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Preface

The mathematical modeling of complex phenomena that evolve over time relies

heavily on the analysis of a variety of systems of ordinary and partial differential

equations. Such models are developed in very disparate areas of study, ranging from

the physical and natural sciences and population ecology to economics, neural net-

works, and infectious disease epidemiology. Despite the eclectic nature of the fields

in which these models are formulated, various groups of them share enough com-

mon characteristics that make it possible to study them within a unified theoretical

framework. Such study is an area of functional analysis commonly referred to as the

theory of evolution equations.

In the absence of “noise,” the evolution equations are said to be deterministic. If

noise is taken into account in these models, by way of perturbations of the operators

involved or via a Wiener process, then the evolution equations become stochastic in

nature. The development of the general theory is similar to the deterministic case, but

a considerable amount of additional machinery is needed in order to rigorously han-

dle the addition of noise, and questions regarding the nature of the solutions (which

are now viewed as stochastic processes rather than deterministic mappings) need to

be addressed due to the probabilistic nature of the equations.

One thread of development in this vast field is the study of evolution equations

that can be written in an abstract form analogous to a system of finite-dimensional

linear ordinary differential equations. The ability to represent the solution of such a

finite-dimensional system by a variation of parameters formula involving the matrix

exponential prompts one, by analogy, to identify the entity that plays the role of the

matrix exponential in a more abstract setting. Depending on the class of equations,

this entity can be interpreted as a linear C0-semigroup, a nonlinear semigroup, a

(co)sine family, etc. A general theory is then developed in each situation and applied,

to the extent possible, to all models within its parlance.

The literature for the theory of evolution equations is massive. Numerous mono-

graphs and journal articles have been written, the total sum of which covers a prac-

tically insurmountable amount of ground. While there exist five-volume magna opi

that provide excellent accounts of the big picture of aspects of the field (for instance,

[105, 107, 418]), most books written on evolution equations tend to either provide

a thorough treatment of a particular class of equations in tremendous depth for a

beginner or focus on presenting an assimilation of materials devoted to a very par-

ticular timely research direction (see [11, 37, 38, 46, 47, 65, 90, 108, 131, 132, 133,

149, 159, 174, 178, 192, 206, 250, 252, 253, 290, 300, 305, 328, 329, 341, 365, 375,

381, 396, 407, 419]). The natural practice in such mathematics texts, given that they

are written for readers trained in advanced mathematics, is to pay little attention to
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preliminary material or behind-the-scenes detail. Needless to say, initiating study in

this field can be daunting for beginners. This begs the question, “How do newcom-

ers obtain an overview of the field, in a reasonable amount of time, that prepares

them to enter and initially navigate the research realm?” This is what prompted me

to embark on writing the current volume. The purpose of this volume is to provide an

engaging, accessible account of a rudimentary core of theoretical results that should

be understood by anyone studying stochastic evolution equations in a way that grad-

ually builds the reader’s intuition. To accomplish this task, I have opted to write the

book using a so-called discovery approach, the ultimate goal of which is to engage

you, the reader, in the actual mathematical enterprise of studying stochastic evolu-

tion equations. Some characteristics of this approach that you will encounter in the

text are mentioned below.

What are the “discovery approach” features of the text?

I have tried to extract the essence of my approaches to teaching this material to new-

comers to the field and conducting my own research, and incorporate these features

into the actual prose of the text. For one, I pose questions of all types throughout the

development of the material, from verifying details and illustrating theorems with

examples to posing (and proving) conjectures of actual results and analyzing broad

strokes that occur within the development of the theory itself. At times, the writing

takes the form of a conversation with you, by way of providing motivation for a defi-

nition, or setting the stage for the next step of a theoretical development, or prefacing

an important theorem with a plain-English explanation of it. I sometimes pose rhetor-

ical questions to you as a lead-in to a subsequent section of the text. The inclusion of

such discussion facilitates “seeing the big picture” of a theoretical development that

I have found naturally connects its various stages. You are not left guessing why cer-

tain results are being developed or why a certain path is being followed. As a result,

the exposition in the text, at times, may lack the “polished style” of a mathematical

monograph, and the language used will be colloquial English rather than the standard

mathematical language that you would encounter in a journal article. But, this style

has the benefit of encouraging you to not simply passively read the text, but rather

work through it, which is essential to obtaining a meaningful grasp of the material.

I deliberately begin each chapter with a discussion of models, many of which are

studied in several chapters and modified along the way to motivate the particular the-

ory to be developed in a given chapter. The intent is to illustrate how taking into ac-

count natural additional complexity gives rise to more complicated initial-boundary

value problems that, in turn, are formulated using more general abstract evolution

equations. This connectivity among different fields and the centrality of the theory

of evolution equations to their study are illustrated on the cover of the text.

The driving force of the discussion is the substantive collection of more than 500

questions and exercises dispersed throughout the text. I have inserted questions of

all types directly into the development of the chapters with the intention of having

you pause and either process what has just been presented or react to a rhetorical
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question posed. You might be asked to supply details in an argument, verify a defi-

nition or theorem using a particular example, create a counterexample to show why

an extension of a theorem from one setting to another fails, or conjecture and prove

a result of your own based on previous material, etc. The questions, in essence, con-

stitute much of the behind-the-scenes detail that goes into actually formulating the

theory. In the spirit of the conversational nature of the text, I have included a sec-

tion entitled Guidance for Selected Exercises at the end of the first nine chapters that

provides two layers of hints for selected exercises. Layer one, labeled as “A Small

Nudge in a Right Direction” is intended to help you get started if you are stumped.

The idea is that you will re-attempt the exercise using the hint. If you find this hint

insufficient, the second layer of hints, labeled as “An Additional Thrust in a Right

Direction” provides a more substantive suggestion as to how to proceed. In addition

to this batch of exercises, you will encounter more questions or directives enclosed

in parentheses throughout all parts of the text. The purpose of these less formal, yet

equally important questions is to alert you to when details are being omitted or to call

your attention to a specific portion of a proof to which I want you to pay close atten-

tion. You will likely view the occurrence of these questions to be, at times, disruptive.

And, this is exactly the point of including them! The tendency is to gloss over details

when working through material as technical as this, but doing so too often will create

gaps in understanding. It is my hope that the inclusion of the combination of the two

layers of hints for the formal exercises and this frequent questioning will reduce any

reluctance you might have in working through the text.

Finally, most chapters conclude with a section in which some of the models used

to motivate the chapter are revisited, but are now modified in order to account for an

additional complexity. The impetus is to direct your thinking toward what awaits you

in the next chapter. This short, but natural, section is meant to serve as a connective

link between chapters.

For whom is this book accessible?

It is my hope that anybody possessing a basic familiarity with the real numbers and

at least an exposure to the most elementary of differential equations, be it a stu-

dent, engineer, scientist, or mathematician specializing in a different area, can work

through this text to gain an initial understanding of stochastic evolution equations,

how they are used in practice, and more than twenty different areas of study to which

the theory applies. Indeed, while the level of the mathematics discussed in the text

is conventionally viewed as a topic that a graduate student would encounter after

studying stochastic and functional analysis, all of the underlying tools of stochas-

tic and functional analysis necessary to intelligently work through the text are in-

cluded, chapter by chapter as they arise. This, coupled with the conversational style

in which the text is written, should make the material naturally accessible to a broad

audience.
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What material does this text cover, in broad strokes?

The present volume consists of ten chapters. The text opens with two substantive

chapters devoted to creating basic real and stochastic analysis “toolboxes,” the pur-

pose of which is to arm you with the bare essentials of real and stochastic analysis

needed to work through the rest of the book. If you are familiar with the topics in the

chapter, I suggest you peruse the chapter to get a feel for the notation and terminol-

ogy prior to moving on.

Chapter 3 is devoted to the development of the theory for homogenous one-

dimensional stochastic ODEs, while Chapter 4 immediately extends this theory to

systems of homogenous linear stochastic ordinary differential equations. These chap-

ters act as a springboard into the development of its abstract counterpart in a more

general separable Hilbert space. The discussion proceeds to the case of linear ho-

mogenous abstract stochastic evolution equations in Chapter 5, and subsequently

in the next two chapters to the nonhomogenous and semi-linear cases. The case in

which the forcing term is a functional (acting from one function space to another) is

addressed in Chapter 8, followed by a discussion of Sobolev-type stochastic evo-

lution equations in Chapter 9. These latter two chapters have been recent active

research areas. Finally, the last chapter is devoted to a brief discussion of several

different directions involving accessible topics of active research.

For each class of equations, a core of theoretical results concerning the following

main topics is developed: the existence and uniqueness of solutions (in a variety of

senses) under various growth assumptions, continuous dependence upon initial data

and parameters, convergence results of various kinds, and elementary stability results

(in a variety of senses).

A substantive collection of mathematical models arising in areas such as heat con-

duction, advection, fluid flow through fissured rocks, transverse vibrations in exten-

sible beams, thermodynamics, population ecology, pharmacokinetics, spatial pattern

formation, pheromone transport, neural networks, and infectious disease epidemiol-

ogy are developed in stages throughout the text. In fact, the reason for studying the

class of abstract equations of a given chapter is motivated by first considering mod-

ified versions of the model(s) discussed in the previous chapter, and subsequently

formulating the batch of newly created initial-boundary value problems in the form

of the abstract equation to be studied in that chapter.

