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Initially designed as thermal barrier materials for aerospace applications and fusion
reactors, functionally graded materials (FGMs) are now widely employed as
structural components in extremely high-temperature environments. However,
little information is commonly available that would allow engineers to predict the
response of FGM plates and shells subjected to thermal and mechanical loads.

Functionally Graded Materials: Nonlinear Analysis of Plates and Shells is the
first book devoted to the geometrically nonlinear response of inhomogeneous
isotropic and functionally graded plates and shells. Concerned that the high loads
common to many structures may result in nonlinear load–deflection relationships
due to large deformations, author Hui-Shen Shen has been conducting investigations
since 2001, paying particular attention to the nonlinear response of these plates
and shells to nonlinear bending, postbuckling and nonlinear vibration.

Designed for those who possess a basic understanding of plates and shells, this
unique work—

• Introduces the modeling of FGMs and structures containing them, so as
to derive the governing equations of FGM plates in the von Kármán sense

• Discusses the geometrically nonlinear bending of FGM plates due to
transverse static loads or heat conduction

• Provides a detailed treatment of the postbuckling problems of FGM plates
subjected to thermal, electrical, and mechanical loads

• Examines the nonlinear vibration of FGM plates with or without piezoelectric
actuators

• Presents postbuckling solutions for FGM cylindrical shells under various
loading conditions

Nearly all the solutions presented are the results of investigations conducted by
the author and his collaborators. The rigor of these investigative procedures allows
the results presented within these pages to stand as a benchmark against which
the validity and accuracy of other numerical solutions may be measured.
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Preface

With the development of new industries and modern processes, many struc-
tures serve in thermal environments, resulting in a new class of composite
materials called functionally graded materials (FGMs). FGMs were initially
designed as thermal barrier materials for aerospace structural applications
and fusion reactors. They are now developed for general use as structural
components in extremely high-temperature environments. The ability to
predict the response of FGM plates and shells when subjected to thermal
and mechanical loads is of prime interest to structural analysis. In fact, many
structures are subjected to high levels of load that may result in nonlinear
load–deflection relationships due to large deformations. One of the impor-
tant problems deserving special attention is the study of their nonlinear
response to large deflection, postbuckling, and nonlinear vibration.

This book consists of five chapters. The chapter and section titles are
significant indicators of the content matter. Each chapter contains adequate
introductory material to enable engineering graduates who are familiar with
the basic understanding of plates and shells to follow the text. The modeling
of FGMs and structures is introduced and the derivation of the governing
equations of FGM plates in the von Kármán sense is presented in Chapter 1.
In Chapter 2, the geometrically nonlinear bending of FGM plates due to
transverse static loads or heat conduction is presented. Chapter 3 furnishes
a detailed treatment of the postbuckling problems of FGM plates subjected to
thermal, electrical, and mechanical loads. Chapter 4 deals with the nonlinear
vibration of FGM plates with or without piezoelectric actuators. Finally,
Chapter 5 presents postbuckling solutions for FGM cylindrical shells under
various loading conditions. Most of the solutions presented in these chapters
are the results of investigations conducted by the author and his collabor-
ators since 2001. The results presented herein may be treated as a benchmark
for checking the validity and accuracy of other numerical solutions.

Despite a number of existing texts on the theory and analysis of plates
and=or shells, there is not a single book that is devoted entirely to the
geometrically nonlinear problems of inhomogeneous isotropic and function-
ally graded plates and shells. It is hoped that this book will fill the gap to
some extent and be used as a valuable reference source for postgraduate
students, engineers, scientists, and applied mathematicians in this field.

I wish to recordmy appreciation to the National Natural Science Foundation
of China (grant nos. 59975058 and 50375091) for partially funding this work,
and I also wish to thank my wife for her encouragement and forbearance.

Hui-Shen Shen
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1
Modeling of Functionally Graded Materials
and Structures
1.1 Introduction

The most lightweight composite materials with high strength=weight and
stiffness=weight ratios have been used successfully in aircraft industry and
other engineering applications. However, the traditional composite material
is incapable to employ under the high-temperature environments. In general,
the metals have been used in engineering field for many years on account of
their excellent strength and toughness. In the high-temperature condition,
the strength of the metal is reduced similar to the traditional composite
material. The ceramic materials have excellent characteristics in heat resist-
ance. However, the applications of ceramic are usually limited due to their
low toughness.

