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Combinatory Logic: Pure, Applied and Typed provides a state-
of-the-art overview of the field in the early 21st century. Using a 
reader-friendly style, the author introduces combinatory logic before 
progressing to its central theorems and proofs. The text makes 
intelligent and well-researched connections between combinatory 
logic and λ-calculi and presents models and applications, which 
amplify the significance of these connections. In an accessible 
presentation that does not presuppose additional preparation, the 
book provides:

•	 Exercises interspersed in the text that help readers develop an 
understanding of concepts

•	 Coverage of new research results, which are not included in 
earlier books touching upon combinatory logic

•	 Primary emphasis on combinatory logic per se (with a chapter 
on λ-calculi), rather than the other way around

•	 Focus on the development of concepts and ideas instead of the 
history of the subject

The author focuses on combinatory logic and avoids being too 
discipline-specific in terminology and notation. The book includes 
examples and exercises that facilitate learning—alone or within 
a course setting. The appendix contains definitions and concise 
illustrations of some concepts used in the main text of the book 
that come from other areas. The book also contains pointers to new 
directions in the field that can be pursued further by researchers.
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Preface

Combinatory logic was invented in the 1920s and has been developing ever since
— often in the company of λ -calculi. Both of these formalisms, together with
their variants, can capture the notion of a computable function or algorithm. This
places combinatory logic next to recursion theory and computer science. On the
other hand, typed combinatory logic straightforwardly connects with intuitionistic
logic and other nonclassical logics, for example, relevance logics and linear logic.
All this links combinatory logic to mathematical logic, philosophical logic and com-
putational logic.

This book intends to present combinatory logic — starting with the basics — as
a self-contained subject. λ -calculi are mentioned, because it seems unavoidable due
to the historical development of these areas. However, λ -calculi are not given here
as much prominence as is some other texts.

The key themes that are explicit (and sometimes implicit) in the following chapters
are the connections to computability and to nonclassical logics. This implies that
some other matters are given less emphasis. Nevertheless, the book aims to give a
snapshot of the current state of the development of combinatory logic — together
with pointers toward further possible advancements.

There is a comprehensive two-volume book on combinatory logic by Haskell B.
Curry and his collaborators and students. Those volumes, however, had been com-
pleted by the late 1950s and early 1970s, respectively. Of course, mathematical and
logical knowledge is typically cumulative, but the way concepts and results are pre-
sented might change even when the core results are preserved. Arguably, the role
and the perception of combinatory logic within the discipline of logic has changed in
the past 30–40 years. During those decades, many new results have been obtained.
This creates a need and imparts a justification for a new presentation of the subject
with some emphases shifted.

Combinatory logic is briefly mentioned or dealt with in quite a few books on λ -
calculi, because of the relationship between λ -calculi and combinatory logics. (See,
for instance, [], [] and [].) I take the reverse approach here: the book focuses
on combinatory logic itself, and I give a concise introduction to λ -calculi (in chapter
4), primarily, for the sake of comparison.

Curry seems to have deemed important to supplement his books with sections on
history. (See, for instance, [], [] and [].) Combinatory logic has matured since
its early days, and it seems to me that brief sections would not suffice to provide an
accurate historical account. Recently, separate and detailed publications appeared on
the history of combinatory logic and λ -calculus in volumes on the history of logic,
which also suggest that the history of the subject is better to be treated in itself.

ix



x Preface

In sum, I did not aim at providing a historical account of the development of com-
binatory logic in this book. Instead of trying to follow previous presentations closely,
for the sake of historical accuracy, I intended to give an exposition in which the con-
cepts are introduced as the results require them. Although some of the results are
labeled by their usual labels, such as “Church–Rosser theorem,” I did not try to at-
tach a label to each claim, lemma and theorem in order to point to the first or to a
widely accessible publication. An attempt to conduct more vigorous labeling either
would have limited the scope of the presentation or would have opened the door for
misattributions due to minor (or even more significant) differences in the underly-
ing concepts. An extensive bibliography is included at the end of the book, which
also includes texts that are either exclusively historical or at least more historically
oriented than this book.

I wrote this book to give a state-of-the-art view of combinatory logic in the early
21st century. In order to make the book relatively easy to read, I started with an ele-
mentary introduction and I placed into the appendix various concepts and definitions
that are useful or occasionally presupposed in the main text of the book, but do not
belong to combinatory logic itself. I hope that this will help anybody to read the
book, who has some aptitude toward formal thinking.

Combinatory logic is not as widely taught as I think it should be. Therefore, a pur-
pose of this book is to serve as a readily accessible source of knowledge for experts
in logic, computer science, mathematics, philosophy and certain related disciplines,
who are perhaps, less familiar with this branch of logic.

Another potential use of the book, what I kept in mind during the writing, is as
a text in a course. The examples and exercises in the text are intended to facili-
tate learning combinatory logic, alone or in the context of a course. (The starring
of the exercises indicates the expected difficulty of their solutions.) The first cou-
ple of chapters of the book (perhaps, with a selection of further sections from later
chapters) covers topics that can provide the content of an undergraduate course on
combinatory logic. The whole book is suitable to be used as the main text for a grad-
uate course — at a beginning or advanced level, depending on the background of the
students. Because of the many connections combinatory logic has, I hope that the
book will also be used to supplement courses, for example, on philosophical logic,
on computability and on the foundations of mathematics.

My first acquaintance with combinatory logic happened in the early 1990s, when
I took a course of Raymond Smullyan, at Indiana University in Bloomington. The
power and elegance of combinatory logic quickly enthralled me.

The close connection between nonclassical logics and combinatory logic rein-
forced my interest in the subject. Among relevance logicians, it is common knowl-
edge that Alonzo Church invented the implicational fragment of the logic of relevant
implication (what he called “the theory of weak implication”), which corresponds
to types for his λI -calculus. J. Michael Dunn and Robert K. Meyer invented struc-
turally free logics and dual combinators in the 1990s. These logics both tighten the



Preface xi

connection between relevance logic and combinatory logic, and expand the bond
between combinatory logic and a wide range of nonclassical logics.

My own research results in combinatory logic concern some of the newer develop-
ments such as dual combinatory logic. The connection between nonclassical logics
and combinatory logic means that I always keep in mind combinators when I work on
a substructural logic. Some of my work and results in the proof theory of relevance
logic (and indirectly in the proof theory of classical logic) had been motivated by
combinatory logic and structurally free logics. The splice of combinatory logic and
relevance logic has proved fruitful in many ways. For example, J. Michael Dunn and
I have solved the famous problem of T→ , which remained open for half a century,
by combining insights from proof theory and combinatory logic.

I am indebted to Robert Stern, the acquiring editor for this book, for his patience
and for allowing me to ask for a new deadline (or two) for the submission of the
manuscript. (The project of writing this book was substantially delayed when —
somewhat unexpectedly — I had to teach a course on real ethics, that is, on formal
decision theory as part of my regular teaching duties at the University of Alberta.) I
am also grateful to Jennifer Ahringer for her help during the production process.

I am grateful to Graham Sullivan, who, as a research assistant, proofread parts
of the book and provided helpful comments and corrections. I am indebted to the
University of Alberta for awarding a grant from the Endowment Fund for the Future
Support for the Advancement of Scholarship Research Fund that allowed me to have
a research assistant for a couple of months at the time when the manuscript of the
book was nearing its completion.

The book was typeset using the program TEX (by D. Knuth) with the LATEX for-
mat. I also utilized various packages that were developed under the auspices of the
American Mathematical Society.

The actual writing of this book took place in Edmonton. I always enjoy the
prospect of having another snow fall, what can (and sometime does) happen here
as early as September and as late as June.

Edmonton, 2011 KB
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Chapter 1

Elements of combinatory logic

Functions are everywhere, and combinatory logic is one of the theories that make
them their objects of study. To start with, let us consider a simple function such as
+ , the addition of integers. + can be applied to numbers; for instance, 46 + 68 is
the result of this application, which is also denoted by 114. Then we can view +
as a certain map from ordered pairs of integers into integers, or, further, as a set of
ordered triples. From another perspective, + can be thought of as a rule to compute
the sum of two integers — indeed, this is how each of us first became acquainted
with + . In both cases, knowing that + is commutative and associative (and has
other properties) is useful in identifying seemingly different versions of + . Just as
light has a dual character — being a wave and being a beam of particles — functions
have two sides to them: they are collections of input–output pairs, and they are rules
for computation from inputs to the output.