In order to get the most out of this text, I strongly encourage you to read it along-

side of volume 1 [295] and to make deliberate step-by-step comparisons of the theory

in the deterministic and stochastic settings.

About the book cover

You might very well be wondering about the significance of the text cover. Would you

believe that it embodies the main driving force behind the text? Indeed, the initial-

value problem in the middle from which all arrows emanate serves as a theoretical

central hub that mathematically binds the models depicted by the illustrations on the

cover, to name just a few. Each of the eight pictures illustrates a scenario described
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by a mathematical model (involving partial differential equations) that is studied in

this text. As you work through the text, you will discover that all of these models can

be written abstractly in the form of the initial-value problem positioned in the middle

of the cover. So, despite the disparate nature of the fields in which these models arise,

they can all be treated under the same theoretical umbrella. This is the power of the

abstract theory developed in this text.

Reading from left to right, and top to bottom, the fields depicted in the pictures are

as follows: air pollution, infectious disease epidemiology, neural networks, chemical

kinetics, combustion, population dynamics, spatial pattern formation, and soil me-

chanics.
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Chapter 1

A Basic Analysis Toolbox

Overview

The purpose of this chapter is to provide you with a succinct, hands-on introduc-

tion to elementary analysis that focuses on notation, main definitions and results,

and the techniques with which you should be comfortable prior to working through

this text. Additional topics will be introduced throughout the text whenever needed.

Little is assumed beyond a working knowledge of the properties of real numbers,

the “freshmen calculus,” and a tolerance for mathematical rigor. Keep in mind that

the presentation is not intended to be a complete exposition of real analysis. You are

encouraged to refer to texts devoted to more comprehensive treatments of analysis

(see [17, 67, 196, 197, 234, 236, 250, 301, 353, 357, 372]).

1.1 Some Basic Mathematical Shorthand

Symbolism is used heftily in mathematical exposition. Careful usage of some ba-

sic notation can streamline the verbiage. Some of the common symbols used are as

follows.

Let P and Q be statements. (If the statement P changes depending on the value of

some parameter x, we denote this dependence by writing P(x).)

1.) The statement “not P,” called the negation of P, is denoted by “¬P.”

2.) The statement “P or Q” is denoted by “P∨Q,” while the statement “P and Q” is

denoted by “P∧Q.”

3.) The statement “If P, then Q” is called an implication, and is denoted by “P =⇒Q”

(read “P implies Q”). Here, P is called the hypothesis and Q is the conclusion.

4.) The statement “P if, and only if, Q” is denoted by “P iff Q” or “P⇐⇒ Q.” Pre-

cisely, this means “(P =⇒Q)∧ (Q =⇒ P).”
5.) The statement “Q =⇒ P” is the converse of “P =⇒ Q.”

6.) The statement “¬Q =⇒¬P” is the contrapositive of “P =⇒Q.” These two state-

ments are equivalent.

7.) The symbol “∃” is an existential quantifier and is read as “there exists” or “there

is at least one.”

1
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8.) The symbol “∀” is a universal quantifier and is read as “for every” or “for any.”

Exercise 1.1.1. Let P, Q, R, and S be statements.

i.) Form the negation of “P∧ (Q∧R).”
ii.) Form the negation of “∃ x such that P(x) holds.”

iii.) Form the negation of “∀x, P(x) holds.”

iv.) Form the contrapositive of “(P∧Q) =⇒ (¬R∨S) .”

Remark. Implication is a transitive relation in the sense that

((P =⇒Q)∧ (Q =⇒ R)) =⇒ (P =⇒ R) .

For instance, a sequence of algebraic manipulations used to solve an equation is

technically such a string of implications from which we conclude that the values

of the variable obtained in the last step are the solutions of the original equation.

Mathematical proofs are comprised of strings of implications, albeit of a somewhat

more sophisticated nature.

1.2 Set Algebra

Informally, a set can be thought of as a collection of objects (e.g., real numbers,

vectors, matrices, functions, other sets, etc.); the contents of a set are referred to

as its elements. We usually label sets using uppercase letters and their elements by

lowercase letters. Three sets that arise often and for whom specific notation will be

reserved are

N = {1,2,3, ...}
Q = theset of all rational numbers

R = theset of all real numbers

If P is a certain property and A is the set of all objects having property P, we write

A = {x : x has P} or A = {x|x has P} . A set with no elements is empty, denoted by

Ø.

If A is not empty and a is an element of A, we denote this fact by “a ∈ A.” If a is

not an element of A, a fact denoted by “a /∈ A,” where is it located? This prompts

us to prescribe a universal set U that contains all possible objects of interest in our

discussion. The following definition provides an algebra of sets.

Definition 1.2.1. Let A and B be sets.

i.) A is a subset of B, written A⊂ B, whenever x ∈ A =⇒ x ∈ B .

ii.) A equals B, written A = B, whenever (A⊂ B) ∧ (B⊂ A).
iii.) The complement of A relative to B, written B \A, is the set {x|x ∈ B ∧ x /∈ A}.
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Specifically, the complement relative to U is denoted by Ã.

iv.) The union of A and B is the set A∪B = {x|x ∈ A∨ x ∈ B} .
v.) The intersection of A and B is the set A∩B = {x|x ∈ A∧ x ∈ B} .
vi.) A×B = {(a,b)|a ∈ A∧b ∈ B} .

Proving set equality requires that we show two implications. Use this fact when

appropriate to complete the following exercises.

Exercise 1.2.1. Let A,B, and C be sets. Prove the following:

i.) A⊂ B iff B̃⊂ Ã

ii.) A = (A∩B)∪(A\B)
iii.) A∩ (B∪C) = (A∩B)∪ (A∩C)and A∪ (B∩C) = (A∪B)∩ (A∪C)

iv.) (̃A∩B) = Ã∪ B̃ and (̃A∪B) = Ã∩ B̃

Exercise 1.2.2. Explain how you would prove A 6= B.

Exercise 1.2.3. Formulate an extension of Def. 1.2.1(iv) through (vi) that works for

any finite number of sets.

It is often necessary to consider the union or intersection of more than two sets,

possibly infinitely many. So, we need a succinct notation for unions and intersections

of an arbitrary number of sets. Let Γ 6= Ø. (We think of the members of Γ as labels.)

Suppose to each γ ∈ Γ, we associate a set Aγ . The collection of all these sets, namely

A =
{

Aγ |γ ∈ Γ
}

, is a family of sets indexed by Γ. We define

⋃

γ∈Γ

Aγ =
{

x|∃γ ∈ Γsuch that x ∈ Aγ

}
, (1.1)

⋂

γ∈Γ

Aγ =
{

x|∀γ ∈ Γ, x ∈ Aγ

}
. (1.2)

If Γ = N, we write
⋃∞

n=1 and
⋂∞

n=1 in place of
⋃

γ∈Γ and
⋂

γ∈Γ, respectively.

Exercise 1.2.4. Let A be a set and
{

Aγ |γ ∈ Γ
}

a family of sets indexed by Γ. Prove

i.) A∩⋃γ∈Γ Aγ =
⋃

γ∈Γ

(
A∩Aγ

)
and A∪⋂γ∈Γ Aγ =

⋂
γ∈Γ

(
A∪Aγ

)

ii.)
(⋃

γ∈Γ Aγ

)∼
=
⋂

γ∈Γ Ãγ and
(⋂

γ∈Γ Aγ

)∼
=
⋃

γ∈Γ Ãγ

iii.) A×⋃γ∈Γ Aγ =
⋃

γ∈Γ

(
A×Aγ

)
and A×⋂γ∈Γ Aγ =

⋂
γ∈Γ

(
A×Aγ

)

iv.)
⋂

γ∈Γ Aγ ⊂ Aγ0
⊂⋃γ∈Γ Aγ , ∀γ0 ∈ Γ.

1.3 Functions

The concept of a function is central to the study of mathematics.
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Definition 1.3.1. Let A and B be sets.

i.) A subset f ⊂ A×B satisfying

a.) ∀x ∈ A,∃y ∈ B such that (x,y) ∈ f ,

b.) (x,y1) ∈ f ∧ (x,y2) ∈ f =⇒ y1 = y2,
is called a function from A into B. We say f is B-valued, denoted by f : A→ B.

ii.) The set A is called the domain of f , denoted dom( f ).
iii.) The range of f , denoted by rng( f ), is given by rng( f ) = { f (x)|x ∈ A}.
Remarks.

1. Notation: When defining a function using an explicit formula, say y = f (x), the

notation x 7→ f (x) is often used to denote the function. Also, we indicate the general

dependence on a variable using a dot, say f (·). If the function depends on two inde-

pendent variables, we distinguish between them by using a different number of dots

for each, say f (·, ··).
2. The term mapping is used synonymously with the term function.

3. rng( f )⊂ B.

Exercise 1.3.1. Precisely define what it means for two functions f and g to be equal.

The following classification plays a role in determining if a function is invertible.