Recently, a new class of composite materials known as functionally graded
materials (FGMs) has drawn considerable attention. A typical FGM, with a
high bending–stretching coupling effect, is an inhomogeneous composite
made from different phases of material constituents (usually ceramic and
metal). An example of such material is shown in Figure 1.1 (Yin et al. 2004)
where spherical or nearly spherical particles are embedded within an iso-
tropic matrix. Within FGMs the different microstructural phases have differ-
ent functions, and the overall FGMs attain the multistructural status from
their property gradation. By gradually varying the volume fraction of con-
stituent materials, their material properties exhibit a smooth and continuous
change from one surface to another, thus eliminating interface problems and
mitigating thermal stress concentrations. This is due to the fact that the
ceramic constituents of FGMs are able to withstand high-temperature envir-
onments due to their better thermal resistance characteristics, while the metal
constituents provide stronger mechanical performance and reduce the pos-
sibility of catastrophic fracture.

The term FGMs was originated in the mid-1980s by a group of scientists in
Japan (Yamanoushi et al. 1990, Koizumi 1993). Since then, an effort to
develop high-resistant materials using FGMs had been continued. FGMs
were initially designed as thermal barrier materials for aerospace structures
and fusion reactors (Hirai and Chen 1999, Chan 2001, Uemura 2003). They
1



FIGURE 1.1
An FGM with the volume fractions of
constituent phases graded in one (verti-
cal) direction. (FromYin, H.M., Sun, L.Z.,
and Paulino, G.H., Acta Mater., 52, 3535,
2004. With permission.)
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are now developed for the general use as structural components in high-
temperature environments. An example is FGM thin-walled rotating blades
as shown in Figure 1.2 (Librescu and Song 2005). Potential applications of
FGM are both diverse and numerous. Applications of FGMs have recently
been reported in the open literature, e.g., FGM sensors (Müller et al. 2003)
and actuators (Qiu et al. 2003), FGM metal=ceramic armor (Liu et al. 2003),
FGM photodetectors (Paszkiewicz et al. 2008), and FGM dental implant
(Watari et al. 2004, see Figure 1.3). A number of reviews dealing with various
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FIGURE 1.2
An FGM thin-walled tapered pretwisted turbine blade. (From Librescu, L. and Song, S.-Y.,
J. Therm. Stresses, 28, 649, 2005. With permission.)



2 mm

FIGURE 1.3
Ti=20HAP FGM dental implant. External appearance (left) and cross-section
(right). (FromWatari, F., Yokoyama,A., Omori,M., Hirai, T., Kondo,H., Uo,M.,
and Kawasaki, T., Compos. Sci. Technol., 64, 893, 2004. With permission.)
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aspects of FGMs have been published in the past few decades (Fuchiyama
and Noda 1995, Markworth et al. 1995, Tanigawa 1995, Noda 1999, Paulino
et al. 2003). They show that most of early research studies in FGMs had more
focused on thermal stress analysis and fracture mechanics. A comprehensive
survey for bending, buckling, and vibration analysis of plate and shell
structures made of FGMs was presented by Shen (2004). Recently, Birman
and Byrd (2007) presented a review of the principal developments in FGMs
that includes heat transfer issues, stress, stability and dynamic analyses,
testing, manufacturing and design, applications, and fracture.
1.2 Effective Material Properties of FGMs

Several FGMs are manufactured by two phases of materials with different
properties. A detailed description of actual graded microstructures is usually
not available, except perhaps for information on volume fraction distribu-
tion. Since the volume fraction of each phase gradually varies in the grad-
ation direction, the effective properties of FGMs change along this direction.
Therefore, we have two possible approaches to model FGMs. For the first
choice, a piecewise variation of the volume fraction of ceramic or metal is
assumed, and the FGM is taken to be layered with the same volume fraction
in each region, i.e., quasihomogeneous ceramic–metal layers (Figure 1.4a).
For the second choice, a continuous variation of the volume fraction of
ceramic or metal is assumed (Figure 1.4b), and the metal volume fraction
can be represented as the following function of the thickness coordinate Z.

Vm ¼ 2Zþ h
2h

� �N

(1:1)

where h is the thickness of the structure, and N (0 � N � 1) is a volume
fraction exponent, which dictates the material variation profile through the



(a) (b)

FIGURE 1.4
Analytical model for an FGM layer.

4 Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
FGM layer thickness. As is presented in Figure 1.5, changing the value of
N generates an infinite number of composition distributions.

