

# 180 Days of PRACTICE

## **HANDS-ON**







5

## **HANDS-ON**





#### **Publishing Credits**

Corinne Burton, M.A.Ed., Publisher
Emily R. Smith, M.A.Ed., VP of Content Development
Véronique Bos, Creative Director
Lynette Ordoñez, Content Manager
Melissa Laughlin, Editor
Jill Malcolm, Graphic Designer
David Slayton, Assistant Editor

**Image Credits:** all images Shutterstock and/or iStock

#### **Standards**

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. © 2021 TESOL International Association

 $\ensuremath{\mathbb{C}}$  2021 Board of Regents of the University of Wisconsin System

The classroom teacher may reproduce copies of materials in this book for classroom use only. The reproduction of any part for an entire school or school system is strictly prohibited. No part of this publication may be transmitted, stored, or recorded in any form without written permission from the publisher.

Website addresses included in this book are public domain and may be subject to changes or alterations of content after publication of this product. Shell Education does not take responsibility for the future accuracy or relevance and appropriateness of website addresses included in this book. Please contact the company if you come across any inappropriate or inaccurate website addresses, and they will be corrected in product reprints.

All companies, websites, and products mentioned in this book are registered trademarks of their respective owners or developers and are used in this book strictly for editorial purposes. No commercial claim to their use is made by the author(s) or the publisher.



A division of Teacher Created Materials 5482 Argosy Avenue Huntington Beach, CA 92649 www.tcmpub.com/shell-education ISBN 978-1-4258-2532-4 © 2022 Shell Educational Publishing, Inc.

## **Table of Contents**

#### Introduction

| Research                                      |     |
|-----------------------------------------------|-----|
| The Importance of STEAM Education             | 4   |
| Defining STEAM                                |     |
| The Engineering Design Process                | 6   |
| How to Facilitate Successful STEAM Challenges |     |
| How to Use This Resource                      | 9   |
| Unit Structure Overview                       |     |
| Pacing Options                                |     |
| Teaching Support Pages                        |     |
| Student Pages                                 |     |
| Assessment Options                            |     |
| Standards Correlations                        |     |
| 180 Days of Practice                          |     |
| Physical Science                              | 4-  |
| Unit 1: Chemical Reactions                    |     |
| Unit 2: Gravity                               |     |
| Unit 3: Mixtures and Solutions                | 51  |
| Unit 4: Properties of Matter                  | 68  |
| Life Science                                  |     |
| Unit 5: Bones and Skeletons                   | 85  |
| Unit 6: Decomposers                           |     |
| Unit 7: Living in Extremes                    | 119 |
| Unit 8: Primary Producers                     | 136 |
| Earth and Space Science                       |     |
| Unit 9: Earth in Motion                       | 153 |
| Unit 10: Hurricanes                           | 170 |
| Unit 11: Sun and Stars                        | 187 |
| Unit 12: Water on Earth                       | 204 |
| Appendixes                                    |     |
| STEAM Challenge Rubric                        |     |
| Summative Assessment                          |     |
| Engineering Design Process                    | 223 |
| Digital Resources                             |     |
| References Cited                              |     |

## Research

#### The Importance of STEAM Education

STEAM education is a powerful approach to learning that continues to gain momentum and support across the globe. STEAM is the integration of science, technology, engineering, the arts, and mathematics to design solutions for real-world problems. Students must learn how to question, explore, and analyze natural phenomena. With these skills in hand, students understand the complexity of available information and are empowered to become independent learners and problem solvers.

The content and practices of STEAM education are strong components of a balanced instructional approach, ensuring students are college- and career-ready. The application of STEAM practices in the classroom affords teachers opportunities to challenge students to apply new knowledge. Students of all ages can design and build structures, improve existing products, and test innovative solutions to real-world problems. STEAM instruction can be as simple as using recycled materials to design a habitat for caterpillars discovered on the playground and as challenging as designing a solution to provide clean water to developing countries. The possibilities are endless.

Blending arts principles with STEM disciplines prepares students to be problem solvers, creative collaborators, and thoughtful risk-takers. Even students who do not choose a career in a STEAM field will benefit because these skills can be translated into almost any career. Students who become STEAM proficient are prepared to answer complex questions, investigate global issues, and develop solutions for real-world challenges. Rodger W. Bybee (2013, 64) summarizes what is expected of students as they join the workforce:

As literate adults, individuals should be competent to understand STEM-related global issues; recognize scientific from other nonscientific explanations; make reasonable arguments based on evidence; and, very important, fulfill their civic duties at the local, national, and global levels.

