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PREFACE

This book is devoted to the analysis of the capacity of systems of closely placed
bodies and the transport properties of high-contrast composite structures. This
title covers many similar problems well known in natural science, material science
and engineering.

The term “transport problem” implies problems of thermoconductivity, diffu-
sion, electrostatics and many other similar problems, which can be described with
a scalar linear elliptic equation or a nonlinear equation of elliptic type. For a linear
inhomogeneous medium, the transport problem consists of balance equation

divq = f(x),

constitutive equation

qi = cij
∂ϕ

∂xj
,

which is often written in the form qi = −cij ∂ϕ
∂xj

, and boundary conditions.

Here ϕ is the potential, ∇ϕ =
(
∂ϕ

∂x1
, ...,

∂ϕ

∂xn

)
is the driving force, q = (q1, ..., qn)

is the flux, cij is a tensor describing local (microscopic) transport property of the
medium (tensor of dielectric constants, tensor of thermoconductivity constants,
etc.), n is the dimension of the problem (in the book n takes values 2 or 3).

The equations above can be transformed into one elliptic equation

∂

∂xi

(
cij

∂ϕ

∂xj

)
= f(x),

which must be supplied with an appropriate boundary condition.
Table 1 lists several transport problems that are mathematically equivalent.

Due to this equivalence we can treat these problems within a common theoretical
framework.

In some cases, it is necessary to take into account the nonlinearity of local proper-
ties of component(s) of composite. In practice and in nature, we meet various types
of nonlinearities. In thermoconductivity, usually, coefficients of thermoconductivity
depend on the temperature: cij = cij(ϕ) (ϕ means the temperature). In electro-
statics, usually, dielectric constants depend on the electric field: cij = cij(∇ϕ), (ϕ
means the potential of electric field).

ix
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Table 1. List of Phenomena (* asymmetric deformation or torsion).

Phenomenon Potential Driving force Flux Local
tensor

Heat Temperature Temperature Heat flux Thermal
conduction gradient conductivity
Electrical Electric Electric Current Electrical
conduction potential field density conductivity
Diffusion Density Density Diffusion Diffusivity

gradient current density
Electrostatics Electric Electric Electric Dielectric

potential field displacement permittivity
Magnetostatics Magnetic Magnetic Magnetic Magnetic

potential field induction permittivity
Elasticity Displacement Strain Stress Elastic
theory* moduli
Flow in Pressure Weighted Pressure Fluid

porous media fluid velocity gradient permittivity

The term “composite material” means that the local transport properties (de-
scribed by the tensor cij) depend on spatial variable x. Thus, for linear compos-
ite materials cij = cij(x). For nonlinear composite materials cij = cij(x, ϕ) or
cij = cij(x,∇ϕ). It would not be correct to call an arbitrary inhomogeneous ma-
terial a composite material. The term composite material assumes an existence of
some structure in material. The structures can be very different: from regular to
random, from particles-filled to laminated. Often, the term composite material as-
sumes a property to be solid (to represent a unity). At the same time, systems of
bodies / particles in air and liquids (powders, aerosol, suspensions, slurries) should
not be separated from the composite material (the mentioned systems consist of at
least two components, one of which is bodies / particles and the other component
the surrounding medium). This is a reason why we use the term “composite struc-
ture” in this book, which designates both composite material and system of bodies
/ particles.

The systems of bodies and particle-filled composite materials can be treated in
the framework of a unique approach. The mathematical models for bodies and
particle-filled composites are the same; they are differential equations with discon-
tinuous coefficients (see the equation above). The difference between problems for
systems of bodies and composite materials is related to the type of the boundary-
value problem: inner boundary-value problems correspond to composite materials
and outer boundary-value problems correspond to systems of bodies.

A composite structure has some characteristic dimensions. One dimension is the
size of the structure as a whole (so-called macroscopic dimension). We assume the



Preface xi

macroscopic dimensional has the order of unity. Another dimension is the size of the
structural elements of a composite (so-called microscopic dimension). We denote this
dimension δ � 1. Note that in many publications devoted to the homogenization
theory, the macroscopic dimension is denoted by the symbol ε. Since we present
our theory in terms of electrostatics (see below), the symbol ε is reserved in this
book for dielectric constant. The number of sizes (often referred to as scales) is not
restricted by two. Multi-scale structures are well-known (see, e.g., [30, 283]).

The term “high-contrast” means that transport properties of components of
composite material are strongly different. The extremal (and widely used in physics
and engineering, see, e.g., [340, 354]) case of high-contrast structures is a system of
perfectly conducting bodies / particles.

The book is written in the terms of electrostatics, i.e., we call the solution of
the transport problem potential, but not temperature or density, although all the
results are valid for thermoconductivity and diffusion problems (as well as for all the
problems listed in Table 1). A reason for using the electrostatic terminology is that
the transport property of densely packed systems is determined by capacity of the
pairs of neighbor bodies (it will be demonstrated below). It explains why capacity
stands before the transport properties in the title of the book. It also explains why
we discuss most problems keeping in mind the electrostatic problem.

The book presents mathematical treatment to phenomena intensively discussed
in literature on natural sciences and engineering. For some problems (for example,
the problem of effective properties of nonlinear dielectric) the intensive discussion
was started in the last decade. Some problems were known and discussed for more
than a century (for example, the problem of the capacity of a system of densely
placed bodies). The current progress in the analysis of the mentioned problems
was stimulated by progress in the mathematical methods (progress in the theory of
partial differential equations, development of the homogenization method, etc.), in
computer techniques and finite element computer programs. It is why a considerable
part of the book is devoted to mathematics calculations and the presentation of
results of numerical computations.

Many problems analyzed in the book were initiated by real world problems.
For example, the theory of asymptotic behavior of capacity of a system of closely
placed bodies was initiated by a project supported by a consortium of industrial
companies (the names of the companies in 1999 were Polyclad and Hadco). The
theory of nonlinear high-contrast dielectrics–ferroelectrics composites was initiated
by a project supported by the U.S. Department of Energy. The initial stages of the
mentioned projects are described in [39, 40, 41, 191].

