.1.2 An Engineering Challenge ...4

1.2 Dealing with Failures: A Short History of Safety Engineering7
1.3 The Role of Formal Methods ...8
1.4 A Case Study: Three Mile Island ..9

1.4.1 Pressurized Water Reactors (PWRs)10
1.4.2 When Things Go Wrong...13
1.4.3 The Plant Structure ...14
1.4.4 Formal Model of a PWR ...15

References ..17

2 Dependability, Reliability, and Safety Assessment21
2.1 Introduction...21
2.2 Concepts ..22

2.2.1 Safety...22
2.2.2 Reliability ..23
2.2.3 Availability ..23
2.2.4 Integrity...24
2.2.5 Maintainability ..24
2.2.6 Dependability..25

2.3 Classification of Faults..25
2.4 Fault Models ..26

2.4.1 The Stuck-At Fault Model...27
2.4.2 The Stuck-Open and Stuck-Closed Fault Models................29

vii

Saunder October 20, 2010 10:25 K10186˙C000

viii � Contents

2.4.3 The Bridging Fault Model ...29
2.4.4 The Delay Fault Model ...29

2.5 Managing Faults...30
2.6 Fault Detection ..31

2.6.1 Functionality Checking ...32
2.6.2 Consistency Checking ...32
2.6.3 Signal Comparison ..32
2.6.4 Instruction and Bus Monitoring ..32
2.6.5 Information Redundancy...33
2.6.6 Loopback Testing ..33
2.6.7 Watchdog and Health Monitoring33

2.7 Fault Prediction..34
2.8 Fault Tolerance ..34

2.8.1 Triple Modular Redundancy ...35
2.8.2 Dealing with Multiple Failures ..36
2.8.3 Dealing with Failures of the Voting Component37
2.8.4 Dealing with Systematic Failures ...38
2.8.5 Fault Tolerance and Fault Detection39
2.8.6 Dealing with Transient Failures...40
2.8.7 Emergency Shutdown Systems ..40
2.8.8 An Example of Redundant Architecture:

Fly-by-Wire Systems ..42
2.9 Fault Coverage ...43
2.10 Reliability Modeling...44
2.11 System Reliability ...48

2.11.1 Series Structures ..48
2.11.2 Parallel Structures ..50

References ..51

3 Techniques for Safety Assessment ...53
3.1 Introduction...53
3.2 Hazard Analysis..54

3.2.1 Fault Tree Analysis (FTA) ...54
3.2.2 Failure Mode and Effects Analysis (FMEA)60
3.2.3 Hazard and Operability (HAZOP) Studies..........................61
3.2.4 Event Tree Analysis ...64

3.3 Risk Analysis ..65
3.4 Risk Measures ..66

3.4.1 Classification of Hazards: Severity66
3.4.2 Classification of Hazards: Frequency67
3.4.3 Classification of Risks ..67

Saunder October 20, 2010 10:25 K10186˙C000

Contents � ix

3.4.4 Risk Management and Acceptance68
3.4.5 Safety Integrity Levels ..69

References ..69

4 Development of Safety-Critical Applications ..71
4.1 Introduction...71
4.2 What Makes a System Complex ...72
4.3 What Makes the Development Complex..73

4.3.1 Novelty..73
4.3.2 Schedule Constraints ...74
4.3.3 Team...74
4.3.4 Geographical Distribution ...74
4.3.5 Organization’s Maturity ..75
4.3.6 Tools ...75

4.4 Measuring the Impact of Complexity ...76
4.5 From System to Process..81

4.5.1 Obligations and Benefits..82
4.5.2 Early Assessment..84

4.6 A General Development Framework ..86
4.6.1 Phases and Phase Transition ..89
4.6.2 Comparison with Other Frameworks90

4.6.2.1 The Rational Unified Process............................ 90
4.6.2.2 ESA Standards .. 91

4.6.3 Organization and Sequencing of Phases...............................92
4.6.4 Workflows...94

4.7 Development Workflow...95
4.7.1 Feasibility Study ..95
4.7.2 Requirements Analysis ...97
4.7.3 Design ...98
4.7.4 Implementation and Integration..99
4.7.5 Hierarchical Design of Systems..99

4.8 Testing Workflow ..101
4.8.1 Acceptance Test Definition ...101
4.8.2 Integration Test Definition..103
4.8.3 Unit Test Definition..103
4.8.4 Test Execution...104

