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Preface

This book presents the most common and useful mathematical transforms for students
and practicing engineers. It can be considered as a companion for students and a handy
reference for practicing engineers who will need to use transforms in their work.

The Laplace transform, which undoubtedly is the most familiar example, is basic to the
solution of initial value problems. The Fourier transform, being suited to solving bound-
ary-value problems, is basic to the frequency spectrum analysis of time-varying signals.
For discrete signals, we develop the z-transform and its uses. The purpose of this book is
to develop the most important integral transforms and present numerous examples
elucidating their use. Laplace and Fourier transforms are by far the most widely and
most useful of all integral transforms. For this reason, they have been given a more
extensive treatment in this book when compared to other books on the same subject.

This book is primarily written for seniors, first-year graduate students, and practicing
engineers and scientists. To comprehend some of the topics, the reader should have a
basic knowledge of complex variable theory. Advanced topics are indicated by a star (*).

The book contains several appendices to complement the main subjects. The extensive
tables of the transforms are the most important contributions in this book. Another
important contribution is the inclusion of an ample number of examples drawn from
several disciplines. The included examples help the readers understand any of the trans-
forms and give them the confidence to use it. Furthermore, it includes, wherever needed,
MATLAB1 functions and Book MATLAB functions developed by the author, which are
included in the text.

MATLAB is a registered trademark of The MathWorks, Inc. For product information,
please contact:

The MathWorks, Inc.
3 Apple Hill Drive Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1
Signals and Systems

1.1 Introduction

The term systems, in general, has many meanings such as electronic systems, biological
systems, communication systems, etc. The same is true for the term signals, since we talk
about optical signals, intelligence signals, radio signals, bio-signals, etc.

The two terms mentioned above can have the following three interpretations: (1) An
electric system is considered to be made of resistors, inductors, capacitors, and energy
sources. Signals are the currents and voltages in the electric system. The signals are a
function of time and they are related by a set of equations that are the product of physical
laws (Kirchhoff ’s voltage and current laws). (2) We interpret the system based on the
mathematical function it performs. For example, a resistor is a multiplier, an inductor is a
differentiator, and a capacitor is an integrator. The signals are the result of the rules of the
interconnected elements of the system. (3) If the operations can be performed digitally
and in real time, then the analog system can be substituted by a computer. The system,
under these circumstances, is a digital device (computer) whose input and output are
sequences of numbers. Figure 1.1 illustrates three systems and their responses. The top
part of the figure represents the ability of a filter to clear a signal from a superimposed
noise. The middle part of the figure shows how a feedback configuration affects an input
pulse. This is known as the step response of systems. The bottom part of the figure shows
how a rectifier and a filter can produce a DC (direct current) source when the input is a
sinusoidal signal as the one present in power transmission lines.

In addition to analog systems, we also have digital ones. These systems deal only with
discrete signals and are presented later on in the book. A basic, but sophisticated, instrument
is the analog-to-digital (A=D) converter, which most instruments nowadays contain.

1.2 Signals

A signal is a function representing a physical quantity. This can be a current, a voltage,
heart signals (EKG), velocities of motion, music signals, economic time series, etc. In this
chapter, we will concentrate only on one-dimensional signals, although images, for
example, are two-dimensional signals.

A continuous-time signal is a function whose domain is every point in a specified
interval.
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A discrete-time signal is a function whose domain is a set of integers. Therefore, this
type of signal is a sequence of numbers denoted by {x(n)}. It is understood that the
discrete-time signal is often formed by sampling a continuous-time signal x(t). In this
case and for equidistance samples, we write

x(n) ¼ x(nT) T ¼ sampling interval (1:1)

Figure 1.2 shows a transformation from a continuous-time signal to a discrete-time
signal.

Some important and useful functions are given in Table 1.1.
If the above analog signals are sampled every T seconds, then we will obtain the

corresponding discrete ones.

Approximation of a derivative

From Figure 1.3, we observe that we can approximate the samples y(nT) of the derivative
y(t)¼ x0(t) of the signal x(t) for a sufficiently small T as follows:

x0(t) ffi x(t)� x(t � T)
T

(1:2)

y(nT) ¼ x0(nT) ¼ x(nT)� x(nT � T)
T

¼ 1
T
Dx(nT) (1:3)

We observe that as T! 0, the approximate derivative of x(t), indicated by the inclination
of line A, comes closer and closer to the exact one, indicated by the inclination of line B.

Approximation of an integral

The approximation of an integral with its discrete form is shown in Figure 1.4. Therefore,
we write

y(nT) ¼
ðnT�T

0

x(t)dt þ
ðnT

nT�T

x(t)dt (1:4)
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which becomes

y(nT) ¼ y(nT � T)þ
ðnT

nT�T

x(t)dt (1:5)

TABLE 1.1 Some Useful Mathematical Functions in Analog and Discrete Format

1. Signum function

sgn(t) ¼
1 t > 0
0 t ¼ 0
�1 t < 1

(
; sgn(nT) ¼

1 nT > 0
0 nT ¼ 0
�1 nT < 0

(

2. Step function

u(t) ¼ 1
2
þ 1
2
sgn(t) ¼ 1 t > 0

0 t < 0

n
; u(nT) ¼ 1 nT > 0

0 nT < 0

�

3. Ramp function

r(t) ¼
ðt
�1

u(x)dx ¼ tu(t); r(nT) ¼ nTu(nT)

4. Pulse function

pa(t)¼ u(tþ a)�u(t� a)¼ 1 jt j < a
0 jt j > a

�
; pa(nT)¼ u(nTþmT)�u(nT�mT)

5. Triangular pulse

La(t) ¼ 1� jtj
a

jt j < a

0 jt j > a

(
; La(nT) ¼ 1� jnTj

mT
jnTj < mT

0 jnTj > mT

(

6. Sinc function

sinca(t) ¼ sin at
t

�1 < t < 1; sinca(nT) ¼ sin anT
nT

7. Gaussian function

ga(t) ¼ e�at2 �1 < t < 1
8. Error function

erf(t) ¼ 2ffiffiffiffi
p

p
ðt
0
e�x2 dx ¼ 2ffiffiffiffi

p
p

X1
n¼0

(�1)nt2nþ1

n!(2nþ 1)

properties: erf (1) ¼ 1, erf (0) ¼ 0, erf (�t) ¼ �erf (t)

erfc(t) ¼ complementary error function ¼ 1� erf (t) ¼ 2ffiffiffiffi
p

p
ð1
t
e�x2 dx

9. Exponential and double exponential

f (t) ¼ e�tu(t) t � 0; f (t) ¼ e�jtj �1 < t < 1
f (nT) ¼ e�nTu(nT) nT � 0; f (nT) ¼ e�jnTj �1 < nT < 1

Note: T, sampling time; n, integer.
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Approximating the integral in the above equation by the rectangle shown in Figure 1.4,
we obtain its approximate discrete form:

y(nT) ffi y(nT � T)þ Tx(nT) n ¼ 0, 1, 2, . . . (1:6)

Trigonometric functions

Of special interest in the study of linear systems is the class of sine and cosine functions:

a cosvt b sinvt r cos (vt þ w)

These functions are periodic with a period 2p=v and a frequency f¼v=2p
cycles=s or Hz.

x(nT )

A

x(nT–T) B

nTnT–T

T

t

FIGURE 1.3

x(t) Error

x(nT)

T

nTnT – T t0

FIGURE 1.4
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Complex signals

Signals representing physical quantities are, in general, real. However, in many cases it is
convenient to consider complex signals and to use their real or imaginary parts to
represent physical quantities. One of these signals is the complex exponential e jvt.

This function can be defined by its power series ex ¼ 1þ x þ x2
2! þ x3

3! þ � � �� �
:

e jvt ¼ 1þ jvt þ ( jvt)2

2!
þ ( jvt)3

3!
þ � � � þ ( jvt)n

n!
þ � � � (1:7)

The sum of two sine functions with the same frequency is also a sine function:

a cosvt þ b sinvt ¼ r cos (vt þ w) (1:8)

The discrete form of a sine function is

x(nT) ¼ cosvnT

By separating the real and the imaginary parts of (1.7), we obtain

e jvt ¼ cosvt þ j sinvt (1:9)

This fundamental identity can also be used to define the complex exponential exp( jvt)
and to derive all its properties in terms of the properties of trigonometric functions.