This book is written on the basis of the authors’ results published in Russian
and international journals in the 1990s to 2000s. Most Russian scientific journals
are translated to English from cover to cover by international publishers. English
versions of all the authors’ Russian papers included in the list of references can
be found on the Internet at http://www.springer.de (Springer-Verlag) and http://
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www.elsevier.com (Elsevier Science Publishers).
The book is structured as follows:
Chapter 1 presents a brief exposition of some asymptotic methods used for analy-

sis of composite structures (composite materials and systems of bodies / particles)
with brief historical comments.

Chapter 2 presents results of numerical analysis, which demonstrate specific
properties of distributions of local fields in high-contrast composite structures and
systems of closely placed bodies. In particular, the existence of “energy necks” in
a system of densely packed bodies and closeness of potentials of the bodies deter-
mined from solution of the original continuum problem and the “potentials of nodes”
determined from the corresponding network model are demonstrated.

Chapter 3 presents asymptotic analysis of the capacity of a system of closely
placed bodies. In this chapter, we establish a relationship between the transport
problem and the problem of asymptotic behavior of the capacity of a system of
closely placed bodies. We do it on the basis of our generalization and mathematic
interpretation of the “Tamm shielding effect” for a system of closely placed bodies
(for two bodies, the phenomenon was described by the Soviet physicist, Nobel Prize
Laureate I.E. Tamm in his book [353] published in 1927). Analysis of the problem
leads us to the conclusion that the unique universal property of a system of closely
placed bodies is the impossibility of localization of energy outside the channels
between the neighbor bodies. As far as Tamm shielding, we found that it is a
conditional effect. We demonstrate that the necessary and sufficient condition for
existence of Tamm shielding (and, as a result, arising of “energy channels” between
neighbor bodies, energy decomposition, network approximation, etc.) is the infinite
increasing capacity of a pair of neighbor bodies when the distance between them
tends to zero. This is a pure geometrical condition (it depends on the geometry of
the bodies only). We note that this condition is not valid for the arbitrary geometry
of bodies. As a result, network approximation (network modeling) is not possible
for any system of closely placed bodies. Then the capacity (and transport property)
of a system of closely placed bodies is controlled not only by material contrast and
interparticle distances. The geometry of bodies is an additional necessary control
parameter.

In Chapter 4, we put the question: “Do the total flux, energy and capacity
(which are characteristics of integral nature) exhaust characteristics of the origi-
nal continuum model which can be approximated with the corresponding network
model?” We demonstrate that the potentials of the bodies can be added to this list
(under the condition that the Tamm shielding effect takes place for the bodies under
consideration!).

Chapter 5 presents a description of expansion of the method developed in Chap-
ters 3 and 4 for systems of bodies to highly filled contrast composites. In this
chapter, we also present some examples of numerical analysis of transport proper-
ties of high-contrast highly filled disordered composite material with the network
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model. The authors think that it would be difficult, if possible, to obtain similar
results with a continuum model even using a large computer.

Chapter 6 deals with the mathematical and numerical analysis of special ho-
mogenization problems for a nonlinear composite with high-contrast components.
The specificity of the problem considered is related not with any restrictions on the
original problem (it is just a problem of general form) but with analysis of a special
characteristic named the homogenized tunability of composite material. This char-
acteristic is well-known in the electronics industry. From the mathematical point of
view, this is (roughly speaking) the measure of nonlinearity of the problem under
consideration. This chapter demonstrates that the behavior of effective characteris-
tics of nonlinear composites can differ from the behavior of effective characteristics
of linear composites qualitatively. For example, effective (homogenized) tunability
can increase significantly when one dilutes nonlinear material with linear inclusions.
No analog of this effect exists in linear homogenization theory. The data on the ho-
mogenized permittivity presented in this chapter may be of interest for the general
theory of composite materials, because they clearly demonstrate that homogenized
characteristics can show no correlation with the volume fraction of components of
the composite.

Chapter 7 deals with the problem of loss of high-contrast composites.
Chapter 8 is devoted to transport and elastic properties of thin layers, which

cover or join solid bodies. This theme is related to the problems considered in
Chapters 3 and 4. In particular, the trial functions developed for analysis of thin
joints were predecessors of the trial functions used in Chapters 3 and 4.

The authors thank Dr. S.I. Rakin (STU, Novosibirsk) for assistance in research.
The authors thank Prof. I.V. Andrianov (RWTH–Aachen), Prof. L. Berlyand
(Pennsylvania State University), Prof. V.V. Mityushev (Uniwersytet Pedagogiczny
w Krakowie), Prof. A. Gaudiello (Università degli Studi di Cassino), Prof. V.V.
Zikov (Vladimir State Humanitarian University) for providing references, useful
comments and discussions. The research was supported through Marie Curie ac-
tions FP7, project PIIF2-GA-2008-219690.

The authors hope that the book will be used by both applied mathematicians
interested in new mathematical methods and engineers interested in prospective
materials and design methods. The authors would be happy if the book stimu-
lates the interest of engineering students in mathematics as well as the interest of
mathematical students in the problems arising in modern engineering and natural
science.

Alexander A. Kolpakov
Alexander G. Kolpakov

Novosibirsk, Russia
Cassino, Italy

2009





Chapter 1

IDEAS AND METHODS OF
ASYMPTOTIC ANALYSIS AS
APPLIED TO TRANSPORT IN
COMPOSITE STRUCTURES

When we consider a medium formed of a large number of small components, a system
of closely placed bodies or a medium formed of components with strongly different
(contrast) properties, we usually find small or large parameters naturally related to
the structures under consideration. Sometimes we found not one but two or even
more small or large parameters. For a composite body formed of large number
of small components, the natural small parameter is a characteristic dimension of
the components (usually, as compared with the dimension of the body). If, in
addition, composite material is formed of contrast components, there appears one
more parameter — ratio of material characteristics of the components.

