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Preface

This book describes a numerical method, called the “discrete variational
derivative method,” which is for designing numerical schemes for certain par-
tial differential equations (PDEs, for short). The targets include, for example,
(i) the Korteweg–de Vries equation:

∂u

∂t
=

∂

∂x

(
1
2
u2 +

∂2u

∂x2

)

which describes shallow water waves, (ii) the nonlinear Schrödinger equation:

i
∂u

∂t
= −∂2u

∂x2
− γ|u|p−1u, γ ∈ R, p = 3, 4, . . .

for modeling optical waves, (iii) the Cahn–Hilliard equation:

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
, p < 0, q < 0, r > 0

which is a model of certain phase separation phenomena, and (iv) the Newell–
Whitehead equation:

∂u

∂t
(t, x, y) = µu − |u|2u +

(
∂

∂x
− i

2kc

∂2

∂y2

)2

u, µ, kc ∈ R

which simulates two-dimensional Bénard convection flow. Reflecting these
physical backgrounds, the PDEs have one striking feature in common; associ-
ated with the PDEs there are scalar functions, often referred to as “energies,”
that strictly remain constant or monotonically decrease as time evolves. In
fact, under appropriate conditions (i) the Korteweg–de Vries equation has the
energy conservation property:

d
dt

∫ (
1
6
u3 − 1

2
(ux)2

)
dx = 0,

and (ii) the nonlinear Schrödinger equation has the property:

d
dt

∫ (
−1

2
|ux|2 +

1
p
|u|p

)
dx = 0.

Similarly, (iii) the Cahn–Hilliard equation has the energy dissipation property:

d
dt

∫ (p

2
u2 +

r

4
u4 − q

2
(ux)2

)
dx ≤ 0,

ix



x

and (iv) the Newell–Whitehead equation has the property:

d
dt

∫∫ (
µ

2
|u|2 − 1

4
|u|4 +

∣∣∣∣ux − i
2kc

uyy

∣∣∣∣
2
)

dxdy ≤ 0.

In this book those PDEs are said to be “conservative” or “dissipative” PDEs,
respectively. (Note that this definition of “dissipative” is slightly different
from the definition in dynamical systems theory, where dissipative property
is defined with absorbing sets.)

In the numerical computation of such conservative or dissipative PDEs,
it is often preferable to employ some special numerical schemes that retain
the conservation/dissipation properties in a discrete sense; they are called
“conservative” or “dissipative” schemes throughout this book. The reason
for this preference is that, from the numerical point of view, the properties
often lead us to stabler computation; and for practitioners such as physicists
and engineers the motivation is that the properties themselves may be quite
important since they reflect important physical aspects of the modeled phe-
nomena. Thus, since around the 1970s, much effort has been devoted to the
development of conservative and dissipative schemes for various PDEs. In the
early phase of these researches, studies had been carried out for each indi-
vidual PDE; it was only during and after 1990s that more unified approaches
that can be applied to a certain large class of PDEs had been found. The
main topic of this book, the discrete variational derivative method, is one of
such newer developments.

Here we have to mention the case of ordinary differential equations (ODEs),
for which the history of research in the above context dates back to several
decades ago, and consequently the corresponding literature is far richer than
that of PDEs. For ODEs several unified approaches have been established,
not only for conservative and dissipative ODEs, but for many classes of ODEs
with various geometric structures. They include, for example, the symplec-
tic method for Hamiltonian systems, the Lie group method for constrained
mechanical systems, methods that preserve first-integrals, and methods for
ODEs on manifolds, among many others. Nowadays the methods are re-
garded to form a big group called “structure-preserving methods for ODEs,”
or “geometric numerical integration methods,” and more and more efforts are
being devoted to this area at an ever-increasing rate. An excellent textbook
for both beginners and experts is also available, which surveys the history and
the whole picture of structure-preserving methods for ODEs [83].

Compared to this maturity, the research in the PDE context seems to be
still at its beginning stage. Few classes for which structure-preserving inte-
gration is possible have been identified so far, and accordingly, “structure-
preserving method for PDEs” is not a popular expression yet. There is no
question, however, about the increasing importance of PDEs themselves, both
in mathematical and practical senses. We thus strongly believe that in the
next decade structure-preserving methods for PDEs will draw more and more



xi

interest, especially as the methods for ODEs come close to maximum matu-
rity. In accordance with this belief, this book is written as the first one that
is entirely dedicated to a structure-preserving method for PDEs.

This book is intended for both experts and non-experts. For both readers
an introductory Chapter 1 is prepared, where all central ideas and essential
examples are summarized. We believe that just glancing at this chapter will
suffice to enable the reader to understand the essence of the discrete varia-
tional derivative method. The subsequent chapters, 2 to 4, are devoted to
full description of the method: in Chapter 2 the PDEs which the method
covers are classified; in Chapter 3 the procedure of the method is described
in detail; in Chapter 4 the application examples are shown. Practitioners
may, after reading Chapter 1, jump to Chapter 4 and see how the method
is applied to typical problems. Chapters 5 to 7, including appendices, are
for especially interested readers; there some advanced topics and technical
details are summarized, which are too complicated to be included in the main
sections.

We hope to thank all those who have helped this project. In particu-
lar, Kazuo Murota and Masaaki Sugihara for encouraging us to write this
book, and continuously giving the authors many valuable comments. Masa-
take Mori, for guiding the authors to the rich world of numerical analysis.
Our sincere thanks also go to Tetsuya Ishiwata, Toshiyuki Koto, Taketomo
Mitsui, Yoshihisa Morita, Masaharu Nagayama, Shinji Odanaka, Takayoshi
Ogawa, Masami Okada, Hisashi Okamoto, Norikazu Saito, Takashi Sakajo,
and Takashi Suzuki, for valuable information related to the contents of this
book. We also thank our colleagues Chris Budd, Jialin Hong, Takanori Ide,
Brynjulf Owren, Reinout Quispel, Takaharu Yaguchi, among others, for fruit-
ful discussions and valuable suggestions. We are also grateful to some of our
students for drawing graphs, in particular Masayuki Hayashi, Satoshi Koide,
Yohei Kubo, Yuto Miyatake, Yuki Sawada, Yuuki Sekino, Ken Takeya, Genta
Tanaka, Eitaro Torii, Kenta Ueda, and Norio Yamaguchi. Leon LiMing, our
editor at CRC Press, was so patient about our delayed manuscript, and very
helpful during the whole project period. Finally, we acknowledge that this
book was partially supported by the Global COE “The Research and Train-
ing Center for New Development in Mathematics.”