We observe that exp(jvt) is a complex number with unity amplitude and phase vt.
The sample value of the complex exponential is

x(nT) ¼ e jvnT

This function is a geometric series whose ratio e jvT is a complex number of unit
amplitude.

From (1.9), it follows that

e(aþjv)t ¼ eat( cosvt þ j sinvt) (1:10)

Therefore, if s¼ aþ jv is a complex number, then est is a complex signal whose real part
eat cosvt and imaginary part eat sin vt are exponentially decreasing (a< 0) and increas-
ing (a> 0) sine functions.

From (1.9), we obtain

e�jvt ¼ cosvt � j sinvt

1-6 Transforms and Applications Primer for Engineers with Examples and MATLAB1



Adding and subtracting the last equation from (1.9), we find Euler’s formula:

cosvt ¼ e jvt þ e�jvt

2
sinvt

e jvt � e�jvt

2j
(1:11)

A general complex signal x(t) is a function of the form

x(t) ¼ x1(t)þ jx2(t)

where x1(t) and x2(t) are the real functions of the real variable t. The derivative of x(t) is a
complex signal given by

dx(t)
dt

¼ dx1(t)
dt

þ j
dx2(t)
dt

and, in general, for any s, real or complex, we have

dest

dt
¼ sest (1:12)

Impulse (delta) function

An important function in science and engineering is the impulse function also known as
Dirac’s delta function. The signal is represented graphically in Figure 1.5. The delta
function is not an ordinary one. Therefore, some fundamental properties of these types of
functions, and specifically those of the delta function are presented so that the reader uses
it appropriately.

Property 1.1 The impulse function d(t) is a signal with a unit area and is zero outside
the point at the origin:

Ð1
�1

d(t)dt ¼ 1

d(t) ¼ 0 t 6¼ 0

8><
>: (1:13)

Property 1.2 The impulse function is the derivative of
the step function u(t):

d(t) ¼ du(t)
dt

(1:14)

δ(t)

1

t0

FIGURE 1.5
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Property 1.3 The area of the product w(t)d(t) equals w(0) for any regular function
that is continuous at the origin:

ð1
�1

w(t)d(t)dt ¼ w(0) (1:15)

Property 1.4 The delta function can be written as a limit:

d(t) ¼ lim v«(t) « ! 0 (1:16)

where v«(t) is a family of functions with the unit area vanishing outside the interval

� «

2
,
«

2

� �
:

ð«=2
�«=2

ve(t)dt ¼ 1 v«(t) ¼ 0 for t < � «

2
and t >

«

2
(1:17)

Figure 1.6 shows the approximation of the delta function by the pulse and the sufficiently
small «.

We can show (see Prob) that the impulse function is even. Hence,

d(t) ¼ d(�t) (1:18)

The impulse function d(t� t0) is centered at t0 of area one. Therefore, from (1.18), we
obtain

d(t � t0) ¼ d(t0 � t) (1:19)

pε(t) uε(t)

1
ε

ε–ε –ε

11
2ε

tt

ε/2

ε/2 ε
–ε/2

–ε/2

FIGURE 1.6
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Using Property 1.2 above, we write

d(t � t0) ¼ du(t � t0)
dt

(1:20)

Based on the above, the derivative of the function shown in Figure 1.7a is that shown in
Figure 1.7b.

Considering Property 1.3, and taking into consideration the evenness of the delta
function, we write

ð1
�1

y(x)d(t � x)dx ¼ y(t) (1:21)

The above integral is also known as the convolution integral. Therefore, we state that
the convolution of a function with a delta function reproduces the function. Let us
consider the function y(t � t0) to be convolved with the shifted delta function d(t � a).
From (1.21), we write

ð1
�1

y(x � t0)d(t � x � a)dx ¼ y(t � t0 � a)

The identity (1.21) is basic. We can use it, for example, to define the derivative of the
delta function. Because the two sides of the equation are functions of t, we can differen-
tiate with respect to t to obtain

x(t)

x΄(t)

2

3

2

1

t3t2

1

2

t10 t2 t3 t

tt1

–1

–2

(b)(a)

FIGURE 1.7
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ð1
�1

y(x)d0(t � x)dx ¼ y0(t) (1:22)

Thus, the derivative of the delta function is such that the area of the product y(x)d0(t – x),
considered as a function of x, equals y0(t). With t¼ 0, (1.22) yields

ð1
�1

y(x)d0(�x)dx ¼ y0(0) (1:23)

From calculus we know that when a function is even its derivative is an odd function.
Hence,

d0(�t) ¼ �d0(t) (1:24)

Inserting (1.24) in (1.23) and changing the dummy variable from x to t, we find

ð1
�1

y(t)d0(t)dt ¼ �y0(0) (1:25)

Additional delta functional properties are given in Table 1.2.

TABLE 1.2 Delta Functional Properties

1. d(at) ¼ 1
jaj d(t)

2. d
t � t0
a

� �
¼ jajd(t � t0)

3. d(at � t0) ¼ 1
jaj d t � t0

a

� �
4. d(�t þ t0) ¼ d(t � t0)

5. d(�t) ¼ d(t); d(t) ¼ even function

6.
Ð1
�1 d(t)f (t)dt ¼ f (0)

7.
Ð1
�1 d(t � t0)f (t) ¼ f (t0)

8. f (t)d(t) ¼ f (0)d(t)

9. f (t)d(t � t0) ¼ f (t0)d(t � t0)

10. td(t) ¼ 0

11.
Ð1
�1 Ad(t)dt ¼ Ð1

�1 Ad(t � t0)dt ¼ A

12. f (t) * d(t) ¼ convolution ¼ Ð1
�1 f (t � t)d(t)dt ¼ f (t)

13. d(t � t1) * d(t � t2) ¼
Ð1
�1 d(t � t1)d(t � t � t2)dt ¼ d[t � (t1 þ t2)]

14.
PN

n¼�N d(t � nT) *
PN

n¼�N d(t � nT) ¼ P2N
n¼�2N (2N þ 1� jnj)d(t � nT)
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TABLE 1.2 (continued) Delta Functional Properties

15.
Ð1
�1

dd(t)
dt

f (t)dt ¼ � df (0)
dt

16.
Ð1
�1

dd(t � t0)
dt

f (t)dt ¼ � df (t0)
dt

17.
Ð1
�1

dnd(t)
dtn

f (t)dt ¼ (�1)n
dnf (0)
dtn

18. f (t)
dd(t)
dt

¼ � df (0)
dt

d(t)þ f (0)
dd(t)
dt

19. t
dd(t)
dt

¼ �d(t)

20. tn
dmd(t)
dtm

¼
(�1)nn!d(t), m ¼ n

(�1)n
m!

m� n!
dm�nd(t)
dtm�n

, m > n

0, m < n

8>><
>>:

21.
Ð1
�1

dd(t)
dt

¼ 0,
dd(t)
dt

¼ odd function

22. f (t) *
dd(t)
dt

¼ df (t)
dt

23. f (t)
dnd(t)
dtn

¼
Xn

k¼0
(�1)k

n!
k!(n� k)!

dk f (0)
dtk

dn�kd(t)
dtn�k

24.
@d(yt)
@y

¼ � 1
y2

d(t)

25. d(t) ¼ du(t)
dt

26.
dnd(�t)
dtn

¼ (�1)n
dnd(t)
dtn

,
dnd(t)
dtn

is even if n is even, and odd if n is odd:

� �

27. (sin at)
dd(t)
dt

¼ �ad(t)

28.
dd(t)
dt

¼ d2u(t)
dt2

29. �d(t) ¼ du(�t)
dt

30. d(t � t0) ¼ du(t � t0)
dt

31.
dsgn(t)

dt
¼ 2d(t)

32. d[r(t)] ¼ P
n
d(t � tn)
dr(tn)
dt

				
				
, tn ¼ zeros of r(t),

dr(tn)
dt

6¼ 0

33.
dd[r(t)]

dt
¼

X
n

dd(t � tn)
dt

dr(t)
dt

dr(tn)
dt

				
				
, tn ¼ zeros of r(t),

dr(tn)
dt

6¼ 0,
dr(t)
dt

6¼ 0

34. d(sin t) ¼ P1
n¼�1 d(t � np)

35. d(t2 � 1) ¼ 1
2 d(t � 1)þ 1

2 d(t þ 1)