If characteristics (either material or geometrical) depend on small or large pa-
rameters, the corresponding mathematical models account for these dependences.
The mathematical models containing small or large parameters often can be ana-
lyzed by using asymptotic methods. The asymptotic methods strongly depend on
the specific type of parameter and specific problem. We can divide (very roughly)
the asymptotic methods arising in applied sciences into two groups:

1) problems in which geometry depends on a parameter,
2) problems in which material characteristics depend on a parameter.
Examples of the first group problems are asymptotic methods developed for

analysis of problems in thin or small diameter domains [70, 75, 182, 282, 336, 360],
in singularly perturbed domains [228, 264], in thin layers [229, 294, 317, 337, 338],
in junctions of structural elements [44, 90, 130]. Examples of the second group of
the methods are classical theory of small perturbation of coefficients of differential
equations and integral functionals [153, 164, 334] and the homogenization theory
[30, 21, 157]. If material characteristics are periodic with period depending on small

1



2 Capacity and Transport in Contrast Composite Structures

parameter, we arrive at the classical theory of homogenization [21, 91, 157]. If
material characteristics can be described by random fast oscillation functions, we
arrive at the random homogenization [157, 194, 195, 286, 393]. If the variation of
material characteristics, in addition, is large, we arrive at so-called “stiff” problems
[25, 58, 60, 65, 73, 98, 149, 211, 218, 219, 284, 289] and problems of transmitting
through strongly inhomogeneous structures [103, 129].

We present below a brief overview of asymptotic methods, which can be useful
for the reader.

1.1. Effective properties of composite materials and the
homogenization theory

The problem of computation of overall properties of composite materials has a long
history and it has attracted attention of some of outstanding scientists. Histori-
cally, analysis of overall properties of composite materials was started with a model
of material filled with particles. For example, Poisson [295] constructed a theory
of induced magnetism in which the body was assumed to be composed of non-
conducting material filled with conducting spheres. Faraday [117] proposed a model
for dielectric materials that consists of metallic globules separated by insulating
materials. Significant contributions to solution of the problem of computation of
overall properties of composite materials were done by Maxwell [227] and Rayleigh
[348]. Other well-known 19th century contributors to the field were Clausius [92],
Mossotti [261] and Lorenz [215].

In the 20th century many prominent scientists paid attention to the computation
of overall properties of mixtures [64, 93, 128, 150, 214], suspensions [111, 112, 202,
310, 375] and systems of bodies and particles [50, 51]. The significant achievement
was the theory of bound for effective characteristics of composite materials. The
foundations of this theory were laid in the works by Reuss, Voight and Hill [150,
305, 367].

In the 1970s to 1980s, the so-called homogenization method was elaborated and
applied to the analysis of composite materials. The foundations of the homogeniza-
tion theory were laid in the pioneering papers by Spagnolo and Marino [224, 343, 344]
published in 1960s, followed by numerous works published in 1970s–1980s. Mention
the papers [20, 21, 30, 32, 108, 194, 221, 280, 317, 325, 397] (list is not complete,
for additional bibliography information see [30, 21, 157]). The applied directions
of the homogenization method are presented in [4, 5, 13, 27, 28, 29, 52, 56, 69, 78,
91, 97, 132, 134, 142, 159, 205, 278, 283, 285, 287, 314, 360, 382]. Applications of
the homogenization method provided many important results of both theoretical
and engineering significance. Mention theoretical prediction [6, 178] and manufac-
turing [201] of materials with negative Poisson’s ratio and application of the ho-
mogenization method to design of composites possessing required overall properties
[27, 28, 29].



Ideas and Methods of Asymptotic Analysis as Applied to Composite Structures 3

Figure 1.1. A body of periodic structure and its periodicity cell Y in fast variables.

The homogenization method for composites of a periodic structure uses various
mathematical techniques. The basic techniques are presented in [5, 30, 157, 317]. In
the present, various multiscale techniques are developed (see, e.g., [243, 283, 288])
and widely used in applied sciences (see, e.g., [14, 104, 198, 207, 213]).

1.1.1. Homogenization procedure for linear composite materials

In this section, we present basic ideas of the asymptotic expansions method. Con-
sider an inhomogeneous body with a regular distribution of transport properties of
those components, see Fig. 1.1.

The transport problem (thermoconductivity, diffusion, etc.) for that body has
the form

LδT
δ =

∂

∂xi

(
cδij(x)

∂T δ

∂xj

)
= f(x) in Q, (1.1)

T δ(x) = 0 on ∂Q. (1.2)

Here Q designates the region occupied by the composite material, ∂Q designates
its boundary. Here δ is a parameter, which will be associated with the character-
istic dimension of inhomogeneity of a composite, see Fig. 1.1. Thus, we consider a
problem with parameter (or, in other words, a sequence of problems).

The following standard conditions are applied to the coefficients cδij(x): for all
x ∈ Q,

c1|z|2 ≤ cδij(x)zizj ≤ c2|z|2

for any z ∈ Rn (n = 2, 3).
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Here 0 < c1, c2 <∞ do not depend on δ. The uniform boundary condition (1.2)
does not lead to the loss of generality of our consideration because the homogenized
constants do not depend on the type of boundary conditions [30, 157]. We consider
here uniform boundary conditions for simplicity.

Let us note that problem (1.1) and (1.2) permits the following formulation: find
T δ(x) from the solution of the minimization problem,

Jδ(T ) + 〈f, T 〉 → min, T (x) ∈ H1
0 (Q), (1.3)

where

Jδ(T ) =
1
2

∫
Q
cδij(x)

∂T

∂xi
(x)

∂T

∂xj
(x)dx

is a quadratic functional.
In this book, H1

0 (Q) means closure according to the norm

||f ||H1(Q) =

√√√√ 3∑
i=1

∫
Q

∣∣∣∣ ∂f∂xi
(x)

∣∣∣∣2 dx +
∫

Q
f(x)2dx

of a set C∞(Q) of finite functions, which are infinitely smooth in Q and vanish in a
neighbor of ∂Q (other equivalent definitions of H1

0 (Q) can be found in Appendix A).
The pointed branches in (1.3) signify dual coupling of the elements from H1

0 (Q)
and H−1(Q) in the standard duality of these spaces (for details see, e.g., [212]).
The dual coupling coincides for sufficiently smooth functions with an inner product
in H1

0 (Q) (see [113, 212] for details). The equivalence of problems (1.1) and (1.2),
and (1.3) is a well-known fact, see, e.g., [113, 212]. Problem (1.1) and (1.2) can be
written in the following (so-called weak) form [212] :

−
∫

Q
qδ
i (x)

∂ϕ

∂xi
(x)dx =

∫
Q
f(x)ϕ(x)dx (1.4)

for any ϕ(x) ∈ H1
0 (Q).