We hope that this book be a help for all readers facing their problems and
looking for “good” numerical solvers.

Osaka and Tokyo, December 2010
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Chapter 1

Introduction and Summary

The key ideas of the discrete variational derivative method are summa-
rized with some illustrative examples. This chapter is a self-contained
summary of this book. After reading this introductory chapter, read-
ers are suggested to proceed to one of the subsequent chapters accord-
ing to their points of interest.

1.1 An Introductory Example: Spinodal Decomposition

Let us have a look at an illustrative example, the “spinodal decomposition.”
This is a chemi-physical phenomenon which occurs when two liquids with
different specific gravities are mixed. For example, when we put some oil and
water in a glass and shake it well, the two ingredients first intermingle with
each other, and then they are gradually separated. Figure 1.11 is a schematic
view of that process, where, for example, the ingredient A is water and B is
oil. Figure 1.2 shows an experimental result with polymer mixtures.

Mathematically, the phenomenon is modeled by the Cahn–Hilliard equa-
tion:

∂u

∂t
=

∂2

∂x2

(
pu + ru3 + q

∂2u

∂x2

)
, x ∈ (0, L), t > 0, p < 0, q < 0, r > 0. (1.1)

The solution u(x, t) describes the ratio of one component (oil, for example)
to the other (water). Here we limit ourselves to the one-dimensional case,
for simplicity of argument. We impose the boundary conditions below on the
problem:

∂u

∂x
=

∂3u

∂x3
= 0, x = 0, L. (1.2)

1Reprinted figure with permission from H. Tanaka and T. Nishi, Direct determination
of the probability distribution function of concentration in polymer mixtures undergoing
phase separation, Phys. Rev. Lett., 59, 692-695(1987). Copyright (1987) by the American
Physical Society.

1
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Initial Stage Phase separated structure

A + B

A

B

FIGURE 1.1: Schematic view of the spinodal decomposition.

FIGURE 1.2: Temporal change of phase-separated structure of mixtures
of polystyrene and polyvinyl methyl ether [163]. Bar corresponds to 20 µm.
(a)–(d) structures at 480, 720, 1200, and 2400 s after quench, respectively.
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It is not easy to integrate the Cahn–Hilliard equation numerically [70].
The right hand side of (1.1) includes a diffusion term puxx whose coefficient
is negative (recall p < 0). This means that in the numerical integration
we have to solve a diffusion equation in the negative time direction, which
is obviously numerically unstable. In order to illustrate this, let us try an
explicit Euler scheme as the simplest example. Let the spatial discretization
width be ∆x = L/N , where N is the number of the spatial grid points, and
denote the time mesh width by ∆t > 0. We denote the approximate solution
by Uk

(m) ≅ u(k∆x,m∆t) (k = 0, 1, . . . , N, m = 0, 1, 2, . . .). We also write

U (m) =
(
U

(m)
0 , . . . , U

(m)
N

)⊤
. Then the Euler scheme reads as follows.

Scheme 1.1 (Standard Euler scheme for Cahn–Hilliard equation)
Given an initial data U (0), the approximate solutions U (m) are calculated by,
for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

(
pUk

(m) + r (Uk
(m))3 + q δ

〈2〉
k Uk

(m)
)

,

k = 0, . . . , N, (1.3)

with the discrete boundary condition corresponding to (1.2):

δ
〈1〉
k Uk

(m) = δ
〈3〉
k Uk

(m) = 0, k = 0, N. (1.4)

The symbols δ
〈p〉
k (p = 1, 2, 3) mean the standard second-order central dif-

ference operators for ∂p/∂xp, which are explicitly written as

δ
〈1〉
k fk =

fk+1 − fk−1

2∆x
, (1.5)

δ
〈2〉
k fk =

fk+1 − 2fk + fk−1

(∆x)2
, (1.6)

δ
〈3〉
k fk =

fk+2 − 2fk+1 + 2fk−1 − fk−2

2(∆x)3
. (1.7)

Figure 1.3 shows the result obtained by the scheme. In the example, the
parameters are p = −1.0, q = −0.001, r = 1.0, and L = 1, N = 50 (thus
∆x = 1/50). Two time mesh sizes: ∆t = 1/1200 and 1/12000 are tested. In
both graphs, the staggered line lying around u = 0 line is the initial pattern:

u0(x) = 0.1 sin(2πx) + 0.01 cos(4πx) + 0.06 sin(4πx) + 0.02 cos(10πx). (1.8)

The numerical solution with ∆t = 1/1200 (top graph) rapidly blows up, ex-
hibiting strong oscillation in only four or five steps. This hardly improves
even when we refine the time mesh; the numerical solution with ∆t = 1/12000
(bottom graph) also blows up in only six or seven steps.

Facing this difficulty, we have two options: one is to use some reliable ODE
solver which allows adaptive integration, after suitably discretizing the space
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 0

 1
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FIGURE 1.3: Numerical solutions of the Cahn–Hilliard equation by the
explicit Euler scheme: (top) ∆t = 1/1200; (bottom)∆t = 1/12000.
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variable. This might work, though it may need considerable computation
time because the package should be forced to choose very small time mesh
size. The other option—which is the basic concept throughout this book—is
to use some special scheme designed for stable integration of the equation.

To seek such a special scheme, let us cast a spotlight on a quantity, the
“free energy” or “local energy” of the problem:

G(u, ux) =
1
2
pu2 +

1
4
ru4 − 1

2
q(ux)2. (1.9)

We call its spatial integration:

J(u) =
∫ L

0

G(u, ux)dx (1.10)

the “global energy.” Note that J is a functional of u, but at the same time it
can be regarded as a function of t. The equation (1.1) can then be written as

∂u

∂t
=

∂2

∂x2

(
δG

δu

)
, (1.11)

where δG/δu is the (first) variational derivative of G(u, ux) obtained from the
following variation calculation.