Likewise, STEAM helps students understand how concepts are connected as they gain proficiency in the Four Cs: creativity, collaboration, critical thinking, and communication.



## **Defining STEAM**

STEAM is an integrated way of preparing students for the twenty-first century world. It places an emphasis on understanding science and mathematics while learning engineering skills. By including art, STEAM recognizes that the creative aspect of any project is integral to good design—whether designing an experiment or an object.

## Science



Any project or advancement builds on prior science knowledge. Science focuses on learning and applying specific content, cross-cutting concepts, and scientific practices that are relevant to the topic or project.

#### **Technology**



This is what results from the application of scientific knowledge and engineering. It is something that is created to solve a problem or meet a need. Some people also include the use of technology in this category. That is, tools used by scientists and engineers to solve problems. In addition to computers and robots, technology can include nets used by marine biologists, anemometers used by meteorologists, computer software used by mathematicians, and so on.

#### **Engineering** /



This is the application of scientific knowledge to meet a need, solve a problem, or address phenomena. For example, engineers design bridges to withstand huge loads. Engineering is also used to understand phenomena, such as in designing a way to test a hypothesis. When problems arise, such as those due to earthquakes or rising sea levels, engineering is required to design solutions to the problems. On a smaller scale, a homeowner might want to find a solution to their basement flooding.



In this context, art equals creativity and creative problem-solving. For example, someone might want to test a hypothesis but be stumped as to how to set up the experiment. Perhaps you have a valuable painting. You think there is another valuable image below the first layer of paint on the canvas. You do not want to destroy the painting on top. A creative solution is needed. Art can also include a creative or beautiful design that solves a problem. For example, the Golden Gate Bridge is considered both an engineering marvel and a work of art.

#### **Mathematics**



This is the application of mathematics to real-world problems. Often, this includes data analysis—such as collecting data, graphing it, analyzing the data, and then communicating that analysis. It may also include taking mathematical measurements in the pursuit of an answer. The idea is not to learn new math, but rather to apply it; however, some mathematics may need to be learned to solve the specific problem. Isaac Newton, for example, is famous for inventing calculus to help him solve problems in understanding gravity and motion.

## **The Engineering Design Process**

The most essential component of STEAM education is the engineering design process. This process is an articulated approach to problem solving in which students are guided through the iterative process of solving problems and refining solutions to achieve the best possible outcomes. There are many different versions of the engineering design process, but they all have the same basic structure and goals. As explained in Appendix I of NGSS (2013), "At any stage, a problem-solver can redefine the problem or generate new solutions to replace an idea that just isn't working out."

Each unit in this resource presents students with a design challenge in an authentic and engaging context. The practice pages guide and support students through the engineering design process to solve problems or fulfill needs.



## How to Facilitate Successful STEAM Challenges

There are some basic rules to remember as your students complete STEAM challenges.

#### Both independent and collaborative work should be included.

Astronaut and inventor Ellen Ochoa is well-known for working a robotic arm in space. About that experience she said, "It's fun to work the robotic arm, in part because it's a team effort." She recognized that she was getting credit for something amazing that happened because of the collaborative work of hundreds of people.

Students need time to think through a project, both on their own and together with others. It is often best to encourage students to start by thinking independently. One student may think of a totally different solution than another student. Once they come together, students can merge aspects of each other's ideas to devise something even better.

#### Failure is a step in the process.

During the process of trying to invent a useful light bulb, Thomas Edison famously said, "I have not failed. I've just found 10,000 ways that won't work." People are innovating when they are failing because it is a chance to try something new. The STEAM challenges in this book intentionally give students chances to improve their designs. Students should feel free to innovate as much as possible, especially the first time around. Then, they can build on what they learned and try again.

Some students get stuck thinking there is one right way. There are almost always multiple solutions to a problem. For example, attaching train cars together used to be very dangerous. In the late nineteenth century, different solutions to this problem were invented in England and the United States to make the process safer. Both solutions worked, and both were used! Encourage students to recognize that there are usually different ways to solve problems. Discuss the pros and cons of the various solutions that students generate.