In order to accurately model the material properties of FGMs, the proper-
ties must be temperature- and position-dependent. This is achieved by using
−0.50
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FIGURE 1.5
Volume fraction of metal along the thickness.
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a simple rule of mixture of composite materials (Voigt model). The effective
material properties Pf of the FGM layer, like Young’s modulus Ef, and
thermal expansion coefficient af, can then be expressed as

Pf ¼
X
j¼1

PjVfj (1:2)

where Pj and Vfj are the material properties and volume fraction of the
constituent material j, and the sum of the volume fractions of all the con-
stituent materials makes 1, i.e., X

j¼1

Vfj ¼ 1 (1:3)

Since functionally graded structures are most commonly used in high-
temperature environment where significant changes in mechanical properties
of the constituent materials are to be expected (Reddy and Chin 1998), it is
essential to take into consideration this temperature-dependency for accurate
prediction of the mechanical response. Thus, the effective Young’s modulus Ef,
Poisson’s ratio nf, thermal expansion coefficient af, and thermal conductivity
kf are assumed to be temperature dependent and can be expressed as a non-
linear function of temperature (Touloukian 1967):

Pj ¼ P0(P�1T�1 þ 1þ P1T þ P2T2 þ P3T3) (1:4)

where P0, P�1, P1, P2, and P3 are the coefficients of temperature T (in K) and
are unique to the constituent materials. Typical values for Young’s modulus
Ef (in Pa), Poisson’s ratio nf, thermal expansion coefficient af (in K�1), and the
thermal conductivity kf (in W mK�1) of ceramics and metals are listed in
Tables 1.1 through 1.4 (from Reddy and Chin 1998). From Equations 1.1
through 1.3, one has (Gibson et al. 1995):

Ef(Z,T) ¼ [Em(T)� Ec(T)]
2Zþ h
2h

� �N

þEc(T) (1:5a)
TABLE 1.1

Modulus of Elasticity of Ceramics and Metals in Pa for Ef

Materials P0 P�1 P1 P2 P3

Zirconia 244.27eþ 9 0 �1.371e� 3 1.214e� 6 �3.681e� 10

Aluminum oxide 349.55eþ 9 0 �3.853e� 4 4.027e� 7 �1.673e� 10

Silicon nitride 348.43eþ 9 0 �3.070e� 4 2.160e� 7 �8.946e� 11

Ti-6Al-4V 122.56eþ 9 0 �4.586e� 4 0 0
Stainless steel 201.04eþ 9 0 3.079e� 4 �6.534e� 7 0

Nickel 223.95eþ 9 0 �2.794e� 4 �3.998e� 9 0

Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.



TABLE 1.2

Coefficient of Thermal Expansion of Ceramics and Metals in K�1 for af

Materials P0 P�1 P1 P2 P3

Zirconia 12.766e� 6 0 �1.491e� 3 1.006e� 5 �6.778e� 11

Aluminum oxide 6.8269e� 6 0 1.838e� 4 0 0

Silicon nitride 5.8723e� 6 0 9.095e� 4 0 0

Ti-6Al-4V 7.5788e� 6 0 6.638e� 4 �3.147e� 6 0

Stainless steel 12.330e� 6 0 8.086e� 4 0 0
Nickel 9.9209e� 6 0 8.705e� 4 0 0

Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.

TABLE 1.3

Thermal Conductivity of Ceramics and Metals in W mK�1 for kf

Materials P0 P�1 P1 P2 P3

Zirconia 1.7000 0 1.276e� 4 6.648e� 8 0

Aluminum oxide �14.087 �1123.6 �6.227e� 3 0 0

Silicon nitride 13.723 0 �1.032e� 3 5.466e� 7 �7.876e� 11

Ti-6Al-4V 1.0000 0 1.704e� 2 0 0

Stainless steel 15.379 0 �1.264e� 3 2.092e� 6 �7.223e� 10

Nickela 187.66 0 �2.869e� 3 4.005e� 6 �1.983e� 9

Nickelb 58.754 0 �4.614e� 4 6.670e� 7 �1.523e� 10

Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.
a For 300 K � T � 635 K.
b For 635 K � T.