36. d(t2 � a2) ¼ 1
2a [d(t þ a)þ d(t � a)]

(continued)
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TABLE 1.2 (continued) Delta Functional Properties

37. d(t) ¼ lim
«!0

e�t2=«ffiffiffiffiffiffi
«p

p

38. d(t) ¼ lim
v!1

sin vt
pt

39. d(t) ¼ lim
«!0

1
p

«

t2 þ «2

40. d(t) ¼ 1
2p

ð1
�1

cosvt dv

41.
df (t)
dt

¼ d
dt

[tu(t)� (t � 1)u(t � 1)� u(t � 1)]

¼ td(t)þ u(t)� (t � 1)d(t � 1)� u(t � 1)� d(t � 1)

42.
combT (t) ¼

X1
n¼�1 d(t � nT), f (t)combT (t) ¼

X1
n¼�1 f (nT)d(t � nT)

COMBv0 (v) ¼ F {combT (t)} ¼ v0

X1
n¼�1 d(v� nv0), v0 ¼ 2p

T

d
dt

([2� u(t)] cos t) ¼ d
dt

(2 cos t � u(t) cos t)

¼ �2 sin t � d(t) cos t þ u(t) sin t

¼ (u(t)� 2) sin t � d(t)

d
dt

u t � p

2

� �
� u(t � p)

h i
sin t

� �
¼ d t � p

2

� �
� d(t � p)

h i
sin t

þ u t � p

2

� �
� u(t � p)

h i
cos t

¼ d t � p

2

� �
þ u t � p

2

� �
� u(t � p)

h i
cos t

Example
The values of the following integrals areð1
�1

e2t sin 4t
d2d(t)
dt2

dt ¼ (�1)2
d2

dt2
[e2t sin 4t]jt¼0 ¼ 2� 2� 4 ¼ 16ð1

�1
(t3 þ 2t þ 3)

dd(t � 1)
dt

þ 2
d2d(t � 2)

dt2


 �
dt ¼

ð1
�1

(t3 þ 2t þ 3)
dd(t � 1)

dt2
dt

þ 2
ð1
�1

(t3 þ 2t þ 3)
d2d(t � 2)

dt2
dt

¼ (�1)(3t2 þ 2)jt¼1 þ (�1)22(6t)jt¼2

¼ �5þ 24 ¼ 19

.

Example
The values of the following integrals areð4
0
e4td(2t � 3)dt ¼

ð4
0
e4td 2 t � 3

2


 �� 

dt ¼ 1

2

ð4
0
e4td t � 3

2


 �
dt ¼ 1

2
e4

3
2 ¼ 1

2
e6
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The comb function

The comb function is represented mathematically as follows:

combT(t) ¼
X1

n¼�1
d(t � nT) (1:26)

This function is used extensively for studying the sampling of signals. Figure 1.8 shows
the comb function pictorially.

1.3 Circuit Elements and Equation

In this text, we use the idealized model of physical devices, passive or active, which is
specified in terms of its terminal properties. In Figure 1.9, we show the passive and active
elements of electrical circuits.

A circuit or network is a combination of connected elements and external sources.
The inputs are the sources (voltage or current) and the outputs are voltages or currents
across elements and through elements, respectively. A network is a special form of an
analog system since its inputs and outputs are continuous signals.

+

–––––

++ + + v(t)v(t)

i(t)

R L C e(t) is(t)

FIGURE 1.9

CombT (t)

….….
1

t0 T 2T 3T–T–2T–3T

FIGURE 1.8
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The state of a network at a certain time (taking the time t¼ 0 for simplicity) is the set
of all the voltages across the capacitors and all the currents through the inductors. If we
know the initial state of a network at t¼ 0 and all its inputs at t¼ 0, then we can
determine all its responses for an all-time t� 0. If all the currents through the inductors
and all the voltages across the capacitors are zero, the network is at a zero initial state. If
the network is at a zero initial state, then its response is known as the zero-state
response. If all the sources are zero, then its response is called the zero-input response.
The zero-input response is due to the energy stored in the network.

The voltages and the currents of the passive elements are

Resistor

v(t) ¼ Ri(t) i(t) ¼ Gv(t) G ¼ 1
R

(1:27)

Inductor

v(t) ¼ L
di(t)
dt

i(t) ¼ 1
L

ðt
0

v(x)dx þ i(0) (1:28)

Capacitor

i(t) ¼ C
dv(t)
dt

v(t) ¼ 1
C

ðt
0

i(x)dx þ v(0) (1:29)

Voltage source

e(t) � known, independent of i(t)

Current source

is(t) � known, independent of v(t)

Initial conditions

Knowing the initial conditions of a network (voltages across the capacitors and the currents
through the inductors) it is sufficient to find its response for t� 0. In this text we assume that
there is a continuation of the initial conditions which means that the currents through the
inductors or the voltages across the capacitors are the same at t(0�) and t(0þ).

Impulse response

The following simple example will elucidate how a network responds to an impulse input
source. Let the input voltage of a simple RL series circuit be a delta function as shown in
Figure 1.10. Kirchhoff ’s voltage law of a network loop is

L
di(t)
dt

þ Ri(t) ¼ d(t) (1:30)
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Integrating the above equation from (0�) to (0þ), and taking into consideration that i(t)
is a continuous function, we obtain

L
ð0þ
0�

di(t)
dt

dt þ R
ð0þ
0�

i(t)dt ¼
ð0þ
0�

d(t)dt or L[i(0þ)� i(0�)]þ R0 ¼ 1

or L[i(0þ)� i(0�)] ¼ 1 (1:31)

Since the input impulse function is a discontinuous one, the current is also a discon-
tinuous function with a discontinuity such that L[i(0þ)� i(0�)] is equal to 1. If, in
addition, the system (here the network) is causal, i(0�)¼ 0 and hence i(0þ)¼ 1=L.
Therefore, if the circuit is in the zero state and it is connected to a delta function source,
the current i(t) changes instantly from zero to 1=L.

Derived initial conditions

Derived initial conditions are determined from the circuit equations, and, in general,
depend also on the sources. Let us assume that there is an initial current, i(0)¼ i0, in the
RL circuit shown in Figure 1.10. In addition, let the voltage source be a constant, v(t)¼V.
In this case, the solution of (1.30) with a constant voltage is the function

i(t) ¼ V
R
(1� e�Rt=L)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

zero-state response

þ i0e
�Rt=L|fflfflffl{zfflfflffl}

zero-input response

(1:32)

This result will be derived in Chapter 7.
For an RC series circuit, Kirchhoff ’s mesh voltage law results in

Ri(t)þ vc(t) ¼ v(t) or Ri(t)þ 1
C

ð0
�1

i(x)dx þ 1
C

ðt
0

i(x)dx ¼ v(t) or

Ri(t)þ 1
C

ðt
0

i(x)dx þ vc(0) ¼ v(t) (1:33)

v(t) = δ(t)

e–Rt/L1i(t)=

i(t)i(t)

LR

v(t)
v(t)

+

t t

System

L

FIGURE 1.10
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where vc(t) is the voltage across the capacitor. This equation can be cast into an ordinary
differential equation by differentiating both sides. Hence,

R
di(t)
dt

þ 1
C
i(t) ¼ dv(t)

dt
(1:34)

To solve (1.34), we must find the initial value of the current, i(0). Setting t¼ 0, we obtain

Ri(0)þ vc(0) ¼ v(0) or i(0) ¼ v(0)� vc(0)
R

This is the derived initial condition, and it depends not only on the initial (state) voltage
across the capacitor but also on the initial value of the voltage source.

As another example, Kirchhoff ’s mesh equation for a series RLC circuit with an initial
current i(0) through the inductor and the initial voltage vc(0) across the capacitor is

L
di(t)
dt

þ Ri(t)þ 1
C

ðt
0

i(x)dx þ vc(0) ¼ v(t) i(0) (1:35)

Taking the derivative with respect to the independent variable t, we find

L
d2i(t)
dt2

þ R
di(t)
dt

þ 1
C
i(t) ¼ dv(t)

dt
(1:36)

Since the above equation is a second-order differential equation of the dependent variable
i, we must find, in addition to its initial value i(0), the initial value of its derivative i0(0).
Setting t¼ 0 in (1.35) and assuming that v(t) does not have a discontinuity at t¼ 0, we
obtain

Li0(0)þ Ri(0)þ vc(0) ¼ v(0) or i0(0) ¼ 1
L
[v(0)� vc(0)� Ri(0)]

which is a derived initial condition.