4.9 Safety Assessment Workflow ..105
4.9.1 Preliminary Hazard Analysis (PHA)

and Hazard Analysis (HA) ...105
4.9.2 Determination of Assurance Levels108
4.9.3 Preliminary Safety Assessment (PSA)110

Saunder October 20, 2010 10:25 K10186˙C000

x � Contents

4.9.4 Safety Assessment (SA) ..114
4.9.5 Common Cause Analysis (CCA)114
4.9.6 Common Cause Analysis and Software..............................117
4.9.7 Operating and Support Hazard Analysis118

4.10 Certification Management Workflow...119
4.11 Project Management Workflow..121

4.11.1 Safety Process Definition and Tailoring123
4.11.2 Safety Program Implementation and Monitoring124
4.11.3 Other Management Activities ..124

4.12 Tool Support..125
4.12.1 Supporting the Development Workflow............................127
4.12.2 Supporting the Testing Workflow129
4.12.3 Supporting the Safety Analysis Workflow130
4.12.4 Supporting the Project Management Workflow.................130

4.13 Improving the Process: Maturity Models..132
References ..134

5 Formal Methods for Safety Assessment ...139
5.1 Introduction...139
5.2 Advantages of Formal Methods ..140
5.3 Formal Methods in the Development Process141
5.4 Problems and Limitations...145
5.5 History of Formal Methods..148
5.6 Formal Models and Specifications ..149

5.6.1 Algebraic Specification Languages......................................149
5.6.2 Model-Based Specification Languages................................150
5.6.3 Process Algebras and Calculi..151
5.6.4 Logic-Based Languages ..151
5.6.5 State Transition Systems..153
5.6.6 Temporal Logic ...156

5.7 Formal Methods for Verification and Validation............................161
5.7.1 Testing and Simulation ...161
5.7.2 Theorem Proving...166
5.7.3 Model Checking..167
5.7.4 Using Model Checking for Requirements Validation172
5.7.5 Using Model Checking for Property Verification177

5.8 Formal Safety Analysis..180
5.8.1 Fault Injection ...182
5.8.2 Fault Models and Model Extension183
5.8.3 Property Verification ...186

Saunder October 20, 2010 10:25 K10186˙C000

Contents � xi

5.8.4 Fault Tree Generation ...188
5.8.5 FMEA Table Generation ...193

5.9 Industrial Applications of Formal Methods196
5.9.1 IBM’s Customer Information Control System (CICS)197
5.9.2 The Central Control Function Display

Information System (CDIS)...197
5.9.3 The Paris Métro Signaling System (SACEM software).......198
5.9.4 The Mondex Electronic Purse ...198
5.9.5 The Flight Warning Computer (FWC)

of A330 and A340 Aircraft...199
5.9.6 The Traffic Collision Avoidance System (TCAS)199
5.9.7 The Rockwell AAMP5 Microprocessor..............................200
5.9.8 The VIPER Microprocessor...200
5.9.9 The SRT Division Algorithm ..201
5.9.10 The IEEE Futurebus+ Cache Coherence Protocol201
5.9.11 The BOS Control System..201
5.9.12 The SLAM Project and the Static Design Verifier202
5.9.13 The Intel R© CoreTM i7 Processor Execution Cluster203

5.10 Conclusions and Future Directions ..203
References ..205

6 Formal Methods for Certification ...213
6.1 Certification of Avionic Systems...213
6.2 So Many Standards, So Little Time..217
6.3 The ECSS System of Standards ..220
6.4 Avionics Reference Standards ...220
6.5 ARP 4754 ..222

6.5.1 System Development ...223
6.5.2 Certification Process and Coordination224
6.5.3 Assignment of Development Assurance Levels224
6.5.4 Safety Assessment ..226
6.5.5 Validation..226
6.5.6 Implementation Verification ...227

6.6 ARP 4761 ..227
6.7 DO-178B...228

6.7.1 Document Overview ...228
6.7.2 Goals ...230
6.7.3 Verification Activities ..232
6.7.4 Certification Goals ..233

Saunder October 20, 2010 10:25 K10186˙C000

xii � Contents

6.7.5 The Role of Tools..233
6.7.6 The Role of Formal Methods in DO-178B234

6.8 The Case for the Safety Case ..234
6.9 Formal Methods and Certification ...236
References ..238

Appendix A: The NuSMV Model Checker...241

Appendix B: The FSAP Safety Analysis Platform...247

Appendix C: Some Regulatory Bodies and Regulations...............................259

Index..269

Saunder October 20, 2010 10:25 K10186˙C000

Preface

Safety-critical systems—namely, systems whose failure may cause death or injury to
people, harm to the environment, or economical loss—are becoming more complex,
both in the type of functionality they provide and in the way they are demanded to
interact with the environment. Traditionally, safety analysis techniques and proce-
dures are used to identify risks and hazards, with the goal of eliminating, avoiding, or
reducing the probability of failure. However, these techniques are often performed
manually and hence are a time-consuming activity, itself vulnerable to human error,
because they rely on the ability of the safety engineer to understand and to foresee
system behavior. The growing complexity of safety-critical systems requires an ade-
quate increase in the capability of safety engineers to assess system safety, encouraging
the adoption of formal techniques.