## How to Facilitate Successful STEAM Challenges (cont.)

#### Getting inspiration from others is an option.

Students worry a lot about copying. It is important to remind them that all breakthroughs come on the shoulders of others. No one is working in a vacuum, and it is okay to get inspiration and ideas from others. It is also important to give credit to the people whose work and ideas inspired others. Students may see this as cheating, but they should be encouraged to see that they had a great enough idea that others recognized it and wanted to build on it.

#### The struggle is real—and really important.

Most people do not like to fail. And it can be frustrating not to know what to do or what to try next. Lonnie Johnson, engineer and toy inventor, advises, "Persevere. That's what I always say to people. There's no easy route." Try to support students during this struggle, as amazing innovations can emerge from the process. Further, students feel great when they surprise themselves with success after thinking they were not going to succeed.

#### Materials can inspire the process.

Students may be stumped about how they are going to build a boat...until you show them that they can use clay. A parachute is daunting, but a pile of tissue paper or plastic bags might suddenly make students feel like they have some direction. On the other hand, materials can also instantly send the mind in certain directions, without exploring other options. For this reason, consider carefully the point at which you want to show students the materials they can use. You might want them to brainstorm materials first. This might inspire you to offer materials you had not considered before.

#### Some students or groups will need different types of support.

If possible, have students who need additional support manipulate materials, play with commercial solutions, or watch videos to get ideas. For students who need an additional challenge, consider ways to make the challenge more "real world" by adding additional realistic criteria. Or, encourage students to add their own criteria.



## **How to Use This Resource**

#### **Unit Structure Overview**

This resource is organized into 12 units. Each three-week unit is organized in a consistent format for ease of use.

#### **Week 1: STEAM Content**

| Day 1<br>Learn Content   | Students read text, study visuals, and answer multiple-choice questions.                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 2<br>Learn Content   | Students read text, study visuals, and answer short-answer questions.                                                                                      |
| Day 3<br>Explore Content | Students engage in hands-on activities, such as scientific investigations, mini building challenges, and drawing and labeling diagrams.                    |
| Day 4<br>Get Creative    | Students use their creativity, imaginations, and artistic abilities in activities such as drawing, creating fun designs, and doing science-related crafts. |
| Day 5<br>Analyze Data    | Students analyze and/or create charts, tables, maps, and graphs.                                                                                           |

#### Week 2: STEAM Challenge

| Day 1<br>Understand the Challenge | Students are introduced to the STEAM Challenge. They review the criteria and constraints for successful designs.                           |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Day 2<br>Research and Brainstorm  | Students conduct additional research, as needed, and brainstorm ideas for their designs.                                                   |  |
| Day 3<br>Plan and Design          | Students plan and sketch their designs.                                                                                                    |  |
| Day 4<br>Build and Create         | Students use their materials to construct their designs.                                                                                   |  |
| Day 5<br>Test and Evaluate        | Students conduct tests and/or evaluation to assess the effectiveness of their designs and how well they met the criteria of the challenge. |  |

#### **Week 3: STEAM Challenge Improvement**

| Day 1<br>Reflect            | Students answer questions to reflect on their first designs and make plans for how to improve their designs.                                        |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Day 2<br>Redesign           | Students sketch new or modified designs.                                                                                                            |  |
| Day 3<br>Rebuild and Refine | Students rebuild or adjust their designs.                                                                                                           |  |
| Day 4<br>Retest             | Students retest and evaluate their new designs.                                                                                                     |  |
| Day 5<br>Reflect and Share  | Students reflect on their experiences working through the engineering design process. They discuss and share their process and results with others. |  |

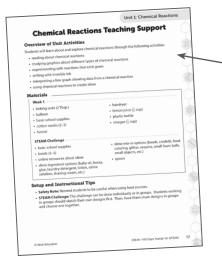
## **Pacing Options**

This resource is flexibly designed and can be used in tandem with a core curriculum within a science, STEAM, or STEM block. It can also be used in makerspaces, after-school programs, summer school, or as enrichment activities at home. The following pacing options show suggestions for how to use this book.