In (1.4)

qδ
i (x) = cδij(x)

∂T δ

∂xj
(x). (1.5)

If a body is formed of many small components, the characteristic dimension δ
of components is small: δ � 1. Mathematically, this fact is formalized in the form
δ → 0.

As is well known from engineering practice, materials and structures formed of
many small components (concrete, wool, suspensions, aerosols) can be regarded as
homogeneous ones. Note that most engineering handbooks (except special hand-
books on composite structures, see, e.g., [74]) usually present technical constants
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Figure 1.2. A ring with a circular cartridge (left) and wood-like structure (right).

of inhomogeneous materials (thermoconductivity coefficients, viscosity, elastic con-
stants) as characteristics of homogeneous material, see, e.g., [197]. It means that
one replaces an original inhomogeneous material for a (fictitious) homogeneous ma-
terial. It is clear that such kind of substitution is possible only in asymptotic sense,
when a material is a unity of small components with the characteristics dimension
δ << 1 (δ → 0). Usually, engineer-experimentator does not think about asymptotic,
but he cares for taking a specimen for experiment relatively large as compared with
the dimension of microstructure [172, 379]. It is clear that choice of specimen is
equivalent to acceptance of asymptotic nature of overall characteristics of compos-
ite structures. We present two two-component circular structures as example. The
volume fractions of the constitutive materials are equal in both structures. The
circular structure displayed in Fig. 1.2 (left) cannot be approximated by a homo-
geneous structure, while the layered circular structure displayed in Fig. 1.2 (right)
can be approximated by a homogeneous structure when the characteristic thickness
of the layers is small. The layered circular structure displayed in Fig. 1.2 (right) is
similar to the structure of wood. The engineering characteristics of woods are given
in most hand-books in the form of characteristics of homogeneous materials. These
characteristics describe properties of woods adequately and are successfully used in
practice.

A homogeneous body (specifically, one which we want to put in correspondence
with a composite) is described by the problem

LT (0) =
∂

∂xi

(
ĉij
∂T (0)

∂xi

)
= f(x) in Q, (1.6)

T (0)(x) = 0 on ∂Q, (1.7)

or by the minimization problem: find T (0)(x) from the solution of the problem

J(T ) + 〈f, T 〉 → min, T (x) ∈ H1
0 (Q), (1.8)

where

J(T ) =
1
2

∫
Q
ĉij
∂T

∂xi
(x)

∂T

∂xj
(x)dx.
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Here, ĉij are homogenized transport constants describing a homogeneous mater-
ial (we use the hat symbol “̂ ” to mark homogenized characteristic corresponding
to local characteristic under consideration). It is clear that the homogenized con-
stants depend on the local transport constants of the composite.

The coupling of operators Lδ and L and functionals Jδ and J is well known. The
functionals Jδ and J are the potentials of the corresponding operators, and opera-
tors Lδ and L are derivatives, in the sense of Gâteaux [113], of the corresponding
functionals.

Asymptotic expansion based approach to the analysis of media with a periodic structure

Periodic materials are less prevalent in nature, where we meet disordered structures
of combination of periodicity with various random derivations from it. On the other
hand, we meet numerous periodic structures among artificial (man-made) structures.

Let us consider the case when an inhomogeneous body has a periodic structure
in coordinates x, with a period (called periodicity cell, unit cell, or basic cell) δY ,
see Fig. 1.1. For a periodic structure, the factor δ is the dimension of the periodicity
cell, see Fig. 1.1. The material characteristics of the indicated medium are described
by periodic functions in spatial variable of the following type [30]

cδij(x) = cij(x/δ), (1.9)

where cij(y) are periodic functions with a periodicity cell Y .
The method of asymptotic expansions is based on the ideas of solving the prob-

lem with rapidly oscillating coefficients in the form of the following special series:

T δ(x) = T (0)(x) +
∞∑

n=1

δnT (n)(x,y), (1.10)

where y = x/δ is a “fast” variable and x is a “slow” variable, i.e., a two-scale
expansion is considered. Functions T (n)(x,y) in (1.10) are assumed to be periodic
in variable y with periodicity cell Y . Function T (0)(x) is a function only of “slow”
variable x. By substituting x/δ for y, the functions become periodic in x with
periodicity cell δY .

We will seek the solution of problem (1.1) and (1.2) in the form of an asymptotic
expansion (1.10). While differentiating, we will separate the variables according to
the formula

∂f(x,x/δ)
∂xi

= f,ix(x,y) + δ−1f,iy(x,y), (1.11)

y = x/δ. (1.12)

Here and afterward, subscript , ix means
∂

∂xi
and the subscript , iy means

∂

∂yi
.
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The operator Lδ on the left-hand side of equation (1.1), allowing for the differ-
entiating rule (1.11), can be written as

Lδ = δ−2L0 + δ−1L1 + L2, (1.13)

where

L0 =
∂

∂yi

(
cij(y)

∂

∂yj

)
,

L1 =
∂

∂xi

(
cij(y)

∂

∂yj

)
+

∂

∂yi

(
cij(y)

∂

∂xj

)
,

L2 = cij(y)
∂

∂xi

∂

∂xj
.