This book is an introduction to the area of design and verification of safety-
critical systems, with a focus on safety assessment using formal methods. After an
introduction covering the fundamental concepts in the areas of safety and reliability,
the book illustrates the issues related to the design, development, and safety assess-
ment of critical systems. The core of the book covers some of the most well-known
notations, techniques, and procedures, and explains in detail how formal methods
can be used to realize such procedures. Traditional verification and validation tech-
niques and new trends in formal methods for safety assessment are described. The
book ends with a discussion on the role of formal methods in the certification pro-
cess. The book provides an in-depth and hands-on view of the application of formal
techniques that are applicable to a variety of industrial sectors, such as transportation,
avionics and aerospace, and nuclear power.

Who should read this book. The book is addressed to both researchers and prac-
titioners in the areas of safety engineering and safety assessment who are interested
in the application of formal verification in such areas. It can also be of interest to
computer scientists and individuals skilled in formal verification who wish to see
how these methodologies can be applied for safety assessment of critical systems.
The book can also be used as a reference book for (bachelor and master) students in
engineering and computer science.

xiii

Saunder October 20, 2010 10:25 K10186˙C000

xiv � Preface

Prerequisites. The book is mostly self-contained and should be generally accessi-
ble to people who have a basic background in mathematics or computer science
at the level corresponding to the early years of university courses in engineering or
computer science. A prior exposure to topics such as propositional logic, automata
theory, model checking, and probability theory could be desirable, although not
indispensable.

Structure of the book. The book is structured as follows:

� Chapter 1, Introduction, introduces and motivates the main topics of the
book.

� Chapter 2, Dependability, Reliability, and Safety Analysis, looks in detail at
some of the most typical safety criteria that pertain to the design and assessment
of safety-critical systems. We start by introducing some common terminology
and continue by presenting some fault models and the approaches to dealing
with faults, namely fault, detection, fault prediction, fault tolerance, and fault
coverage.

� Chapter 3, Techniques for Safety Assessment, introduces the traditional
notation and techniques for safety assessment. Starting with the definition
of hazard and accident, we continue by presenting fault trees, FMECA,
HAZOP, Event Tree Analysis, Risk Analysis, and Risk Measures.

� Chapter 4, Development of Safety-Critical Applications, looks at the
development process of safety-critical systems, by highlighting those man-
agement and organizational aspects that most influence the development of
safety-critical systems. In this chapter we present a generic development ap-
proach that is inspired by various development standards in both the civil and
military sectors.

� Chapter 5, Formal Methods for Safety Assessment, is an in-depth presenta-
tion of formal methods and the role they play in the verification and validation
of safety-critical systems. We divert from the “traditional” approach related
to the usage of formal methods and propose how formal methods can be
effectively used to automate safety analysis techniques.

� Chapter 6, Formal Methods for Certification, describes some widely
adopted standards for the certification of safety-critical systems. We start with
the certification process of aircraft systems and continue by describing how
formal methods can be applied to support certification activities.

� Finally, the appendices describe the NuSMV model checker and the FSAP
platform, and provide some more references and starting points for further
development.

Additional information, including the code for the examples presented in this
book, can be retrieved from the web site http://safety-critical.org.

Saunder October 20, 2010 10:25 K10186˙C000

Acknowledgments

The authors would like to thank and acknowledge all the people who provided
feedback and support for (earlier versions of) this book, namely, Andreas Lüdtke,
Andrea Mattioli, Matteo Negri, Chris Papadopoulos, and Komminist Weldemariam.
Special thanks go to Viktor Schuppan for giving specific advice on Chapter 5 and
to our editor, John Wyzalek, and all the staff at Taylor & Francis for their help and
support.

Finally, Marco Bozzano would like to dedicate the book to his brother Antonio,
who prematurely died in November 2004.