State equations of an RLC series circuit

The state variables are the current i(t) through the inductor and the voltage vc(t) across
the capacitor and they satisfy the following two first-order differential equations:

C
dvc(t)
dt

¼ i(t) vc(0)

L
di(t)
dt

þ Ri(t)þ vc(t) ¼ v(t) i(0)

(1:37)

1-16 Transforms and Applications Primer for Engineers with Examples and MATLAB1



Node and state equations of the circuit in Figure 1.11

The circuit in Figure 1.11 has two variables: the voltage v1(t) across the capacitor and the
current i(t) through the inductor. The initial voltage across the capacitor is v1(0) and
the initial current through the inductor is i(0).

Node equations (the algebraic sum of currents at a node should be equal to zero)
For the node equation we use as primary unknowns, the node voltages v1(t) and v2(t).

Hence,

C
dv1(t)
dt

þ v2(t)
R

¼ is(t) v1(0)

L
di(t)
dt

þ Ri(t)� v1(t) ¼ 0 or
L
R
dv2(t)
dt

þ v2(t)� v1(t) ¼ 0 v2(0) ¼ Ri(0)
(1:38)

State equations

C
dv1(t)
dt

þ i(t) ¼ is(t) v1(0)

L
di(t)
dt

þ Ri(t)� v1(t) ¼ 0 i(0)
(1:39)

State equations for the circuit in Figure 1.12

State equations

L1
di1(t)
dt

þ R1i1(t)þ vc(t) ¼ v(t)

L2
di2(t)
dt

þ R2i2(t)� vc(t) ¼ 0

i1(t)� i2(t)� C
dvc(t)
dt

¼ 0

(1:40)

Block diagrams of systems

Circuit diagrams describe the structure of a network. However, the block diagrams
describe the terminal properties of the network (system). Inside the block we present

is(t)

i(t)

C R

L
v1(t) v2(t)

FIGURE 1.11
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different identifiers that will characterize the system operation. In general, we introduce
in the block a script O to represent a general operator that operates on the input to the
block to produce the output. In Figure 1.13, we show the block-diagram representation
of, a general system, a differentiator, a multiplier, an integrator, and a pick-off point.
The significance of s is given later in Chapter 7. Note that at the pick-off point the input
quantity appears in all the branches without any variation of its magnitude.

Figure 1.14a depicts three basic ways that systems can be configured. It is assumed that
the terminal properties of each system remain unchanged (no loading effect takes place).
Figure 1.14b shows the equivalent input–output of the cascade and the parallel and
the feedback configurations. In Figure 1.14a and for the first system, we obtain
y1(t) ¼ O1x(t) or y(t) ¼ O2y1(t) ¼ O2O1x(t). The second expression characterizes the
first system of part (b) of the figure. For the second system of part (a) of the figure, we find

y1(t)¼ O1x(t) and y2(t)¼ O2x(t), and, therefore, y(t)¼ y1(t)þ y2(t)¼ [O1 þ O2]x(t)

which characterizes the second system of part (b) of the figure. For the feedback system of
part (a), we obtain: y1(t) ¼ x(t)� O2y(t) or y(t) ¼ O1[x(t)� O2y(t)]. Solving y(t), and
keeping in mind that we do not perform divisions with the operators but only use their
inverse form, we find y(t) ¼ [1	 O1O2]

�1O1x(t). This expression characterizes the third

R1

R2

L1 L2

i1(t)

Cv(t)
+ +

i2(t)

vc(t)

FIGURE 1.12

t

0

y(t) = x(τ)dτ∫

dx(t)y(t) =
dt

1
s

S

x(t)

Pick-off point

y(t) = ax(t)

y(t) = O{x(t)}

Multiplier

x(t)

Integrator

Differentiator

x(t)

x(t)

x(t)

O

a

x(t)

x(t)

x(t)

FIGURE 1.13
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system of part (b) of the figure. If we substitute the two operators with constants a and b,
the transfer functions of the three systems are

Hc ¼ ab, Hp ¼ aþ b, Hf ¼ a
1	 ab

(1:41)

Table 1.3 represents block-diagram transformations.

+
+

O1

O2O1 O1+ O2

O1

O1

O2

O2

O2

[1 ±O1O2]–1O1

x(t) x(t)
x(t)

x(t)x(t)x(t)

y2(t)

y1(t)y1(t)
y1(t)

±

y(t)
y(t) y(t)

y(t)y(t)y(t)

(b)

(a)

FIGURE 1.14

TABLE 1.3 Block-Diagram Transformations of Systems

(c)

(b)

(a)

Pick-off point

Summation point

Two blocks in
cascade

±

+
+x

x a b abx yy

y = x ± v

x

x

v

x

x

(continued)
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TABLE 1.3 (continued) Block-Diagram Transformations of Systems

Feedback loop

Special case of unit
feedback loop

(e)

(d)

+ a y
x ya

1 ±a±
x +

+ 1

a

y
±

x +
x y1

1 ±a

Moving a pick-off
point ahead

Complete feedback
loop

Moving a pick-off
point behind

x y

y

(h)

(g)

(f )

a

a

a

b

++
±

x y

yx

x x

yax

1/a

x y

y
a

a

a
1 ±ab

x y
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1.4 Linear Mechanical and Rotational
Mechanical Elements

The linear mechanical systems with their equivalent circuit characterizations are shown
in Figure 1.15. The rotating fundamental mechanical systems and their equivalent circuit
characterizations are shown in Figure 1.16. The terminal properties of these signals are
given below.

1.4.1 Linear Mechanical Systems

Damper

f (t) ¼ Dv(t), v(t) ¼ 1
D
f (t), D ¼ damping constant (N � s=m)

f (t) ¼ force (N), v(t) ¼ velocity (m=s)
(1:42)

TABLE 1.3 (continued) Block-Diagram Transformations of Systems

Moving a summing
point ahead

Moving a summing
point behind

(i)

(j)

a

a

y

v

v

y

+
+

+ +

±

±

x

x y
a

1/a v

+ +
±

x

y

va

+a
±
+x

f (t)

v(t)

v (t)

f (t)

Referencevg = 0 =
velocity(ground)

f (t)

v1

v2

v2

x1 x2

v1

v2 v1

v = v1 – v2
v = v1 – v2

D
Oil

Physical
system

f (t)

+

+

+

(a)

M
M

(b) (c)

FIGURE 1.15
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Spring

f (t) ¼ Kx(t), v(t) ¼ 1
K

df (t)
dt

, x(t) ¼ displacement (m)

K ¼ spring constant (N=m)

(1:43)

Mass

f (t) ¼ M
dv(t)
dt

¼ M
d2x(t)
dt2

Newton ¼ kg �m � s�2(N)

v(t) ¼ 1
M

ðt
�1

f (x)dx M ¼ mass(kg)

(1:44)

From the above equations, we observe the following analogies between the circuit
elements and the linear mechanical elements: the mass and the capacitor, the spring
and the inductor, and the damper and the resistor.

1.4.2 Rotational Mechanical Systems

Damper

T(t) ¼ Dv(t), D ¼ damping costant (N � s �m=rad)

v(t) ¼ 1
D
T(t); T ¼ torque (N �m)

(1:45)

+

Viscous fluid(c)

ω2ω1

ω ω+

T

T

T T

T T

+

θ1, ω1 θ2, ω2

θ = θ1 – θ2

ω = ω1 – ω2

++

(a) (b)

ωθ

ω
ω

JJ

FIGURE 1.16
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Spring

T(t) ¼ Ku(t) ¼ K
ðt

�1
v(x)dx, K ¼ spring constant (N �m=rad)

v(t) ¼ 1
D

dT(t)
dt

(1:46)

Moment of inertia

T(t) ¼ J
dv(t)
dt

¼ J
d2u(t)
dt2

, J ¼ polar moment of inertia (kg �m2)

v(t) ¼ 1
J

ðt
�1

T(x)dx
(1:47)

For the rotation elements, we observe the following analogies between these elements
and the circuit elements: the damper and the resistor, the inductor and the spring, and
the mass and the moment of inertia. The current in circuits, the force in linear mech-
anical systems, and the torque in rotational mechanical elements are the through
variables. The voltage in circuits, the velocity in linear mechanical systems, and the
angular velocity in rotational mechanical systems are the across variables.