Combinatory logic (henceforth, CL) is the logic of functions, in which the two
aspects of functions mentioned above are in constant interplay. Functions are the
objects in CL, and every object of CL can be thought of as a function. The functions
need not always be thought of as functions on numbers, though we will see in chapter
3 how to represent numerical functions in CL.

1.1 Objects, combinators and terms

The objects in CL are called terms, and they stand for functions. Some of the terms
cannot be divided into more elemental components: such terms are either constants
or variables. The only way to put terms together is via (function) application, and
the result of this operation is always a term.

Let us consider some examples from elementary algebra before proceeding to for-
mal definitions. The natural numbers are denoted, in the usual decimal notation, by
nonempty strings of digits like 0,1, . . . ,11, . . . ,98765, . . . . (In formalized arithmetic,
these numbers are denoted, respectively, by 0 and the successor function applied
sufficiently many times to 0 .) These expressions are constants, although in an ele-
mentary exposition they are not thought of as functions. Another kind of constants
are functions like + (addition), · (multiplication), − (subtraction), etc. The three
functions we listed are binary (i.e., each takes two arguments), but there are func-

1



2 Bimbó: Combinatory Logic

tions of other arities too. The absolute value function has arity 1 , that is, it is unary,
and we can have functions taking n arguments (where n is a positive integer). It is
just not that useful in practice to have a quinary addition, let us say +5 , that pro-
duces the sum of five numbers. (A quinary addition is easily emulated by the binary
addition, because + is associative.) Variables may enter into algebraic expressions
too, and they are often denoted by x,y,z,x0,x1,x2, . . . .

So far we emphasized some similarities between algebraic terms and combinatory
terms. They both may contain constants and variables. Each function takes a fixed
number of inputs (i.e., arguments), but different functions can have more or fewer
arguments than others. Also, the use of delimiters (such as parentheses) is common.
5+7 ·13 is ambiguous — unless we have agreed that · takes precedence over + . In
other words, (5 + 7) · 13 and 5 + (7 · 13) are different terms; moreover, their value
is different too: (5 + 7) ·13 is 156 , whereas 5 +(7 ·13) is 96 .

A notable difference between algebraic and combinatory terms is that in elemen-
tary algebra functions such as + are applicable to numbers only. That is, we would
dismiss as nonsensical (or as “a misprint”) something like + · (5+ ·) , where · seems
to have + as its argument and vice versa. We do not make any similar assumptions
about the nonapplicability of terms in CL. We may reiterate also that variables in CL
may stand for functions. This happens much more infrequently in algebra, except
perhaps in definitions of properties of functions. For instance, f (x,y) is called a
commutative operation when f (x,y) equals f (y,x) , for all x and y . This definition
applies to any binary operation; that is, the whole sentence is understood as if “for all
f ” were prefixed to it. Lastly, function application is a binary operation in CL that is
explicitly introduced (though typically suppressed in the notation). The more explicit
and more detailed analysis of function application in CL leads to several notions of
computing with terms.

We assume that the language of CL contains constants, typically, S and K . How-
ever, it may contain other constants too such as B , C , W , I and M — to name some.
These constants are called combinators. There might be other sorts of constants in
the language, including constants that are not definable from S and K (in a sense
that we will explain later). B , C , W , M and I are all definable from S and K . For
the definition of the set of terms, it is not particularly interesting which constants are
included in the language, except that the definition, of course, applies only to those
constants that are included. (We focus, especially in the first half of the book, exclu-
sively on combinators.) We also assume that there is a denumerable set of variables,
that is, there are infinitely many variables, but countably many (i.e., ℵ0 many). The
language includes a binary operation called function application that is denoted by
juxtaposition.

DEFINITION 1.1.1. The set of CL-terms (or terms, for short) is inductively defined
by (1)–(3).1

(1) If Z is a constant, then Z is a term;

1As usual, we leave tacit and hence omit mentioning that the least set generated by clauses (1)–(3) is the
set, that is defined. This will be our practice in what follows.



Chapter 1. Elements of CL 3

(2) if x is a variable, then x is a term;

(3) if M and N are terms, then so is (MN) .

We use uppercase sans serif letters for combinators. The letters chosen for par-
ticular combinators are often standard. To refer ambiguously to some combinator,
we use Z ; in other words, Z is a meta-variable for combinators.2 The lowercase let-
ters, x,y,z, . . . , with or without indices, serve as variables (as well as meta-variables
for variables). The uppercase letters M , N , P and Q , with or without indices, are
meta-variables for CL-terms in general. To put it differently, M can be instantiated
with x or I , but also with (S(x(xy))) , etc. The binary application operation figures
into the term (MN) in clause (3). We do not add a symbol like · or + to the term
that results from M and N , but the resulting term is enclosed in parentheses.

Example 1.1.2. S and K are terms, and so are the variables standing alone. These
terms are called atomic to distinguish them from the rest of the terms, which are
called complex or compound. Some of the latter are (Ix) , (x(yz)) , (zS) and ((SI)I) .

There are denumerably many atomic terms and there are denumerably many com-
plex terms; in total, the set of CL-terms is denumerable (i.e., the cardinality of the set
of CL-terms is ℵ0 ).

Exercise 1.1.1. Prove informally (or prove using structural induction) that every CL-
term either is atomic or starts with a ‘( ’.

Exercise 1.1.2. Sort the terms listed into the following categories: “atomic term,”
“complex term” and “nonterm” (i.e., an expression that is not a term). (x) , SKK , x12 ,
(xx))(((xx)x)x) , (((S(KS))K)(x(yz))) , (((BM)((BW)B))x) , ((((WM)N)N)W) , C ,
z , (((x1S)((x2S)x3))((x5(x4K))y)) .

Exercise∗1.1.3. Prove informally (or by structural induction) for every term that if the
term contains parentheses, then the parentheses are well-balanced. (The latter means
that there are equal numbers of ( ’s and ) ’s, and that scanning the term from left to
right, there are never more right parentheses that left ones.)

Exercise 1.1.4. Prove that not all expressions that contain well-balanced parentheses
are CL-terms.

We will often use meta-terms instead of terms, that is, expressions that contain
some of the meta-variables M , N , P , . . . . By those (meta-)terms, we refer to an
arbitrary term that instantiates the expression.

Another notational convention concerns omitting parentheses. Delimiters pile up
quickly, and then terms soon become practically unreadable. In CL, parentheses are
normally omitted from left-associated terms, that is, a term of the form ((MN)P)

2 Z is a schematic letter that stands for any of the combinators in the meta-language, that is, in the language
we use to talk about CL. We use ‘meta-variable’ similarly for other types of expressions.



4 Bimbó: Combinatory Logic

may be written as (MNP) . The outmost parentheses are, as a rule, omitted too;
continuing the example, we get MNP .3

Example 1.1.3. (Bxy)z is shorthand for (((Bx)y)z) . BWBx(BWBx) is a result of
omitting some parentheses from ((((BW)B)x)(((BW)B)x)) . The former shorthand
term could be further abbreviated by omitting the remaining pair of parentheses. The
latter, however, cannot be further simplified.

There are terms from which parentheses may be omitted in various ways; hence,
we may get more than one abbreviated term. On the other hand, the insertion of all
omitted parentheses leads to a unique term, which is important, because we do not
want to introduce ambiguity into our notation. In view of this remark, we will call
the abbreviated terms simply “terms” — unless the distinction between them is the
point, as in the next couple of exercises.

Exercise 1.1.5. Restore all the parentheses in the following abbreviated terms.
Kx(Wyz)y , xxx , (SI)yB , x14x152 , M1(M2(M3xyy)z) .

Exercise 1.1.6. Omit as many parentheses as possible from the following terms (with-
out introducing ambiguity). (((yz)(II))x) , ((Mx)((By)(Wz))) , (W(Ix145(Ix72))x58) ,
(((SK)K)x) , (((SM)M)(I(NP))) .

Exercise 1.1.7. Is there a term that has at least two (distinct) abbreviated forms such
that neither can be obtained from the other by omitting parentheses? (Hint: If the an-
swer is “yes,” give an example; if the answer is “no,” then prove that such abbreviated
terms cannot exist.)