Adolfo Villafiorita wishes to thank his family for all the help and support they
provided. A big thank-you to his wife Barbara, his dad Enzo, and Andrea, Ombretta,
and Rienzo. A special dedication goes to his mom, Geni, who could not see this book
completed.

Marco Bozzano

Adolfo Villafiorita

xv

Saunder October 20, 2010 10:25 K10186˙C000

Saunder October 20, 2010 10:25 K10186˙C000

About the Authors

Marco Bozzano is a senior researcher in the Embedded Systems Unit of Fondazione
Bruno Kessler, Italy. He has strong expertise in the application of formal methods,
and he has published a number of papers in the area of formal verification of safety-
critical systems.

Adolfo Villafiorita is a senior researcher at Fondazione Bruno Kessler. He has many
years of experience in the application of formal methods in technology transfer
projects and in the development of security and safety-critical applications. He is a
contract professor at the University of Trento.

xvii

Saunder October 20, 2010 10:25 K10186˙C000

Saunder October 20, 2010 10:29 K10186˙C001

Chapter 1

Introduction

1.1 Complex Safety-Critical Systems
Every journey has a start. Ours is the definition of complex safety-critical systems,
given in SAE (1996), a set of guidelines for the development of avionic systems:

“A complex safety-critical system is a system whose safety cannot be
shown solely by test, whose logic is difficult to comprehend without
the aid of analytical tools, and that might directly or indirectly con-
tribute to put human lives at risk, damage the environment, or cause big
economical losses.”

The definition is peculiar, as it puts together two concepts—namely, complexity and
criticality—that can be defined independently. The motivation for presenting them
together in SAE (1996) is obvious: airplanes are both complex and critical. We use
this definition for the following reasons:

1. There is a steady trend toward the use of digital systems of increasing complex-
ity in safety-critical applications. Systems need not be digital or complex to be
safety critical: The Wright brothers invented and flew the airplane 12 years
before Alan Turing was born. However, the flexibility and performance of
digital technologies have greatly contributed to increasing their adoption in
the safety-critical sector.

2. Systems that are both complex and critical represent an engineering chal-
lenge with which traditional techniques have difficulties dealing. Citing Lyu
(1996): “The demand for complex hardware/software systems has increased
more rapidly than the ability to design, implement, test, and maintain them.”

A more detailed discussion and some data will help clarify and put them in
perspective.

1

Saunder October 20, 2010 10:29 K10186˙C001

2 � Design and Safety Assessment of Critical Systems

1.1.1 A Steady Trend toward Complexity
One of the most effective descriptions of the impact that digital technologies have
had and are still having on system engineering is given in Brooks (1995), a seminal
book about software project management:

No other technology since civilization began has seen six orders of magni-
tude price-performance gain in 30 years. In no other technology can one
choose to take the gain in either improved performance or in reduced
costs.

Such a trend, first noted by Moore (1965) and since then reported numerous times1,
not only has promoted a capillary diffusion of digital control systems, but has also
been a key enabler for the delivery of systems with more functions and increased
complexity. Let us provide some more details about both impacts.

The reduction in costs is increasing diffusion. According to Ebert and Jones (2009),
in 2008 there were some 30 embedded microprocessors per person in developed
countries, with at least 2.5 million function points of embedded software. (A function
point is a measure of the size of a software system. Tables to convert function points to
lines of source code are available. For instance, Quantitative Software Management,
Inc. (2009) estimates one function point as 148 lines of C code.) Millions of these
embedded microprocessors are used for safety-critical applications and many of them
have faults. For instance, between 1990 and 2000, firmware errors accounted for
about 40% of the half-million recalled pacemakers (Maisel et al., 2001; Ebert and
Jones, 2009).

The gain in performance is increasing complexity. A recent report by the Jet Propul-
sion Laboratory (Dvorak, 2009) analyzes the size of NASA flight software for both
human and robotic missions. Data for robotic missions are shown in Figure 1.1,
where the x -axis shows the year and the name of the mission and the y -axis shows
the flight software size, using a logarithmic scale.

As can be seen from the diagram, software size is growing exponentially. The
same trend is shown by NASA manned missions (Apollo, Shuttle, and International
Space Station), although the number of data points is too small to demonstrate
any trend, as pointed out by the authors of the report. Similar growth can also
be observed in other domains, such as civil and military avionics, automotive, and
switching systems, to name a few (Ferguson, 2001; Dvorak, 2009; Ebert and Jones,
2009).