We change in (1.1) operator Lδ for its representation (1.13) and T δ(x) for the
series (1.10) and then equate the terms of the same order in δ. As a result, we
obtain an infinite sequence of problems. The first three of them have the following
form:

L0T
(0) = 0, (1.14)

L0T
(1) + L1T

(0) = 0, (1.15)

L0T
(2) + L1T

(1) + L2T
(0) = f(x). (1.16)

Equation (1.14) is satisfied identically because function

T (0) = T (0)(x) (1.17)

does not depend on the variable y, see (1.10).
By virtue of (1.17), (1.15) takes the form(

cij(y)T (1)
,jy

)
,iy

+ (cik(y)),iy T
(0)
,kx(x) = 0. (1.18)

By separating the variables x and y, the solution of (1.18) can be set up as

T (1)(x,y) = Nk(y)T (0)
,kx(x) + V (x), (1.19)

where Nk(y) represents a solution of the problem⎧⎨⎩
(
cij(y)Nk

,jy + cik(y)
)

,iy
= 0 in Y,

Nk(y) is periodic in y with periodicity cell Y,
(1.20)

and V (x) is an arbitrary function of the argument x.
We call problem (1.20) a cellular problem. It is also called a basic cell or a unit

cell problem [30, 157, 318]. Let us consider equations (1.16), in which the function is
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unknown and x is a parameter. This problem has a periodic solution if the following
equality is fulfilled [21]:

〈L1T
(1) + L2T

(0)〉 = f(x), (1.21)

where

〈•〉 =
1
|Y |

∫
Y
•dx (1.22)

indicates the average value over periodicity cell Y . The average value symbol 〈〉
should not be confused with the dual coupling symbol 〈, 〉.

From the homogenized equation (1.21), on account of (1.19), we obtain the
homogenized (called also averaged or macroscopic) equation (1.6) for T (0)(x) with
the boundary conditions (1.7). Simultaneously, we obtain from (1.19) and (1.21)
the following formula for computation of the homogenized coefficients ĉij :

ĉij = 〈cij(y) + cik(y)N j
,ky(y)〉. (1.23)

It is known (see, e.g., [30]) that

T δ(x) → T (0)(x) weakly in H1(Q), (1.24)

T δ(x) → T (0)(x) in L2(Q)

as δ → 0, where T δ(x) is the solution of the original problem (1.1) and (1.2), and
T (0)(x) is the solution of the homogenized problem (1.6) and (1.7). We note that the
second limit in (1.24) is the consequence of the first limit and Sobolev embedding
theorem [342].

It is also known [30] that

T δ(x) −
(
T (0)(x) + δN j(x/δ)

∂T (0)

∂xj
(x)

)
→ 0 in H1(Q), as δ → 0. (1.25)

From relations (1.5), (1.11) and (1.25), for the local flux

qδ
i (x) = cij(x/δ)

∂T δ

∂xj
(x)

the following approximation can be derived:

qδ
i (x) −

(
cij(x/δ) + cik(x/δ)N

j
,ky(x/δ)

) ∂T (0)

∂xj
(x) → 0 in L2(Q) as δ → 0. (1.26)

It is known (see, e.g., [30, 278]) that

〈qδ(x)〉 → q0(x) as δ → 0, (1.27)
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where 〈qδ〉 is the average value of the local flux qδ and q0 is the flux determined
from the solution of the homogenized problem,

q0i (x) = ĉij
∂T (0)

∂xj
(x). (1.28)

The flux determined by equality (1.28) is called the homogenized flux. One can
derive formula (1.27) by averaging (1.26) over periodicity cell with regard to the de-
finition of the homogenized constants (1.23). It follows from (1.24) that in the limit
(as δ → 0), potential (electric potential, temperature, etc.) in a nonhomogeneous
material will behave like potential in a homogeneous material with effective trans-
port coefficients given by (1.23). But, it is seen from (1.26) and (1.28), the local flux
can differ (and usually it differs) from the homogenized flux. As seen from (1.27),
the averaged values of the local flux coincides with the homogenized flux. Note that
the actual (substantively existing) flux in a composite is the local flux. The aver-
age value of local flux characterizes the overall (macroscopic) transport property of
composite material and it can be used to compute the homogenized characteristics
of composite.

1.1.2. Homogenization procedure for nonlinear composite materials

The foundations of the homogenization theory for nonlinear operators and func-
tionals were laid in the works [45, 221, 223]. Now, there exist some homogenization
procedures for nonlinear composite materials based on G(Γ)-convergence and mul-
tiscale technique [21, 96].

G-limit based approach to analysis of media with a periodic structure

The G-limit approach is a sophisticated mathematical method used in the analysis
of homogenization problems and proof of convergence theorems [45, 72, 100, 221].
It was not widely used in applied sciences and engineering previously. Recently, the
situation has changed, see, e.g. [300].

We need certain mathematical notations, which were introduced in [221]. Let us
denote by V the Banach reflexive space and V ∗ is a space topologically conjugated
with V [113]. Following [221], let us denote by C0(V ) a set of convex functionals
in V , which are assumed to take values in (−∞,+∞], not identically equal to +∞
and lower semicontinuous (see Appendix A). Let us also denote

C(α, v0,M) = {f(x) ∈ C0(V ) : f(v) ≤ α(v) for all v(x) ∈ V, f(v0) ≤M <∞},
where the functional α(x) ∈ C0(V ) is such that α(v) − 〈v∗, v〉 reaches a minimum
in V for any v∗ ∈ V ∗.

The functional f∗, defined in v∗ ∈ V ∗ through the equality

f∗(v∗) = sup
v∈V

(〈v∗, v〉 − f(v))
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is called a conjugate to f .

Definition 1. The sequence of functionals {fδ} ⊂ C(α, v0,M) G-converges to the
functional f , if

lim
δ→0

f∗δ (v∗) = f∗(v∗) as δ → 0 for any v∗ ∈ V ∗.

Definition 2. The sequence of operators Lδ : V → V ∗ G-converges to the operator
L : V → V ∗, if operators Lδ and L are invertible and for any v∗ ∈ V ∗

lim
δ→0

L−1
δ v∗ = L−1v∗ weakly in V as δ → 0.

The equivalence of these two definitions of G-convergence was proved in [45].
The abstract G-limit (G-convergence) approach briefly described above can be

applied to both linear and nonlinear problems. Mention densely related Γ-conver-
gence method [57, 100].