1.5 Discrete Equations and Systems

A discrete system is a process that relates the input discrete-time signal x(n) (or x(nT))
with the discrete-time output signal y(n) (or y(nT)). The elements with which we create
discrete systems are shown in Figure 1.17. The special symbol z�1 indicates the delay
which we discuss in Chapter 8. The delay element has a memory. This means that the
output at any particular time depends on the value of the input one unit earlier. In the
discrete systems, we also have pick-off points as we have defined them in the circuits case.

A simple first-order system is defined by the following discrete equation:

y(n) ¼ �2y(n� 1)þ x(n) (1:48)

Its block-type representation and its solution is shown in Figure 1.18. This is a recursive
equation, and its solution is found by iteration, assuming (or defining), of course, its

x(n) x(n) x(n)a x(n) x(n – 1)
a

y(n)

Digital system Delay elementMultiplier

z–1

FIGURE 1.17
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initial conditions. If we set y(�1)¼ 0 and the input function to be a delta function,
we obtain

y(0) ¼ �2y(�1)þ d(0) ¼ 0þ 1 ¼ 1

y(1) ¼ �2y(0)þ d(1) ¼ �2þ 0 ¼ �2

y(2) ¼ �2y(1)þ d(2) ¼ �2(�2)þ 0 ¼ 4

y(3) ¼ �2y(2)þ d(3) ¼ �2(4)þ 0 ¼ �8

..

.

The state of a discrete system at a certain time n0 is the set of values of the outputs
qi(n� 1) of all delay elements at n¼ n0. Therefore, if we know the state of the system at
n¼ n0 and all its sources for n> n0, then we can determine all its responses for any
n> n0.

The initial state of a system is its state at n¼ 0, where this time of origin is taken for
convenience. Hence, the initial state of a system is the set of values qi(�1) of the inputs
qi(n) to all delay elements at n¼�1. If the system is at the zero state, then its responses
for n> 0 are called zero-state responses. We therefore conclude that its responses are
due only to its inputs (external sources). On the other hand, if all external sources are
zero, its responses are only due to the energy sources of the system and they are called
zero-input responses.

State equations

State variables are the inputs qi(n) to all the delay elements (or any linear transformation
of these signals). The state variables are determined from the state equations resulting
from the rules of the interconnected elementary systems. The state equations become a
system of a specific number of equations equal to the number of the delay elements
present in the system. To find the solution, besides the input sources, we need the initial
conditions which are the values of the state variables at n¼�1. It is apparent, for
example, that the second-order discrete system

y(n) ¼ 3:5y(n� 1)þ 5y(n� 2)þ x(n) (1:49)

n

n
x(n)

x(n) = δ(n)
y(n)

y(n)

–8

–2

4

2

z–1−2

+

FIGURE 1.18

1-24 Transforms and Applications Primer for Engineers with Examples and MATLAB1



which is shown in the block-diagrammatic form in Figure 1.19, has the following state
variables representation:

q1(n)� 3:5q2(n)� 5q2(n� 1) ¼ x(n)

q2(n)� q1(n� 1) ¼ 0

q1(�1) ¼ y(�1)

q2(�1) ¼ y(�2)

�
initial conditions

(1:50)

Recursive and non-recursive systems

If a discrete (difference) equation, which represents the system, has one input and an
output with additional delayed outputs, it is called a recursive one. We also call these
systems infinite impulse systems (IIR). The difference equation of (1.49) represents a
recursive system and it is shown in Figure 1.19.

If, however, we have the discrete system representation by the equation

y(n) ¼ b0x(n)þ b1x(n� 1)þ b2x(n� 2) (1:51)

we say that the system is not recursive. This type of system is also called the finite
impulse response system (FIR). Figure 1.20 shows such a system. Note the feedback
configuration of the IIR systems and the forward configuration of the FIR systems.

y(n)

z–1

z–1

y(n – 2), q2(n – 1)

q2(n), y(n – 1), q1(n – 1)

x(n)

3.5

5

+

+
q1(n), y(n)

q1(n), y(n)

FIGURE 1.19

x(n) y(n)
b0 +

+

b2

b1

z–1

z–1

x(n – 1)

x(n – 2)

FIGURE 1.20
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1.6 Digital Simulation of Analog Systems

Since the physical systems are represented mathematically by differential and integro-
differential equations, we must approximate derivatives and integrals (see (1.3) and (1.6)).
The approximations are derived by interrogating Figures 1.3 and 1.4. A second-order
derivative is approximated in the form

d2y(t)
dt2

ffi y(nT)� 2y(nT � T)þ y(nT � 2T)
T2

(1:52)

To have the solution of a second-order differential equation, we must have the value of
the derivative at t¼ 0. Therefore, we must substitute the analog derivative with an
equivalent discrete one. Hence, we write

dy(t)
dt

				
t¼0

¼ dy(0)
dt

ffi y(0T)� y(0T � T)
T

or

y(�T) ¼ y(0)� T
dy(0)
dt

(1:53)

1.7 Convolution of Analog Signals

The convolution operation on functions is one of the most useful operations encountered
in the study of signals and systems. The importance of the convolution integral in
systems studies stems from the fact that a knowledge of the output of the system to an
impulse (delta) function excitation allows us to find its output to any input function
(subject to some mild restrictions).

To help us develop the convolution integral, let us begin with the properties of the
delta function. Based on the delta properties, we write

f (t) ¼
ð1

�1
f (t)d(t � t)dt (1:54)

Observe that, as far as the integral is concerned, the time t is a parameter (constant for
the integral although it can take any value) and the integration is with respect to t. Our
next step is to represent the integral with its equivalent approximate form, the summa-
tion form, by dividing the t axis into intervals of DT, then the above integral is
represented approximately by the sum

fa(t) ¼ lim
DT!0

X1
n¼�1

f (nDT)d(t � nDT)DT (1:55)
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As DT goes to zero and n increases to infinity, the product nDT takes the value of t, DT
becomes dt and the summation becomes integral, thus recapturing (1.54).

Note: The function f (t) has been approximated with an infinite sum of shifted delta
functions equal to nDT and their area is equal to f (nDT)DT.

We define the response of a causal (system that reacts after being excited) and an LTI
system to a delta function excitation by h(t), known as the impulse response of the
system. If the input to the system is d(t) the output is h(t), and when the input is d(t�t0)
then the output is h(t – t0). Further, we define the output of a system by g(t) if its input is
f (t). Based on the definitions discussed so far, it is obvious that if the input to the system
is fa(t), the output is a sum of impulse functions shifted identically to the shifts of the
input delta functions of the summation, and, therefore, the output is equal to

g(t) ¼ lim
DT!0

X1
n¼�1

f (nDT)h(t � nDT)DT

In the limit, as DT approaches zero, the summation becomes an integral of the form

g(t) ¼
ð1

�1
f (t)h(t � t)dt (1:56)

This is the convolution integral for any two functions f(t) and h(t).
Convolution is a general mathematical operation, and for any two real-valued func-

tions, their convolution, indicated mathematically by the asterisk between the functions,
is given by

g(t) ¼D f (t) * h(t) ¼
ð1

�1
f (t)h(t � t)dt ¼

ð1
�1

f (t � t)h(t)dt (1:57)

Note: Equation 1.57 tells us the following: given two functions in the time domain t, we
find their convolution g(t) by doing the following steps: (1) rewrite one of the functions in
the t domain by just setting wherever there is t, the variable t; the shape of the function is
identical to that in the t domain; (2) to the second function substitute t-t wherever there is t;
this produces a function in the t domain which is flipped (the minus sign in front of t) and
shifted by t (positive values of t shift the function to the right and negative values shift the
function to the left); (3)multiply these two functions and find another function of t, since t is
a parameter and a constant as far as the integration is concerned; and (4) next find the area
under the product function whose value is equal to the output of the convolution at t (in our
case it is g(t)). By introducing the infinite values of t’s, from minus infinity to infinity, we
obtain the output function g(t).
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f (t) = e–tu(t)
f (t) = e–0.5tu(t)11

tt(a)

1

τ

τ

τ

x = a

1

a
t

t(b)

f (τ) = e–τu(τ)

f(τ) h(t –τ) = e–τe–0.5(t–τ)u(τ)u(t –τ)

Area=g(t)=  
∞

 e–τe–0.5(t–τ)u(τ)u(t–τ)dτ

=    e–τe–0.5(t–τ)dτ
t

0

h(t –τ) = e–0.5τ u(t –τ)

–∞

2

t

–2

(c)

g1(t) = 2e–0.5tu(t)

g(t) = g1(t) + g2(t)

g2(t) = –2e–tu(t)

FIGURE 1.21
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From the convolution integral, we observe that one of the functions does not change
when it is mapped from the t to t domain. The second function is reversed or folded over
(mirrored with respect to the vertical axis) in the t domain and it is shifted by an amount t,
which is just a parameter in the integrand. Figure 1.21a and b shows two functions in the t
and t domains, respectively. We now write

g(t) ¼ f (t) * h(t) ¼
ð1

�1
e�tu(t)e�0:5(t�t)u(t � t)dt ¼

ðt
0

e�te�0:5(t�t)dt

¼ e�0:5t
ðt
0

e�0:5tdt ¼ 2(e�0:5t � e�t)

Figure 1.21c shows the results of the convolution.