Definition 1.3.2. f : A→ B is called

i.) one-to-one if f (x1) = f (x2) =⇒ x1 = x2, ∀x1,x2 ∈ A;

ii.) onto whenever rng( f ) = B.

We sometimes wish to apply functions in succession in the following sense.

Definition 1.3.3. Suppose that f : dom( f )→ A and g : dom(g)→ B with rng(g)⊂
dom( f ). The composition of f with g, denoted f ◦g, is the function f ◦g : dom(g)→A

defined by ( f ◦ g)(x) = f (g(x)).

Exercise 1.3.2. Show that, in general, f ◦ g 6= g ◦ f .

Exercise 1.3.3. Let f : dom( f )→ A and g : dom(g)→ B be such that f ◦ g is de-

fined. Prove

i.) If f and g are onto, then f ◦ g is onto.

ii.) If f and g are one-to-one, then f ◦ g is one-to-one.

At times, we need to compute the functional values for all members of a subset

of the domain, or perhaps determine the subset of the domain whose collection of

functional values is a prescribed subset of the range. These notions are made precise

below.

Definition 1.3.4. Let f : A→ B.

i.) For X ⊂ A, the image of X under f is the set f (X) = { f (x)|x ∈ X}.
ii.) For Y ⊂ B, the pre-image of Y under f is the set

f−1(Y ) = {x ∈A |∃y ∈ Y such thaty = f (x)} .
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The following related properties are useful.

Proposition 1.3.5. Suppose f : A→ B is a function, X ,X1,X2, and Xγ , γ ∈ Γ, are all

subsets of A and Y,Y1,Y2, and Yγ , γ ∈ Γ, are all subsets of B. Then,

i.) a.) X1 ⊂ X2 =⇒ f (X1)⊂ f (X2)
b.) Y1 ⊂ Y2 =⇒ f−1 (Y1)⊂ f−1 (Y2)

ii.) a.) f
(⋃

γ∈Γ Xγ

)
=
⋃

γ∈Γ f
(
Xγ

)

b.) f−1
(⋃

γ∈Γ Yγ

)
=
⋃

γ∈Γ f−1
(
Yγ

)

iii.) a.) f
(⋂

γ∈Γ Xγ

)
⊂⋂γ∈Γ f

(
Xγ

)

b.) f−1
(⋂

γ∈Γ Yγ

)
=
⋂

γ∈Γ f−1
(
Yγ

)

iv.) a.) X ⊂ f−1 ( f (X)))
b.) f

(
f−1(Y )

)
⊂ Y

Exercise 1.3.4.

i.) Prove Prop. 1.3.5.

ii.) Impose conditions on f that would yield equality in Prop. 1.3.5(iv)(a) and (b).

We often consider functions whose domains and ranges are subsets of R. For such

functions, the notion of monotonicity is often a useful characterization.

Definition 1.3.6. Let f : dom( f ) ⊂ R→ R and suppose that ∅ 6= S ⊂ dom( f ). We

say that f is

i.) nondecreasing on S whenever x1,x2 ∈ S with x1 < x2 =⇒ f (x1)≤ f (x2);
ii.) nonincreasing on S whenever x1,x2 ∈ S with x1 < x2 =⇒ f (x1)≥ f (x2).

Remark. The prefix “non” in both parts of Def. 1.3.6 is removed when the inequality

is strict.

The arithmetic operations of real-valued functions are defined in the natural way.

For such functions, consider the following exercise.

Exercise 1.3.5. Suppose that f : dom( f ) ⊂ R→ R and g : dom(g) ⊂ R→ R are

nondecreasing (resp. nonincreasing) functions on their domains.

i.) Which of the functions f + g, f −g, f ·g, and f
g

, if any, are nondecreasing (resp.

nonincreasing) on their domains?

ii.) Assuming that f ◦g is defined, must it be nondecreasing (resp. nonincreasing) on

its domain?

1.4 The Space (R, |·|)
1.4.1 Order Properties

The basic arithmetic and order features of the real number system are likely familiar,

even if you have not worked through its formal construction. For our purposes, we
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shall begin with a set R equipped with two operations, addition and multiplication,

satisfying these algebraic properties:

(i) addition and multiplication are both commutative and associative,

(ii) multiplication distributes over addition,

(iii) adding zero to any real number yields the same real number,

(iv) multiplying a real number by 1 yields the same real number,

(v) every real number has a unique additive inverse, and

(vi) every nonzero real number has a unique multiplicative inverse.

Moreover, R equipped with the natural “<” ordering is an ordered field and obeys

the following properties.

Proposition 1.4.1. (Order Features of R)

For all x,y,z ∈ R, the following are true:

i.) Exactly one of the relationships x = y, x < y, or y < x holds;

ii.) x < y =⇒ x + z < y + z;

iii.) (x < y) ∧ (y < z) =⇒ x < z;

iv.) (x < y) ∧ (c > 0) =⇒ cx < cy;

v.) (x < y) ∧ (c < 0) =⇒ cx > cy;

vi.) (0 < x < y) ∧ (0 < w < z) =⇒ 0 < xw < yz.

The following is an immediate consequence of these properties and is often the

underlying principle used when verifying an inequality.

Proposition 1.4.2. If x,y ∈ R are such that x < y + ε, ∀ε > 0, then x≤ y.

Proof. Suppose not; that is, y < x. Observe that for ε = x−y
2 > 0, y + ε = x+y

2 < x.

(Why?) This is a contradiction. Hence, it must be the case that x≤ y.

Remark. The above argument is a very simple example of a proof by contradiction.

The strategy is to assume that the conclusion is false and then use this additional

hypothesis to obtain an obviously false statement or a contradiction of another hy-

pothesis in the claim. More information about elementary proof techniques can be

found in [372].

Exercise 1.4.1.

i.) Let x,y > 0. Prove that xy≤ x2+y2

2 .

ii.) Show that if 0 < x < y, then xn < yn, ∀n ∈N.

1.4.2 Absolute Value

The above is a heuristic description of the familiar algebraic structure of R. When

equipped with a distance-measuring artifice, a deeper topological structure of R can

be defined and studied. This is done with the help of the absolute value function.
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Definition 1.4.3. For any x ∈R, the absolute value of x, denoted |x|, is defined by

|x| =
{

x, x≥ 0,

−x, x < 0.

This can be viewed as a measurement of distance between real numbers within the

context of a number line. For instance, the solution set of the equation “|x−2|= 3”

is the set of real numbers x that are “3 units away from 2,” namely {−1,5} .

Exercise 1.4.2. Determine the solution set for the following equations:

i.) |x−3|= 0

ii.) |x + 6|= 2.

Proposition 1.4.4. These properties hold for all x,y,z ∈ R and a≥ 0:

i.) −|x|= min{−x,x} ≤ x≤max{−x,x}= |x|
ii.) |x| ≥ 0, ∀x ∈ R
iii.) |x|= 0 iff x = 0

iv.)
√

x2 = |x|
v.) |xy|= |x| |y|
vi.) |x| ≤ a iff −a≤ x≤ a

vii.) |x + y| ≤ |x|+ |y|
viii.) |x− y| ≤ |x− z|+ |z− y|
ix.) | |x|− |y| | ≤ |x− y|
x.) |x− y|< ε,∀ε > 0 =⇒ x = y

Exercise 1.4.3. Prove Prop. 1.4.4.

Exercise 1.4.4. Let n ∈ N and x1,x2, . . . ,xn,y1,y2, . . . ,yn ∈ R. Prove:

i.) (Cauchy-Schwarz) ∑n
i=1 xiyi ≤

(
∑n

i=1 x2
i

)(
∑n

i=1 y2
i

)

ii.) (Minkowski)
(

∑n
i=1 (xi + yi)

2
)1/2

≤
(
∑n

i=1 x2
i

)1/2
+
(
∑n

i=1 y2
i

)1/2

iii.) |∑n
i=1 xi|M ≤ (∑n

i=1 |xi|)M ≤ nM−1 ∑n
i=1 |xi|M , ∀M ∈N

1.4.3 Completeness Property of (R, | · |)
It turns out that R has a fundamental and essential property referred to as complete-

ness, without which the study of analysis could not proceed. We introduce some

terminology needed to state certain fundamental properties of R.

Definition 1.4.5. Let ∅ 6= S ⊂ R.

i.) S is bounded above if ∃u ∈ R such that x≤ u, ∀x ∈ S;

ii.) u ∈R is an upper bound of S (ub(S)) if x≤ u, ∀x ∈ S;

iii.) u0 ∈ R is the maximum of S (max(S)) if u0 is an ub(S) and u0 ∈ S;

iv.) u0 ∈ R is the supremum of S (sup(S)) if u0 is an ub(S) and u0 ≤ u, for any other

u =ub(S).
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The following analogous terms can be defined by reversing the inequality signs

in Def. 1.4.5: bounded below, lower bound of S (lb(S)), minimum of S (min(S)), and

infimum of S (inf(S)).

Exercise 1.4.5. Formulate precise definitions of the above terms.

Exercise 1.4.6. Let ∅ 6= S ⊂ R.

i.) How would you prove that sup(S)= ∞?

ii.) Repeat (i) for inf(S)=−∞.