∫ L

0

(G(u + δu, ux + δux) − G(u, ux))dx

=
∫ L

0

(
∂G

∂u
δu +

∂G

∂ux
δux

)
dx + O(δu2)

=
∫ L

0

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu dx +

[
∂G

∂ux
δu

]L

0

+ O(δu2)

=
∫ L

0

δG

δu
δu dx +

[
∂G

∂ux
δu

]L

0

+ O(δu2). (1.12)

The last equality defines δG/δu. The form (1.11) states that the evolution of
the solution is roughly a “gradient-flow”; it evolves in such a direction that
the global energy is decreased:

d
dt

J(u) =
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

= −
∫ L

0

(
∂

∂x

δG

δu

)2

dx +
[(

δG

δu

)
∂

∂x

(
δG

δu

)]L

0

≤ 0. (1.13)

Note that (∂/∂x)u = 0 and (∂/∂x)3u = 0 mean ∂G/∂ux = 0 and (∂/∂x)δG/δu =
0, and thus the boundary terms vanish thanks to the boundary condition (1.2).
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From the dissipation property, the next important proposition immediately
follows.

PROPOSITION 1.1 L∞-boundedness of solution
As to the solution of (1.1) under the boundary condition (1.2), we have this

a priori estimate :
∥u∥∞ < ∞, t > 0, (1.14)

where ∥ · ∥p (p = 1, 2, . . . ,∞) is the standard Lp norm.

PROOF Recalling p, q < 0, r > 0, we have the trivial identity:

p

2
u2 +

r

4
u4 ≥ −pu2 − 9p2

4r
.

Then by the energy dissipation property (1.13) we know for any t > 0,

J(u(x, 0)) ≥ J(u(x, t))

=
∫ L

0

{
1
2
pu2 +

1
4
ru4 − 1

2
q(ux)2

}
dx

≥
∫ L

0

{
−pu2 − 9p2

4r
− 1

2
q(ux)2

}
dx

= −p∥u∥2
2 −

9p2L

4r
− q

2
∥ux∥2

2. (1.15)

Thus we have

J(u(x, 0)) +
9p2L

4r
≥ −p∥u∥2

2 −
q

2
∥ux∥2

2.

Again recalling p, q < 0, r > 0, we see that

∥u∥2, ∥ux∥2 < ∞. (1.16)

Then with the aid of the Sobolev type inequality (see, for example, John [94]):

∥u∥2
∞ ≤ c

(
∥u∥2

2 + ∥ux∥2
2

)
,

which holds for every function u(·, t) ∈ H1(0, L), we obtain ∥u∥∞ < ∞.

In other words,

[Key observation 1]
The dissipation property prevents the solution’s blow-up.

This observation encourages us to seek a scheme which retains the dissi-
pation property, because it may also prevent the blow-up of the approximate
solution. We here present such a scheme. (At the time being, we do not
discuss how it is constructed. It will be covered in Chapter 4.)
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Scheme 1.2 (Dissipative scheme for Cahn–Hilliard equation) Given an
initial data U (0), the approximate solutions U (m) are calculated by, for m =
0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= δ

〈2〉
k

{
p

(
Uk

(m+1) + Uk
(m)

2

)
+ qδ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

+r

(
(Uk

(m+1))3 + (Uk
(m+1))2Uk

(m) + Uk
(m+1)(Uk

(m))2 + (Uk
(m))3

4

)}
,

k = 0, . . . , N, (1.17)

with the discrete boundary condition (1.4).

Scheme 1.2 has the desired discrete dissipation property.

PROPOSITION 1.2 Dissipation property of Scheme 1.2
Let us define a “discrete local energy” Gd : RN+1 → RN+1 by

Gd,k(U (m))
d≡ p

2
(Uk

(m))2 +
r

4
(Uk

(m))2 − q

2




(
δ+
k Uk

(m)
)2

+
(
δ−k Uk

(m)
)2

2


 ,

(1.18)
where Gd,k(U (m)) denotes the k-th element (the detail of this expression will
be explained soon in Section 1.3). We also define the discrete global energy
accordingly by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x, (1.19)

where
N∑

k=0

′′fk
d≡ 1

2
f0 + f1 + · · · + fN−1 +

1
2
fN (1.20)

is the trapezoidal rule. Then the solution by Scheme 1.2 satisfies the following
inequality.

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2, . . . . (1.21)

REMARK 1.1 Throughout this book, we basically adopt the trapezoidal
rule as our main summation rule. Other rules, for example, the rectangle rule,
can be also adopted. For example, when the periodic boundary condition is
applied, the trapezoidal rule naturally coincides with the rectangle rule, and
the latter is more convenient. Another example is the case where the use of
the rectangle rule substantially simplifies the treatment of discrete boundary
condition. This will be illustrated in Section 3.2.3.2.
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The proof of the proposition is left to Chapter 3 (generic theory) or Chap-
ter 4 (the specific Cahn–Hilliard case). With this dissipation property, and a
discrete Sobolev type inequality, we can prove that numerical solution never
blows up (we leave the detail of this discussion to Chapter 4.)

For the moment we only show some numerical results. Figure 1.4 shows the
result by Scheme 1.2 with a coarse time mesh ∆t = 1/1000 (other parameters
are the same as in the explicit Euler case). The calculation proceeds quite
stably, and a physically correct pattern (a phase separation) is obtained. Fig-
ure 1.5 shows the evolution of the energy. The discrete energy is properly
dissipated. For comparison, we present in Figure 1.6 the result obtained by
the explicit scheme. There the energy is not dissipative at all; it even blows
up. This fact agrees with the failure of the numerical computation.

-1

 0

 1

 0  0.5  1

u

x

0 step
5

10
15
20
25
30

100
1000
1100
1200
1300

-1

 0

 1

 0  0.5  1

u

x

1300 step
1500
1700
1800
1900
2000
2100

-1

 0

 1

 0  0.5  1

u

x

3000 step
10000

100000
200000

FIGURE 1.4: Numerical solutions of the Cahn–Hilliard equation by
Scheme 1.2 (∆t = 1/1000): (top-left) steps 0 to 1300 (top-right) 1300 to
2100 (bottom) 3000 to 200,000.