1 As an example, we quote from Air Force Inspection and Safety Center (1985), written 25 years
ago: “The development and usage of microprocessors and computers has grown at a phenomenal
rate in recent years, from 1955, when only 10 per cent of our weapon systems required computer
software, to today, when the figure is over 80 per cent.”

Saunder October 20, 2010 10:29 K10186˙C001

Introduction � 3

11010
0

1,
00

0

10
,0

00

10
0,

00
0

1,
00

0,
00

0

10
,0

00
,0

00

19
69

M
ar

in
er

19
75

Vi
ki

ng
19

77
Vo

ya
ge

r
19

89
G

al
ile

o
19

90
Ca

ss
in

i
19

97
Pa

th
fin

de
r

19
99

D
SI

20
03

SI
RT

F/
Sp

itz
er

20
04

M
er

cu
ry

20
05

M
RO

54
5,

00
0

55
5,

00
0

55
4,

00
0

34
9,

00
0

17
5,

00
0

12
0,

00
0

8,
00

0
3,

00
0

5,
00

0

30

Fi
gu

re
1.

1
G

ro
w

th
in

fl
ig

ht
so

ft
w

ar
e,

N
A

SA
m

is
si

on
s.

(S
ou

rc
e:

Fr
om

D
vo

ra
k,

D
.L

.,
Ed

it
or

(2
00

9)
.N

A
SA

St
ud

y
on

Fl
ig

ht
So

ft
w

ar
e

C
om

pl
ex

it
y.

A
va

ila
bl

e
at

ht
tp

:/
/o

ce
ex

te
rn

al
.n

as
a.

go
v/

O
C

E_
LI

E/
pd

f/
10

21
60

8m
ai

n_
FS

W
C
_

Fi
na

l_
R

ep
or

t.
pd

f.)

Saunder October 20, 2010 10:29 K10186˙C001

4 � Design and Safety Assessment of Critical Systems

Together with size, complexity is also increasing. This is due to various factors,
among which we mention:

� Number of functions. In the words of Dvorak, (2009), software is working
as a sponge “because it readily accommodates evolving understanding, mak-
ing it an enabler of progress.” A very good example of this phenomenon are
jet-fighters. Modern jet-fighters, in fact, are designed to be slightly aerodynam-
ically unstable. That is, a small variation in the current flight conditions causes
the plane to abruptly change trajectory. This feature allows fast transients, that
is, quick changes in speed, altitude, and direction—maneuvers on which the
life of a pilot in combat might depend. However, to maintain the flight level,
the airplane must be kept under active and constant control. This is performed
by a digital system (called fly-by-wire, FBW), because the precision and the
frequency of corrective actions that must be taken make the task impossible
for a pilot. The FBW, thus, continuously reads plane’s data and pilot’s com-
mands and constantly positions the actuators according to the data received, in
practice decoupling the pilot from the controls of the plane. See, for example,
Langer et al. (1992), NASA (2009), and Various Authors (2009) for more
details.

� Number of states. Software and, more generally, digital systems, have a large
number of states that can make their comprehension difficult and exhaustive
testing impossible.

� Discrete behavior. Software models discrete systems with discontinuous be-
haviors. That is, a little variation in one program input could cause a great
variation in one output. Such discontinuities are, in principle, uniformly dis-
tributed over the whole input space. The consequence is that performing a test
on an input value tells little about the behavior of the system on the neigh-
boring region. This is rather different from analog systems, in which small
variations in one input usually cause small variations in outputs.

� Invisibility. As pointed out in Brooks (1995), software is invisible, unvisu-
alizable, and its reality is not embedded in space; software can be visualized
only by overlapping several different views (e.g., data-flow, control-flow) that
define its behavior. Brook’s observation holds up today. The UML, a standard
notation in object-oriented programming, defines nine different diagrams to
model a software system. At least five of them must be used to properly model
a system’s architecture (Kruchten, 1995).

1.1.2 An Engineering Challenge
Safety-critical systems have stringent requirements. Not all systems are equally critical
when they fail. Looking at the consequences associated with system or function
failure is thus a good way to discriminate among the different levels of criticality.

Saunder October 20, 2010 10:29 K10186˙C001

Introduction � 5

Such a classification can be found, for instance, in Sommerville (2007), where the
author distinguishes among:

� Business-critical systems
� Mission-critical systems
� Safety-critical systems

In the first case (business-critical systems), a failure of the system might cause
a high economic loss. This is often due to the interruption of service caused by
the system being unusable. Examples of business-critical systems are a stock-trading
system, the ERP system2 of a company, or an Internet search engine, such as Google3.