Exercise 1.1.8. Prove informally (or by structural induction) that all terms contain an
even number of well-balanced parentheses, and that omitting parentheses preserves
this property.

Exercise 1.1.9. Give an example of an expression (from the language of CL) that is
not a term or an abbreviated term, but has an even number of parentheses. Give
an example of an expression (from the language of CL) that is not a term or an
abbreviated term, but contains well-balanced parentheses.

Now that we have a precise definition of CL-terms, it will be helpful to point
out a few more similarities and differences between algebraic terms and CL-terms.
Arithmetic functions such as multiplication and addition are binary, and the function
symbol is usually placed between the two arguments. We will see in the next section
that the arity of W is 2 ; nonetheless, the arguments of W follow the function symbol
(that is, the arguments come after W ). In general, putting a function (or relation)
symbol between its arguments is called infix notation. In CL, a prefix notation is used
instead, that is, functions precede (or are prefixed to) their arguments.

3We parenthesize M , N , P , . . . , as if they were atomic terms — as long as they have not been instantiated.
This, of course, does not imply that they have to be replaced or instantiated by atomic terms.
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In mathematics, in general, there is great variation as to where the arguments of
a function are located. Consider as examples exponentiation, logarithmic functions,
integrals and derivatives. For less frequently used functions, the notation is less id-
iosyncratic: an n -ary function may be simply denoted by f (x1, . . . ,xn) . If f were
a constant in CL, then the term in which the function f is followed by the argu-
ments x1, . . . ,xn would look like (...( f x1) . . .xn) . In other words, the commas are all
dropped and a pair of parentheses surrounds a function applied to an argument rather
than a series of arguments.

Exercise 1.1.10. Assume that # and ∗ are combinatory constants (of arity 2) that
stand, respectively, for addition and multiplication in CL. (a) Translate the following
arithmetical terms into CL. z + z , x · y , (x + y) · x , x1 · (x2 · x3 · x3 + x4 · x5 + x7) ,
x · (x + y) . (b) Translate the following terms from CL into arithmetics. #x(#xx) ,
(∗(#yz))((#x)y) , ∗(∗(∗(∗(∗xz)y)y)x)(yx) , #M(N#P) , ##(∗KI)(∗K∗) .

We have not exhausted the range of investigations of syntactic properties of terms.4

However, we introduce here yet another syntactic concept. Informally, M is a sub-
term of N if M is itself a term and M is part of N .

DEFINITION 1.1.4. The subterm of relation on the set of CL-terms (i.e., M is a
subterm of N ) is defined inductively by (1)–(5).

(1) x is a subterm of x ;

(2) Z is a subterm of Z ;

(3) M is a subterm of the terms (NM) and (MN) ;

(4) (NP) is a subterm of (NP) ;

(5) if M is a subterm of N and N is a subterm of P , then M is a subterm of P .

All subterms of a term are themselves terms. Terms have more that one subterm —
unless they are atomic; and all terms are subterms of infinitely many terms. The joint
effect of (1), (2) and (4) is that every term is a subterm of itself, which may appear
strange at first (given the ordinary meaning of “sub-”). However, the reflexivity of the
“subterm of” relation is intended, because it simplifies some other definitions. (The
notion of a proper subterm is also definable — see section A.1.) Clause (5) means
that the “subterm of” relation is transitive; indeed, it is a partial order on the set of
terms.

Exercise 1.1.11. List all the subterms of each of the following terms. (x(Wx)y) ,
yy(y(yy)) , (S(KW)S)(BWW) , zS(yS)(xWSK) , PM((PN)(PP))M , WMx(NNPPy) ,
(BM(x)(NM)) .

4Some further notions and definitions concerning terms, such as the definition of left-associated terms,
the definition of occurrences of terms, the definition of free occurrences of a variable, etc., may be found
in section A.1 of the appendix.
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We stated but did not prove that the “subterm of” relation is a partial order.
Granted that reflexivity and transitivity are established, it remains to show that the
relation is antisymmetric. This is the content of the next exercise.

Exercise 1.1.12. Prove that if M is a subterm of N and N is a subterm of M , then M
is the same term as N .

Exercise 1.1.13. Complex CL-terms have more than one term that is their subterm.
Define inductively an operation that gives the set of subterms for a term.

Exercise 1.1.14. Exercise 1.1.11 in effect asked you to list the elements of the set of
subterms of seven terms. Give another definition of the set of subterms of a term
using the “subterm of” relation.

1.2 Various kinds of combinators

Combinators are characterized by the number of arguments they can have (i.e.,
their arity) and by the effect they have when applied to as many arguments as their
arity. The arity of a combinator is always a positive integer. For example, I is a
unary combinator, whereas S takes three arguments.

The effect of the application of a combinator is given by its axiom. A combinatory
axiom consists of two terms with a symbol (such as B ) inserted between them. The
following table shows the axioms of some well-known combinators.5

IxB x BxyzB x(yz) SxyzB xz(yz)
KxyB x CxyzB xzy WxyB xyy
MxB xx B′xyzB y(xz) JxyzvB xy(xvz)

The terms on the left-hand side of the B tacitly indicate the arity of the combina-
tor, because the combinator precedes as many variables as its arity. Notice also that
these variables are not assumed to be the same. For instance, we have the term Wxy
(not Wxx ) on the left-hand side of the B on the second line.

The term on the right-hand side in an axiom shows the term that results after the
application of the combinator. In the resulting terms, some of the variables may
be repeated, omitted, or moved around. All the combinators listed above (but not
all combinators in CL) have the property that their application does not introduce
new variables and the resulting term is built solely from some of the variables that
appeared as their arguments. Such combinators are called proper. Some combinators
that are not proper (i.e., improper), are extremely important, and we will return to
them later. However, they are the exceptions among the improper combinators.

5 B′ is not a single letter, and this combinator is sometimes denoted by Q . B′ is closely related to B ; this
explains the notation, which we retain because it is widely used.
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Variables are used in logic when there is an operator binding them or there is a rule
of substitution. CL contains no variable binding operators, which is one of the best
features of CL; however, substitution is a rule. The combinatory axioms above gave
a characterization of applications of combinators to variables only, but of course, we
would like combinators to be applicable to arbitrary terms. Substitution ensures that
this really happens, as we illustrate now.

Example 1.2.1. I(yz) B yz is an instance of the axiom for I with yz substituted for
x in both terms (that is, in Ix and in x ) in the axiom. Another instance of the same
axiom is I(y(xz)) B y(xz) . (Notice that the presence of x in the term that is being
substituted is unproblematic, and there is no danger of “circularity” here.)

We get yet another example by substituting I for x , M for y and z for z (or
leaving z as it is) in the axiom for B . BIMz is the left-hand side term, and I(Mz)
is the right-hand side term. The latter term can be viewed also as obtained from the
left-hand side term in the axiom for I by substituting Mz for x , which then gives Mz
on the right.

The last example shows that we may be interested in successive applications of
combinators to terms. It also shows that substitution in distinct terms may result in
the same term. Furthermore, the same term may be substituted for different variables;
hence, the use of distinct variables in the axioms is not a restriction at all, but rather
a way to ensure generality. The informal notion of substitution may be made precise
as follows.

DEFINITION 1.2.2. (SUBSTITUTION) The substitution of a term M for the vari-
able x in the term N is denoted by NM

x , and it is inductively defined by (1)–(4).

(1) If N is x , then NM
x is M , (i.e., xM

x is M );

(2) if N is y and y is a variable distinct from x , then NM
x is N , (i.e., yM

x is y );

(3) if N is Z , then NM
x is N , (i.e., ZM

x is Z );

(4) if N is (P1P2) , then NM
x is (P1

M
x P2

M
x ) , (i.e., (P1P2)M

x is (P1
M
x P2

M
x ) ).

Substitution is a total operation in CL. There is no restriction on the shape of N
or on occurrences of x in N in the definition, though the result of the substitution,
in general, will depend on what N looks like. Substitution can be summed up infor-
mally by saying that all the x ’s in N (if there are any) are turned into M ’s.