1.8 Convolution of Discrete Signals

As we have indicated in the above section, the convolution of continuous signals is
defined as follows:

g(t) ¼
ð1

�1
f (x)h(t � x)dx (1:58)

The above equation is approximated as follows:

g(t) ¼
ð1

�1
f (x)h(t � x)dx ¼

X1
m¼�1

ðmT

mT�T

f (x)h(t � x)dx ffi
X1

m¼�1
Tf (mT)h(t �mT)

or

g(nT) ¼ T
X1

m¼�1
f (mT)h(nT �mT) n ¼ 0,�1,�2, . . . m ¼ 0,�1,�2, . . . (1:59)

For T¼ 1, the above convolution equation becomes

g(n) ¼
X1

m¼�1
f (m)h(n�m) n ¼ 0,�1,�2, . . . m ¼ 0,� 1,� 2, . . . (1:60)

If the input function to the system is the delta function

d(nT) ¼ 1 n ¼ 0
0 n 6¼ 0

�
d(nT �mT) ¼ 1 n ¼ m

0 n 6¼ m

�
(1:61)

then, (1.60) gives g(n)¼ h(n).
Additional properties of the convolution process are shown in Table 1.4.

Signals and Systems 1-29



TABLE 1.4 Convolution Properties

1. Commutative

g(t) ¼
ð1
�1

f (t)h(t � t)dt ¼
ð1
�1

f (t � t)h(t)dt

2. Distributive

g(t) ¼ f (t) * [h1(t)þ h2(t)] ¼ f (t) * h1(t)þ f (t) * h2(t)

3. Associative

[f (t) * h1(t)] * h2(t) ¼ f (t) * [h1(t) * h2(t)]

4. Shift invariance

g(t) ¼ f (t) * h(t)

g(t � t0) ¼ f (t � t0) * h(t) ¼
ð1
�1

f (t � t0)h(t � t)dt

5. Area property

Af ¼ area of f (t),

mf ¼
ð1
�1

tf (t)dt ¼ first moment

Kf ¼
mf

Af
¼ center of gravity

Ag ¼ Af Ah, Kg ¼ Kf þ Kh

6. Scaling

g(t) ¼ f (t) * h(t)

f
t
a

� �
* h

t
a

� �
¼ jajg t

a

� �
7. Complex valued functions

g(t) ¼ f (t) * h(t) ¼ [fr(t) * hr(t)� fi(t) * hi(t)]þ j[fr(t) * hi(t)þ fi(t) * hr(t)]

8. Derivative

g(t) ¼ f (t) *
dd(t)
dt

¼ df (t)
dt

9. Moment expansion

g(t) ¼ mh0f (t)�mh1f
(1)(t)þmh2

2!
f (1)(t)þ � � � þ (�1)n�1

n� 1!
mh(n�1) f

(n�1)(t)þ En

mhk ¼
ð1

�1
tkh(t)dt

En ¼ (�1)nmhn

n!
f (n)(t � t0), t0 ¼ constant in the interval of integration

10. Fourier transform

F {f (t) * h(t)} ¼ F(v) H(v)

(continued)
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Examples

Example 1.1

It is desired to plot the functions x(t)¼�2u(2� t), x(t)¼ u(t� 1)� 2u(t� 3), and
x(t)¼ 2d(t� 1)� d(tþ 1). These functions are plotted in Figure E.1.1. &

TABLE 1.4 (continued) Convolution Properties

11. Inverse Fourier transform

1
2p

ð1
�1

F(v)H(v)ejvtdv ¼
ð1
�1

f (t)h(t � t)dt

12. Band-limited function

g(t) ¼
ð1
�1

f (t)h(t � t)dt ¼
X1

n¼�1 Tf (nT)hs(t � nT)

hs(t) ¼ 1
2p

ðs
�s

H(v)ejvt dv, f (t) ¼ s � band limited ¼ 0, jtj > s

13. Cyclical convolution

x(n)
 y(n) ¼
XN�1

m¼0
x( (n�m) mod N)y(m)

14. Discrete-time

x(n) * y(n) ¼
X1

m¼�1 x(n�m)y(m)

15. Sampled

x(nT) * y(nT) ¼ T
X1

m¼�1 x(nT �mT)y(mT)

where

H(e jv) ¼
X1

n¼�1 h(n)e�jvn:

x(t) = 2δ(t) – δ(t + 2)x(t) = u(t – 1) – 2u(t – 3)x(t) = –2u(2 – t)

ttt 3 11

12

–2

–1 –1

2

–2

FIGURE E.1.1
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Example 1.2

The evaluation of integrals, involving delta functions, is shown in the equations below:

ð5
�4

(t2þ2)[d(t)þ3d(t�2)]dt¼
ð5
�4

(t2þ2)d(t)dtþ
ð5
�4

3(t2þ2)d(t�2)dt¼ 2þ18¼ 20

ð3
�4

t2[d(tþ2)þd(t)þd(t�5)]dt¼
ð3
�4

t2d(tþ2)dtþ
ð3
�4

t2d(t)dtþ
ð3
�4

t2d(t�5)dt¼ 4þ0þ0¼ 4

&

Example 1.3

A series RLC circuit is shown in Figure E.1.2 driven by the voltage source v(t). The circuit
has two state variables: the capacitor voltage vc(t) and the inductor current i(t), with the
initial conditions vc(0) and i(0). The circuit has one mesh and one mesh current that
satisfies Kirchhoff’s voltage law:

L
di(t)
dt

þ Ri(t)þ 1
C

ðt
0

i(x)dx þ vc(0) ¼ v(t) i(0) (1:62)

We next, reduce the above integrodifferential equation into a differential equation by
differentiation:

L
d2i(t)
dt2

þ R
d(i)
dt

þ 1
C
i(t) ¼ dv(t)

dt
(1:63)

To solve (1.63), we need the initial conditions i(0) and its derivative at zero time i0(0)
since this is an equation of the second order. The i(0) is the given initial state of the

vc(t)
––

++

L

C
i(t)

v(t)

R

FIGURE E.1.2
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system. To find the second initial condition, we must set t¼ 0 in (1.62). The substitution
gives

Li0(0)þ Ri(0)þ 1
C

ð0
0

i(x)dx þ vc(0) ¼ v(0) or Li0(0)þ Ri(0)þ vc(0) ¼ v(0)

The above equation gives the desired initial condition:

i0(0) ¼ 1
L
[v(0)� vc(0)� Ri(0)]

State equations

The current through the capacitor based on Kirchhoff’s law is equal to the current i(t).
Second, the algebraic sum of the voltages in the mesh should be equal to zero. Hence,

C
dvc(t)
dt

¼ i(t) vc(0)

L
di(t)
dt

þ Ri(t)þ vc(t) ¼ v(t) i(0)
(1:64)

and this is a system of two first-order differential equations. &

Example 1.4

Let the circuit (system) shown in Figure E.1.3 have the initial conditions vc(0), i1(0), and
i2(0) of its state variables. To find the state equations, we sum algebraically the voltages
in the two loops and the currents at the node. Hence,

State equations

L1
di1(t)
dt

þ R1i1(t)þ vc(t) ¼ v(t)