Definition 1.4.6. A set ∅ 6= S⊂ R is bounded if ∃M > 0 such that |x| ≤M, ∀x ∈ S.

It can be formally shown that R possesses the so-called completeness property.

The importance of this concept in the present and more abstract settings cannot be

overemphasized. We state it in the form of a theorem to highlight its importance.

Consult [17, 234] for a proof.

Theorem 1.4.7. If ∅ 6= S ⊂ R is bounded above, then ∃u ∈ R such that u =sup(S).

We say R is complete.

Remark. The duality between the statements concerning sup and inf leads to the

formulation of the following alternate statement of the completeness property:

I f ∅ 6= T ⊂ R is bounded below, then ∃v ∈ R such that v = inf(S). (1.3)

Exercise 1.4.7. Prove that (1.3) is equivalent to Thrm 1.4.7.

Proposition 1.4.8. (Properties of inf and sup) Let ∅ 6= S,T ⊂ R.

i.) Assume ∃ sup(S). Then, ∀ε > 0, ∃x ∈ S such that sup(S)− ε < x≤ sup(S).
ii.) If S ⊂ T and ∃sup(T ), then ∃sup(S) and sup(S)≤ sup(T ).
iii.) Let S +T = {s+ t|s ∈ S ∧ t ∈ T} . If S and T are bounded above, then ∃sup(S +
T ) and it equals sup(S)+ sup(T ).
iv.) Let c ∈R and define cS = {cs|s ∈ S} . If S is bounded, then ∃sup(cS) given by

sup(cS) =

{
c · sup(S), i f c≥ 0,

c · inf(S), i f c < 0.
(1.4)

v.) Let ∅ 6= S,T ⊂ (0,∞) and define S · T = {s · t|s ∈ S ∧ t ∈ T} . If S and T are

bounded above, then ∃sup(S ·T ) and it equals sup(S) · sup(T ).

Proof. We prove (iii) and leave the others for you to verify as an exercise.

Because S and T are nonempty, S + T 6= Ø. Further, because

s+ t ≤ sup(S)+ sup(T ), ∀s ∈ S, t ∈ T, (1.5)

it follows that sup(S) + sup(T ) is an upper bound of (S + T ). (Why?) Hence,

∃sup(S + T) and

sup(S + T )≤ sup(S)+ sup(T ). (1.6)



A Basic Analysis Toolbox 9

To establish the reverse inequality, let ε > 0. By Prop. 1.4.8, ∃s0 ∈ S and t0 ∈ T

such that

sup(S)− ε

2
< s0 and sup(T )− ε

2
< t0. (1.7)

Consequently,

sup(S)+ sup(T )− ε < s0 + t0 ≤ sup(S + T ). (1.8)

Thus, we conclude from Prop. 1.4.2 that

sup(S)+ sup(T )≤ sup(S + T ). (1.9)

Claim (iii) now follows from (1.6) and (1.9). (Why?)

Exercise 1.4.8.

i.) Prove the remaining parts of Prop. 1.4.8.

ii.) Formulate statements analogous to those in Prop. 1.4.8 for infs. Indicate the

changes that must be implemented in the proofs.

Remark. Prop 1.4.8(i) indicates that we can get “arbitrarily close” to sup(S) with

elements of S. This is especially useful in convergence arguments.

1.4.4 Topology of R

You have worked with open and closed intervals in calculus, but what do the terms

open and closed mean? Is there any significant difference between them? The notion

of an open set is central to the construction of a so-called topology on R. Interest-

ingly, many of the theorems from calculus are formulated on closed, bounded inter-

vals for very good reason. As we proceed with our analysis of R, you will see that

many of these results are consequences of some fairly deep topological properties of

R which, in turn, follow from the completeness property.

Definition 1.4.9. Let S ⊂ R.

i.) x is an interior point (int pt) of S if ∃ε > 0 such that (x− ε,x + ε)⊂ S.

ii.) x is a limit point (lim pt) of S if ∀ε > 0, (x− ε,x + ε)∩S is infinite.

iii.) x is a boundary point (bdry pt) of S if

∀ε > 0,(x− ε,x + ε)∩S 6= Ø and (x− ε,x + ε)∩ S̃ 6= Ø.

iv.) The boundary of S is the set ∂S = {x ∈ R|x is a bdry pt of S} .
v.) The interior of S is the set int(S) = {x ∈ R|x is an int pt of S} .
vi.) The derived set of S is the set S′ = {x ∈ R|x is a lim pt of S} .
vii.) The closure of S is the set clR(S) = S∪S′.
viii.) S is open if every point of S is an int pt of S.

ix.) S is closed if S contains all of its lim pts.

Illustrating these concepts using a number line can facilitate your understanding

of them. Do so when completing the following exercise.
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Exercise 1.4.9. For each of these sets S, compute int(S), S′, and clR(S). Also, de-

termine if S is open, closed, both, or neither.

i.) [1,5]
ii.) Q
iii.)

{
1
n
|n ∈N

}

iv.) R
v.) Ø

It is not difficult to establish the following duality between a set and its comple-

ment. It is often a useful tool when proving statements about open and closed sets.

Proposition 1.4.10. Let S⊂ R. S is open iff S̃ is closed.

Exercise 1.4.10. Verify the following properties of open and closed sets.

i.) Let n ∈ N. If G1, . . . ,Gn is a finite collection of open sets, then
⋂n

k=1 Gk is open.

ii.) Let n∈N. If F1, . . . ,Fn is a finite collection of closed sets, then
⋃n

k=1 Fk is closed.

iii.) Let Γ 6= Ø. If Gγ is open, ∀γ ∈ Γ, then
⋃

γ∈Γ Gγ is open.

iv.) Let Γ 6= Ø. If Fγ is closed, ∀γ ∈ Γ, then
⋂

γ∈Γ Fγ is closed.

v.) If S ⊂ T, then int(S)⊂ int(T ).
vi.) If S ⊂ T, thenclR(S)⊂ clR(T ).

Exercise 1.4.11. Let Ø 6= S ⊂ R. Prove the following:

i.) If S is bounded above, then sup(S) ∈ clR(S).
ii.) If S is bounded above and closed, then max(S) ∈ S.

iii.) Formulate results analogous to (i) and (ii) assuming that S is bounded below.

Intuitively, S′ is the set of points to which elements of S become arbitarily close. It

is natural to ask if there are proper subsets of R that sprawl widely enough through R
as to be sufficiently near every real number. Precisely, consider sets of the following

type.

Definition 1.4.11. A set Ø 6= S ⊂ R is dense in R if clR(S) = R.

Exercise 1.4.12. Identify two different subsets of R that are dense in R.

By way of motivation for the first major consequence of completeness, consider

the following exercise.

Exercise 1.4.13. Provide examples, if possible, of sets S ⊂ R illustrating the fol-

lowing scenarios.

i.) S is bounded, but S′ = Ø.

ii.) S is infinite, but S′ = Ø.

iii.) S is bounded and infinite, but S′ = Ø.
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As you discovered in Exercise 1.4.13, the combination of bounded and infinite

for a set S of real numbers implies the existence of a limit point of S. This is a

consequence of the following theorem due to Bolzano and Weierstrass.

Theorem 1.4.12. (Bolzano-Weierstrass) If S is a bounded, infinite subset of R, then

S′ 6= Ø.

Outline of Proof: Let T = {x ∈R|S∩ (x,∞) is infinite} . Then,

T 6= Ø. (Why?) (1.10)

T is bounded above. (Why?) (1.11)

∃sup(T ); call it t. (Why?) (1.12)

∀ε > 0, S∩ (t− ε,∞) is infinite. (Why?) (1.13)

∀ε > 0, S∩ [t + ε,∞) is finite. (Why?) (1.14)

∀ε > 0, S∩ (t− ε,t + ε) is infinite. (Why?) (1.15)

t ∈ S′. (Why?) (1.16)

This completes the proof. �

Exercise 1.4.14. Provide the details in the proof of Thrm. 1.4.12. Where was com-

pleteness used?

Another important concept is that of compactness. Some authors define this notion

more generally using open covers (see [17]).

Definition 1.4.13. A set S ⊂ R is compact if every infinite subset of S has a limit

point in S.

Remark. The “in S” portion of Def. 1.4.13 is crucial, and it distinguishes between

the sets (0,1) and [0,1] , for instance. (Why?) This is evident in Thrm. 1.4.14.

Exercise 1.4.15. Try to determine if the following subsets of R are compact.

i.) Any finite set.

ii.)
{

1
n |n ∈N

}
versus

{
1
n |n ∈ N

}
∪{0}

iii.) Q
iv.) Q∩ [0,1]
v.) N
vi.) R
vii.) (0,1) versus [0,1]

Both the completeness property and finite dimensionality of R enter into the proof

of the following characterization theorem for compact subsets of R. The proof can

be found in [17].

Theorem 1.4.14. (Heine-Borel) A set S⊂R is compact iff S is closed and bounded.

Exercise 1.4.16. Revisit Exer. 1.4.15 in light of Thrm. 1.4.14.
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1.5 Sequences in (R, |·|)
Sequences play a prominent role in analysis, especially in the development of nu-

merical schemes used for approximation purposes.