The Cahn–Hilliard example clearly shows the superiority of the specialized
scheme. The scheme preserves a discrete counterpart of the energy dissipation
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FIGURE 1.5: The evolution of the discrete energy in Scheme 1.2.
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FIGURE 1.6: The evolution of the discrete energy in Scheme 1.1.
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property, and the property is quite crucial for better numerical integration.
The same thing often happens also in many conservative problems (i.e., prob-
lems with conservation laws). Next we will see how dissipative or conservative
schemes, such as Scheme 1.2, can be constructed.

1.2 History

In this section, we briefly mention the related studies on the main subject
of this book.

First attempts on dissipative/conservative schemes, or more generally on
structure-preserving algorithms, focused on ordinary differential equations
such as Hamiltonian systems. For example, in the beginning of the 1970’s
Greenspan [77] considered strictly conservative discretization of some mechan-
ical systems. The method was then extended to general mechanical systems
by Gonzalez [74] and McLachlan–Quispel–Robidoux [126, 127] decades later.
A strong alternative to these works is the so-called symplectic method, which
is a specialized numerical method for Hamiltonian systems. Though sym-
plectic schemes are not strictly conservative, they are nearly conservative,
and provide us very effective ways to integrate Hamiltonian systems. For the
symplectic method, see Hairer–Lubich–Wanner [83], Sanz-Serna–Calvo [151]
and Leimkuhler–Reich [104]. Related interesting studies on nearly conserva-
tive numerical schemes include: Faou–Hairer–Pham [52] and Hairer [81].

After these successes on Hamiltonian ODEs, many other classes of ODEs
that have some intrinsic geometric structure have been identified, and structure-
preserving algorithms for these ODEs have been extensively studied. These
activities for ODEs are now also referred to as the “geometric numerical in-
tegration of ODEs,” and form a big trend in numerical analysis. Interested
readers may refer to Hairer–Lubich–Wanner [83] and Budd–Piggott [23].

In the PDE context, a number of studies on dissipative/conservative schemes
have been carried out on individual dissipative or conservative PDEs, since
around the 1970’s. Below are quite limited examples. Strauss–Vazquez [155]
presented a conservative finite difference scheme for the nonlinear Klein–
Gordon equation. Hughes–Caughey–Liu [89] presented a conservative finite
element scheme for the nonlinear elastodynamics problem. Delfour–Fortin–
Payre [35] presented a conservative finite difference scheme for the nonlinear
Schrödinger equation, then Akrivis–Dougalis–Karakashian [8] presented a fi-
nite element version of the scheme and proved the convergence of the finite
element scheme. Sanz–Serna [150] considered the nonlinear Schrödinger equa-
tion as well. Taha–Ablowitz [159, 160] presented conservative finite difference
schemes for the nonlinear Schrödinger equation and the Korteweg–de Vries
equation. Du–Nicolaides [39] presented a dissipative finite element scheme for
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the Cahn–Hilliard equation. Around the same time, in a completely different
context from above, studies on soliton PDEs such as the KdV equation were
done to find finite difference schemes that preserved discrete bilinear form or
Wronskian form, corresponding to the original equations; see, for example,
Hirota [85, 86]. They can be also regarded as structure-preserving methods.

Then during the 1990s, more general approaches that cover not only sev-
eral individual PDEs but also a wide class of PDEs have been independently
introduced by several groups. The discrete variational derivative method—
the main subject of the present book—is one of such methods, proposed by
Furihata–Mori [63, 64, 69, 65] around 1996 for PDEs with variational struc-
ture. The method has then been extended in various ways mainly by a
Japanese group including Furihata, Matsuo, Ide, and Yaguchi [66, 67, 68,
90, 91, 116, 119, 120, 121, 122, 165, 166, 167], and succeeded in proving its
effectiveness in various applications. At the same time, Gonzalez [75] pro-
posed a conservative method for some general class of PDEs describing finite-
deformation elastodynamics. There, the key is a special technique in time
discretization devised for ODEs by Gonzalez [74]. Another excellent set of
studies were given by McLachlan [129] and McLachlan–Robidoux [128], where
a general method for designing conservative schemes for conservative PDEs
based on their techniques on ODEs [126, 127] (and the related basic studies
Quispel–Turner [145] and Quispel–Capel [144]) was developed (see also the
recent related results: McLaren–Quispel [130], Quispel–McLaren [146], Celle-
doni et al. [26]). Jimenez [92] has also studied a systematic approach to obtain
discrete conservation laws for certain finite difference schemes.

Aside from strictly conservative or dissipative methods, several interest-
ing approaches for structure-preserving integration of PDEs have emerged
as of the writing of the present book. For a very comprehensive review in-
cluding these topics, see Budd–Piggot [23]. For Hamiltonian PDEs, a unique
approach was proposed by Marsden–Patrick–Shkoller [112] (see also Marsden–
West [113] for a good review), and it has been intensively studied by their
group. Their method is based on the discretization of the variational princi-
ple. Its name “variational integrator” is quite close to the discrete variational
derivative method, but these methods are quite different. For Hamiltonian
PDEs, there is another interesting emerging method, the “multi-symplectic
method,” developed by Bridges–Reich [22]. In the method, Hamiltonian PDEs
are transformed into a special “multi-symplectic form,” and then integrated
in such a way that the multi-symplecticity is conserved. This method can
be regarded as a generalization of the symplectic method for ODEs (see also
McLachlan [124]). For the recent literature in this context, see, for exam-
ple, [27, 87, 88] and the references therein.