Substitution is a much more complicated operation in systems that contain a vari-
able binding operator — such as λ -calculi or logics with quantifiers. Substitution
was not very well understood in the early 20th century, and one of the motivations
for combinatory logic — especially, in Curry’s work in the 1930s — was the clarifi-
cation of substitution. Another motivation — mainly behind Schönfinkel’s work —
was the elimination of bound variables from first-order logic. These two problems
turn out to be one and the same, and the general solution in both cases leads to a com-
binatorially complete set of combinators. (We return to combinatorial completeness
in the next section; see in particular definition 1.3.8 and lemma 1.3.9.)
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Sometimes, it is convenient to substitute at once for more than one variable in a
term. This operation is called simultaneous substitution. A simultaneous substitution
can always be emulated by finitely many single substitutions, which means that si-
multaneous substitutions can be viewed as convenient notational devices. (However,
see section A.1 for a more formal view of this operation.) We limit ourselves to a
few examples.

Example 1.2.3. (Sxyz)I,yy,J
x,y,z is SI(yy)J , that is, I is substituted for x , yy for y and

J for z . A more revealing case is when one of the substituted terms contains a
variable that is one of the variables for which a term is substituted simultaneously.
For instance, (Jxyzv)yy,W

x,y is the term J(yy)Wzv (rather than J(WW)Wzv ).

Other notations for the substitution of M for x include [x/M] (and [M/x] ) placed
in front of or after the term on which the operation is performed. For instance,
[x/M]N or [x1/M1,x2/M2]N are such notations, which may be clearer than NM

x and
NM1,M2

x1,x2 .6 (We will use the “slash-prefix” notation too.)

Exercise 1.2.1. Write out the details of the following substitutions step-by-step.
(a) (Ix(Wx))z

x , (b) [z/x(xy)]S(xx)(yy)(xy) , (c) [x1/M,x3/B,x4/W](x3x1(x3x4x3)) ,
(d) (Sxyz)K,K,x

x,y,z , (e) (CxyM)PPN
y .

Substitution affects all occurrences of a variable. Another operation on terms
affects selected occurrences of a subterm in a term, and it is called replacement. The
result of replacing some subterms of a term by a term is, of course, a term. For
our purposes, the visual identification of an occurrence of a subterm is sufficient —
together with the remark that a completely rigorous numbering or identification of
the subterms is possible.

Example 1.2.4. The result of the replacement of an occurrence of a subterm SKKx
in SKKx by Ix is Ix . (Recall that every term is its own subterm.) The result of
replacement of the first occurrence (from left) of x in KSx(Sx) by M is KSM(Sx) ,
whereas the replacement of the second occurrence of x yields KSx(SM) . This shows
that not all occurrences of a subterm (even if that term happens to be a variable)
need to be replaced. Lastly, the replacement of the second occurrence of BW in
BWBW(BWBW) by SKC gives us BWBW(SKCBW) . (This looks like, but in fact is
not, a typo!)

In the first example, the term we started with and the term we ended up with are
very closely related in a sense that will soon become clear. A similar relationship
holds in the second example, but only accidentally — because of the occurrence of
K in a specific spot in the term. The last two examples show no such relationship
between the input and the output terms. Generally speaking, replacement induces

6There are still other ways to denote substitution. Occasionally, ← or → is used instead of / . We
do not intend to give an exhaustive list here, but you should be aware that the notation for substitution is
anything but unvarying in the literature.
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desirable relationships between input and output terms only if such relationships
obtain between the replaced subterm and the newly inserted subterm.

The effect a combinator can have on a term may be thought of as replacing a term
that is on the left-hand side of the B by a term that has the form of the term on
the right-hand side of the B . More precisely, such replacements can be performed
within any terms according to instances of combinatory axioms.

The change that a combinator produces in a term is one of the most interesting
criteria for classifying combinators. (We have already seen another grounds for cate-
gorization: the arity of combinators and the comparison of the set of atomic subterms
of the terms on the left and on the right.)

Terms are “structured strings,” that is, they typically contain parentheses that show
grouping. Terms might differ with respect to the number of occurrences of some
subterm, the order of subterms or whether a subterm occurs at all in a term.

There are five salient features that we use to categorize combinators.7 The proper-
ties that are exemplified by I , B , K , C and M are the ones that are abstracted away
and turned into defining properties of classes of combinators.

Identity combinators. The letter I is intended to remind us that I is a unary identity
function. As such, the effect of an application of I is that we get back the input term.
(To put it more scintillatingly, I simply “drops off” from the term.) Functions like I
can be envisioned for any arity, and accordingly we call the n -ary combinator Z an
identity combinator when its axiom is

(...((Zx1)x2) . . .xn)B (...(x1x2) . . .xn).

The binary identity combinator may be taken to be BI , because BIyz B I(yz) and
I(yz) B yz are instances of the axioms for B and I . (We already hinted at that we
might consider series of replacement steps according to combinatory axioms; we will
make this precise in the next section when we will define reduction to be a transitive
relation.)

Associators. Recall that the only alteration B introduces into a term is association to
the right. A term comprising two atoms, such as two variables x,y or two constants
S,C , can be grouped only in one way. Hence, B has the least arity (3) among
associators. An n -ary combinator Z is an associator when Z ’s axiom is

Zx1 . . .xn BM and M is not a left-associated term.

For example, M may be a term (x1 . . .xn) with x1 through xn in the same order as
on the left-hand side of the B , but with at least one subterm of the form xiN , where
i 6= 1. The following Z1 and Z2 are both quinary associators.

Z1x1x2x3x4x5 B x1x2x3(x4x5)

7We follow the usual classification of combinators (that may be found, e.g., in Curry and Feys []) with
some slight modifications. A main difference is that we do not limit the use of labels such as “permutator”
to regular combinators.
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Z2x1x2x3x4x5 B x1(x2x3x4x5)

There are five possible ways to insert parentheses into a term that consists of four
atomic terms. Curiously, B by itself is sufficient to define three combinators that
yield the terms x1x2(x3x4) , x1(x2x3x4) and x1(x2(x3x4)) (when the arguments are
x1 , x2 , x3 and x4 in that order), and an application of B yields x1(x2x3)x4 . (Al-
though B is a ternary combinator, we may form a term from the terms Bx1x2x3 and
x4 , that reduces to the desired term.) B(x1x2)x3x4 B x1x2(x3x4) is an instance of B ’s
axiom, and so is BBx1x2 B B(x1x2) . Then BB , sometimes denoted as D , associates
x3 and x4 — leaving x1 and x2 grouped together.

Dx1x2x3x4 B x1x2(x3x4)

Exercise 1.2.2. Find combinators Z3 and Z4 that are composed of B ’s and have
axioms Z3x1x2x3x4 B x1(x2x3x4) and Z4x1x2x3x4 B x1(x2(x3x4)) .

Cancellators. An application of the combinator K to two arguments, let us say x
and y , results in the term x , that is, y gets omitted or cancelled. This feature may
seem spurious at first. However, when K and S are chosen as the only constants, the
potential to form terms with some subterms disappearing after an application of K is
essential. In general, an n -ary combinator Z is called a cancellator when the axiom
of Z is

Zx1 . . .xn BM with at least one of x1, . . . ,xn having no occurrences in M.

As another example of a cancellator, we could consider a combinator K2 such that
when it is applied to x and y the term y results. KIx B I is an instance of the
axiom for K ; hence, KI achieves the desired effect. We will see in chapter 3 that the
capability to omit the first or the second argument that is exhibited by K and KI , as
well as the definability of cancellators that retain only one of their n arguments is
paramount, in the representation of recursive functions by combinators.

Permutators. The combinators C and S both change the order of some of their
arguments. Recall that the right-hand side terms in their axioms are xzy and xz(yz) .
In the former, y and z are swapped; in the latter, an occurrence of z precedes an
occurrence of y . A combinator taking n arguments is a permutator when its axiom
is of the form

Zx1 . . .xn BM with M containing an x j preceding an xi (for 1≤ i< j ≤ n).

Of course, M may contain several occurrences of either variable, but in the definition
we only require the existence of at least one pair of occurrences with x j coming first.

Exercise 1.2.3. Find a ternary combinator (composed of the constants already intro-
duced) such that if applied to x,y and z it produces the term yzx , that is, “it moves
its first argument behind the two others.” This combinator is usually denoted by R
and its axiom is Rxyz B yzx . The effect of R can be produced by combining the
combinators that we already have.
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Exercise 1.2.4. Recall that the axiom for the combinator B′ is B′xyz B y(xz) . First,
define the combinator B′ using B and C . Next, find a combinator V that “reverses”
the effect of R , that is, an application of V to three arguments x , y and z yields zxy .
(Hint: B′ , B and some permutators may be useful in the latter definition.)