1.5.1 Sequences and Subsequences

Definition 1.5.1. A sequence in R is a function x : N→ R. We often write xn for

x(n), n ∈ N, called the nth-term of the sequence, and denote the sequence itself by

{xn} or by enumerating the range as x1,x2,x3, . . ..

The notions of monotonicity and boundedness given in Defs. 1.3.6 and 1.4.6 ap-

ply in particular to sequences. We formulate them in this specific setting for later

reference.

Definition 1.5.2. A sequence is called

i.) nondecreasing whenever xn ≤ xn+1, ∀n ∈ N;

ii.) increasing whenever xn < xn+1, ∀n ∈N;

iii.) nonincreasing whenever xn ≥ xn+1, ∀n ∈ N;

iv.) decreasing whenever xn > xn+1, ∀n ∈ N;

v.) monotone if any of (i)–(iv) are satisfied;

vi.) bounded above (resp. below) if ∃M ∈R such that xn≤M (resp. xn≥M ), ∀n∈N;

vii.) bounded whenever ∃M > 0 such that |xn| ≤M, ∀n ∈N.

Exercise 1.5.1. Explain why a nondecreasing (resp. nonincreasing) sequence must

be bounded below (resp. above).

Definition 1.5.3. If x : N→R is a sequence in R and n : N→N is an increasing

sequence in N, then the composition x⋄n : N→R is called a subsequence of x in R.

Though this is a formal definition of a subsequence, let us examine carefully what

this means using more conventional notation. Suppose that the terms of Def. 1.5.3

are represented by {xn} and {nk}, respectively. Because {nk} is increasing, we know

that n1 < n2 < n3 < .. .. Then, the official subsequence x ◦ n has values (x ◦ n)(k) =
x(n(k)), which, using our notation, can be written as xnk

, ∀k ∈ N. Thus, the integers

nk are just the indices of those terms of the original sequence that are retained in the

subsequence as k increases, and roughly speaking, the remainder of the terms are

omitted.

1.5.2 Limit Theorems

We now consider the important notion of convergence.

Definition 1.5.4. A sequence {xn} has limit L whenever ∀ε > 0, ∃N ∈N (N depend-

ing in general on ε) such that

n≥ N =⇒ |xn−L|< ε.
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In such case, we write lim
n→∞

xn = L or xn −→ L and say that {xn} converges (or is

convergent) to L. Otherwise, we say {xn} diverges.

If we paraphrase Def. 1.5.4, it would read: lim
n→∞

xn = L whenever given any open

interval (L− ε,L+ ε) around L (that is, no matter how small the positive number ε
is), it is the case that xn ∈ (L− ε,L+ ε) for all but possibly finitely many indices n.

That is, the “tail” of the sequence ultimately gets into every open interval around L.

Also note that, in general, the smaller the ε, the larger the index N must be used (to

get deeper into the tail) because ε is an error gauge, namely how far the terms are

from the target. We say N must be chosen “sufficiently large” as to ensure the tail

behaves in this manner for the given ε .

Exercise 1.5.2.

i.) Precisely define lim
n→∞

xn 6= L .

ii.) Prove that xn −→ L iff |xn−L| −→ 0.

Example. As an illustration of Def. 1.5.4, we prove that lim
n→∞

2n2+n+5
n2+1

= 2.

Let ε > 0. We must argue that ∃N ∈ N such that

n≥ N =⇒
∣∣∣∣
2n2 + n + 5

n2 + 1
−2

∣∣∣∣< ε. (1.17)

To this end, note that ∃N ∈ N such that N > 3 and Nε > 2. (Why?) We show this N

“works.” Indeed, observe that ∀n≥ N,

∣∣∣∣
2n2 + n + 5

n2 + 1
−2

∣∣∣∣=
∣∣∣∣
2n2 + n + 5−2n2−2

n2 + 1

∣∣∣∣=
n + 3

n2 + 1
. (1.18)

Subsequently, by choice of N, we see that n≥ N > 3 and for all such n,

n + 3

n2 + 1
<

2n

n2 + 1
<

2n

n2
=

2

n
<

2

N
< ε. (1.19)

(Why?) Thus, by definition, it follows that lim
n→∞

2n2+n+5
n2+1

= 2. �

Exercise 1.5.3. Use Def. 1.5.4 to prove that lim
n→∞

a
n

= 0, ∀a ∈R.

We now discuss the main properties of convergence. We mainly provide outlines

of proofs, the details of which you are encouraged to provide.

Proposition 1.5.5. If {xn} is a convergent sequence, then its limit is unique.

Outline of Proof: Let lim
n→∞

xn = L1 and lim
n→∞

xn = L2 and suppose that, by way of

contradiction, L1 6= L2.

Let ε = |L1−L2|
2 . Then, ε > 0. (Why?)

∃N1 ∈ N such that n≥ N1 =⇒ |xn−L1|< ε. (Why?)
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∃N2 ∈ N such that n≥ N2 =⇒ |xn−L2|< ε. (Why?)

Choose N = max{N1,N2} . Then, |xN−L1|< ε and |xN −L2|< ε . (Why?)

Consequently, 2ε = |L1−L2| ≤ |xN−L1|+ |xN −L2|< 2ε . (Why?)

Thus, L1 = L2. (How?)

This completes the proof. �

Proposition 1.5.6. If {xn} is a convergent sequence, then it is bounded.

Outline of Proof: Assume that lim
n→∞

xn = L . We must produce an M > 0 such that

|xn| ≤M, ∀n ∈ N. Using ε = 1 in Def. 1.5.4, we know that

∃N ∈ N such that n≥ N =⇒ |xn−L|< ε = 1. (1.20)

Using Prop. 1.4.4(ix) in (1.20) then yields

|xn|< |L|+ 1, ∀n≥ N. (1.21)

(Tell how.) For how many values of n does xn possibly not satisfy (1.21)? How do

you use this fact to construct a positive real number M satisfying Def. 1.5.2(vii)? �

Proposition 1.5.7. (Squeeze Theorem) Let {xn} ,{yn} , and {zn} be sequences such

that

xn ≤ yn ≤ zn, ∀n ∈ N, (1.22)

and

lim
n→∞

xn = L = lim
n→∞

zn. (1.23)

Then, lim
n→∞

yn = L.

Outline of Proof: Let ε > 0. From (1.23) we know that ∃N1,N2 ∈N such that

|xn−L|< ε, ∀n≥ N1 and |zn−L|< ε, ∀n≥ N2. (1.24)

Specifically,

−ε < xn−L, ∀n≥ N1 and zn−L < ε, ∀n≥ N2. (1.25)

Choose N = max{N1,N2}. Using (1.25) we see that

−ε < xn−L, and zn−L < ε, ∀n≥ N. (Why?)

Using this with (1.22) we can conclude that

n≥ N =⇒ −ε < yn−L < ε. (Why?)

Hence, lim
n→∞

yn = L, as desired. �

Remark. The conclusion of Prop. 1.5.7 holds true if we replace (1.22) by

∃N0 ∈ N such that xn ≤ yn ≤ zn, ∀n≥ N0. (1.26)

Suitably modify the way N is chosen in the proof of Prop. 1.5.7 to account for this

more general condition. (Tell how.)
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Proposition 1.5.8. If lim
n→∞

xn = L, where L 6= 0, then ∃m > 0 and N ∈ N such that

|xn|> m, ∀n≥ N.

(In words, if a sequence has a nonzero limit, then its terms must be bounded away

from zero for sufficiently large indices n.)

Outline of Proof:

Let ε = |L|
2 .Then, ε > 0. (Why?)

∃N ∈ N such that |xn−L|< ε = |L|
2 , ∀n≥ N. (Why?)

Thus, ||xn|− |L||< |L|
2 , ∀n≥ N. (Why?)

That is, − |L|2 < |xn|− |L|< |L|
2 , ∀n≥ N. (Why?)

So,
|L|
2 < |xn| , ∀n≥ N.

The conclusion follows by choosing m = |L|
2 . (Why?) �

Proposition 1.5.9. Suppose that lim
n→∞

xn = L and lim
n→∞

yn = M. Then,

i.) lim
n→∞

(xn + yn) = L+ M;

ii.) lim
n→∞

xnyn = LM.

Outline of Proof:

Proof of (i): The strategy is straightforward. Because there are two sequences, we

split the given error tolerance ε into two parts of size ε
2 each, apply the limit definition

to each sequence with the ε
2 tolerance, and finally put the two together using the

triangle inequality.

Let ε > 0. Then, ε
2 > 0. We know that

∃N1 ∈N such that |xn−L|< ε

2
, ∀n≥ N1. (Why?) (1.27)

∃N2 ∈N such that |yn−M|< ε

2
, ∀n≥ N2. (Why?) (1.28)

How do you then select N ∈ N such that (1.27) and (1.28) hold simultaneously for

all n≥ N? For such an N, observe that

n≥ N =⇒ |(xn + yn)− (L+ M)| ≤ |xn−L|+ |yn−M|< ε. (1.29)

(Why?) Hence, we conclude that lim
n→∞

(xn + yn) = L+ M.