L2
di2(t)
dt

þ R2i2(t)� vc(t) ¼ 0

i1(t)� i2(t)� C
dvc(t)
dt

¼ 0

(1:65)

R2

L2L1R1

C vc(t)

i2(t)i1(t)

v(t)
+

–

+

–

FIGURE E.1.3
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Mesh equations

R1i1(t)þ L1
di1(t)
dt

þ 1
C

ðt
0

i1(x)dx � 1
C

ðt
0

i2(x)dx þ vc(0) ¼ v(t)

� 1
C

ðt
0

i1(x)dx þ L2
di2(t)
dt

þ R2i2(t)þ 1
C

ðt
0

i2(x)dx � vc(0) ¼ 0

(1:66)

&

Example 1.5

It is desired to create the block-diagram representation of the following differential
equation and its equivalent discrete representation. The equation is

3
dy(t)
dt

� y ¼ v(t) (1:67)

Its discrete representation is

y(nT ) ¼ 1

1� T
3

y(nT � T )þ T

3 1� T
3


 � v(nT ) (1:68)

The block-diagram representation of the above two equations are given in Figure E.1.4.
&

Example 1.6

It is required to find the differential equation of the linear mechanical system shown in
Figure E.1.5a with respect to the distance traveled by the mass. This system is a rough
representation, for example, of the spring-shock absorber system of a car. From the
figure, the motion of the mass that is subjected to a spring and a damping force is
described by the equation

�f (t)þ fM(t)þ fK (t)þ fD(t) ¼ 0 (1:69)

+–

s

3

+v(nT)v(t) y(t) y(nT)T
T3 1 –
3

z–1

1
T1 – 3

FIGURE E.1.4
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or

M
dv(t)
dt

þ K
ð
v(t)dt þ Dv(t) ¼ f (t) (1:70)

Since the velocity is related to the displacement x by the relation v(t)¼ dx(t)=dt, this
equation takes the form

d2x(t)
dt2

þ D
M

dx(t)
dt

þ K
M
x(t) ¼ 1

M
f (t) (1:71)

Because the velocity is an across variable, the velocity of the mass with respect to the
ground, Figure E.1.5b represents the circuit representation of the system. We observe that
the force is a through variable and the system is a node equivalent type circuit. &

Example 1.7

The system shown in Figure E.1.6 represents an idealized model of a stiff human limb as
a step in assessing the passive control process of locomotive action. We try to find the
movement of the system if the input torque is an exponential function. During the
movement, we characterize the friction by the friction constant D. Furthermore, we
assume that the initial conditions are zero, u(0)¼ du(0)=dt¼ 0.

Applying D’Alembert’s principle, which requires that the algebraic sum of the
torques must be equal to zero at a node, we write

T(t) ¼ Tg(t)þ TD(t)þ TJ(t) (1:72)

where
T(t) ¼ input torque
Tg(t) ¼ gravity torque ¼ Mgl sin u(t)

TD(t) ¼ frictional torque ¼ Dv(t) ¼ D
du(t)
dt

TJ(t) ¼ inertial torque ¼ J
dv(t)
dt

¼ J
d2u(t)
dt2

f

K D

M v

f
M

D

v

fK
fM

fD

vg = 0
(a) (b)

FIGURE E.1.5
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Therefore, the equation that describes the system is

J
d2u(t)
dt2

þ D
du(t)
dt

þMgl sin u(t) ¼ T(t) (1:73)

The above equation is nonlinear owing to the presence of the sin u(t) term in the
expression of the gravity torque. To create a linear equation, we must assume that
the system does not deflect much and the deflection angle stays below 308. Under
these conditions, (1.73) becomes

J
d2u(t)
dt2

þ D
du(t)
dt

þMglu ¼ T(t) (1:74)

System
Input Output

l

Mgsin θ(t)

θ(t)

θ(t)(t)
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t s
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(n
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Continuous case

Discrete case T = 0.1

Discrete case T = 0.5

FIGURE E.1.6
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This is a second-order differential equation and, hence, its solution must contain two
arbitrary constants, the values of which are determined from specified initial conditions.
For the specific constants J¼ 1, D¼ 2, and Mgl¼ 2, the above equation becomes

d2u(t)
dt2

þ 2
du(t)
dt

þ 2u(t) ¼ e�tu(t) (1:75)

We must first find the homogeneous solution from the homogeneous equation (the
above equation equal to zero). If we assume a solution of the form uh(t)¼ Cest, the
solution requirements is

s2 þ 2sþ 2 ¼ 0

from which we find the roots s1¼�1þ j and s2¼�1� j. Therefore, the homogeneous
solution is

uh(t) ¼ C1e
s1t þ C2e

s2t (1:76)

where Ci’s are arbitrary unknown constants to be found by the initial conditions.
To find the particular solution, we assume a trial solution of the form up(t)¼ Ae�t for

t� 0. Introducing the assumed solution in (1.75), we find

Ae�t � 2Ae�t þ 2Ae�t ¼ e�t or A ¼ 1

The total solution is

u(t) ¼ uh(t)þ up(t) ¼ C1e
s1t þ C2e

s2t þ e�t t � 0

Applying, next, the initial conditions in the above equation, we find the following
system of equations:

u(0) ¼ C1 þ C2 þ 1 ¼ 0

du(0)
dt

¼ C1s1 þ C2s2 � 1 ¼ 0

Solving the unknown constants, we obtain C1¼ (1þ s2)=(s1� s2), C2¼ (1þ s1)=(s1� s2).
Introducing, next, these constants into the total solution and the two roots, we find

u(t) ¼ � 1
2
e�te jt � 1

2
e�te�jt þ e�t ¼ (1� cos t)e�1 t � 0 (1:77)

The digital simulation of (1.75) is deduced by employing (1.3), (1.52), and (1.53). Hence,

u(nT )� 2u(nT � T )þ u(nT � 2T )
T 2

þ 2
u(nT )� u(nT � T )

T
þ 2u(nT ) ¼ e�nT n ¼ 0, 1:2, . . .

(1:78)
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After rearranging the above equation, we obtain

u(nT ) ¼ a(2þ 2T )u(nT � T )� au(nT � 2T )þ aT 2e�nT

a ¼ 1
1þ 2T þ 2T 2

, n ¼ 0, 1, 2, . . .
(1:79)

Using (1.53), we obtain that u(�T)¼ 0. Next, introducing this value and the initial
condition u(0T)¼ 0 in (1.78), we find u(�2T)¼ T2. The following m-file produces the
desired output for the continuous case and for the two different sampling values,
T¼ 0.5 and T¼ 0.1.

Book MATLAB1 m-file for the Example 1.7: ex_1_5_1
%Book m-file for the Example 1.7: ex_1_5_1

t¼0:0.1:5.5;

th¼(1�cos(t)).*exp(�t);

T1¼0.5;N1¼5.5=T1;T2¼0.1;N2¼5.5=T2;

a1¼1=(1þ2*T1þ2*T1^2);a2¼1=(1þ2*T2þ2*T2^2);
thd1(2)¼0;thd1(1)¼T1^2;thd2(2)¼0;thd2(1)¼T2^2;
for n¼0:N1

thd1(nþ3)¼a1*(2þ2*T1)*thd1(nþ2)�a1*thd1(nþ1)þT1^2*a1*exp(�n*T1);

end;

for n¼0:N2

thd2(nþ3)¼a2*(2þ2*T2)*thd2(nþ2)�a2*thd2(nþ1)þT2^2*a2*exp(�n*T2);

end;

plot([0:55],th,'k');hold on;stem([0:5:N1*5],thd1(1,3:14),'k');

hold on;stem([0:N2],thd2(1,3:58),'k'); &

Example 1.8

It is desired to write the state equations for the system shown in Figure E.1.7 and
express the output y(n) in terms of the state variables. From the figure, we obtain

q1(n) ¼ 3q2(n)þ 2q2(n� 1)þ x(n)

q2(n) ¼ q1(n� 1)

y(n) ¼ 5q1(n)þ 4q2(n) &

Example 1.9

The convolution of the exponential function f(t)¼ exp(�t)u(t) and the pulse symmetric
function p2(t) of width 4 is given by
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g(t) ¼
ð1

�1
[u(x þ 2)� u(x � 2)]e�(t�x)u(t � x)dx

¼ e�t
ð1

�1
u(x þ 2)exu(t � x)dx � e�t

ð1
�1

u(x � 2)exu(t � x)dx

¼ g1(t)þ g2(t)