Finally we would like to note that in this short summary we could by no
means cover all of the related studies. We recommend that interested read-
ers refer to several key reviews, such as Hairer–Lubich–Wanner [83], Budd–
Piggott [23], Leimkuhler–Reich [104], and Lubich [110], and consult their
references as well.
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1.3 Derivation of Dissipative or Conservative Schemes

In this section we demonstrate how numerical schemes that retain dissi-
pation or conservation properties are constructed. To avoid exhaustive dis-
cussion involving cumbersome symbols, we here limit ourselves to some typ-
ical PDEs, possibly ignoring some details. More precise description will be
found in Chapter 3 (generic theory) and Chapter 4 (application examples).
We consider the following four cases: first-order real-valued PDEs, first-order
complex-valued PDEs, systems of first-order PDEs, and second-order PDEs.

1.3.1 Procedure for First-Order Real-Valued PDEs

Suppose that u(x, t) is a real-valued function, and the local energy function
is given as a real-valued function G(u, ux). We define the associated global
energy by

J(u)
d≡

∫ L

0

G(u, ux)dx. (1.22)

Let us consider a real-valued PDE:

∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0. (1.23)

The equation (1.23) is dissipative in the sense that

d
dt

J(u) =
∫ L

0

δG

δu

∂u

∂t
dx +

[
∂G

∂ux

∂u

∂t

]L

0

= −
∫ L

0

(
δG

δu

)2

dx ≤ 0, (1.24)

if boundary conditions are set so that the boundary term [ · ]L0 vanishes. In
fact it does, for example, under the Dirichlet boundary condition u(0, t) =
u(L, t) = 0. Throughout this introductory chapter, we basically neglect
boundary terms for simplicity.

Let us construct a dissipative scheme, i.e., a scheme that keeps a discrete
version of the dissipation property, for the equation. Our strategy is based on
the following important observation:

[Key observation 2]
The dissipation property (1.24) immediately follows from the vari-
ational form (1.23).

In fact, in the proof of the dissipation property (1.24), the concrete form of the
energy G, and accordingly the concrete form of the PDE, are not relevant. The
variational form itself is the key in the dissipation property. This observation
leads us to a strategy summarized in Figure 1.7. The left half of the diagram
summarizes the continuous PDE case, which reads (starting from the top)
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[step 1] Define an energy G.

[step 2] Take its variation to obtain the variational derivative δG/δu.

[step 3] Define a PDE with the variational derivative. Then, as a conse-
quence (the up-pointing arrow), the energy dissipation property follows.

Our idea here is to simulate this round trip structure, from the energy G(u)
to its dissipation property via variational derivative, in a discrete setting. In
this way the method is “structure-preserving.” The right half of the diagram
reads

[step 1d] Define a discrete energy (as an approximation of the continuous
energy G).

[step 2d] Take its discrete variation to obtain the discrete variational
derivative.

[step 3d] Define a scheme with the discrete variational derivative. Then,
the discrete dissipation property should follow (again, denoted by the
up-pointing arrow).

As opposed to this structure-preserving strategy, the usual way of constructing
a scheme is to directly discretize the concrete form of the PDE (the bottom
right-pointing arrow from PDE to finite difference scheme). In such an way,
however, the beautiful round trip structure is highly likely to be destroyed,
and thus generally the desired dissipation property is lost.

Let us actually follow the strategy to construct a dissipative scheme for the
equation (1.23). To illustrate how the calculation goes exactly, we pick the
linear diffusion equation:

∂u

∂t
=

∂2u

∂x2
(1.25)

as a concrete example, which is of the form (1.23) with G(u, ux) = (ux)2/2.

[step 1d] Defining a discrete energy

By simply replacing u in G(u, ux) with Uk
(m), and ux with some finite

difference, we obtain a discrete energy Gd(U (m)). The subscript “d”, standing
for “discrete”, is added to distinguish this quantity from the continuous energy
G. The discrete energy Gd is a real-valued (N+1)-dimensional vector function
of U (m); we denote its each elements by Gd,k (k = 0, . . . , N). (See the example
below.)

Note that there are several possibilities in approximating ux, since there are
many difference operators representing the same differentiation. For example,
ux

2 can be

(δ〈1〉k Uk
(m))2, (δ+

k Uk
(m))2, (δ−k Uk

(m))2, or
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2
, (1.26)
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Continuous Calculus Discrete Calculus

energy function

G(u, ux)

dissipation property

d
dt

J(u) ≤ 0

--------
approx.

discrete energy function

Gd(U (m))

discrete dissipation property

Jd(U (m+1)) ≤ Jd(U (m))

?

variation

????????

discrete

variation

variational derivative

δG

δu

discrete variational derivative

δGd

δ(U (m+1),U (m))

?
definition

????????
definition

PDE

∂u

∂t
= −δG

δu

-
approx.

finite difference scheme

Uk
(m+1) − Uk

(m)

∆t

= − δGd

δ(U (m+1),U (m))k

-------- proposed strategy
- standard strategy

6

consequence

66666666

consequence

FIGURE 1.7: Standard strategy versus proposed strategy.
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where

δ
〈1〉
k fk =

fk+1 − fk−1

2∆x
, δ+

k fk =
fk+1 − fk

∆x
, δ−k fk =

fk − fk−1

∆x
(1.27)

are the standard difference operators for ∂/∂x. We can choose any of them.
Regardless of the choice, we will obtain a dissipative scheme. We must note,
however, that a different choice leads to a different scheme (see Remark 1.2).

In the concrete example of (1.25), let us choose a symmetric approximation:

(ux)2 ≅
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2
. (1.28)

Then the discrete local energy becomes

Gd,k(U (m)) =
1
2

(
(δ+

k Uk
(m))2 + (δ−k Uk

(m))2

2

)
, (1.29)

and the corresponding discrete global energy is

Jd(U (m)) =
N∑

k=0

′′Gd,k(U (m))∆x. (1.30)

[step 2d] Taking the discrete variation

Recall the continuous variation calculation (1.12), which is summarized as
∫ L

0

{G(u + δu, ux + δux) − G(u, ux)}dx

=
∫ L

0

δG

δu
δu dx + (boundary term) + O(δu2). (1.31)

We hope to simulate this in a discrete setting. That is, we hope to find an
identity:

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
∆x + (boundary term). (1.32)

At this point, readers need not fully understand the discrete symbols; they
will be introduced in Chapter 3. For now it is sufficient to just recognize the
correspondences between the continuous and discrete symbols:

Gd,k(U (m+1)) − Gd,k(U (m)) ⇔ G(u + δu, ux + δux) − G(u, ux),
δGd

δ(U (m+1),U (m))k

⇔ δG

δu
,

Uk
(m+1) − Uk

(m) ⇔ δu.
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The abstract identity (1.32) demands that the difference of the energies,

Gd,k(U (m+1)) − Gd,k(U (m)),

should be decomposable into the discrete version of δu,

Uk
(m+1) − Uk

(m),

and a discrete quantity which corresponds to the variational derivative, called
the “discrete variational derivative,”

δGd

δ(U (m+1),U (m))k

.