Proof of (ii): This time the strategy is a bit more involved. We need to show that

|xnyn−LM| can be made arbitrarily small for sufficiently large n using the hypothe-

ses that |xn−L| and |yn−M| can each be made arbitrarily small for sufficiently large

n. This requires two approximations, viz., making xn close to L while simultane-

ously making yn close to M. This suggests that we bound |xnyn−LM| above by an

expression involving |xn−L| and |yn−M| . To accomplish this, we add and subtract
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the same middle term in |xnyn−LM| and apply certain absolute value properties.

Precisely, observe that

|xnyn−LM| = |xnyn−Mxn + Mxn−LM|
= |xn (yn−M)+ M (xn−L)| (1.30)

≤ |xn| |yn−M|+ |M| |xn−L| .

(This trick is a workhorse throughout the text!) The tack now is to show that both

terms on the right-hand side of (1.30) can be made less than ε
2 for sufficiently large

n.

Let ε > 0. Proposition 1.5.6 implies that ∃K > 0 for which

|xn| ≤ K, ∀n ∈ N. (1.31)

Also, because {yn} is convergent to M, ∃N1 ∈ N such that

|yn−M|< ε

2K
, ∀n≥ N1. (1.32)

In view of (1.31) and (1.32), we obtain

n≥ N1 =⇒ |xn| |yn−M| ≤ K |yn−M|< K · ε

2K
=

ε

2
. (1.33)

This takes care of the first term in (1.30). Next, because {xn} is convergent to L,

∃N2 ∈ N such that

|xn−L|< ε

2(|M|+ 1)
, ∀n≥ N2. (1.34)

Now, argue in a manner similar to (1.33) to conclude that

n≥ N2 =⇒ |M| |xn−L|< ε

2
. (Tell how.) (1.35)

Choose N ∈ N so that (1.33) and (1.35) hold simultaneously, ∀n ≥ N. Then, use

(1.30) through (1.35) to conclude that

n≥ N =⇒ |xnyn−LM|< ε. (How?)

Hence, we conclude that lim
n→∞

xnyn = LM. This completes the proof. �

Because we were unfolding the argument in somewhat reverse order for moti-

vation, it would be better now to start with ε > 0 and reorganize the train of the

suggested argument into a polished proof. (Do so!)

Exercise 1.5.4. Let c ∈R and assume that lim
n→∞

xn = L and lim
n→∞

yn = M. Prove that

i.) lim
n→∞

cxn = cL,

ii.) lim
n→∞

(xn− yn) = L−M.

The following lemma can be proven easily using induction. (Tell how.)
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Lemma 1.5.10. If {nk} ⊂ N is an increasing sequence, then nk ≥ k, ∀k ∈ N.

Proposition 1.5.11. If lim
n→∞

xn = L and
{

xnk

}
is any subsequence of {xn} , then

lim
k→∞

xnk
= L . (In words, all subsequences of a sequence convergent to L also con-

verge to L.)

Outline of Proof: Let ε > 0. There exists N ∈N such that

|xn−L|< ε, ∀n≥ N.

Now, fix any K0 ≥ N and use Lemma 1.5.10 to infer that

k ≥ K0 =⇒ nk > k≥ K0 ≥ N =⇒
∣∣xnk
−L
∣∣< ε. (Why?)

The conclusion now follows. (Tell how.) �

Exercise 1.5.5. Prove that if lim
n→∞

xn = 0 and {yn} is bounded, then lim
n→∞

xnyn = 0.

Exercise 1.5.6.

i.) Prove that if lim
n→∞

xn = L, then lim
n→∞
|xn|= |L| .

ii.) Provide an example of a sequence {xn} for which ∃ lim
n→∞
|xn|, but ∄ lim

n→∞
xn.

Exercise 1.5.7. Prove the following:

i.) If lim
n→∞

xn = L, then lim
n→∞

x
p
n = Lp, ∀p ∈ N.

ii.) If xn > 0, ∀n ∈ N, and lim
n→∞

xn = L, then lim
n→∞

√
xn =

√
L.

Important connections between sequences and the derived set and closure of a set

are provided in the following exercise.

Exercise 1.5.8. Let ∅ 6= S ⊂ R. Prove the following:

i.) x ∈ S′ iff ∃{xn} ⊂ S \ {x} such that lim
n→∞

xn = x.

ii.) x ∈ clR(S) iff ∃{xn} ⊂ S such that lim
n→∞

xn = x.

Proposition 1.5.12. If {xn} is a bounded sequence in R, then there exists a conver-

gent subsequence
{

xnk

}
of {xn}.

Outline of Proof: Let Rx = {xn|n ∈ N}. We split the proof into two cases.

Case 1: Rx is a finite set, say Rx = {y1,y2, . . . ,ym}.
It cannot be the case that the set x−1 ({yi}) = {n ∈ N|xn = yi} is finite, for every i∈

{1,2, . . . ,m} because N =
⋃m

i=1 x−1 ({yi}). (Why?) As such, there is at least one i0 ∈
{1,2, . . . ,m} such that x−1

({
yi0

})
is infinite. Use this fact to inductively construct

a sequence n1 < n2 < .. . in N such that xnk
= yi0 , ∀k ∈ N. (Tell how.) Observe that{

xnk

}
is a convergent subsequence of {xn}. (Why?)

Case 2: Rx is infinite.
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Because {xn} is bounded, it follows from Thrm. 1.4.12 that R ′x 6= ∅, say L ∈R ′x.

Use the definition of limit point to inductively construct a subsequence
{

xnk

}
of {xn}

such that xnk
−→ L. How does this complete the proof? �

The combination of the hypotheses of monotonicity and boundedness implies con-

vergence, as the next result suggests.

Proposition 1.5.13. If {xn} is a nondecreasing sequence that is bounded above, then

{xn} converges and lim
n→∞

xn = sup{xn|n ∈ N} .

Outline of Proof: Because {xn|n ∈ N} is a nonempty subset of R that is bounded

above, ∃sup{xn|n ∈N}, call it L. (Why?) Let ε > 0. Then,

∃N ∈N such that L− ε < xN . (Why?)

Consequently,

n≥ N =⇒ L− ε < xN ≤ xn ≤ L < L+ ε =⇒ |xn−L|< ε.

(Why?) This completes the proof. �

Exercise 1.5.9. Formulate and prove a result analogous to Prop. 1.5.13 for nonin-

creasing sequences.

Exercise 1.5.10.

i.) Let {xk} be a sequence of nonnegative real numbers. For every n ∈ N, define

sn = ∑n
k=1 xk. Prove that the sequence {sn} converges iff it is bounded above.

ii.) Prove that
{

an

n!

}
converges, ∀a ∈ R. In fact, lim

n→∞

an

n! = 0.

Now that we know about subsequences, it is convenient to introduce a general-

ization of the notion of the limit of a real-valued sequence. We make the following

definition.

Definition 1.5.14. Let {xn} ⊂ R be a sequence.

i.) We say that lim
n→∞

xn = ∞ whenever ∀r > 0, ∃N ∈ N such that xn > r, ∀n ≥ N. (In

such case, we write xn→ ∞.)
ii.) For every n ∈ N, let un = sup{xk : k ≥ n} . We define the limit superior of xn by

lim
n→∞

xn = inf{un|n ∈ N}= inf
n∈N

(
sup
k≥n

xk

)
.

iii.) The dual notion of limit inferior, denoted lim
n→∞

xn, is defined analogously with sup

and inf interchanged in (ii), viz.,

lim
n→∞

xn = sup
n∈N

(
inf
k≥n

xk

)
.
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Some properties of limit superior (inferior) are gathered below. The proofs are

standard and can be found in standard analysis texts (see [234]).

Proposition 1.5.15. (Properties of Limit Superior and Inferior)

i.) lim
n→∞

xn = p ∈ R iff ∀ε > 0,

a.) There exist only finitely many n such that xn > p + ε , and

b.) There exist infinitely many n such that xn > p− ε;

ii.) lim
n→∞

xn = p ∈ R iff p is the largest limit of any subsequence of {xn};
iii.) lim

n→∞
xn = ∞ iff ∀r ∈ R, ∃ infinitely many n such that xn > r;

iv.) If xn < yn, ∀n ∈ N, then

a.) lim
n→∞

xn ≤ lim
n→∞

yn,

b.) lim
n→∞

xn ≤ lim
n→∞

yn;

v.) lim
n→∞

(−xn) =− lim
n→∞

xn;

vi.) lim
n→∞

xn ≤ lim
n→∞

xn;

vii.) lim
n→∞

xn = p iff lim
n→∞

xn ≤ lim
n→∞

xn = p;

viii.) lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn)≤ lim
n→∞

(xn + yn)≤ lim
n→∞

xn + lim
n→∞

yn;

ix.) If xn ≥ 0 and yn ≥ 0, ∀n∈N, then lim
n→∞

(xnyn)≤
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
, provided the

product on the right is not of the form 0 ·∞.

1.5.3 Cauchy Sequences

Definition 1.5.16. A sequence {xn} is a Cauchy sequence if ∀ε > 0,∃N ∈ N such

that

n,m≥ N =⇒ |xn− xm|< ε.