For t<�2, the exponential function and the step function u(xþ 2) in the x-domain do
not overlap and thus the integrand is zero in this range and the integral is also zero.
Hence, g1(t)¼ 0 for t<�2. For t>�2, there is an overlap from�2 to t for all ts from�2
to infinity. The integration gives

g1(t) ¼ e�t
ðt
�2

exdx ¼ 1� e�2e�t �2 � t < 1

For the function g2(t), the exponential function overlaps the step function �u(x� 2)
from 2 to infinity. Hence,

g2(t) ¼ �e�t
ðt
2

exdx ¼ �1þ e2e�t 2 � t < 1

Therefore, the function g(t) is

g(t) ¼
0 t � �2

1� e�2e�t �2 � t � 2

(e2 � e�2)e�t 2 � t < 1

8><
>: &

+
x(n) y(n)

q1(n)

q2(n)+ 3

2

z–1

z–1

FIGURE E.1.7
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Example 1.10

The convolution of the two discrete functions f(n)¼ 0.99nu(n) and h(n)¼ u(n� 2) is
given by

g(n)¼
X1

m¼�1
0:99n�mu(n�m)u(m�2)¼

Xn
m¼2

0:99n�m ¼ 0:99n
Xn
m¼2

0:99�m

¼ 0:99n(0:99�2þ0:99�3þ�� �þ0:99�n)¼ 0:99n0:99�2(1þ0:99�1þ0:99�2þ�� �þ0:99�nþ2)

¼ 0:99n�2 1� (0:99�1)n�1

1�0:99�1
¼ 0:99n�2 1�0:99�nþ1

1�0:99�1
2� n<1 &
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2
Fourier Series

2.1 Introduction

A periodic function is defined by the relation

f (t) ¼ f (t þ T) T ¼ period

f (t) ¼ f (t þ nT) n ¼ �1,�2, . . .
(2:1)

The above relation is true for all t, and the smallest Twhich satisfies (2.1) is called the period.
Knowing the function within a period fp(t), the above equation can also be written in

the form

f (t) ¼
X1

n¼�1
fp(t � nT) (2:2)

An important feature of a general periodic function is that it can be presented in terms of
an infinite sum of sine and cosine functions. The functions that can be expressed by sine
or cosine functions must at least obey the Dirichlet conditions, which are (a) only a finite
number of maximums and minimums can be present, (b) the number of discontinuities
must be finite, and (c) the discontinuities must be bounded, which implies that the
function must be absolutely integrable with a value less than infinity.

2.2 Fourier Series in a Complex Exponential Form

Any periodic signal f (t) that satisfies the Dirichlet conditions can be expressed as follows:

f (t) ¼
X1
n¼1

ane
jnv0t ¼

X1
n¼1

janje j(nv0tþfn) �1 < t < 1

an ¼ 1
T

ðaþT

a

f (t)e�jnv0tdt ¼ complex constant ¼ janje jfn

¼ janj cosfn þ jjanj sinfn

v0 ¼ 2p
T

, fn ¼ tan�1 (Im{an}=Re{an})

(2:3)
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If the function is discontinuous at t¼ a, the function f (t) will converge to f (a)¼
[ f (aþ)þ f (a�)]=2, the mean value at the point of discontinuity (the arithmetic mean
of the left-hand and right-hand limits). If f (t) is real, then

a�n ¼ 1
T

ðaþT

a

f (t)e jnv0tdt ¼ 1
T

ðaþT

a

f (t)e�jnv0tdt

2
4

3
5*¼ an* (2:4)

This result, when combined with (2.3), yields

f (t) ¼ a0 þ
X1
n¼1

an þ an*ð Þ cos nv0t þ j an � an*ð Þ sin nv0t½ � (2:5)

2.3 Fourier Series in Trigonometric Form

The trigonometric form of the Fourier series is given by

f (t) ¼ A0

2
þ
X1
n¼1

(An cos nv0t þ Bn sin nv0t) �1 < t < 1

f (t) ¼ A0

2
þ
X1
n¼1

Cn cos (nv0t þ fn)

A0 ¼ 2a0 ¼ 2
T

ðaþT

a

f (t)dt

An ¼ an þ an*ð Þ ¼ 2
T

ðaþT

a

f (t) cos nv0t dt ¼ Cn cosfn

Bn ¼ j an � an*ð Þ ¼ 2
T

ðaþT

a

f (t) sin nv0t dt ¼ �Cn sinfn

fn ¼ �tan�1 (Bn=An)

Cn ¼ A2
n þ B2

n

� �1=2

(2:6)

The coefficients Cn are known as the amplitude spectrum and the phase fn is the phase
spectrum. Therefore, the frequency spectrum of a periodic function is discrete.

2.3.1 Differentiation of the Fourier Series

If f (t) is continuous in�T=2 � t � T=2 with f (�T=2)¼ f (T=2), and if its derivative f 0(t)
is piecewise continuous and differentiable, then the trigonometric form of the Fourier
series can be differentiated term by term to yield

f 0(t) ¼
X1
n¼1

nv0(�An sin nv0t þ Bn cos nv0t) (2:7)
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2.3.2 Integration of the Fourier Series

If f (t) is piecewise continuous in –T=2< t<T=2, then the trigonometric form of the
Fourier series can be integrated term by term to yield

ðt2
t1

f (t)dt ¼ 1
2
A0(t2 � t1)þ

X1
n¼1

1
nv0

[�Bn( cos nv0t2 � cos nv0t1)

þ An( sin nv0t2 � sin nv0t1)] (2:8)

2.4 Waveform Symmetries

Even function [ f (t) ¼ f (�t)]
If f (t) is an even periodic function with a period T, then the trigonometric form of the
Fourier series is

f (t) ¼ A0

2
þ
X1
n¼1

An cos nv0t, An ¼ 4
T

ðT=2
0

f (t) cos nv0t dt (2:9)

Odd function [ f (t)¼�f (�t)]
If f (t) is an odd function, then its trigonometric form is

f (t) ¼
X1
n¼1

Bn sin nv0t, Bn ¼ 4
T

ðT=2
0

f (t) sin nv0t dt (2:10)

2.5 Some Additional Features of Periodic
Continuous Functions

2.5.1 Power Content: Parseval’s Theorem

The power content of a periodic function f (t) in the period T is defined as the mean-
square value:

1
T

ðT=2
�T=2

[ f (t)]2dt (2:11)

If we assume the function as a voltage across an ohm resistor, then (2.11) represents the
average power the source delivers to the resistor.

If f (t) and h(t) are two periodic functions with the same period T, then

1
T

ðT=2
�T=2

f (t)h(t)dt ¼
X1

n¼�1
(af )n(ah)�n (2:12)
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where

(af )n ¼
1
T

ðT=2
�T=2

f (t)e�jnv0tdt, (ah)n ¼
1
T

ðT=2
�T=2

h(t)e�jnv0tdt (2:13)

If f (t)¼ h(t), then the power content of the periodic function f (t) is

1
T

ðT=2
�T=2

[ f (t)]2dt ¼
X1

n¼�1
janj2 an ¼ 1

T

ðT=2
�T=2

f (t)e�jnv0tdt (2:14)

For a periodic function expanded in sine and cosine terms, the power content within a
period is

1
T

ðT=2
�T=2

[ f (t)]2dt ¼ 1
4
A2
0 þ

1
2

X1
n¼1

A2
n þ B2

n

� �
(2:15)

2.5.2 Output of an LTI System When the Input
Is a Periodic Function

If the input periodic function is represented by the complex format of the Fourier series,
then the output of an LTI system with a transfer function H(v) is

fo(t) ¼
X1

n¼�1
anH(nv0)e

jnv0t (2:16)

If the input to an LTI system is a periodic signal in the form of sine and cosine series,
then the output is

fo(t) ¼ A0

2
H(0)þ

X1
n¼1

jH(nv0)j[An cos [nv0t þ f(nv0)]þ Bn sin [nv0t þ f(nv0)] ]

f(nv0) ¼ tan�1 (Im{H(nv0)}=Re{H(nv0)})

(2:17)

2.5.3 Transmission without Distortion

If an LTI system has a transfer function of the form

H(v) ¼ h0e
jnv0t0 (2:18)
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