In the terms of physics, Definition 1 implies the convergence of the energy of the
original composite body to the energy of the homogenized body when dimension of
inhomogeneities δ becomes small (that is formalized in the form δ → 0). Definition
2 implies the convergence of the solution (electric potential, temperature, etc., see
Table 1) corresponding to the original composite body to the solution corresponding
to the homogenized body when δ → 0. These convergences take place for arbitrary
“mass source” v∗ in the composite. Note that Definition 2 says nothing about strong
convergence of derivatives of the solution of the original problem.

Homogenization procedure for nonlinear composite materials of periodic structure

We consider the following problem: find T δ(x) from the solution of the minimization
problem,

Jδ(T ) + 〈f, T 〉 → min, T (x) ∈ H1
0 (Q), (1.29)

where

Jδ(T ) =
∫

Q
Gδ (x,∇T (x)) dx.

A homogeneous body is described by the minimization problem: find T (0)(x)
from the solution of the minimization problem,

J(T ) + 〈f, T 〉 → min, T (x) ∈ H1
0 (Q), (1.30)

where

J(T ) =
∫

Q
Ĝ (x,∇T (x)) dx.
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The corresponding boundary-value problems are obtained by computation of
Gâteaux derivatives (or computation of variations) [113] of the functionals in the
left-hand sides of (1.29) and (1.30) and have the form

∂

∂xi

(
qδ
i

(
x,
∂T δ

∂x1
(x), ...,

∂T δ

∂xn
(x)

))
= f(x) in Q, T δ(x) = 0 on ∂Q,

and

∂

∂xi

(
q0i

(
x,
∂T (0)

∂x1
(x), ...,

∂T (0)

∂xn
(x)

))
= f(x) in Q, T (0)(x) = 0 on ∂Q,

where fluxes

qδ
i (x, z) =

∂Gδ

∂zi
(x, z),

q0i (x, z) =
∂Ĝ

∂zi
(x, z).

Here z corresponds to driving force ∇T .
The nonlinear homogenization problem is most investigated in the periodic case

when the function Gδ(x, z) is periodic in spatial variable x and has the form

Gδ(x, z) = G(0)(x/δ, z),

G(0)(y, z) is periodic in y with periodicity cell Y . The sufficient conditions for
nonlinear homogenization can be found in [222, 223]. We note that the theory of
nonlinear homogenization is not as detailed as the linear homogenization theory (it
is naturally, because the nonlinear problems usually are more difficult than linear
ones). An exception is the homogenization theory for nonlinear ordinary differential
equations, where a relatively complete homogenization theory was developed (in
material science, this case corresponds to laminated materials as shown in [159], see
also Appendix B).

For composite of periodic structure the functionG(z) is determined as follows (we
assume that all functions under consideration exist, for details see, e.g., [99, 157]):

Ĝ(z) = min
N∈VY

∫
Y
G(0) (y,∇(N(y) + zy)) dy, (1.31)

where

VY = {f(y) ∈ H1(Y ) : f(y) is periodic in y with periodicity cell Y }.
In the case under consideration the function G(z) depends on the variable z only.

The problem (1.31) (under some additional conditions, see, e.g., [100, 222, 223])
is equivalent to a periodic problem for nonlinear partial differential equation corre-
sponding to the functional in the right-hand part of (1.31).
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Formula (1.31) expresses the energy form corresponding to the homogenized
body through the local energy of the original body. In many cases other relationships
of the homogenized and local characteristics can be useful. Mention the relationship
of the homogenized and local fluxes, which has the form∫

Γ
qδ(y)ndy →

∫
Γ
q0(y)ndy as δ → 0, (1.32)

for any side Γ of the periodicity cell Y (n means the normal vector to Γ). Formula
(1.32) implies that the fluxes through the volume Y in the original inhomogeneous
body and the homogenized body are equal to one another.

The above mentioned relationships between the homogenized and local charac-
teristics are in agreement and predict the same characteristics of the homogenized
structure.

1.2. Transport properties of periodic arrays of densely packed bodies

For a history of the problem of mathematical analysis of transport properties of
periodic arrays of bodies, turn to Maxwell’s book [227], where electric fields in a
periodic array of bodies is considered. Maxwell’s analysis opens a stage in analysis
of the problem, which can be characterized as analysis of transport properties of
periodic array of spheres, cylinders and disks. An outstanding contribution in the
mathematical analysis of the problem was made by Rayleigh [348] who first studied
the problem in mathematically rigorous way, as well as Mossotti [261], Clausius [92],
Garnett [128], and Lorenz [215].

Now, one can distinguish two basic methods used to analyze the problem dis-
cussed. One is the homogenization method described in Section 1.1.1. We note
that the original version of the homogenization method does not assume high con-
trast of components of composite (nontrivial modifications are required to adopt
the homogenization method for contrast composites, see, e.g., [279, 281]) and (it is
the main restriction) the homogenization method assumes proportional scaling of
all components of composite (see formula (1.12) and Fig. 1.1 illustrating the scaling
in the homogenization method). When the inclusions (bodies, particles, etc.) are
almost touching, standard homogenization procedures lose the convergence prop-
erty. It is why other asymptotic methods were developed for analysis of systems of
almost touching bodies and similar structures. We present the main ideas, which lay
the foundation of the methods developed for analysis of periodic arrays of almost
touching bodies and highly filled contrast composite materials.

1.2.1. Periodic media with piecewise characteristics and periodic arrays of bodies

The inhomogeneous media can demonstrate different overall properties in depen-
dence on the local geometry and topology of components of the media. The most
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well-known example of dependence of the overall properties on the geometry and
topology of components of composite material is the percolation phenomenon [138,
170, 293]. Another example is the topology design theory [29].