Intuitively, the terms of a Cauchy sequence squeeze together as the index in-

creases. Given any positive error tolerance ε , there is an index past which any two

terms of the sequence, no matter how greatly their indices differ, have values within

the tolerance of ε of one another. For brevity, we often write “{xn}is Cauchy” instead

of “{xn} is a Cauchy sequence.”

Exercise 1.5.11. Prove that the following statements are equivalent:

(1) {xn} is a Cauchy sequence.

(2) ∀ε > 0,∃N ∈N such that
∣∣xN+p− xN+q

∣∣< ε, ∀p,q ∈ N.

(3) ∀ε > 0,∃N ∈N such that |xn− xN|< ε, ∀n≥ N.

(4) ∀ε > 0,∃N ∈N such that
∣∣xN+p− xN

∣∣< ε, ∀p ∈ N.

(5) lim
n→∞

(xn+p− xn) = 0, ∀p ∈ N.

We could have included the statement “{xn} is a convergent sequence” in the

above list and asked which others imply it or are implied by it. Indeed, which of
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the two statements

{xn} is a convergent sequence

or

{xn} is a Cauchy sequence

seems stronger to you? Which implies which, if either? We will revisit this question

after the following lemma.

Lemma 1.5.17. (Properties of Cauchy Sequences in R)

i.) A Cauchy sequence is bounded.

ii.) If a Cauchy sequence {xn} has a subsequence
{

xnk

}
that converges to L, then

{xn} itself converges to L.

Outline of Proof:

Proof of (i): Let {xn} be a Cauchy sequence. Then, by Def. 1.5.16, ∃N ∈N such that

n,m≥ N =⇒ |xn− xm|< 1.

In particular,

n≥ N =⇒ |xn− xN |< 1.

Starting with the last statement, argue as in Prop. 1.5.6 that |xn| ≤M, ∀n ∈N, where

M = max{|x1| , |x2| , . . . , |xN−1| , |xN |+ 1} .

So, {xn} is bounded.

Proof of (ii): Let ε > 0. ∃N1 ∈N such that

n,m≥ N1 =⇒ |xn− xm|<
ε

2
(1.36)

and ∃N2 ∈N such that

k ≥ N2 =⇒
∣∣xnk
−L
∣∣< ε

2
. (1.37)

(Why?) Now, how do you select N so that (1.36) and (1.37) hold simultaneously?

Let n > N and choose any k ∈N such that k≥ N. Then, n≥ N1 and nk ≥ N. (Why?)

As such,

n≥ N =⇒ |xn−L|=
∣∣xn− xnk

+ xnk
−L
∣∣≤
∣∣xn− xnk

∣∣+
∣∣xnk
−L
∣∣< ε.

(Why?) This completes the proof. �

We now shall prove that convergence and Cauchy are equivalent notions in R.

Theorem 1.5.18. (Cauchy Criterion in R)

{xn}is convergent⇐⇒ {xn}is a Cauchy sequence.
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Outline of Proof:

Proof of =⇒): Suppose that lim
n→∞

xn = L and let ε > 0. Then, ∃N ∈ N such that

n≥ N =⇒ |xn−L|< ε

2
.

Thus,

n,m≥ N =⇒ |xn− xm| ≤ |xn−L|+ |xm−L|< ε

2
+

ε

2
= ε. (Why?)

Thus, {xn}is a Cauchy sequence.

Proof of ⇐=): Let {xn}be a Cauchy sequence. Then, {xn} is bounded (Why?) and

so contains a convergent subsequence
{

xnk

}
. (Why?) Denote its limit by L. Then,

it follows that, in fact, {xn} converges to L, as needed. (Why?) This completes the

proof. �

Remark. The proofs of the results:

i.) A bounded sequence has a convergent subsequence,

ii.) A bounded monotone sequence converges,

iii.) Cauchy Criterion in R,

all require the completeness property of R, the first indirectly via Bolzano-

Weierstrass, which in turn uses it, the second directly, and the third via use of the

first. Actually, all three statements are not only consequences of the completeness

property of R, but are equivalent to it. In fact, in more general settings in which

order is no longer available (cf. Sections 1.6 and 1.7), completeness of the space is

defined to be the property that all Cauchy sequences converge in the space.

Exercise 1.5.12. For every n ∈ N, define sn = ∑n
k=1

1
k . Prove that {sn} diverges.

1.5.4 A Brief Look at Infinite Series

Sequences defined by forming partial sums using terms of a second sequence (e.g.,

see Exer. 1.5.12) often arise in applied analysis. You might recognize them by the

name infinite series. We shall provide the bare essentials of this topic below. A thor-

ough treatment can be found in [236].

Definition 1.5.19. Let {an} be a sequence in R.

i.) The sequence {sn} defined by sn = ∑n
k=1 ak, n ∈N is the sequence of partial sums

of {an} .
ii.) The pair ({an} ,{sn}) is called an infinite series, denoted by ∑∞

n=1 an or ∑an.

iii.) If lim
n→∞

sn = s, then we say ∑an converges and has sum s; we write ∑an = s.

Otherwise, we say ∑an diverges.

Remarks.

1. The sequence of partial sums can begin with an index n strictly larger than 1.
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2. Suppose ∑∞
k=1 ak = s and sn = ∑n

k=1 ak. Observe that

sn +
∞

∑
k=n+1

ak

︸ ︷︷ ︸
Tail

= s. (1.38)

Because lim
n→∞

sn = s, it follows that lim
n→∞

∑∞
k=n+1 ak = 0. (Why?)

Example. (Geometric Series)

Consider the series ∑∞
k=0 cxk, where c,x ∈R. For every n≥ 0, subtracting the expres-

sions for sn and xsn yields

sn = c
[
1 + x + x2 + . . .+ xn

]
(1.39)

−xsn = c
[
x + x2 + . . .+ xn + xn+1

]
(1.40)

(1− x)sn = c
[
1− xn+1

]
.

Hence,

sn =

{
c[1−xn+1]

1−x , x 6= 1,

c(n + 1), x = 1.

If |x|< 1, then lim
n→∞

xn+1 = 0, so that lim
n→∞

sn = c
1−x . Otherwise, lim

n→∞
sn does not exist.

(Tell why.)

Exercise 1.5.13. Let p ∈ N. Determine the values of x for which ∑∞
n=p c(5x + 1)3n

converges, and for such x, determine its sum.

Proposition 1.5.20. ∑an converges iff {sn} is Cauchy iff ∀ε > 0, ∃N ∈ N such that

n≥ N =⇒
∣∣∑p

k=1 an+k

∣∣< ε .

Outline of Proof: The first equivalence is immediate (Why?) and the second follows

from Exer. 1.5.11. (Tell how.) �

Corollary 1.5.21. (nth -term test) If ∑an converges, then lim
n→∞

an = 0.

Outline of Proof: Take p = 1 in Prop. 1.5.20. �

Exercise 1.5.14. Prove that ∑∞
n=1

n!
an diverges, ∀a > 0.

Proposition 1.5.22. (Comparison Test)

If an, bn ≥ 0, ∀n ∈ N, and ∃c > 0 and N ∈N such that an ≤ cbn, ∀n≥ N, then

i.) ∑bn converges =⇒ ∑an converges;

ii.) ∑an diverges =⇒∑bn diverges.
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Outline of Proof: Use Prop. 1.5.13 (Tell how.) �

Example. Consider the series ∑∞
n=1

5n
3n . Because lim

n→∞

5n

3n/2 = 0, ∃N ∈N such that

n≥ N =⇒ 5n

3n/2
< 1 =⇒ 5n

3n
<

1

3n/2
=

(
1√
3

)n

. (1.41)

(Why?) But, ∑∞
n=1

(
1√
3

)n

is a convergent geometric series. Thus, Prop. 1.5.22 im-

plies that ∑∞
n=1

5n
3n converges.

Definition 1.5.23. A series ∑an is absolutely convergent if ∑ |an| converges.

It can be shown that rearranging the terms of an absolutely convergent series does

not affect convergence (see [236]). So, we can regroup terms at will, which is espe-

cially useful when groups of terms simplify nicely.

Proposition 1.5.24. (Ratio Test)

Suppose ∑an is a series with an 6= 0, ∀n ∈N. Let

r = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ and R = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ ,

(where R could be ∞). Then,

i.) R < 1 =⇒ ∑an converges absolutely;

ii.) r > 1 =⇒ ∑an diverges;

iii.) If r ≤ 1≤ R, then the test is inconclusive.

Outline of Proof: We argue as in [234].

Proof of (i): Assume R < 1 and choose x such that R < x < 1. Observe that

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣= R < x =⇒ ∃N ∈ N such that

∣∣∣∣
an+1

an

∣∣∣∣≤ x, ∀n≥ N

=⇒ |an+1| ≤ |an|x, ∀n ≥ N. (1.42)

Thus,

|aN+1| ≤ |aN |x
|aN+2| ≤ |aN+1|x≤ |aN |x2

|aN+3| ≤ |aN+2|x≤ |aN+1|x2 ≤ |aN |x3

...

(Why?) What can be said about the series

|aN |
(
x + x2 + x3 + . . .