Duplicators. The combinators W and M “copy” or “duplicate” some of their ar-
guments. W ’s application results in two occurrences of its second argument in the
output term, and M returns two copies of its (only) input. An n -ary combinator Z is
a duplicator when the axiom for Z is

Zx1 . . .xn BM and M contains more than one occurrence of an xi (1≤ i≤ n).

Notice that S is not only a permutator, but a duplicator too, because xz(yz) has
two occurrences of z . S is an excellent example of a combinator that combines
various kinds of effects. Indeed, in the terminology of [], the last four categories
would be called “combinators with such-and-such effect.” (Cf. footnote 7.)

The only category of combinators in which the shape of the resulting term is com-
pletely specified by our definitions is that of identities. Combinators that integrate
various effects are useful, but it is also helpful to be able to dissect their blended ef-
fect into components. This will become transparent when we will delineate a subset
of the set of the terms that can model arithmetic functions.

Exercise 1.2.5. Classify all the combinators introduced so far according to their ef-
fects. (Hint: Some combinators will appear in more that one category.)

Exercise 1.2.6. Define or find combinators (among the already introduced ones) that
demonstrate each pair of properties that can appear together. (Hint: You need 6
combinators in total.)

We quickly mention two other classes of combinators now.

Regular combinators. Combinators may be thought of as affecting the arguments
of a function. Let us assume that f is a binary function; then f xy is the application
of f to x and y . C f xy takes f , x and y as arguments and yields f yx , that is, f
applied to its arguments in reversed order. This motivates singling out combinators
that keep their first argument “in the left-most place.” These combinators are called
regular, and the axiom for a regular combinator Z is

Zx1 . . .xn B x1M.

The combinators I , K , S , W , C , B , J and D are all regular, whereas B′ and R
are not. Therefore, it is obvious by now that putting together regular combinators
may give a combinator that is not regular. Because of the lack of preservation of
regularity under application, we will not place an emphasis on regular combinators
— despite the fact that they have an easy to understand informal meaning.

Proper combinators. We already mentioned this kind of combinators. Z is a proper
combinator if its axiom is

Zx1 . . .xn BM and M contains no variables other than x1, . . . ,xn.
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Informally speaking, combinators that introduce a new variable are hardly sensible
(because an arbitrary term can be substituted for that variable). On the other hand,
some combinators that introduce a constant make perfect sense and are important
(even though they are not proper). The archetypical combinator of this kind is the
fixed point combinator, often denoted by Y .8 The axiom for Y is Yx B x(Yx) . If x
is a function, then Yx is its fixed point when the axiom is viewed from right to left
(or B is thought of as some sort of equality). That is, by replacing Yx by z , x by f
and B by = we get f z = z .

Exercise∗ 1.2.7. Find a term built from some of the combinators mentioned so far
(save Y ) that has the effect of Y .

We introduced some combinators as constants at the beginning of this section.
These are the primitive combinators (also called undefined combinators) in our sys-
tem. However, we have used the term “combinator” informally to refer to complex
terms as well. We make this use official now. A complex term that is built entirely
from (primitive) combinators is called a combinator too.

The solution of the previous exercise shows that combining primitive proper com-
binators does not always preserve the property of being proper. Indeed, it is quite
easy to generate improper combinators this way.

Example 1.2.5. C and I are both proper combinators, but CII is not. This particular
combinator is interesting in the context of typed systems, because its principal type
schema is ((A→ A)→ B)→ B (i.e., specialized assertion), which is a theorem of
classical propositional logic and a characteristic axiom of the logic of entailment.

1.3 Reductions and combinatory bases

The understanding of the structure of CL-terms as well as of some of their other
syntactic features is vital to grasping CL. However, CL is more about relations be-
tween terms than about the terms themselves. We have used phrases such as “com-
binators cause changes in terms,” and such changes may be characterized by pairs
of terms: the first term is the term in which the combinator is applied and the second
term is the term that results. We can describe the axioms this way too, and then
define one-step reduction.

DEFINITION 1.3.1. If Z is an n -ary combinator, then a term of the form ZM1 . . .Mn
is a redex. The head of this redex is Z , and M1, . . . ,Mn are its arguments.

A redex may contain one or more combinators, because the terms that instantiate
the meta-variables M1, . . . ,Mn may or may not have combinators and redexes in

8This combinator is sometimes labeled as “fixpoint” or “paradoxical” combinator. We hasten to point out
that pure CL is consistent, and so the latter name might seem to cozen.
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them. Also, Z may occur several times in the term, but it surely occurs at least once.
That is, the definition is to be understood to mean that the particular occurrence of Z
that is apparent in the definition of a redex is the head of the redex.

DEFINITION 1.3.2. (ONE-STEP REDUCTION) Let Z be a primitive combinator
with axiom Zx1 . . .xn B P . If N is a term with a subterm of the form ZM1 . . .Mn ,
and N′ is N with that subterm replaced by [x1/M1, . . . ,xn/Mn]P , then N one-step
reduces to N′ . This is denoted by N B1 N′ .

The definition is not as complicated as it may first seem. We already (tacitly) used
B1 in examples to illustrate various types of combinators. When we said that I(yz)
yields yz , we applied one-step reduction. IM is a subterm of I(yz) with M standing
for yz . In I ’s axiom, x (on the right-hand side of the B ) plays P ’s role in the above
definition, and [x/yz]x is yz . Thus I(yz)B1 yz — it is really quite straightforward.

Example 1.3.3. The term BWBx(BWBx) contains two redexes. The head of one of
them is the first occurrence of B (counting from left to right); the head of the other
is the third occurrence of B . Having chosen the second redex for one-step reduction,
we get BWBx(BWBx) B1 BWBx(W(Bx)) . The latter term contains one redex only,
and after one-step reducing that, we get W(Bx)(W(Bx)) . (This term also has a redex,
because the one-step reduction created a new redex.)

Exercise∗ 1.3.1. Consider the term S(KS)KSKS . Perform as many one-step reduc-
tions as possible in every possible order. (Hint: Write out the one-step reductions as
sequences of terms.)

One-step reduction may yield a term with no redexes, and it may yield a term with
one or more remaining or new redexes. A one-step reduction of a duplicator may
increase the number of redexes — including the number of occurrences of some al-
ready existing redexes. In other words, the number of successive one-step reductions
counts the number of reduced redexes, but this number does not necessarily equal the
number of redexes in the starting term minus the number of redexes in the resulting
term. The term BWBx(BWBx) (from example 1.3.3) has two redexes. Once the first
redex from the left is reduced, the resulting term W(Bx)(BWBx) contains a brand
new redex headed by W .

Exercise 1.3.2. For each of the categories of combinators introduced in the previous
section, consider terms in which one of the redexes M has a head belonging to that
category, and all the other redexes are wholly inside arguments of the head of M .
Work out how the number of occurrences of the already existing redexes changes
with the one-step reduction of M .

Exercise∗ 1.3.3. Example 1.3.3 showed that one-step reduction may create new re-
dexes — not merely new occurrences of already existing redexes. Can combinators
from each category create new redexes? (Hint: If “yes,” then describe the shapes of
suitable terms before and after B1 .)
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The sample one-step reductions we performed on BWBx(BWBx) show that re-
dexes need not be reduced in the same order as they occur in a term from left to
right. This suggests that we may define reduction strategies or reduction orders to
have more control over the reduction process. One special order for reductions —
proceeding from left to right — has a theoretical importance in connection to normal
forms, as well as a practical significance in thinking about CL as modeling compu-
tation. Sequential programming languages force a linear order upon computational
steps; hence, the implicitly nondeterministic view projected by definition 1.3.2 may
not be always tenable.

One-step reductions surely entice us to contemplate successive one-step reduc-
tions. Indeed, given all the combinators with their diverse effects, what we are really
interested in is the compound outcome of their repeated applications.

DEFINITION 1.3.4. (WEAK REDUCTION) The reflexive transitive closure of the
one-step reduction relation is weak reduction, and it is denoted by Bw .

If R is a binary relation on a set A , then the reflexive closure of R , contains all
pairs of elements of A of the form 〈a,a〉 , for all a ∈ A . Accordingly, the weak
reduction relation holds between every CL-term and itself: M Bw M . A term that
has no redexes does not one-step reduce to any term, yet it weakly reduces to itself.
Terms M such that M B1 M are rare and exceptional. One example is MM .