Periodic and disordered structures are the main types of structures we deal with
in practice. A periodic structure is a deterministic structure, which can be obtained
by periodic repetition of a typical element (called periodicity or basic cell [30, 159]).
The disordered structures (also called topologically disordered structures [143]) are
not deterministic. The level of disorder varies in the range from small disorder
(small random perturbation of a deterministic, for example periodic, structure) to
complete disorder (random structures) [31, 46, 89, 194, 275, 359]. Most of materi-
als, both natural and artificially produced, are partially or completely disordered.
Limited number of solid composite materials (we call solid the essentially three-
dimensional bodies) of periodic structures are produced using high technologies,
see, for example, [88, 230]. At the same time many artificial structures (frames,
structural elements of airplanes, ships, etc.) have deterministic structures, usually
periodic or quasiperiodic [61, 89, 159, 182, 217, 265, 272, 273, 303].

In periodic systems we can naturally select a typical element — periodicity cell,
see Fig. 1.1, which determines the property of the system in whole. It means that the
local properties of the periodic system or periodic material (solution of the problem
for typical element, usually called local problem) completely determine the overall
properties of the periodic system in whole.

In this book, we consider media with piecewise constant characteristics, which
correspond to systems of bodies and particle filled composite materials. Material
properties of such composites are described by discontinuous (thus, non-differentiab-
le) functions. A typical form of a function describing material properties of particle
filled composite material is

a(x) =

{
aI in inclusions,

am in matrix.
(1.33)

The typical graph of the function (1.33) for one inclusion is presented in Fig. 1.3.
Function of the form (1.33) also describes the body. If we consider electrostatic

problem for a system of bodies, the distribution of the dielectric characteristics is
described just by the function (1.33), where aI means the dielectric constant of the
material of bodies / particles and am means the dielectric constant of a substance
surrounding the bodies.

In the last decades so called graded composite materials were reported (see,
e.g., [139, 155, 255, 333]). In graded composites, there exists a relatively thick
intercomponent layer between the basic components of composite. The function
a(x), which describes the local material properties of graded composite, changes
continuously and has the form
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Figure 1.3. The typical graphs and distribution over the periodicity cell of the func-
tions a(x) for two-dimensional composite of periodic structure described by the func-
tion (1.33).

a(x) =

⎧⎪⎪⎨⎪⎪⎩
aI in inclusions,

a0(x) in the interface “particle–matrix” region,

am in matrix.

(1.34)

The typical graph of the functions (1.34) for one inclusion is presented in Fig. 1.4.
If aI � am (the properties of the particles are vastly different from the properties

of the matrix) then the composite is called a high-contrast composite. In many cases,
the highly conducting bodies / particles are replaced by perfectly conducting bodies
/ particles (with infinite conductivity or, equivalently, zero resistivity). In this case,
there remains one parameter, which describes the microstructure of composite. This
is called the interparticle distance parameter δ, see Figs 1.3 and 1.4.

1.2.2. Problem of computation of effective properties of a periodic system of
bodies

After Maxwell and Rayleigh, the problem of transport properties of periodic arrays
of bodies attracted attention of many investigators (it is impossible to present a
complete list of references here because it would be very long, some references can
be found in [315]). The problem of transport properties of arrays of closely placed
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Figure 1.4. The graphs and distribution over the periodicity cell of the functions
a(x) for two-dimensional “graded” composite.

bodies was analyzed in [36, 114, 166, 231, 232, 235, 236, 253, 296, 349, 399] (the list is
not complete). A major contribution into the problem was made by McPhedran and
his co-authors, see, e.g., [233, 234, 238, 269, 291, 389]. We emphasize two specific
features of problems considered in the above-mentioned papers:

(i) the bodies form a periodic array, which is obtained by periodic translation of
one body;

(ii) the bodies have simple geometry (spheres, cylinders, etc).
In the frameworks of directions, many works were devoted to transport properties

of array of spheres [10, 106, 166, 232, 236, 319, 320] and circular cylinders (disks)
[80, 81, 166, 233, 234, 235]. Transport properties of array of elliptic cylinders [237,
269, 389] and cylinders having square cross-section [11] were considered, see also
[383, 384, 398]. Comparison of transport properties of array of periodic spheres
and an array of periodic cubes was presented in [8]. In [270] transport properties of
square array of coated cylinders were analyzed. Recently arrays of rhombic fibers [9]
were considered. In [234] a problem for closely placed, highly conducting cylinders
was considered using a technique of complex analysis. Later the methods of complex
analysis were effectively applied to analysis of systems of closely placed disks by
Mityushev and co-authors [220, 248, 249, 250, 251, 253, 254], see also [292, 311, 312].
In [23] conduction through a granular material was investigated using ensemble
averaging and approximate solutions for closely packed spheres.
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Most problems were analyzed under the condition of perfect contact between
matrix and inclusions, which assumes no jump conditions with respect to potential
and normal flux on the surface of conjugation of the matrix and inclusion. The arrays
of bodies with not perfect contact were considered in [26, 147, 163, 206, 226, 369].

Method of power series as applied to the computation of transport properties of periodic
arrays of bodies

We present the basic ideas of the method of power series widely used for computa-
tion of overall properties of periodic structures. We consider a simple-cubic array
of identical spheres of radii R embedded into a homogeneous matrix. Denote the
periodicity cell of the array by Y . Following to [315], we associate the problem con-
sidered with the problem of electrostatic of composite material. An overall external
electric field E is assumed to be applied parallel to Ox1-axis:

E = (E0, 0, 0).

The potential distribution in the composite satisfies Laplace equation

∆ϕ = 0 (1.35)

both inside and outside the spheres.
Consider a sphere with the center at the point 0. The general power series for

the potential in spherical coordinates (r, θ, ϕ) is the following (see, e.g., [315]): inside
the sphere

ϕI(r, θ, ϕ) = A0 +
∞∑
l=1

l∑
m=−l

(Almr
l +Almr

−l−1)Ylm(θ, ϕ), (1.36)

outside the sphere

ϕm(r, θ, ϕ) = C0 +
∞∑
l=1

l∑
m=−l

Clmr
lYlm(θ, ϕ). (1.37)

In (1.36) and (1.37), Ylm(θ, ϕ) is the spherical harmonics of order (l,m), i.e.,
solution of Laplace equation in spherical coordinates, which can be represented in
the terms of Legendre functions Pm

l (cos θ), see [315]

Ylm(θ, ϕ) =
(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ.