TABLE 1.4

Poisson’s Ratio of Ceramics and Metals for nf

Materials P0 P�1 P1 P2 P3

Zirconia 0.2882 0 1.133e� 4 0 0

Aluminum oxide 0.2600 0 0 0 0

Silicon nitride 0.2400 0 0 0 0

Ti-6Al-4V 0.2884 0 1.121e� 4 0 0

Stainless steel 0.3262 0 �2.002e� 4 3.797e� 7 0

Nickel 0.3100 0 0 0 0

Source: Reddy, J.N. and Chin, C.D., J. Therm. Stresses, 21, 593, 1998. With permission.
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af(Z,T) ¼ [am(T)� ac(T)]
2Zþ h
2h

� �N

þac(T) (1:5b)

kf(Z,T) ¼ [km(T)� kc(T)]
2Zþ h
2h

� �N

þ kc(T) (1:5c)

nf(Z,T) ¼ [nm(T)� nc(T)]
2Zþ h
2h

� �N

þ nc(T) (1:5d)

It is evident that Ef, nf, af, and kf are both temperature- and position-dependent.
This method is simple and convenient to apply for predicting the overall
material properties and responses; however, owing to the assumed simplifica-
tions the validity is affected by the detailed graded microstructure.

As argued before, precise information about the size, the shape, and the
distribution of particles is not available and the effective elastic moduli of the
graded microstructures must be evaluated based on the volume fraction
distribution and the approximate shape of the dispersed phase. Several
micromechanics models have also been developed over the years to infer
the effective properties of FGMs. The Mori–Tanaka scheme (Mori and
Tanaka 1973, Benveniste 1987) for estimating the effective moduli is applic-
able to regions of the graded microstructure which have a well-defined
continuous matrix and a discontinuous particulate phase as depicted in
Figure 1.1. It takes into account the interaction of the elastic fields among
neighboring inclusions. It is assumed that the matrix phase, denoted by the
subscript 1, is reinforced by spherical particles of a particulate phase, denoted
by the subscript 2. In this notation, K1, G1, and V1 denote, respectively, the
bulk modulus, the shear modulus, and the volume fraction of the matrix
phase; K2, G2, and V2 denote the corresponding material properties and the
volume fraction of the particulate phase. It should be noted that V1þV2¼ 1.
The effective local bulk modulus Kf, the shear modulus Gf, thermal expansion
coefficient af, and thermal conductivity kf obtained by the Mori–Tanaka
scheme for a random distribution of isotropic particles in an isotropic matrix
are given by

Kf � K1

K2 � K1
¼ V2

1þ (1� V2) 3(K2 � K1)=(3K1 þ 4G1)ð Þ (1:6a)

Gf � G1

G2 � G1
¼ V2

1þ (1� V2) (G2 � G1)=(G1 þ f1)ð Þ (1:6b)

af � a1

a2 � a1
¼ (1=Kf)� (1=K1)

(1=K2)� (1=K1)
(1:6c)

kf � k1
k2 � k1

¼ V2

1þ (1� V2) (k2 � k1)=3k1ð Þ (1:6d)
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where

f1 ¼ G1(9K1 þ 8G1)
6(K1 þ 2G1)

(1:7)

The self-consistent method (Hill 1965) assumes that each reinforcement
inclusion is embedded in a continuum material whose effective properties
are those of the composite. This method does not distinguish between matrix
and reinforcement phases and the same overall moduli are predicted in
another composite in which the roles of the phases are interchanged. This
makes it particularly suitable for determining the effective moduli in those
regions which have an interconnected skeletal microstructure as depicted in
Figure 1.6. The locally effective elastic moduli by the self-consistent method
are given by

d

Kf
¼ V1

Kf � K2
þ V2

Kf � K1
(1:8a)

h

Gf
¼ V1

Gf � G2
þ V2

Gf � G1
(1:8b)

where

d ¼ 3� 5h ¼ Kf

Kf þ (4=3)Gf
(1:9)
FIGURE 1.6
Skeletal microstructure of FGM material. (From Vel, S.S. and Batra, R.C., AIAA J., 40, 1421, 2002.
With permission.)
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From Equation 1.8a, one has

Kf ¼ 1
V1=(K1 þ (4=3)Gf)ð Þ þ ðV2=(K2 þ (4=3)Gf)Þ �

4
3
Gf (1:10)

and Gf is obtained by solving the following quartic equation:

V1K1=(K1 þ 4Gf=3)þ V2K2=(K2 þ 4Gf=3)½ �
þ 5 V1G2=(Gf � G2)þ V2G1=(Gf � G1)½ � þ 2 ¼ 0 (1:11)

Then, the effective Young’s modulus Ef and Poisson’s ratio nf can be found
from Ef¼ 9KfGf=3KfþGf and nf¼ (3Kf� 2Gf)=2(3KfþGf), respectively.