Later in Chapter 3, it is shown that in fact for any given Gd this decomposition
is possible.

In the case of example (1.25), the identity (1.32) can be easily found as
follows.

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
1
2

N∑

k=0

′′

(
(δ+

k Uk
(m+1))2 − (δ+

k Uk
(m))2

2
+

(δ−k Uk
(m+1))2 − (δ−k Uk

(m))2

2

)
∆x

=
1
2

N∑

k=0

′′

{
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+

k (Uk
(m+1) − Uk

(m))

+δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· δ−k (Uk

(m+1) − Uk
(m))

}
∆x

= −
N∑

k=0

′′

{
δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}
(Uk

(m+1) − Uk
(m))∆x

+ (boundary term). (1.33)

The symbol δ
〈2〉
k is the standard central difference operator for ∂2/∂x2 defined

by

δ
〈2〉
k fk =

fk+1 − 2fk + fk−1

(∆x)2
.

In (1.33) a trivial identity δ+
k δ−k = δ−k δ+

k = δ
〈2〉
k is used. The summation-by-

parts formula:

N∑

k=0

′′(δ+
k fk)gk∆x = −

N∑

k=0

′′fk(δ−k gk)∆x + (boundary term) (1.34)
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is used as well, which is a discrete analogue of the integration-by-parts for-
mula. The precise form of the boundary term is omitted here in order to
avoid complications. From (1.33), we find the concrete form of the discrete
variational derivative in the case of (1.25) as

δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
. (1.35)

Note that this in fact approximates the continuous version: δG/δu = −uxx.
This supports the view that the above calculation is in fact discrete variation.

[step 3d] Defining a scheme

Once the discrete variational derivative is found for a given discrete energy
Gd, a scheme is defined with it in an abstract manner, analogously to the
continuous one (1.23).

Scheme 1.3 (Dissipative scheme for (1.23)) With given initial data U (0)

and appropriate boundary conditions, we compute U (m) by, for m = 0, 1, 2, . . .,

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

, k = 0, . . . , N. (1.36)

This scheme keeps the desired dissipation property as follows. Observe
that the proof proceeds exactly analogously to the continuous case (1.24);
in particular, the concrete forms of the discrete energy function Gd and the
discrete variational derivative δGd/δ(U (m+1),U (m)) are not relevant. Only
the discrete variational structure matters.

PROPOSITION 1.3 Dissipation property of Scheme 1.3
Scheme 1.3 is dissipative in the sense that

Jd(U (m+1)) ≤ Jd(U (m)), m = 0, 1, 2 . . . . (1.37)

PROOF By the identity (1.32), we obtain

Jd(U (m+1)) − Jd(U (m))

=
1
∆t

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
∆x + (boundary term)

= −
N∑

k=0

′′

(
δGd

δ(U (m+1),U (m))k

)2

∆x

≤ 0. (1.38)
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In the second equality the boundary terms are assumed to vanish due to
some appropriate boundary conditions. In the last equality the scheme in
variational form (1.36) is used.

In the case of the linear diffusion equation (1.25), Scheme 1.3 reads

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
.

(1.39)
The concrete form of the discrete variational derivative has been obtained
in (1.35). The dissipation property is guaranteed by Proposition 1.3, where
the discrete energy function is given by (1.29).

Note that in this case the resulting scheme is just the standard Crank–
Nicolson scheme. Although we can say the project has successfully completed
in the sense that we obtained a stable scheme (the stability of this Crank–
Nicolson scheme is widely known, while it is also possible to prove it directly
by utilizing the discrete dissipation property), it is not so exciting in that the
obtained scheme is a trivial one. In more generic nonlinear problems, how-
ever, resulting schemes are non-trivial, and that is exactly where the discrete
variational derivative method is of considerable benefit.

REMARK 1.2 As noted [step 1d] (page 13), the definition of discrete
energy function is not unique, and a different choice will generally leads us to
a different scheme. For example, let us approximate

(ux)2 ≅ (δ〈1〉k Uk
(m))2, (1.40)

instead of (1.28); that is, we start from the discrete energy function

Gd,k(U (m)) =
(δ〈1〉k Uk

(m))2

2
. (1.41)

Then the associated discrete variational derivative will be

δGd

δ(U (m+1),U (m))k

= −(δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
, (1.42)

which then leads us to a scheme:

Uk
(m+1) − Uk

(m)

∆t
= − δGd

δ(U (m+1),U (m))k

= (δ〈1〉k )2
(

Uk
(m+1) + Uk

(m)

2

)
.

(1.43)
This is different from (1.39). Still, the scheme is “dissipative,” in the sense
that Proposition 1.3 holds for the Gd(U (m)) defined in (1.41).
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As this example illustrates, there is generally a degree of freedom in choosing
a discrete energy function, and this is left to each user. Once it is fixed, how-
ever, by following the procedure of the discrete variational derivative method,
we automatically obtain a scheme that preserves the desired dissipation (or
in the conservative case, conservation) property with respect to the specified
discrete energy function. The performance of the resulting scheme, such as
stability and accuracy, often heavily depends on the choice. This issue will be
discussed in detail in Section 3.2.3.

Above procedure can be easily extended to more general real-valued dissi-
pative or conservative PDEs of the following types.

[real-valued dissipative PDEs]

∂u

∂t
= −(−1)s+1

(
∂

∂x

)2s
δG

δu
,

d
dt

∫ L

0

G(u, ux)dx ≤ 0, (1.44)

where s = 0, 1, 2, . . .. The linear diffusion equation belongs to this class with
s = 0. The Cahn–Hilliard equation in the previous section is another example,
where s = 1.