#### **Option 1**

This option shows how each unit can be completed in 15 days. This option requires approximately 10–20 minutes per day. Building days are flexible, and teachers may allow for additional time at their discretion.

|        | Day 1                       | Day 2                      | Day 3                 | Day 4               | Day 5                |
|--------|-----------------------------|----------------------------|-----------------------|---------------------|----------------------|
| Week 1 | Learn Content               | Learn Content              | Explore<br>Content    | Get Creative        | Analyze Data         |
| Week 2 | Understand<br>the Challenge | Research and<br>Brainstorm | Plan and<br>Design    | Build and<br>Create | Test and<br>Evaluate |
| Week 3 | Reflect                     | Redesign                   | Rebuild and<br>Refine | Retest              | Reflect and<br>Share |

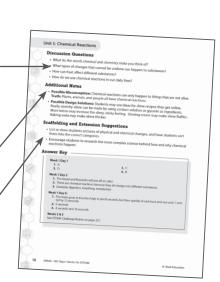

#### Option 2

This option shows how each unit can be completed in fewer than 15 days. This option requires approximately 45–60 minutes a day.

|        | Day 1                                                                  | Day 2                                 |
|--------|------------------------------------------------------------------------|---------------------------------------|
| Week 1 | Learn Content<br>Explore Content                                       | Get Creative<br>Analyze Data          |
| Week 2 | Understand the Challenge<br>Research and Brainstorm<br>Plan and Design | Build and Create<br>Test and Evaluate |
| Week 3 | Reflect<br>Redesign<br>Rebuild and Refine                              | Retest<br>Reflect and Share           |

#### **Teaching Support Pages**

Each unit in this resource begins with two teaching support pages that provide instructional quidance.




A clear overview of unit activities, weekly materials, safety notes, and setup tips helps teachers plan and prepare efficiently and with ease.

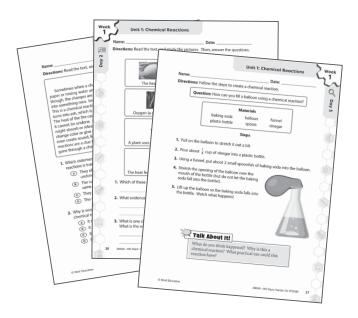
Discussion questions encourage students to verbalize their learning and connect it to their own lives.

Possible student misconceptions and design solutions further take the guesswork out of lesson planning.

> Differentiation options offer ways to support and extend student learning.

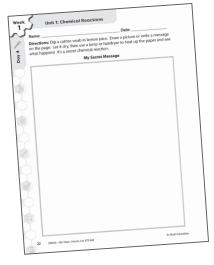


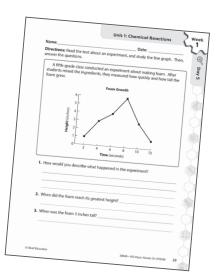
#### **Materials**


Due to the nature of engineering, the materials listed are often flexible. They may be substituted or added to, depending on what you have available. More material options require greater consideration by students and encourage more creative and critical thinking. Fewer material options can help narrow students' focus but may limit creativity. Adjust the materials provided to fit the needs of your students.

Approximate amounts of materials are included in each list. These amount suggestions are per group. Students are expected to have basic school supplies for each unit. These include paper, pencils, markers or crayons, glue, tape, and scissors.

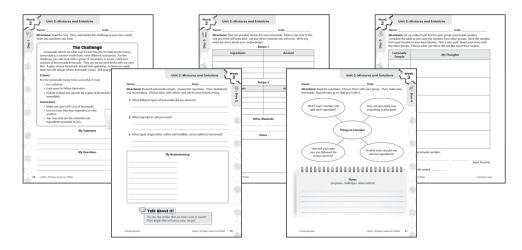
11


#### **Student Pages**

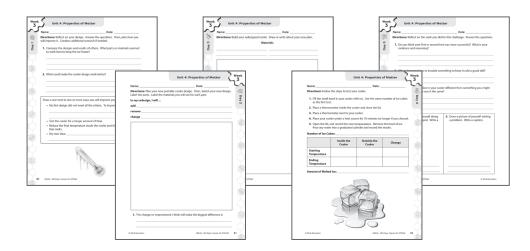

Students begin each unit by learning about and exploring science-related content.



Activities in **Week 1** help build background science content knowledge relevant to the STEAM Challenge.


Creative activities encourage students to connect science and art.






Graphs, charts, and maps guide students to make important mathematics and real-world connections.

## Student Pages (cont.)



**Week 2** introduces students to the STEAM Challenge. Activities guide students through each step of the engineering design process. They provide guiding questions and space for students to record their plans, progress, results, and thinking.