The conjugation conditions at the interface surface |x| = R between the sphere
and matrix are

ϕI(x) = ϕm(x), (1.38)

aI
∂ϕI

∂n
(x) = am

∂ϕm

∂n
(x),
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where aI and am mean the permittivity of the materials of sphere and matrix,
correspondingly. In addition, the function ϕm(x) is periodic with periodicity cell Y .

From these conditions (the conjugation conditions and the periodicity condition,
as well as the symmetry of solution and the absence of singularities in solution), one
can determine the coefficients Clm, Alm and Blm. We present the scheme of solution
of the problem following to [315].

From the second condition in (1.38), it follows that

Alm =
Blm

[
as

am
+
l + 1
l

]
R2l+1

(
1 − as

am

) . (1.39)

Due to symmetry of the array only odd values l in (1.37) and (1.36) and only
values of m that are multiples of 4 must be allowed.

The condition of the absence of singularity leads to the equality

A0 +
∞∑
l=1

2l−1∑
m=0

A2l−1,mr
2l−1Pm

2l−1(cos θ) cos(mϕ) − E0x1 =

=
∞∑
l=1

2l−1∑
m=0

∞∑
i=0

B2l−1,mρ
−2l
i Pm

2l−1(cos θi) cos(mϕi). (1.40)

In (1.40) the coordinates (ρi, θi, ϕi) are measured to the center of the i-th sphere. In
his treatment of this problem, Rayleigh truncated terms higher than those involving
r3 from the Legendre polynomials, see [315].

The equations with respect to the unknown coefficients B2l−1,m are obtained by
equating the partial derivatives of all orders with respect to variable x1 in (1.40)
(see for details [315]). They have the following form

∞∑
l=n+1

2l−2n−2∑
m=0

(
m+ 2l − 1

2n + 1

)
Pm

2l−2n−1(cos θ0) cos(mϕ0)A2l−1,m +

+
∞∑
l=1

2l−1∑
m=0

∞∑
i=1

(
2l + 2n −m

2n+ 1

)
ρ−2l−2n−1

i Pm
2l+2n(cos θi) cos(mϕi)B2l−1,m = E0δn0,

where (
n
r

)
=

n!
r!(n− r)!

,

(ρ0, θ0, ϕ0) corresponds to a point at the boundary of the periodicity cell Y , and
δ00 = 1, δ0n = 0 (n ≥ 1).
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Detailed analysis of the problem can be found in [236]. Analysis of similar
problems can be found in [23, 232, 233, 239, 291, 399]. We do not discuss the
details of the solution and only note that it is evident that the method of power
series works well for small concentrations of spherical or circular inclusions. In this
case distribution of potential is similar to distribution of potential in the problem
about unique inclusion. Solution for unique inclusion with corrector containing few
additional harmonics provides us with accurate solution. If diameter 2R of the
sphere is close to the size of the periodicity cell Y , the solution of the problem
discussed is strongly different from solution for unique inclusion, it is necessary to
account for all terms in series and solve the corresponding problems. This fact can
be explained easily using some results, which will be discussed in detail below.

1.2.3. Keller analysis of conductivity of medium containing a periodic dense array
of perfectly conducting spheres or cylinders

As was noted above, when the bodies are placed relatively far from one another,
the approach based on the harmonic series works well and it is necessary to save
only a few harmonics in the series to obtain accurate formulas. When the bodies
are placed densely, it is necessary to save a large number of harmonics in the series.
The results of the paper [174] (see also Chapter 2) explain this fact. We consider
a periodic system of disks as an example. When the disks are placed relatively far
apart, the distribution of energy around each disk is a smooth function of polar
angle close to distribution of energy around a single disk, see Fig. 1.5 (left).

When the disks are placed densely, the energy as a function of polar angle looks
like a singular function, see Fig. 1.5 (right). It is known that a function like that
shown in Fig. 1.5 (left) usually can be approximated well with a small number of
harmonics and it is necessary to save a large number of harmonics in series to
approximate a function like shown in Fig. 1.5 (right).

It would be natural to manipulate with functions like those shown in Fig. 1.5
(right) without using technique of power series. This was done in [166]. In the
previously mentioned paper Keller reported that “The previous results of Maxwell,
of Rayleigh and Meredith and Tobias are not valid near the singularity” (this is for
almost touching bodies) and derived formulas for transport properties of periodic
arrays of circular disks and spheres different from the Maxwell’s formula. Also it
was reported that new asymptotic formulas derived in [166] agree well with the
numerical results [165].

Keller’s analysis was based on a hypothesis (formally incorrect, see below, nev-
ertheless very fruitful) about the form of flux between two closely placed disks
(spheres). We employ Keller method to derive an approximate formula for the flux
between two disks (the i-th and the j-th) of radii R placed at the distance δij , see
Fig. 1.6. Although the original Keller analysis was given for two spheres, we present
corresponding computations for two disks. We do it in order to demonstrate the di-
mensional sensitivity of the problem (i.e., existence of some differences in properties
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Figure 1.5. Typical distribution of density of the local energy around disk as a func-
tion of polar angle θ: left – dilute composite, right – composite with densely packed
disks.

of solutions of two- and three-dimensional problems).
We approximate the disks by the tangential parabolas

y =
δij
2

+ ρ
x2

2
,

and

y = −
(
δij
2

+ ρ
x2

2

)
,

where

ρ =
1
R

(1.41)

is curvature of the disks.
The distance H(x) between the parabolas is

H(x) = δij + ρx2. (1.42)

We assume that the matrix is uniform and dielectric constant of the material of
the matrix is equal to ε. Following [166], we assume that the potential in the region
between the disks has the form

ϕ(x) =
(ti − tj)y
H(x)

.

Then the local flux in the region between the disks has the form (here x = (x, y))

v(x) = ε∇ϕ(x) = ε

(
0,
ti − tj
H(x)

)
. (1.43)