In the second case (mission-critical systems), failures might cause the loss of a
function necessary to achieve one of the goals for which the system was designed.
Examples of mission-critical systems are an unmanned spacecraft and the software
controlling a baggage-handling system of an airport.

In the third case (safety-critical systems), system failures might cause risk to
human life or damages to the environment. Examples of safety-critical systems are
aircraft, the controller of an unmanned train metro system, and the controller of a
nuclear plant.

Critical systems are further distinguished between fail-operational and fail-safe
systems, according to the tolerance they must exhibit to failures. In particular:

� Fail-operational systems are typically required to operate not only in nom-
inal conditions—that is when all the (sub)components of the system work
as expected—but also in degraded situations, that is, when some parts of the
system are not working properly. Airplanes are fail-operational because they
must be able to fly even if some components fail.

� Fail-safe systems are demanded to safely shut down in case of single or mul-
tiple failures. Trains are fail-safe systems because stopping a train is typically
sufficient to put it into a safe state.

(Safety-critical) systems fail for the most diverse reasons. Following O’Connor
(2003), we mention the following causes for systems to fail:

� The design might be inherently incapable. This is typically due to errors
during development that result in building a system that it is inadequate for
the purpose for which it was devised. Causes are the most diverse. Some essential
requirement might have been missed during the specification, such as some
environmental condition the system should have been resilient to. Some error

2 Enterprise Resource Planning system.
3 Notice that such an interruption would be both a loss for the search engine provider (e.g., missed

revenues in advertisement) and its users (e.g., decreased productivity in finding information on
the Internet).

Saunder October 20, 2010 10:29 K10186˙C001

6 � Design and Safety Assessment of Critical Systems

might have been introduced during design, as it is so common in software,
for instance. We also mention sneaks, integration, and interaction errors that
occur when the system does not work properly even though all its components
do.

� The system might be overstressed. This is often due to the system being
operated in environmental conditions for which it was not designed. Notice
that in complex systems, stress on a component might be caused by other
components failing in unexpected ways. For instance, a short circuit in an
electronic component might cause an excessive voltage in another one.

� Variation in the production and design. This is due to natural variations in
the materials, in the production processes, and in quality assurance procedures.
Problems arise when a component that is, let us say, less resistant than average
is subject to a load that is above the average.

� Wear-out and other time-related phenomena. All components become
weaker with use and age. As a consequence, their probability of failure
increases over time. The problem can be mitigated by proper system main-
tenance and replacement of components before they wear out. However, en-
vironmental conditions (e.g., mechanical vibrations in rockets, pressure in
submarines), design issues (e.g., friction on the insulation of an electric ca-
ble installed in the wrong position) can accelerate wear-out in unpredicted
ways. Moreover, for certain systems, such as spacecraft, replacement may be
impossible.

� Errors. Errors can occur in any phase of a system’s life cycle. We mentioned
above errors occurring during system specification and development. Errors
can occur also during maintenance (e.g., a component replaced in the wrong
way), during operations (e.g., due to problems in training, documentation, or
just distraction), or during system disposal.

An Engineering Challenge. The development of critical systems thus adds a fur-
ther level of complexity to standard engineering activities because it requires to
consider, and properly deal with, all the diverse causes of failure, so that the sys-
tem can maintain a function even if some components fail or operators make
errors.

This requires the adoption of development processes in which safety is consid-
ered from the early stages. In aeronautics, for instance, safety requirements (i.e.,
requirements stating the (degraded) conditions under which systems must remain
operational) are defined along with the other system requirements. During system en-
gineering, development activities are conducted in parallel with a set of safety analysis
activities that have the specific goal of identifying all possible hazards, together with
their relevant causes, in order to assess if the system behaves as required under all
the operational conditions. These activities are crucial (e.g., for system certification)
to ensure that the development process is able to guarantee the specific safety level
assigned to the system.

Saunder October 20, 2010 10:29 K10186˙C001

Introduction � 7

1.2 Dealing with Failures: A Short History
of Safety Engineering

System safety has been a concern in engineering for a long time and it has always
been an important factor in determining systems’ adoption. Elevators were in use
since the third century, but they became popular only after 1853 when Elisha Otis
demonstrated a freight elevator equipped with a safety device to prevent falling, in
case a supporting cable should break (History of the Elevator, 2009).

Safety engineering, however, matured as a discipline only in the past 50 years.
In the following few paragraphs we provide an overview of the main steps that led
to this revolution. See Air Force Safety Agency (2000), Ericson (1999), Leveson
(2003), and Ericson (2006) for more details.