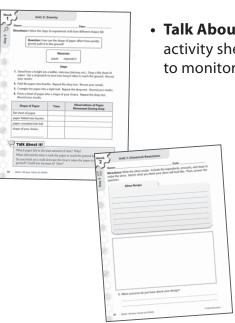


**Week 3** activities continue to lead students through the cycle of the engineering design process. Students are encouraged to think about and discuss ways to improve their designs based on their observations and experiences in Week 2.

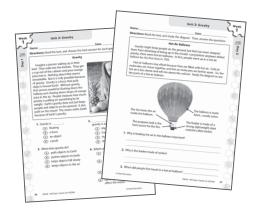


Staple all the student pages for each unit together, and distribute them as packets. This will allow students to easily refer to their learning as they complete the STEAM Challenges.




#### **Assessment Options**

Assessments guide instructional decisions and improve student learning. This resource offers balanced assessment opportunities. The assessments require students to think critically, respond to text-dependent questions, and utilize science and engineering practices.

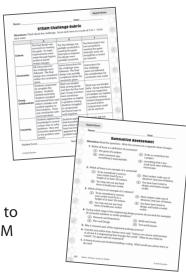

#### **Progress Monitoring**

There are key points throughout each unit when valuable formative evaluations can be made. These evaluations can be based on group, paired, and/or individual discussions and activities.

 Week 1 activities provide opportunities for students to answer multiple-choice and short-answer questions related to the content. Answer keys for these pages are provided in the Teaching Support pages.



 Talk About It! graphics on student activity sheets offer opportunities to monitor student progress.




• Week 2 Day 3: Plan and Design is when students sketch their first designs. This is a great opportunity to assess how well students understand the STEAM challenge and what they plan to create. These should be reviewed before moving on to the Build and Create stages of the STEAM Challenges.

#### **Summative Assessment**

A rubric for the STEAM Challenges is provided on page 221. It is important to note that whether students' final designs were successful is not the main goal of this assessment. It is a way to assess students' skills as they work through the engineering design process. Students assess themselves first. Teachers can add notes to the assessment.

A short summative assessment is provided on page 222. This is meant to provide teachers with insight into how well students understand STEAM practices and the engineering design process.



## **Standards Correlations**

Shell Education is committed to producing educational materials that are research and standards based. To support this effort, this resource is correlated to the academic standards of all 50 states, the District of Columbia, the Department of Defense Dependent Schools, and the Canadian provinces. A correlation is also provided for key professional educational organizations.

To print a customized correlation report for your state, visit our website at **www.tcmpub.com/administrators/correlations** and follow the online directions. If you require assistance in printing correlation reports, please contact the Customer Service Department at 1-800-858-7339.

#### **Standards Overview**

The Every Student Succeeds Act (ESSA) mandates that all states adopt challenging academic standards that help students meet the goal of college and career readiness. While many states already adopted academic standards prior to ESSA, the act continues to hold states accountable for detailed and comprehensive standards. Standards are designed to focus instruction and guide adoption of curricula. They define the knowledge, skills, and content students should acquire at each level. Standards are also used to develop standardized tests to evaluate students' academic progress. State standards are used in the development of our resources, so educators can be assured they meet state academic requirements.

#### **Next Generation Science Standards**

This set of national standards aims to incorporate science knowledge and process standards into a cohesive framework. The standards listed on page 16 describe the science content and processes presented throughout the lessons.

#### **TESOL and WIDA Standards**

In this book, the following English language development standards are met: Standard 1: English language learners communicate for social and instructional purposes within the school setting. Standard 3: English language learners communicate information, ideas and concepts necessary for academic success in the content area of mathematics. Standard 4: English language learners communicate information, ideas and concepts necessary for academic success in the content area of science.