A comparison between the Mori–Tanaka and self-consistent models and
the finite element simulation of FGM was presented in Reuter et al. (1997)
and Reuter and Dvorak (1998). The Mori–Tanaka model was shown to yield
accurate prediction of the properties with a well-defined continuous matrix
and discontinuous inclusions, while the self-consistent model was better in
skeletal microstructures characterized by a wide transition zone between the
regions with predominance of one of the constituent phases.
1.3 Reddy’s Higher Order Shear Deformation Plate Theory

Reddy (1984a,b) developed a simple higher order shear deformation plate
theory (HSDPT), in which the transverse shear strains are assumed to be
parabolically distributed across the plate thickness. The theory is simple in
the sense that it contains the same dependent unknowns as in the first-order
shear deformation plate theory (FSDPT), and no shear correction factors are
required.

Consider a rectangular plate made of FGMs. The length, width, and total
thickness of the plate are a, b, and h. As usual, the coordinate system has its
origin at the corner of the plate on the midplane. Let U, V, andW be the plate
displacements parallel to a right-hand set of axes (X,Y,Z), where X is
longitudinal and Z is perpendicular to the plate. Cx and Cy are the midplane
rotations of the normal about the Y and X axes, respectively. The displace-
ment components are assumed to be of the following form:

U1 ¼ U(X,Y, t)þ ZCx(X,Y, t)þ Z2jx(X,Y, t)þ Z3zx(X,Y, t) (1:12a)

U2 ¼ V(X,Y, t)þ ZCy(X,Y, t)þ Z2jy(X,Y, t)þ Z3zy(X,Y, t) (1:12b)

U3 ¼ W(X,Y, t) (1:12c)
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where t represents time, U, V, W, Cx, Cy, jx, jy, zx, and zy are unknowns.
If the transverse shear stresses s4 and s5 are to vanish at the bounding

planes of the plate (at Z¼�h=2), the transverse shear strains «4 and «5 should
also vanish there. That is

«5 X,Y, � h
2
, t

� �
¼ 0, «4 X,Y, � h

2
, t

� �
¼ 0 (1:13)

which imply the following conditions

jx ¼ 0 (1:14a)

jy ¼ 0 (1:14b)

zx ¼ � 4
3h2

@W
@X

þCx

� �
(1:14c)

zy ¼ � 4
3h2

@W
@Y

þCy

� �
(1:14d)

Putting the above conditions in Equation 1.12 leads to the following displace-
ment field

U1 ¼ U þ 2 Cx � x
4
3

2
h

� �2

Cx þ @W
@X

� �" #
(1:15a)

U2 ¼ V þ 2 Cy � x
4
3

2
h

� �2

Cy þ @W
@Y

� �" #
(1:15b)

U3 ¼ W (1:15c)

in which x is a tracer. If x¼ 1, Equation 1.15 is for the case of the HSDPT,
which contains the same dependent unknowns (U, V, W, Cx, and Cy) as in
the FSDPT. If x¼ 0, Equation 1.15 is reduced to the case of the FSDPT.

The strains of the plate associated with the displacement field given in
Equation 1.15 are

«1 ¼ «01 þ Z k01 þ Z2k21
� �

«2 ¼ «02 þ Z k02 þ Z2k22
� �

«3 ¼ 0

«4 ¼ «04 þ Z2k24

«5 ¼ «05 þ Z2k25

«6 ¼ «06 þ Z k06 þ Z2k26
� �

(1:16)
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where

«01 ¼
@U
@X

þ 1
2

@W
@X

� �2
, k01 ¼

@Cx

@X
, k21 ¼ �x

4
3h2

@Cx

@X
þ @2W

@X2

� �

«02 ¼
@V
@Y

þ 1
2

@W
@Y

� �2
, k02 ¼

@Cy

@Y
, k22 ¼ �x

4
3h2

@Cy

@Y
þ @2W

@Y2

 !

«04 ¼ Cy þ @W
@Y

, k24 ¼ �x
4
h2

Cy þ @W
@Y

� �

«05 ¼ Cx þ @W
@X

, k25 ¼ �x
4
h2

Cx þ @W
@X

� �

«06 ¼
@U
@Y

þ @V
@X

þ @W
@X

@W
@Y

k06 ¼
@Cx

@Y
þ @Cy

@X

k26 ¼ �x
4
3h2

@Cx

@Y
þ @Cy

@X
þ 2

@2W
@X@Y

 !