[real-valued conservative PDEs]

∂u

∂t
=

(
∂

∂x

)2s+1
δG

δu
,

d
dt

∫ L

0

G(u, ux)dx = 0, (1.45)

where s = 0, 1, 2 . . .. This class includes, for example, the Korteweg–de Vries
equation.

More detailed description on these PDEs is given in Chapter 2, and the full
procedures for them are described in Chapter 3. Concrete examples will be
found in Chapter 4.

1.3.2 Procedure for First-Order Complex-Valued PDEs

Several complex-valued PDEs have variational structure, and the idea de-
scribed above can be utilized. Suppose that u(x, t) is a complex-valued func-
tion, and a real-valued function G(u, ux) is given as the local energy function.
As before, the associated global energy is defined by

J(u)
d≡

∫ L

0

G(u, ux)dx. (1.46)

Let us consider first-order complex-valued PDEs of the form

i
∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0, (1.47)
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where i =
√
−1. The symbol δG/δu is the variational derivative of G with

respect to u, which is obtained as follows.
∫ L

0

(G(u + δu, ux + δux) − G(u, ux))dx

=
∫ L

0

{(
∂G

∂u
δu +

∂G

∂ux
δux

)
+

(
∂G

∂u
δu +

∂G

∂ux
δux

)}
dx + O(|δu|2)

=
∫ L

0

{(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu +

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu

}
dx

+
[

∂G

∂ux
δu +

∂G

∂ux
δu

]L

0

+ O(|δu|2)

=
∫ L

0

(
δG

δu
δu +

δG

δu
δu

)
dx +

[
∂G

∂ux
δu +

∂G

∂ux
δu

]L

0

+ O(|δu|2). (1.48)

The quantities

δG

δu
=

∂G

∂u
− ∂

∂x

∂G

∂ux
,

δG

δu
=

∂G

∂u
− ∂

∂x

∂G

∂ux

are complex variational derivatives. Note that they are in general complex
conjugates of each other:

δG

δu
=

δG

δu
.

(Strictly speaking, we need some assumption on G so that the conjugacy holds;
this is left to the discussion in Chapter 3.) The PDE (1.47) is conservative in
the sense that

d
dt

J(u) =
d
dt

∫ L

0

G(u, ux)dx

=
∫ L

0

(
δG

δu

∂u

∂t
+

δG

δu

∂u

∂t

)
dx + (boundary terms)

=
∫ L

0

(
i
∣∣∣∣
δG

δu

∣∣∣∣
2

− i
∣∣∣∣
δG

δu

∣∣∣∣
2
)

dx

= 0, (1.49)

provided some appropriate boundary conditions exist. For example, a linear
conservative PDE

i
∂u

∂t
=

∂2u

∂x2
, G(u, ux) = |ux|2, (1.50)

belongs to this class.
Let us see how a conservative scheme is derived for (1.47). Again we follow

the three steps.
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[step 1d] Defining a discrete energy

As in the real-valued case, we obtain a discrete energy Gd(U (m)) by simply
replacing u in G(u, ux) with Uk

(m), and ux with some finite difference. For
the case of the linear PDE (1.50), we define a discrete local energy by, for
example,

Gd,k(U (m)) =
|δ+

k Uk
(m)|2 + |δ−k Uk

(m)|2

2
. (1.51)

This only differs from (1.29) in having | · | (absolute value) in place of (·). The
associated discrete global energy is defined by

Jd(U (m))
d≡

N∑

k=0

′′Gd,k(U (m))∆x. (1.52)

[step 2d] Taking the discrete variation

As in the real-valued case, we hope to simulate the variation calculation
(1.48) which can be summarized as

∫ L

0

{G(u + δu, ux + δux) − G(u, ux)}dx =

∫ L

0

(
δG

δu
δu +

δG

δu
δu

)
dx + (boundary terms), (1.53)

in a discrete setting to find a discrete identity:

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x =

N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
+

δGd

δ(U (m+1), U (m))k

(
Uk

(m+1) − Uk
(m)

)}
∆x

+ (boundary terms). (1.54)

In the above identity, there are new discrete symbols whose correspondences
are

δGd

δ(U (m+1),U (m))k

⇔ δG

δu
, (1.55a)

δGd

δ(U (m+1), U (m))k

⇔ δG

δu
. (1.55b)

They are called “complex discrete variational derivatives.”
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In the case of the linear PDE (1.50), we find an identity corresponding to
(1.54) as follows.

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′

(
|δ+

k Uk
(m+1)|2 − |δ+

k Uk
(m)|2

2
+

|δ−k Uk
(m+1)|2 − |δ−k Uk

(m)|2

2

)
∆x

=
1
2

N∑

k=0

′′

{
δ+
k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+

k

(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

+ δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· δ−k

(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

}
∆x

= −
N∑

k=0

′′

[{
δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)}(
Uk

(m+1) − Uk
(m)

)
+ (c.c.)

]
∆x

+ (boundary terms). (1.56)

The expression“(c.c.)” denotes the complex conjugate of the preceding term(s).
In the above calculation, a trivial identity

|a|2 − |b|2

2
=

1
2

{
a + b

2
(a − b) + (c.c.)

}
,

and the summation-by-parts formula (1.34) are used. As a result we find the
discrete versions of the complex variational derivatives:

δGd

δ(U (m+1),U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
, (1.57a)

δGd

δ(U (m+1), U (m))k

= −δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
. (1.57b)

[step 3d] Defining a scheme

With the discrete variational derivative, we define an abstract scheme anal-
ogously to (1.47).

Scheme 1.4 (Conservative scheme for (1.47)) With given initial data U (0)

and appropriate boundary conditions, we compute U (m) by, for m = 0, 1, 2, . . .,

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1), U (m))k

, k = 0, . . . , N. (1.58)
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The scheme automatically becomes conservative as follows.