System safety, as we know it today, is strictly related to the problems the U.S.
Air Force experienced with accidents after World War II and its efforts to prevent
them. According to Hammer (2003), from 1952 to 1966 the U.S. Air Force lost
7,715 aircraft. In the accidents, 8,547 persons were killed. Although many of those
accidents were blamed on pilots, there were many who did not believe the cause was
so simple (Leveson, 2003).

During the 1950s, a series of accidents involving the Atlas ICBM contributed
to a growing dissatisfaction with the “fly-fix-fly” approach. At the time, safety was
not a specific system engineering activity, but rather a concern distributed among
the project team. After system deployment, if an accident occurred, investigations
reconstructed the causes to allow engineers to “fix” the design and prevent future
similar events.

The approach, however, soon became ineffective because it did not help pre-
vent accidents with causes different from those investigated, and deemed too costly
and too dangerous, considering, for example, the risks of an accident involving a
nuclear weapon. These considerations eventually led to abandoning the existing
development practices and adopting, instead, an approach in which system safety
activities are integrated into the development process (Leveson, 2003). Such an
integrated approach had its roots in a seminal paper by Amos L. Wood, “The
Organization of an Aircraft Manufacturer‚ Air Safety Program,” presented in 1946,
and in a paper by William I. Stieglitz, “Engineering for Safety,” published in
1948 (Air Force Safety Agency, 2000). From Stieglitz, H.A. Watson of Bell
Laboratories first conceived Fault Tree Analysis, in connection with the develop-
ment of the Launch Control System of the Minuteman missile. The technique
proved so successful that it was later extensively applied to the entire Minuteman
program.

In 1965, Boeing and the University of Washington sponsored the first System
Safety Conference and later developed a software system for the evaluation of multi-
phase fault trees. The technique soon caught on in other areas, most notably the
civil nuclear sector, which has been, since then, a great contributor to the technique
and to safety in general. After the Apollo 1 launchpad fire in 1967, NASA hired

Saunder October 20, 2010 10:29 K10186˙C001

8 � Design and Safety Assessment of Critical Systems

Boeing to implement an entirely new and comprehensive safety program for the
Apollo project. As part of this safety effort, Fault Tree Analysis was performed on
the entire Apollo system (Ericson, 1999). The technique was finally consolidated
with the release by NUREG of the Fault Tree Handbook (Vesely et al., 1981).

Software safety analysis also had its roots in the 1960s. The first references are
dated 1969 and, since then, the subject has gained momentum and interest. We cite
the Air Force Inspection and Safety Center (1985):

“Software safety, which is a subset of system safety, is a relatively new
field and is going to require a conscientious effort by all those involved
in any system acquisition process or development effort to insure it is
adequately addressed during system development.”

Finally, in recent years, military standards such as MIL-STD-1574A (eventu-
ally replaced by the MIL-STD-882 series) and the growing demand for safety in
civil applications—especially in the nuclear and transportation sector—have greatly
contributed to the standardization of techniques, on the one hand, and to the stan-
dardization of development processes of safety-critical applications, on the other.

1.3 The Role of Formal Methods
As highlighted by Bowen and Stavidrou, lives have depended on mathematical cal-
culations for centuries. In the nineteenth century, errors in logarithmic tables caused
ships to miscalculate their position and possibly wreck as a result of such errors
(Bowen and Stavridou, 1992). Mathematical representations of hardware and soft-
ware systems (formal methods) have emerged in the past 30 years as a promising
approach to allow a more thorough verification of the system’s correctness with
respect to the requirements, using automated and hopefully exhaustive verification
procedures.

As described earlier, safety-critical systems are becoming more complex, both in
the type of functionality they provide and in the way they are required to interact
with their environment. Such growing complexity requires an adequate increase in
the capability of safety engineers to assess system safety, a capability that is only
partially matched by the progress made in the use of traditional methodologies,
such as Fault Tree Analysis and failure mode and effect analysis, often carried out
manually on informal representations of systems. The use of formal techniques for
the safety assessment of critical systems, however, is still at a relatively early stage.
This is due to the following reasons:

� The role of formal methods for system design. Nearly all standards used as
references for the development and certification of safety-critical
systems make little mention, if at all, of formal methods. Main causes in-
clude the maturity of techniques and tools when the standards were issued,

Saunder October 20, 2010 10:29 K10186˙C001

Introduction � 9

skills needed for properly mastering the techniques, and difficulties related to
an effective integration of formal methods in the development process.