(1:17)

The plane stress constitutive equations may then be written in the form:

s1

s2

s6

2
4

3
5 ¼

Q11 Q12 0
Q21 Q22 0
0 0 Q66

2
4

3
5 «1

«2
«6

2
4

3
5 (1:18a)

s4
s5

� �
¼ Q44 0

0 Q55

� �
«4
«5

� �
(1:18b)

where Qij are the transformed reduced stiffnesses defined by

Q11 ¼ Q22 ¼ Ef(Z,T)
1� n2f

, Q12 ¼ nfEf(Z,T)
1� n2f

,

Q16 ¼ Q26 ¼ 0, Q44 ¼ Q55 ¼ Q66 ¼ Ef(Z,T)
2(1þ nf)

(1:19)

As in the classical plate theory, the stress resultants and couples are defined by

(Ni,Mi,Pi) ¼
ðh=2

�h=2

si(1,Z,Z3)dZ, i ¼ 1, 2, 6 (1:20a)

(Q2,R2) ¼
ðh=2

�h=2

s4(1,Z2)dZ (1:20b)
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(Q1,R1) ¼
ðh
�h

s5(1,Z2)dZ (1:20c)

where
Ni and Qi are the membrane and transverse shear forces
Mi is the bending moment per unit length
Pi and Ri are the higher order bending moment and shear force,
respectively

Substituting Equation 1.18 into Equation 1.20, and taking Equation 1.16
into account, yields the constitutive relations of the plate

N
M
P

2
4

3
5 ¼

A B E
B D F
E F H

2
4

3
5 «0

k0

k2

2
4

3
5 (1:21a)

Q
R

� �
¼ A D

D F

� �
«0

k2

� �
(1:21b)

where Aij, Bij, etc. are the plate stiffnesses, defined by

(Aij,Bij,Dij,Eij,Fij,Hij) ¼
ðþh=2

�h=2

(Qij)(1,Z,Z2,Z3,Z4,Z6)dZ, i, j ¼ 1, 2, 6 (1:22a)

(Aij,Dij,Fij) ¼
ðþh=2

�h=2

(Qij)(1,Z2,Z4)dZ, i, j ¼ 4, 5 (1:22b)

The Hamilton principle for an elastic body is

ðt2
t1

(dU þ dV � dK)dt ¼ 0 (1:23)

where
dU is the virtual strain energy
dV is the virtual work done by external forces
dK is the virtual kinetic energy

dU ¼
ð
V

ðh=2
�h=2

(sid«i)dZdX dY

¼
ð
V

(Nid«
0
i þMidk

0
i þ Pidk

2
i )dZdX dY, i ¼ 1, 2, 6 (1:24a)
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dV ¼ �
ð
V

[q(X,Y)dU3]dX dY (1:24b)

dK ¼
ð
V

ðh=2
�h=2

r( _Ujd _Uj)dZdX dY, j ¼ 1, 2, 3 (1:24c)

In Equation 1.24c, the superposed dots indicate differentiation with respect to
time. Integrating Equation 1.23, and collecting the coefficients of dU, dV, dW,
dCx, and dCy, we obtain the following equations of motion

dU:
@N1

@X
þ @N6

@Y
¼ I1

@2U
@t2

þ I2
@2Cx

@t2
� c1I4

@3W
@X@t2

dV:
@N6

@X
þ @N2

@Y
¼ I1

@2V
@t2

þ I2
@2Cy

@t2
� c1I4

@3W
@Y@t2

dW:
@Q1

@X
þ @Q2

@Y
þ @

@X
N1

@W
@X

þN6
@W
@Y

� �
þ @

@Y
N6

@W
@X

þN2
@W
@Y

� �

þ q� c2
@R1

@X
þ @R2

@Y

� �
þ c1

@2P1

@X2 þ 2
@2P6

@X@Y
þ @2P2

@Y2

� �

¼ I1
@2W
@t2

� c21I7
@2

@t2
@2W
@X2 þ @2W

@Y2

� �
þ c1I4

@2

@t2
@U
@X

þ @V
@Y

� �
þ c1I5

@2

@t2
@Cx

@X
þ @Cy

@Y

 !