## **Standards Correlations** (cont.)

Each unit in this resource supports all the following NGSS Scientific and Engineering Practices and Engineering Performance Expectations for 3–5.

| Scientific and Engineering Practices                 | Engineering Performance Expectations                                                                           |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Asking Questions and Defining Problems               | Define a simple design problem reflecting a need or                                                            |  |
| Developing and Using Models                          | a want that includes specified criteria for success and                                                        |  |
| Planning and Carrying Out Investigations             | constraints on materials, time, or cost.                                                                       |  |
| Analyzing and Interpreting Data                      | Generate and compare multiple possible solutions to a                                                          |  |
| Constructing Explanations and Designing Solutions    | problem based on how well each is likely to meet the criteria and constraints of the problem.                  |  |
| Engaging in Argument from Evidence                   | Plan and carry out fair tests in which variables are                                                           |  |
| Obtaining, Evaluating, and Communicating Information | controlled and failure points are considered to identify aspects of a model or prototype that can be improved. |  |

This chart shows how the units in this resource align to NGSS Disciplinary Core Ideas and Crosscutting Concepts.

| Unit                   | Disciplinary Core Idea                                                                                                                                                        | <b>Crosscutting Concept</b>                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Chemical Reactions     | PS1.B: Chemical Reactions                                                                                                                                                     | Cause and Effect                                |
| Gravity                | PS2.B: Types of Interactions                                                                                                                                                  | Cause and Effect                                |
| Mixtures and Solutions | PS1.A: Structure and Properties of Matter                                                                                                                                     | Scale, Proportion, and<br>Quantity              |
| Properties of Matter   | PS1.A: Structure and Properties of Matter                                                                                                                                     | Scale, Proportion, and<br>Quantity              |
| Bones and Skeletons    | LS4.D: Biodiversity and Humans                                                                                                                                                | Cause and Effect                                |
| Decomposers            | LS1.C: Organization for Matter and Energy Flow in Organisms<br>LS2.A: Interdependent Relationships in Ecosystems<br>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems | Energy and Matter; Systems<br>and System Models |
| Living in Extremes     | Living in Extremes  Living in Extremes  LS1.A: Structure and Function LS1.C: Organization for Matter and Energy Flow in Organisms                                             |                                                 |
| Primary Producers      | Primary Producers  PS3.D: Energy in Chemical Processes and Everyday Life LS1.C: Organization for Matter and Energy Flow in Organisms                                          |                                                 |
| Earth in Motion        | Earth in Motion ESS1.B: Earth and the Solar System                                                                                                                            |                                                 |
| Hurricanes             | ESS2.A: Earth Materials and Systems                                                                                                                                           | Systems and System Models                       |
| Sun and Stars          | ESS1.A: The Universe and Its Stars                                                                                                                                            | Patterns; Scale, Proportion, and Quantity       |
| Water on Earth         | ESS2.C: The Roles of Water in Earth's Surface Processes                                                                                                                       | Scale, Proportion, and<br>Quantity              |

## **Chemical Reactions Teaching Support**

#### **Overview of Unit Activities**

Students will learn about and explore chemical reactions through the following activities:

- reading about chemical reactions
- studying graphics about different types of chemical reactions
- experimenting with reactions that emit gases
- writing with invisible ink
- interpreting a line graph showing data from a chemical reaction
- using chemical reactions to create slime

#### **Materials Per Group** -

#### Week 1

- baking soda (2 tbsp., 29 g)
- balloon
- basic school supplies
- cotton swabs (2–3)
- funnel

- hairdryer
- lemon juice  $(\frac{1}{2} \text{ cup, } 125 \text{ mL})$
- plastic bottle
- vinegar ( $\frac{1}{2}$  cup, 125 mL)

#### **STEAM Challenge**

- basic school supplies
- bowls (2-3)
- online resources about slime
- slime ingredient options (baby oil, borax, glue, laundry detergent, lotion, saline solution, shaving cream, etc.)
- slime mix-in options (beads, confetti, food coloring, glitter, sequins, small foam balls, small objects, etc.)
- spoon

#### **Setup and Instructional Tips**

- Safety Note: Remind students to be careful when using heat sources.
- **STEAM Challenge:** The challenge can be done individually or in groups. Students working in groups should sketch their own designs first. Then, have them share designs in groups and choose one together.

#### **Unit 1: Chemical Reactions**

#### **Discussion Questions**

- What do the words chemical and chemistry make you think of?
- What types of changes that cannot be undone can happen to substances?
- How can heat affect different substances?
- How do we use chemical reactions in our daily lives?

#### **Additional Notes**

- **Possible Misconception:** Chemical reactions can only happen to things that are not alive. **Truth:** Plants, animals, and people all have chemical reactions.
- **Possible Design Solutions:** Students may use ideas for slime recipes they get online. Really stretchy slime can be made by using contact solution or glycerin as ingredients. More lotion may increase the slimy, sticky feeling. Shaving cream may make slime fluffier. Baking soda may make slime thicker.