If R is a binary relation on a set A , then R+ , the transitive closure of R includes
all pairs 〈a,c〉 in which the second element is “accessible” from the first one via
finitely many R -steps. If Rab1, . . . ,Rbnc for some b1, . . . ,bn , then R+ac . For CL-
terms, this means that M B1 N B1 P yields that M weakly reduces to P , that is,
M Bw P . Zero intermediate steps (i.e., n = 0) are allowed too, which means that any
one-step reduction is a weak reduction: M Bw N if M B1 N .

The reflexive transitive closure of R is usually denoted by R∗ . Thus Bw is defined
as B∗1 , but the usual notation is Bw .

The idea that every function can be viewed as unary is not reflected by weak
reduction, and that is why this relation is called “weak.” Neither the axioms for
combinators nor one-step reduction gives any hint as to how to compute with a term
in which a combinator is followed by fewer terms than its arity. For instance, we
have no clue how to apply the axiom for S to a term of the form SMN . We will
return to this issue later on and introduce other reductions. Weak reduction is the
most naturally arising reduction in CL, and Bw takes a central place in the theory.

In arithmetic, there is no need to worry about the order in which the arithmetic
operations are calculated — as long as the groupings within the term are respected.
For instance, (5 + 7) · (2 + 3) may be calculated stepwise as 12 · (2 + 3) or (5 + 7) ·
5, then the next step in both cases is 12 · 5, and the final result is 60 . There are
many other ways to calculate the final result if one throws in applications of various
identities (or “algebraic laws”), such as distributivity of multiplication over addition.
Then (5 + 7) · 5 = (5 · 5) + (7 · 5) , and further 25 + (7 · 5) = 25 + 35, etc. But our
concern was simply the order of performing arithmetical operations that are explicit
in an expression.
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One might wonder whether the CL-terms exhibit similar behavior. The short an-
swer is that they do. If a term N weakly reduces to P1 and P2 , then there is al-
ways a term M to which P1 and P2 both weakly reduce. This property is called
the confluence of weak reduction. We will return to this result, which is called the
Church–Rosser theorem, as well as to its proof, in the next section. The notion of a
normal form would make sense without the confluence of weak reduction. However,
the Church–Rosser theorem means that CL-terms are well-behaved; hence, normal
forms are even more important.

DEFINITION 1.3.5. (WEAK NORMAL FORM) A term M is in weak normal form,
in wnf (or in nf, for short), iff M contains no redexes.

Weak reduction is reflexive, that is, M Bw M is always a possible “further” step
in a sequence of weak reductions. One-step reduction is obviously not reflexive, and
it is useful to have a reduction — weak reduction — that is not just transitive, but
reflexive too. However, the steps that are justified by reflexivity may be likened to
having a “skip” step that can be inserted into chains of calculations at any point. Thus
the above definition delineates a subset of terms that do not yield a term under B1 .

Some obvious examples of terms in nf include the variables and the primitive
combinators, each considered by itself. Some complex terms are in weak nf too. xI
and SK are in nf, just as B(WI)(BWB) is. It is immediate that there are denumerably
many terms that are in nf, and there are denumerably many combinators that are
in nf.

Exercise 1.3.4. Prove — without assuming an infinite set of primitive constants —
that there are infinitely many (ℵ0 -many) combinators that are in nf. (Hint: You may
assume that at least S and K are among the primitives.)

Exercise 1.3.5. Consider the combinators I , B , S , K , C , W , M , B′ , J and D to be
primitive. Is there a subset of these combinators that does not yield infinitely many
combinators in nf?

There are terms that in one or more steps reduce to themselves. Let us note first
that II Bw I , which is nearly II except that a copy of I is missing from the term.
Replacing the identity combinator with the duplicator M we get the term MM , and
MMB1 MM — as we already noted above. Another example involves the combinator
W in the term WWW . In general, any combinator that produces a left-associated
term in which all arguments occur exactly once, except that one of the arguments
is duplicated, can be used (possibly, together with I ) to create at least one term
that reduces to itself. Such a term is WI(WI) , which produces a cycle via one-step
reductions: WI(WI) B1 I(WI)(WI) B1 WI(WI) . We have taken into account all the
redexes at each step. Therefore, WI(WI)Bw WI(WI) and WI(WI)Bw I(WI)(WI) , and
there is no other term to which WI(WI) reduces. Of course, I(WI)(WI)Bw I(WI)(WI) ,
which is another term built from W and I such that it reduces to itself.

Exercise∗1.3.6. Consider duplicators that yield a left-associated term with one argu-
ment being duplicated and all other arguments occurring exactly once. Prove that all
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such duplicators (just as M and W above) are suitable to generate terms that reduce
to themselves. (Hint: First, give a general description of the shape of the resulting
term from the axiom of such combinators.)

These examples show that a term may reduce to itself via one or more one-step
reductions. To emphasize again, B1 is not a reflexive relation. However, there is a
CL-term M (e.g., when M is in the set of combinatory constants) such that M B1 M .
If the set of combinators is combinatorially complete (or at least includes M or W ,
etc.), then there is a CL-term M such that M Bw M via a nonempty sequence of B1
steps. This means that another — but equivalent — way to characterize weak normal
forms would be to say that M is in weak normal form iff there is no term N , which
may be the same as M , such that M B1 N .

The above examples showed that MMB1 MM , but not WI(WI)B1 WI(WI) , though
WI(WI) Bw WI(WI) . Of course, M can be defined as WI , and now we make this
concept more precise.

DEFINITION 1.3.6. Let Z be a combinator with axiom Zx1 . . .xn BM . The CL-term
Z′ , which is built from (primitive) combinators, defines Z when Z′x1 . . .xn Bw M .

This definition involves B and Bw , which suggests that there may be a difference
in one-step reduction sequences when we take a combinator as undefined or when
we build it up (i.e., define it) from other primitives.

Exercise 1.3.7. (a) Define B and C from S and K (only). (b) Define S from B , W ,
C and I .

Exercise∗ 1.3.8. Show that J is definable from I , B , W and C , and the latter three
are definable from the first two (i.e., J and I ).

It is obvious that the combinator K is not definable from the combinators I , B ,
S , C , W , M , B′ , J and Y . This suggests that it is important to make clear which
combinators we assume to be available for us.

Exercise∗ 1.3.9. Prove informally (or by structural induction) that K is not definable
from the other combinators mentioned in the previous paragraph.

A set of combinators determines a set of combinators that are either in the set or
definable from it, which makes the next definition useful.

DEFINITION 1.3.7. Let B be a finite nonempty set of combinatory constants. B is
called a basis.

The set of CL-terms, given a basis, is defined as in definition 1.1.1, where the
constants are those in the basis. Exercise 1.3.7 asked you to show that B and C
are definable by CL-terms over the basis {S,K} , whereas exercise 1.3.8 asked you
to show the equivalence of the combinatory bases { I,J} and { I,B,C,W} . Just
as expected, two combinatory bases are equivalent iff all the combinators definable
from one are definable from the other. Defining the primitive combinators of the
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other basis (in both directions) is obviously sufficient to prove the equivalence of
two bases. Clearly, not all bases are equivalent, because K is not definable from
{ I,J} , for instance.

The set of all possible combinators is infinite. To substantiate this claim we could
simply consider all the identity combinators In (for all n ∈ N ) — there are ℵ0 -
many of them. An interesting question to ask is whether there is a basis, preferably
containing some “natural” or “not-too-complicated” combinators, that allows us to
build up all the possible combinators there are.

DEFINITION 1.3.8. A combinatory basis is combinatorially complete iff for any
function f such that f x1 . . .xn Bw M , where M is a CL-term built from some of
the variables x1, . . . ,xn , there is a combinator Z in the basis or in the set of combi-
nators definable from the basis such that Zx1 . . .xn Bw M .

f may be thought of as if it were a proper combinator itself. However, combinato-
rial completeness could be defined more broadly to include certain types of improper
combinators too. For example, occurrences of any proper combinator in M may be
allowed. In fact, a fixed point combinator is definable from any basis that is combi-
natorially complete in the sense of the above definition. In fact, in the definition, M
could be allowed to contain occurrences of f itself. The main purpose of the limita-
tion to proper combinators in the definition is to exclude from our consideration all
the weird improper combinators that introduce new variables into their reduct (i.e.,
into the term that results from an application of the combinator to sufficiently many
variables). We will see in chapter 2 that a fixed point combinator is definable from
S and K , which will underpin more firmly our thinking about combinatorial com-
pleteness as having a wider class of functions definable. (Cf. example 2.3.4, as well
as the exercises 2.3.2 and 2.3.5.)