PROPOSITION 1.4 Conservation property of Scheme 1.4
Scheme 1.4 is conservative in the sense that

Jd(U (m)) = Jd(U (0)), m = 1, 2, 3 . . . . (1.59)

PROOF By the identity (1.54), we obtain

Jd(U (m+1)) − Jd(U (m))

=
1

∆t

N∑

k=0

′′
(
Gd,k(U (m+1)) − Gd,k(U (m))

)
∆x

=
N∑

k=0

′′

{
δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

∆t

)
+ (c.c.)

}
∆x

+ (boundary terms)

=
N∑

k=0

′′



i

∣∣∣∣∣
δGd

δ(U (m+1),U (m))k

∣∣∣∣∣

2

+ (c.c.)



∆x

= 0. (1.60)

In the second equality the boundary terms are assumed to vanish with appro-
priate boundary conditions, and in the last equality (1.58) is used.

In the case of the linear PDE (1.50), Scheme 1.4 reads

i

(
Uk

(m+1) − Uk
(m)

∆t

)
= − δGd

δ(U (m+1),U (m))k

= δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
,

where the concrete form of the complex discrete variational derivative has
been obtained in (1.57b). Again this is just the standard Crank–Nicolson
scheme. The conservation property is guaranteed by Proposition 1.4, where
the discrete local energy is given by (1.51).

In the subsequent chapters, we will deal with the following complex-valued
PDEs.

[complex-valued dissipative PDEs]

∂u

∂t
= −δG

δu
,

d
dt

∫ L

0

G(u, ux)dx ≤ 0. (1.61)

This includes, for example, the complex Ginzburg–Landau equation and the
Newell–Whitehead equation.
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[complex-valued conservative PDEs]

i
∂u

∂t
= −δG

δu
,

d
dt

∫ L

0

G(u, ux)dx = 0. (1.62)

The linear PDE (1.50) and the nonlinear Schrödinger equation belong to this
class.

1.3.3 Procedure for Systems of First-Order PDEs

The idea described in the previous sections can be also applied to the sys-
tems of PDEs. The following is an example.

Let us consider the Zakharov equations [72],

i
∂E

∂t
+

∂2E

∂x2
= nE,

∂2n

∂t2
− ∂2n

∂x2
=

∂2

∂x2
|E|2, x ∈ (0, L), t > 0, (1.63)

where E(x, t) is complex-valued, and n(x, t) is real-valued. The equations can
be written with variational derivatives as

d
dt




E
E
n
v


 =




0 −i 0 0
i 0 0 0
0 0 0 −1
0 0 1 0







δG/δE
δG/δE
δG/δn
δG/δv


 , (1.64)

where v(x, t) is a real-valued intermediate variable such that vt = n + |E|2,
and G(E, n, v) is the energy function defined by

G(E, n, v)
d≡ |Ex|2 + n|E|2 +

1
2
(n2 + (vx)2). (1.65)

The concrete forms of the variational derivatives are

δG

δE
= −Exx + nE, (1.66a)

δG

δE
=

δG

δE
, (1.66b)

δG

δn
= n + |E|2, (1.66c)

δG

δv
= −vxx. (1.66d)
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It is easy to see that

d
dt

∫ L

0

G(E, n, v)dx

=
∫ L

0

(
δG

δE

∂E

∂t
+ (c.c.) +

δG

δn

∂n

∂t
+

δG

δv

∂v

∂t

)
dx + (boundary terms)

=
∫ L

0

(
−i

∣∣∣∣
δG

δE

∣∣∣∣
2

+ (c.c.) − δG

δn

δG

δv
+

δG

δv

δG

δn

)
dx

= 0.

Thus the Zakharov equations conserve the energy

J(E, n, v)
d≡

∫ L

0

G(E, n, v)dx. (1.67)

As in the single PDE cases, we can construct discrete versions of the above
variational derivatives, δG/δE, δG/δE, δG/δn, and δG/δv, by which a con-
servative scheme for the Zakharov equations can be defined. Let us denote
numerical solutions by Ek

(m), nk
(m), v

(m)
k . Then we follow the three steps

again as follows.

[step 1d] Defining a discrete energy

We define the discrete local energy by

Gd,k(E(m),n(m),v(m)) =

|δ+
k Ek

(m)|2 + |δ−k Ek
(m)|2

2
+ nk

(m)|Ek
(m)|2

+
1
2

(
nk

(m)2 +
(δ+

k v
(m)
k )2 + (δ−k v

(m)
k )2

2

)
. (1.68)

We define the discrete global energy accordingly by

Jd(E(m),n(m),v(m))
d≡

N∑

k=0

′′Gd,k(E(m),n(m),v(m))∆x. (1.69)

[step 2d] Taking the discrete variation
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Taking discrete variation, we have

N∑

k=0

′′
{

Gd,k(E(m+1),n(m+1),v(m+1)) − Gd,k(E(m),n(m),v(m))
}

∆x

=
N∑

k=0

′′

{
δGd

δ(E(m+1),E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(E(m+1), E(m))k

(Ek
(m+1) − Ek

(m))

+
δGd

δ(n(m+1),n(m))k
(nk

(m+1) − nk
(m))

+
δGd

δ(v(m+1),v(m))k
(v(m+1)

k − v
(m)
k )

}
∆x, (1.70)

where

δGd

δ(E(m+1),E(m))k

= −δ
〈2〉
k

(
Ek

(m+1) + Ek
(m)

2

)

+

(
Ek

(m) + Ek
(m)

2

) (
nk

(m+1) + nk
(m)

2

)
, (1.71a)

δGd

δ(E(m+1), E(m))k

=

(
δGd

δ(E(m+1),E(m))k

)
, (1.71b)

δGd

δ(n(m+1),n(m))k
=

nk
(m+1) + nk

(m)

2

+
|Ek

(m+1)|2 + |Ek
(m)|2

2
, (1.71c)

δGd

δ(v(m+1),v(m))k
= −δ

〈2〉
k

(
v
(m+1)
k + v

(m)
k

2

)
. (1.71d)

They are obviously discrete analogues of (1.66a) through (1.66d).

[step 3d] Defining a scheme

With the discrete variational derivatives, we define a numerical scheme.

Scheme 1.5 (Conservative scheme for the Zakharov equations) With
given initial data E(0),n(0),u(0) and appropriate boundary conditions, we