dCx:
@M1

@X
þ @M6

@Y
�Q1 þ C2R1 � C1

@P1

@X
þ @P6

@Y

� �
¼ I2

@2U
@t2

þ I3
@2Cx

@t2
� c1I5

@3W
@X@t2

dCy:
@M6

@X
þ @M2

@Y
�Q2 þ c2R2 � c1

@P6

@X
þ @P2

@Y

� �
¼ I2

@2V
@t2

þ I3
@2Cy

@t2
� c1I5

@3W
@Y@t2

(1:25)

where c1¼ 4=3h2, c2¼ 3c1, and

I2 ¼ I2 � c1I4, I5 ¼ I5 � c1I7, I3 ¼ I3 � 2c1I5 þ c21I7, I8 ¼ I3 þ I5 (1:26a)

and the inertias Ii (i¼ 1, 2, 3, 4, 5, 7) are defined by

(I1, I2, I3, I4, I5, I7) ¼
ðh=2

�h=2

r(Z)(1,Z,Z2,Z3,Z4,Z6)dZ (1:26b)

where r is the mass density of the plate, which may also be position
dependent.
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1.4 Generalized Kármán-Type Nonlinear Equations

Based on Reddy’s HSDPT with a von Kármán-type of kinematic nonlinearity
(Reddy 1984b) and including thermal effects, Shen (1997) derived a set of
general von Kármán-type equations which can be expressed in terms of a
stress function F, two rotations Cx and Cy, and a transverse displacement W,
along with the initial geometric imperfection W*. These equations are then
extended to the case of shear deformable FGM plates.

Let F (X,Y) be the stress function for the stress resultants defined by
Nx¼ F,yy, Ny¼ F,xx, and Nxy¼�F,xy, where a comma denotes partial differ-
entiation with respect to the corresponding coordinates.

If thermal effect is taken into account, we assume

N* ¼ N �N
T
, M* ¼ M �M

T
, P* ¼ P� P

T
(1:27)

where NT, MT, ST, and PT are the forces, moments, and higher order
moments caused by elevated temperature, and are defined by

N
T
x M

T
x P

T
x

N
T
y M

T
y P

T
y

N
T
xy M

T
xy P

T
xy

2
6664

3
7775 ¼

ðþh=2

�h=2

Ax

Ay

Axy

2
64

3
75(1,Z,Z3)DT(X,Y,Z)dZ (1:28a)

S
T
x

S
T
y

S
T
xy

2
6664

3
7775 ¼

M
T
x

M
T
y

M
T
xy

2
6664

3
7775� 4

3h2

P
T
x

P
T
y

P
T
xy

2
6664

3
7775 (1:28b)

where DT(X,Y,Z)¼T(X,Y,Z)�T0 is temperature rise from the reference
temperature T0 at which there are no thermal strains, and

Ax

Ay

Axy

2
4

3
5 ¼ �

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

2
4

3
5 1 0

0 1
0 0

2
4

3
5 a11

a22

� �
(1:29)

where a11 and a22 are the thermal expansion coefficients measured in the
longitudinal and transverse directions, respectively.

The partial inverse of Equation 1.21a yields

«0

M*
P*

2
4

3
5 ¼

A* B* E*
�(B*)T D* (F*)T

�(E*)T F* H*

2
4

3
5 N*

k0

k2

2
4

3
5 (1:30)
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where the superscript ‘‘T’’ represents the matrix transpose and in which the
reduced stiffness matrices [Aij*], [Bij*], [Dij*], [Eij*], [Fij*], and [Hij*] (i,j¼ 1, 2, 6) are
functions of temperature and position, determined through relationships
(Shen 1997):

A* ¼ A�1, B* ¼ �A�1B, D* ¼ D� BA�1B, E* ¼ �A�1E,

F* ¼ F � EA�1B, H* ¼ H � EA�1E
(1:31)

From Equation 1.30, the bending moments, higher order moments, and
transverse shear forces can be written in the form:

Mx ¼ M1 ¼ �B11* F,yy � B21* F,xx þD11* Cx,x þD12* Cy,y

� c1[F11* (Cx,x þW,xx)þ F21* (Cy,y þW,yy)]þM
T
x (1:32a)

My ¼ M2 ¼ �B12* F,yy � B22* F,xx þD12* Cx,x þD22* Cy,y

� c1[F12* (Cx,x þW,xx)þ F22* (Cy,y þW,yy)]þM
T
y (1:32b)

Mxy ¼ M6 ¼ B66* F,xy þD66* (Cx,y þCy,x)

� c1F66* (Cx,y þCy,x þ 2W,xy)þM
T
xy (1:32c)

Px ¼ P1 ¼ �E11* F,yy � E21* F,xx þ F11* Cx,x þ F12* Cy,y

� c1[H11* (Cx,x þW,xx)þH12* (Cy,y þW,yy)]þ P
T
x (1:32d)