LEMMA 1.3.9. The combinatory bases {S,K} , { I,B,C,W,K} and { I,J,K} are
combinatorially complete.

Proof: First, we outline the proof that the first basis is combinatorially complete.
Then we collect the facts that show that the latter two bases are equivalent to the first.
1. The idea behind showing that S and K suffice is to define a pseudo-λ -abstraction.
This is usually called bracket abstraction or λ∗ -abstraction.9 There are many ways
to define a λ∗ operation, and in chapter 4, we will look at some of those. The way the
λ∗ is defined determines its features; hence, it affects the properties of the transition
from the λ -calculus to CL. At this point our goal is merely to show that any function,
in the sense of definition 1.3.8, can be simulated by a combinator over the {S,K}
basis.

We introduce for the purpose of talking about functions such as f the notation
[x].M . The [x] is a meta-language λx , and the [ ] ’s around a variable motivate the

9Schönfinkel’s work preceded the formulation of the notion of an algorithm in a precise sense. Neverthe-
less, the steps in the elimination of bound variables described in his paper may be seen to amount to a
bracket abstraction algorithm.
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name “the bracket abstraction.” M may or may not contain an occurrence of x , and
[x].M is interpreted as the function that returns MN

x when applied to N . (MN
x is M

itself if x /∈ fv(M) .10)
If f is an n -ary function, and so f (x1, . . . ,xn) = M , where M is a term over the

set of variables {x1, . . . ,xn } , then to find a suitable combinator we iteratively form
[x1] . . . [xn]. f (x1, . . . ,xn) , which is just f , and on the other side of the equation we
form [x1] . . . [xn].M . We apply the algorithm below starting with xn and M . The
shape of the resulting combinatory term depends on the concrete M , hence, as a
general notation, we denote the result by [xn].M . If n > 1, then the next variable is
xn−1 and the term to which the algorithm is applied is [xn].M , etc. (Because of the
structure of the algorithm together with the finiteness of CL-terms, the recursion is
well-founded.)

(1) [xi].M′ is SKK , if M′ is xi ;

(2) [xi].M′ is KM′ , if xi does not occur in M′ (i.e., xi /∈ fv(M′) );

(3) [xi].M′ is S([xi].N)([xi].P) , if M′ is NP .

We think of clauses (1)–(3) as numbered and ordered. If there are two clauses that
are both applicable, then the earlier one is applied. Incidentally, (1) and (2) are never
both applicable to a CL-term, and the same is true of (1) and (3). However, (3) could
be applied to SKK , for example, giving S([xi].SK)([xi].K) . If we do not want to rely
on the order of the clauses, then xi ∈ fv(NP) may be added as a proviso to (3).

After each of x1, . . . ,xn has been abstracted, we have [x1] . . . [xn].M , which is the
combinator for f . To show that this is really the term that can be taken for f , we
show by induction that each subterm behaves as desired.

If the subterm is xi , and this is the variable that is being abstracted, then after
an application to the term N we have to get N , and SKKN Bw N . The other base
case is when M′ does not contain xi . Then the function should return M′ itself for
any N , and KM′N Bw M′ . If xi occurs in N or P when the term is (NP) , then by
the hypothesis of the induction, we assume that [xi].N and [xi].P are the CL-terms
corresponding to N ’s and P ’s xi abstracts. Then by applying S([xi].N)([xi].P) to
Q , we get ([xi].NQ)([xi].PQ) , as desired.
2. First, we note that the latter two bases are equivalent due to the results in exercise
1.3.8. Supplementing exercise 1.3.7 with two definitions, namely, SKK for I and
S(CI) for W , the equivalence of the first two bases follows. S and K can define any
f , and the combinators in the two other bases suffice too. qed

Definition 1.3.6 made precise the notion of defining a combinator from other com-
binators. The above lemma then implies that any proper combinator is definable

10We are cheating here a bit, because we have not yet defined substitution for λ -abstraction-like expres-
sions. However, [x].M eventually will turn out to be a combinator, so this small gap is harmless. —
We use the usual notation fv to denote the set of free variables of a term. See definition A.1.12 in the
Appendix.
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from the basis {S,K} . The combinatorial completeness of this basis and clear infor-
mal interpretation of S and K explain why these are the best-known combinators.

You have surely discovered that B is definable as S(KS)K (which is a solution to
a question in exercise 1.3.7). Now we look at the above procedure to find a definition
of B , where we think of this combinator as the function f . (We take x , y and z to
be x1 , x2 and x3 , that is, Bx1x2x3 B x1(x2x3) , but we continue to write x,y,z for the
sake of brevity.)

Example 1.3.10. The resulting term is x(yz) , and in the first round, we want to
find the CL-term for [z].x(yz) . z ∈ fv(x(yz)) , so (2) is not applicable, but neither is
(1), because the term is not simply z . Then by (3), we get S([z].x)([z].yz) . How-
ever, we are not finished yet, because there are two [z] ’s left. [z].x turns into Kx ,
by (2), and [z].yz yields S([z].y)([z].z) . Having put the pieces together, we obtain
S(Kx)(S([z].y)([z].z)) . Now we have gotten two [z] ’s again, but, of course, now they
are prefixed to different subterms than before. The finiteness of the subterms termi-
nates the abstraction of [z] , since [z].y gives Ky and [z].z gives SKK , by (2) and
(1), respectively. Having gathered the bits together, we can see that the meta-term
[z].x(yz) refers to the CL-term S(Kx)(S(Ky)(SKK)) .

Before we turn to the next abstraction, it may be helpful to emphasize that S(Kx)
(S(Ky)(SKK)) contains no occurrences of z or of [z] . Of course, [z] is a meta-
language λ , and so [z].x(yz) contains only bound occurrences of z — both in [z]
and in the term x(yz) . Another name for bound variables is apparent variables (as
distinguished from real variables). The CL-term S(Kx)(S(Ky)(SKK)) makes the
“nonreal” character of z transparent.

The next round is to find [y][z].x(yz) , where [z].x(yz) is the pure CL-term that we
already have: S(Kx)(S(Ky)(SKK)) . That is, we want to find the CL-term that the
meta-term [y].S(Kx)(S(Ky)(SKK)) denotes. Now we list — without detailed justifi-
cations — the meta-terms that successively result, and finally the CL-term itself.

(1) S([y].S(Kx))([y].S(Ky)(SKK))

(2) S(K(S(Kx)))(S([y].S(Ky))([y].SKK))

(3) S(K(S(Kx)))(S(S([y].S)([y].Ky))(K(SKK)))

(4) S(K(S(Kx)))(S(S(KS)(S([y].K)([y].y)))(K(SKK)))

(5) S(K(S(Kx)))(S(S(KS)(S(KK)(SKK)))(K(SKK)))

The CL-term in (5) is [y][z].x(yz) . The next round is to find [x][y][z].x(yz) , where
[y][z].x(yz) is the just-mentioned CL-term.

Exercise 1.3.10. Finish the example, that is, find the CL-term denoted by the meta-
term [x].S(K(S(Kx)))(S(S(KS)(S(KK)(SKK)))(K(SKK))) . (Hint: You should fi-
nally get a CL-term with 14 occurrences of S and 17 occurrences of K .)

It is already clear from the example, but even more from the exercise, that the term
that results by the algorithm in the proof of lemma 1.3.9 is not S(KS)K . We could
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obtain that term along the lines of the algorithm, if we would take some shortcuts, for
instance, simply replacing [z].yz by y . Recall that CL-terms are interpreted as func-
tions. z /∈ fv(y) , therefore, y as a function followed by an argument is yN , and [z].yz
followed by an argument is ([z].yz)N , which we stipulated (by a meta-language β -
reduction) to be [z/N]yz , which is yN . Having applied the above algorithm, we
would get the CL-term S(Ky)(SKK) . Once this term is applied to N , we have a
redex; thus, S(Ky)(SKK)N Bw KyN(SKKN) . The two new redexes yield y and N ,
respectively. In sum, S(Ky)(SKK)N Bw yN too.