)
?
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Use Prop. 1.5.22 to conclude that ∑ |an| converges.

Proof of (ii): Next, assume 1 < r. Observe that

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣= r > 1 =⇒ ∃N ∈N such that

∣∣∣∣
an+1

an

∣∣∣∣≥ 1, ∀n≥ N

=⇒ |an+1| ≥ |an| ≥ |aN |> 0, ∀n≥ N. (1.43)

(Why?) Thus, an 9 0. (So what?)

Proof of (iii): For both ∑ 1
n

and ∑ 1
n2 , r = R = 1, but ∑ 1

n
diverges and ∑ 1

n2 con-

verges. �

Exercise 1.5.15. Determine if ∑∞
n=1

nn

n! converges.

Finally, we will need to occasionally multiply two series in the following sense.

Definition 1.5.25. Given two series ∑∞
n=0 an and ∑∞

n=0 bn, define

cn =
n

∑
k=0

akbn−k, ∀n≥ 0.

The series ∑∞
n=0 cn is called the Cauchy product of ∑∞

n=0 an and ∑∞
n=0 bn .

To see why this is a natural definition, consider the partial sum ∑
p
n=0 cn and form

a grid by writing the terms a0, . . . ,ap as a column and b0, . . . ,bp as a row. Multiply

the terms from each row and column pairwise and observe that the sums along the

diagonals (formed left to right) coincide with c0, . . . ,cp. (Check this!)

The following proposition describes a situation when such a product converges.

The proof of this and other related results can be found in [17].

Proposition 1.5.26. If ∑∞
n=0 an and ∑∞

n=0 bn both converge absolutely, then the

Cauchy product ∑∞
n=0 cn converges absolutely and ∑∞

n=0 cn = (∑∞
n=0 an)(∑

∞
n=0 bn).

1.6 The Spaces
(
RN , ‖·‖RN

)
and

(
MN(R), ‖·‖MN (R)

)

We now introduce two spaces of objects with which you likely have some familiar-

ity, namely vectors and square matrices, as a first step in formulating more abstract

spaces. The key observation is that the characteristic properties of R carry over to

these spaces, and their verification requires minimal effort. As you work through this

section, use your intuition about how vectors in two and three dimensions behave to

help you understand the more abstract setting.
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1.6.1 The Space
(
RN , ‖·‖RN

)

Definition 1.6.1. For every N ∈ N, RN = R×·· ·×R︸ ︷︷ ︸
N times

is the set of all ordered N-

tuples of real numbers. This set is often loosely referred to as N-space.

A typical element of RN (called a vector) is denoted by a boldface letter, say x,

representing the ordered N-tuple 〈x1,x2, . . . ,xN〉. (Here, xk is the kth component of

x.) The zero element in RN is the vector 0 = 〈0,0, . . . ,0〉︸ ︷︷ ︸
N times

.

The algebraic operations defined in R can be applied componentwise to define the

corresponding operations in RN . Indeed, we have

Definition 1.6.2. (Algebraic Operations in RN)

Let x = 〈x1,x2, . . . ,xN〉 and y = 〈y1,y2, . . . ,yN〉 be elements of RN and c ∈ R,

i.) x = y if and only if xk = yk, ∀k ∈ {1, . . . ,N},
ii.) x + y = 〈x1 + y1,x2 + y2, . . . ,xN + yN〉,
iii.) cx = 〈cx1,cx2, . . . ,cxN〉.

The usual properties of commutativity, associativity, and distributivity of scalar

multiplication over addition carry over to this setting by applying the corresponding

property in R componentwise. For instance, because xi +yi = yi +xi, ∀i∈ {1, . . . ,n} ,
it follows that

x + y = 〈x1 + y1,x2 + y2, . . . ,xN + yN〉
= 〈y1 + x1,y2 + x2, . . . ,yN + xN〉 (1.44)

= y + x.

Exercise 1.6.1. Establish associativity of addition and distributivity of scalar multi-

plication over addition in RN .

Geometric and Topological Structure

From the viewpoint of its geometric structure, what is a natural candidate for a

distance-measuring artifice for RN? There is more than one answer to this question,

arguably the most natural of which is the Euclidean distance formula, defined below.

Definition 1.6.3. Let x∈RN . The (Euclidean) norm of x, denoted ‖x‖RN , is defined

by

‖x‖RN =

√
N

∑
k=1

x2
k . (1.45)

We say that the distance between x and y in RN is given by ‖x−y‖RN .

Remarks.

1. When referring to the norm generically or as a function, we write ‖·‖RN .
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2. There are other “equivalent” ways to define a norm on RN that are more convenient

to use in some situations. Indeed, a useful alternative norm is given by

‖x‖RN = max
1≤i≤N

|xi| . (1.46)

By equivalent, we do not mean that the numbers produced by (1.45) and (1.46) are

the same for a given x∈RN . In fact, this is false in a big way! Rather, two norms ‖·‖1

and ‖·‖2 are equivalent if there exist constants 0 < α < β such that

α ‖x‖1 ≤ ‖x‖2 ≤ β ‖x‖1 , ∀x ∈ R. (1.47)

Suffice it to say that you can choose whichever norm is most convenient to work with

within a given series of computations, as long as you don’t decide to use a different

one halfway through! By default, we use (1.45) unless otherwise specified.

Exercise 1.6.2. Let ε > 0. Provide a geometric description of these sets:

i.) A =
{

x ∈ R2| ‖x‖R2 < ε
}

,

ii.) B =
{

y ∈ R3| ‖y−〈1,0,0〉‖R3 ≥ ε
}

,

iii.) C =
{

y ∈ R3| ‖y−x0‖R3 = 0
}

, where x0 ∈ R3 is prescribed.

The RN-norm satisfies similar properties as |·| (cf. Prop. 1.4.4), summarized below.

Proposition 1.6.4. Let x,y∈RN and c ∈ R. Then,

i.) ‖x‖RN ≥ 0,

ii.) ‖cx‖RN = |c|‖x‖RN ,

iii.) ‖x + y‖RN ≤ ‖x‖RN +‖y‖RN ,

iv.) x = 0 iff ‖x‖RN = 0.

Exercise 1.6.3. Prove Prop. 1.6.4 using Def. 1.6.3. Then, redo it using (1.46).

Exercise 1.6.4. Let M, p ∈ N. Prove the following string of inequalities:

∥∥∥∥∥
M

∑
i=1

xi

∥∥∥∥∥

p

RN

≤
(

M

∑
i=1

‖xi‖RN

)p

≤Mp−1
M

∑
i=1

‖xi‖p

RN (1.48)

The space
(
RN , ‖·‖RN

)
has an even richer geometric structure since it can be

equipped with a so-called inner product that enables us to define orthonormality

(or perpendicularity) and, by extension, the notion of angle in the space. Precisely,

we have

Definition 1.6.5. Let x,y∈RN . The inner product of x and y, denoted 〈x,y〉RN , is

defined by

〈x,y〉RN =
N

∑
i=1

xiyi. (1.49)
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Note that taking the inner product of any two elements of RN produces a real num-

ber. Also, 〈x,y〉RN is often written more compactly as xyT, where yT is the transpose

of y (that is, y written as a column vector rather than as a row vector). Some of the

properties of this inner product are as follows.

Proposition 1.6.6. (Properties of the Inner Product on RN )

Let x,y,z∈RN and c ∈ R. Then,

i.) 〈cx,y〉RN = 〈x,cy〉RN = c〈x,y〉RN ;

ii.) 〈x + y,z〉RN = 〈x,z〉RN + 〈y,z〉RN ;

iii.) 〈x,x〉RN ≥ 0;

iv.) 〈x,x〉RN = 0 iff x = 0;

v.) 〈x,x〉RN = ‖x‖2
RN ;

vi.) 〈x,z〉RN = 〈y,z〉RN , ∀z ∈ RN =⇒ x = y.

Verifying these properties is straightforward and will be argued in a more general

setting in Section 1.7. (Try proving them here!) Property (v) is of particular impor-

tance because it asserts that an inner product generates a norm.

Exercise 1.6.5. Prove Prop. 1.6.6.

The following Cauchy-Schwarz inequality is very important.

Proposition 1.6.7. (Cauchy-Schwarz Inequality)

Let x,y∈RN . Then,

|〈x,y〉RN | ≤ ‖x‖RN ‖y‖RN (1.50)

Outline of Proof: For any y ∈ RN \ {0} ,

0≤
〈

x−
(
〈x,y〉RN

‖y‖2
RN

)
y,x−

(
〈x,y〉RN

‖y‖2
RN

)
y

〉

RN

.

(So what?) Why does (1.50) hold for y = 0? �

The inner product can be used to formulate a so-called orthonormal basis for RN .

Precisely, let

e1 = 〈1,0, . . . ,0〉 , e2 = 〈0,1,0, . . . ,0〉 , . . . , en = 〈0, . . . ,0,1〉 ,

and observe that

‖ei‖RN = 1, ∀i ∈ {1, . . . ,N} , (1.51)〈
ei,e j

〉
RN = 0, whenever i 6= j. (1.52)

This is useful because it yields the following unique representation for the members

of RN involving the inner product.