Py ¼ P2 ¼ �E12* F,yy � E22* F,xx þ F21* Cx,x þD22* Cy,y

� c1[H12* (Cx,x þW,xx)þH22* (Cy,y þW,yy)]þ P
T
y (1:32e)

Q1 ¼ (A55 � c2D55)(Cx þW,x) (1:32f)

R1 ¼ (D55 � c2F55)(Cx þW,x) (1:32g)

Q2 ¼ (A44 � c2D44)(Cy þW,y) (1:32h)

R2 ¼ (D44 � c2F44)(Cy þW,y) (1:32i)

Substituting Equation 1.32 into Equation 1.25, and considering the condi-
tion of compatibility, which is also expressed in terms of F, Cx, Cy, W, and
W*, the equations of motion are obtained in the following

~L11(W)� ~L12(Cx)� ~L13(Cy)þ ~L14(F)� ~L15(N
T
)� ~L16(M

T
)

¼ ~L(W þW*, F)þ ~L17(
€W)� I8(

€Cx,x þ €Cy,y)þ q (1:33)

~L21(F)þ ~L22(Cx)þ ~L23(Cy)� ~L24(W)� ~L25(N
T
) ¼ � 1

2
~L(W þ 2W*,W) (1:34)
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~L31(W)þ ~L32(Cx)� ~L33(Cy)þ ~L34(F)� ~L35(N
T
)� ~L36(S

T
)

¼ I5
€W,x � I3

€Cx (1:35)

~L41(W)� ~L42(Cx)þ ~L43(Cy)þ ~L44(F)� ~L45(N
T
)� ~L46(S

T
)

¼ I5
€W,y � I3

€Cy (1:36)

where all linear operators ~Lij() and the nonlinear operator ~L() are defined by

~L11() ¼ c1 F11*
@4

@X4 þ F12* þ F21* þ 4F66*ð Þ @4

@X2@Y2 þ F22*
@4

@Y4

� �

~L12() ¼ D11* � c1F11*ð Þ @3

@X3 þ D12* þ 2D66*ð Þ � c1 F12* þ 2F66*ð Þ½ � @3

@X@Y2

~L13() ¼ D12* þ 2D66*ð Þ � c1 F21* þ 2F66*ð Þ½ � @3

@X2@Y
þ D22* � c1F22*ð Þ @3

@Y3

~L14() ¼ B21*
@4

@X4 þ B11* þ B22* � 2B66*ð Þ @4

@X2@Y2 þ B12*
@4

@Y4

~L15(N
T
) ¼ @2

@X2 B11* N
T
x þ B21* N

T
y

� 	
þ 2

@2

@X@Y
B66* N

T
xy

� 	
þ @2

@Y2 B12* N
T
x þ B22* N

T
y

� 	
~L16 M

T
� 	

¼ @2

@X2 M
T
x

� 	
þ 2

@2

@X@Y
M

T
xy

� 	
þ @2

@Y2 M
T
y

� 	
~L17() ¼ c1 I5 � I4I2

I1

� �
@2

@X2 þ
@2

@Y2

� �
� I1

~L21() ¼ A22*
@4

@X4 þ 2A12* þ A66*ð Þ @4

@X2@Y2 þ A11*
@4

@Y4

~L22() ¼ B21* � c1E21*ð Þ @3

@X3 þ B11* � B66*ð Þ � c1 E11* � E66*ð Þ½ � @3

@X@Y2

~L23() ¼ B22* � B66*ð Þ � c1 E22* � E66*ð Þ½ � @3

@X2@Y
þ B12* � c1E12*ð Þ @3

@Y3

~L24() ¼ c1 E21*
@4

@X4 þ E11* þ E22* � 2E66*ð Þ @4

@X2@Y2 þ E12*
@4

@Y4

� �

~L25(N
T
) ¼ @2

@X2 A12* N
T
x þ A22* N

T
y

� 	
� @2

@X@Y
A66* N

T
xy

� 	
þ @2

@Y2 A11* N
T
x þ A12* N

T
y

� 	
~L31() ¼ A55 � 2c2D55 þ c22F55

� � @

@X
þ c1 F11* � c1H11*ð Þ @3

@X3

þ c1 F21* þ 2F66*ð Þ � c1 H12* þ 2H66*ð Þ½ � @3

@X@Y2

~L32() ¼ A55 � 2c2D55 þ c22F55
� �� D11* � 2c1F11* þ c21H11*

� � @2

@X2

� D66* � 2c1F66* þ c21H66*
� � @2

@Y2