� The role of formal methods for system safety assessment. Formal methods
have traditionally been used to support system verification activities. There
is, however, a fundamental difference between system verification and safety
activities. The first is meant to demonstrate that the nominal system works
as expected. A single counterexample is sufficient to show that a requirement
is violated. The second is meant to support design by demonstrating that the
degraded system works as expected. To do so, it is necessary to highlight all
possible combinations of failures that lead to losing a function. This requires
significant changes, both in the way in which systems are used and in the way
verification engines are implemented.

� Integration between design and safety assessment. The information linking
the design and the safety assessment phases is often carried out informally, and
the connection between design and safety analysis may be seen as an over-the-
wall process. Quoting Fenelon et al. (1994), “A design is produced with some
cognisance of safety issues, it is ‘tossed over the wall’ to safety assessors who
analyse the design and later ‘toss it back’ together with comments on the safety
of the design and requests for change. Whilst something of a caricature, the
shove is not entirely unrepresentative of current industrial processes.” Thus,
even when formal methods are used to support design activities, the extra effort
spent there cannot be reused for safety assessment, because the formal designs
are “lost” by this lack of integration between activities.

Recent developments are making the use of formal methods for system verifica-
tion more appealing. We mention improvements on the representational power of
formal notations, increased efficiency of the verification engines, better tool support,
and significant improvements in the ease of use. Steady progress has also been mea-
sured with respect to the usability of formal methods for safety assessment. Novel
algorithms, based on model checkers, have been defined, for instance, to support
the automatic computation of fault trees and to automate common cause analysis;
see, for example, Bozzano et al. (2003), Joshi et al. (2005), Åkerlund et al. (2006),
Bozzano and Villafiorita (2007), and Bozzano et al. (2007).

Despite the progress mentioned above, we are still far from a full, top-down,
and completely automated verification of (complex) safety-critical systems. Formal
methodologies, however, represent one of the most promising areas to improve the
quality and safety of complex systems.

1.4 A Case Study: Three Mile Island
The complexity of the environment, functions performed, and difficult-to-
understand interactions among system parts when components fail are main causes
of engineering failures and accidents. In this section we briefly describe the Three

Saunder October 20, 2010 10:29 K10186˙C001

10 � Design and Safety Assessment of Critical Systems

Mile Island accident, one of the worst in the civil nuclear sector. We do so by also
presenting a formal model of the plant, written in the input language of NuSMV, a
symbolic model checker. The formal model will be used in this book to reproduce
the accident and demonstrate some of the techniques used for safety assessment. (See
Appendix A for a description of the NuSMV model checker.)

The formal model has been built using the know-how obtained from an analysis
of the accident. We cannot therefore pretend, nor do we claim, that the model
and formal methods could have been used to build a better plant and prevent the
accident.

Nevertheless, the example is a very good exercise for the following reasons:

1. It shows how we can use a formal language, whose expressiveness is limited
to finite state machines over discrete data types, to model a physical system
in which the behavior is determined by the laws of thermodynamics and nu-
clear physics. The challenge is to provide a suitable level of abstraction that
allows us to accurately model the qualitative behaviors necessary for the anal-
yses we want to perform. This is very common when using formal methods
and model checking, as abstraction is often the only way to keep analyses
manageable.

2. It shows how we can model a complex physical system using functional
blocks. The trick here is to use the blocks to encode the “flow of informa-
tion” (e.g., a pump is pumping) rather than the “flow of physical elements”
(e.g., the coolant flows from the core to the steam generator). This results
in a significant difference between the physical structure of the plant (at the
level of abstraction considered in this book) and the actual functional block
model. The approach is quite common when using model checkers for physical
systems.

3. It presents an example in which safety analyses (and, in particular, fault trees)
are conducted by observing the dynamics of the system rather than by statically
analyzing the system architecture. This is a noteworthy improvement over
standard assessment techniques and shows one of the advantages that can be
obtained with the adoption of formal methods for safety assessment.

Most of the work presented here can be readily applied to other modeling lan-
guages and verification systems. For instance, to see the same example specified using
the formalism of safecharts, have a look at Chen (2006).

1.4.1 Pressurized Water Reactors (PWRs)
Pressurized water reactors (PWRs) are second-generation nuclear power plants
conceived in the 1950s and used for a variety of applications, ranging from the
propulsion of nuclear submarines to the production of electricity for civil use. PWRs
are the most common type of nuclear power plant, with hundreds of systems used for