#### **Scaffolding and Extension Suggestions**

- List or show students pictures of physical and chemical changes, and have students sort them into the correct categories.
- Encourage students to research the more complex science behind how and why chemical reactions happen.

#### **Answer Key**

#### Week 1 Day 1

**1.** A

**2.** D

**3.** C

**4.** B

#### Week 1 Day 2

- 1. The bread and fireworks will put off an odor.
- 2. These are chemical reactions because they all change into different substances.
- 3. Example: digestion, breathing, metabolism

#### Week 1 Day 5:

- 1. The foam grew to 6 inches high in just 8 seconds, but then quickly shrunk back and was only 1 inch tall by 12 seconds.
- 2. 6 seconds
- 3. 4 seconds and 10 seconds

#### Weeks 2 & 3

See STEAM Challenge Rubric on page 221.

| Name: | Da | te: |
|-------|----|-----|
| _     |    |     |

**Directions:** Read the text, and choose the best answer for each question.

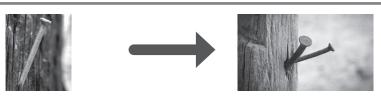
#### **Chemical Reactions**

Sometimes when a change occurs to a substance, it is physical. Cutting paper or mixing water and sugar do not change the substances. Other times, though, the changes are chemical reactions, and substances are converted into something new. Imagine a piece of wood that catches on fire and burns.

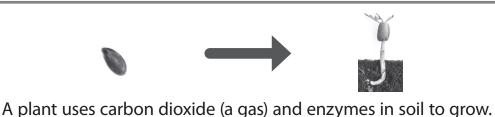
This is a chemical reaction because the wood turns into ash, which is a new substance. The heat of the fire caused the change, and it cannot be undone. Chemical reactions might absorb or release heat. They might change color or give off an odor. They might even create sound, light, or gas. Any of these reactions are a clue that a substance has gone through a chemical change.



- **1.** Which statement about chemical reactions is true?
  - A They often cannot be undone.
  - B The substance stays the same.
  - © They do not give off odors.
  - (D) The reaction is silent.
- **2.** Why is wood turning to ash a chemical reaction?
  - A It changes shape.
  - (B) It absorbs heat.
  - c It is a mixture.
  - D It becomes a new substance.


- **3.** What causes the chemical reaction of wood turning to ash?
  - (A) light
  - B gas
  - c) heat
  - sound
- **4.** Which of these is an example of a chemical reaction?
  - (A) slicing cheese
  - **B** baking cookies
  - c crumpling paper
  - chopping wood




#### **Chemical Reaction Examples**



The heat of an oven bakes the dough into bread.



Oxygen (a gas) and water make a metal nail rust over time.





The heat from a firework's lit fuse causes it to explode in the sky.

- **1.** Which of these chemical reaction(s) will give off an odor?
- **2.** What evidence is there that the above examples are chemical reactions?
- **3.** What is one chemical reaction you can think of that happens in your body? What is the evidence that it is a chemical reaction?

#### **Unit 1: Chemical Reactions**

| Name: | Date: |
|-------|-------|
|       |       |
| Name: | Date: |

**Directions:** Follow the steps to create a chemical reaction.

**Question:** How can you fill a balloon using a chemical reaction?

#### **Materials**

baking soda balloon funnel plastic bottle vinegar spoon

#### Steps

- 1. Pull on the balloon to stretch it out a bit.
- **2.** Pour about  $\frac{1}{4}$  cup (60 mL) of vinegar into a plastic bottle.
- 3. Using a funnel, put about 2 small spoonfuls of baking soda into the balloon.
- **4.** Stretch the opening of the balloon over the mouth of the bottle (but do not let the baking soda fall into the bottle!).
- 5. Lift up the balloon so the baking soda falls into the bottle. Watch what happens!



## ₹ Talk About It!

What do you think happened? Why is this a chemical reaction? What practical use could this reaction have?























## **Unit 1: Chemical Reactions**

| Name: | Date:                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------|
|       | b in lemon juice. Draw a picture or write a message use a lamp or hairdryer to heat up the paper and se hemical reaction. |
|       | My Secret Message                                                                                                         |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |
|       |                                                                                                                           |