With this insight, we want to find again [x][y][z].x(yz) . First, we get [x][y].S([z].x)
([z].yz) ; then we apply (1) and our shortcut to get [x][y].S(Kx)y . The next step is
another shortcut step, leading to [x].S(Kx) . Then we get S([x].S)([x].Kx) , and by
(2) and a shortcut, we get S(KS)K .

The step that we labeled “shortcut” here will be called η in the λ -calculus in chap-
ter 4. η may be thought of as an extensionality step, because we do not distinguish
between [x].Mx and M itself, when x /∈ fv(M) .

An informal rendering of the same abstraction process, which incorporates some
heuristics about taking into account the effect of the combinators S and K , goes like
this. We try to abstract z , and we know that SMNz Bw Mz(Nz) . We could prefix
S to the term x(yz) if x would be followed by z too, as in xz(yz) . But to insert a
dummy variable, we can use K , because KMzBw M . That is, Kxz(yz)Bw x(yz) , and
S(Kx)yzBw Kxz(yz) . S(Kx)yz is a left-associated term, and z is in the last argument
place, so as the next move we just drop it. But the same is true for S(Kx)y with
respect to y — we drop that variable too.

S(Kx) is very similar to x(yz) , if we look at x as S , y as K and z as x . So
we might take instead KSx(Kx) (since KSx(Kx)Bw S(Kx) ), and then S(KS)Kx , and
finally we drop x .

The example and the exercise show that the algorithm is not guaranteed to produce
the shortest possible definition for a function, but it surely produces one. In fact, the
above algorithm typically yields quite a lengthy term. Shorter terms may be obtained
by including η , as well as by expanding the combinatory basis and replacing (3) with
several other more refined clauses. (See chapter 4 for details.)

In arithmetic and in elementary mathematics, there is a weaker relation (than com-
puting the value of a function) that is commonly used, namely, equality. For an
illustration, let us consider 25 · 35 . Performing the exponentiations first, the ex-
pression computes to 32 · 243, which further yields 7,776. However, instead of
25 · 35 7→ 7,776 (which is, probably, not even a standard or widely used notation),
simply 25 ·35 = 7,776 is written. Sometimes, for instance, for encryption protocols
to work, it is interesting that given a positive integer — such as 7,776 — that number
can be factored into primes.11 As the numerical example suggests, we can consider
the converse of weak reduction, possibly, combined with Bw itself.

11There is a certain similarity between the lemma 1.3.9 and the prime factorization theorem in the sense
that both yield an expression that computes to the given term or number. A dissimilarity is that there are
only two primitive combinators ( S and K) , whereas there are infinitely many primes.
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DEFINITION 1.3.11. (ONE-STEP EXPANSION) If M B1 N , then [N/M]P , that is,
the replacement of an occurrence of N in P by M is a one-step expansion of P . We
will use the notation P 1C [N/M]P for one-step expansion.

Example 1.3.12. The CL-term xx can be one-step expanded to any of the following
terms. Ixx , x(Ix) , I(xx) , Mx , Kxyx , K(xx)y , Kxxx , etc.

It might seem that expansion is completely arbitrary, but of course, it is not. The
apparent arbitrariness is the result of the disappearance of the head of the reduced
redex. B1 leaves few clues about the redex that is gone; hence, the converse step
allows much freedom in creating a redex.

DEFINITION 1.3.13. (WEAK EXPANSION) The reflexive and transitive closure of
one-step expansion is the weak expansion relation on the set of CL-terms, which is
denoted by wC .

Exercise∗1.3.11. Prove that weak expansion is the converse of weak reduction. That
is, as we have suggested by the choice of notation, M Bw N iff N wCM .

Equality on numbers and other equality-like relations are equivalence relations,
that is, they are reflexive, transitive and symmetric. The relation Bw is, obviously,
not symmetric; neither is weak expansion symmetric.

DEFINITION 1.3.14. (WEAK EQUALITY) The transitive reflexive symmetric clo-
sure of B1 , the one-step reduction relation is weak equality, which is denoted by =w .

Weak equality may be inductively characterized by (1)–(4).

(1) If M B1 N , then M =w N ;

(2) if M is a CL-term, then M =w M ;

(3) if M =w N , then N =w M ;

(4) if M =w N and N =w P , then M =w P .

The last clause may be put succinctly as =+
w ⊆=w , where + denotes the transitive

closure of a binary relation.

Exercise 1.3.12. Verify that =w is the transitive symmetric closure of Bw . (Hint:
=w above is characterized starting with B1 in (1), and so is Bw in definition 1.3.4.)

Weak reduction is a stronger relation than weak equality in the sense that there are
ordered pairs of terms that belong to =w but not to Bw . For example, 〈x,Kxy〉 is in
the =w relation (i.e., x =w Kxy ), but not in the Bw relation (i.e., x 6Bw Kxy ). The
relationship between the binary relations we have so far on the set of CL-terms is

B1 (Bw (=w .

We have shown that both inclusions are proper (as the symbol ( indicates), but
we might wonder now whether we have too many pairs included in =w . Perhaps,
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all CL-terms are weakly equal to each other; that is, =w is the total relation on the
set of CL-terms. In fact, not all terms are weakly equal, and this is what consistency
means for CL. We will prove this and other consistency theorems in chapter 2.

Not only is the weak equality relation not the total relation, but we can keep adding
pairs of terms to it. We briefly mentioned η , which we justified by S(KM)(SKK)N
weakly reducing to MN . In effect, the shortcut allowed us to identify M and
S(KM)(SKK) by an appeal to what happens when these terms are applied to a term
N . In a similar fashion, definition 1.3.6 says that a combinator Z is defined by a
(compound) combinator Z′ if the application of Z′ to sufficiently many arguments
yields the same term as the application of Z (to the same arguments) does. As yet
another example, we may consider SKK and SKS . The two terms neither are the
same nor weakly reduce to each other (or to any other term, for that matter) — they
are in wnf. However, SKKx Bw x and SKSx Bw x . (It is not difficult to see that
any other combinator would do in the place of the second occurrence of S , without
affecting the result of weak reduction.)

DEFINITION 1.3.15. (EXTENSIONAL WEAK EQUALITY, 1) [M1/N1, . . . ,Mm/Nm]R
and R are extensionally weakly equal, denoted by [M1/N1, . . . ,Mm/Nm]R =wζ R , iff
for each pair of terms Mi and Ni (where 1 ≤ i ≤ m ∈ N ), there is an ni (where
ni ∈ N ) such that (1) holds.

(1) For all terms Pi,1, . . . ,Pi,ni , there is a Qi such that MiPi,1 . . .Pi,ni Bw Qi and
NiPi,1 . . .Pi,ni Bw Qi .

Extensionality means that the shapes of the CL-terms, or the exact reduction steps
are disregarded — as long as the end result remains the same. The name for this
equality is a bit lengthy, and perhaps even cumbersome; thus, we will tend to use
=wζ instead. The reason to use yet another Greek letter is that, roughly speaking, η
is an example of extensionality, but not a sufficiently general one. In chapter 5, we
add the rule ext to EQB1 . (This rule is sometimes labeled by ζ instead of ext .) If
we would add a rule based on η to the same calculus, then a weaker system would
result.

It may be useful to note that the definition stipulates that M and N reduce to
the same term whenever they are applied to the same terms P1, . . . ,Pn . We already
saw in the discussion of associators that, if a combinator is n -ary, then forming the
term with x1, . . . ,xn, . . . ,xn+m as arguments gives a term by weak reduction in which
xn+1, . . . ,xn+m remain unaffected. Thus, BP1 does not contain a redex headed by
B . However, for n = 3, BP1P2P3 Bw P1(P2P3) and so does S(KS)KP1P2P3 . Adding
further terms, P4,P5, . . . , does not prevent the two terms from reducing to the same
term. That is, the existence of some n is sufficient for the existence of infinitely many
(larger) n ’s, for which the defining condition in definition 1.3.15 holds.

The P ’s in the definition are arbitrary. But in the illustrations, we looked only at
what happens when two terms are applied to x or x1, . . . ,xn . However, our choice
of these variables represented another sort of generality: none of them occurred in
the terms like SKS or S(KS)K (the definitions for I and B ). In fact, the following
definition yields the same concept.


