
Contemporary climate change is a crucial management challenge for wildlife 
scientists, conservation biologists, and ecologists of the 21st century. Climate 
fingerprints are being detected and documented in the responses of hundreds 
of wildlife species and numerous ecosystems around the world. To mitigate 
and accommodate the influences of climate change on wildlife and ecosystems, 
broader-scale conservation strategies are needed. 

Ecological Consequences of Climate Change: Mechanisms, Conservation, 
and Management provides a mechanistic understanding of biotic responses to 
climate change, in order to better inform conservation and management strategies. 
Incorporating modeling and real-world examples from diverse taxa, ecosystems, 
and spatiotemporal scales, the book first presents research on recently observed 
rapid shifts in temperature and precipitation. It then explains how these shifts alter 
the biotic landscape within species and ecosystems, and how they may be expected 
to impose changes in the future. Also included are major sections on monitoring 
and conservation efforts in the face of contemporary climate change. Contributors 
highlight the general trends expected in wildlife and ecological responses as well 
as the exceptions and contingencies that may mediate those responses.

Topics covered include  
•	Description and quantification of how aspects of climate have recently 

changed, and may change in the future
•	Species-level and higher-order ecological responses to climate change  

and variability
•	Approaches to monitor and interpret ecological effects of climatic variability
•	Conservation and management efforts

The book discusses the quantification of the magnitude and variability in 
short-term responses, and delineates patterns of relative vulnerability among 
species and community types. It offers suggestions for designing investigations 
and management actions, including the long-term monitoring of ecological 
consequences of rapid climate change. It also identifies many of the biggest gaps 
in current knowledge, proposing avenues for further research. Bringing together 
many of the world’s leading experts on ecological effects of climate change, 
this unique and timely volume constitutes a valuable resource for practitioners, 
researchers, and students.
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Preface
Although the ultimate impetus for the book arguably had its nascence decades ear-
lier in the Industrial Revolution, the idea for this book came in a practical sense 
during the lead-up to a symposium on biological responses to contemporary cli-
mate change at the 2007 international conference of The Wildlife Society in Tucson, 
Arizona. Dr. Erik Beever has been researching the changing distribution of an alpine 
mammal (Ochotona princeps, the American pika) in the Great Basin of western 
North America since 1994, and although climate was among the original suite of 
hypothesized determinants of the species’ distribution since the beginning of the 
research, continuing investigation has suggested that climatic influences have played 
a stronger role in shaping the pattern of local extinctions in the years after 1999 com-
pared to during the latter half of the twentieth century. In that research, as in much 
of the early research on biological response to contemporary climate change, the 
key challenge has been trying to divine the “why” and the “how” behind the “what” 
and “when”—that is, the mechanisms behind any changes in ecological systems in 
response to contemporary climate change.

We have consequently asked all authors to focus part of the discussion in each of 
their chapters on mechanisms, for two reasons. Understanding the hows and whys of 
these responses not only provides a more complete understanding of the dynamics 
associated with ecological responses, but also it is exactly that understanding that is 
needed to best inform strategies of mitigation, adaptation, conservation, and man-
agement of affected ecosystems and their components. Mechanisms are just begin-
ning to be addressed rigorously, for good reason—they require much more in-depth 
understanding of the relevant natural history of species and ecosystem components 
involved, more critical thinking before beginning the fieldwork, and often more time 
and money than if mechanisms were ignored (i.e., simply documenting any changes). 
It quickly becomes apparent that much still remains to be learned, and humility in 
the face of so many unknowns and sources of uncertainty seems prudent. We feel 
that it is this focus on mechanisms—as well as our melding of empirical research, 
management, and conservation—that will distinguish this book from its contempo-
raries and perhaps even from later books on the topic.

Both editors have spent their careers working around the nexus of research 
and management of ecological systems, and this book clearly reflects that applied 
approach. We have asked authors to not only provide case studies to exemplify their 
messages throughout their chapter, but also to provide the “so what?” implications 
of their chapter for management and conservation of the systems they discuss. We 
feel honored and fortunate to have been able to work with such an experienced, 
widely respected, and capable group of authors, who fortuitously also happen to 
be wonderful individuals with whom to work. They hail from six different nations 
around the world and work not only on diverse spatial and temporal scales, but also 
on a vastly divergent collection of ecosystem components. Our vision was that this 
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heterogeneity would best exemplify the diversity of biological responses that may be 
expected in the coming decades (and have already begun to be observed).

Mirroring the progression of research surrounding ecological responses to con-
temporary climate changes, we have sought to first describe how climate is chang-
ing, then describe the basic responses of wildlife and other ecosystem components 
to climatic variability and change, then discuss the management strategies in 
response to such climatic influence, then consider implications for various scales 
of conservation, and then finish with a vision to the future that springs from what 
we know already to explore gaps in our understanding and research frontiers. We 
suspect that although the novelty of investigating biotic response to climate change 
may wane with time, climate will remain a pervasive and profound driver of eco-
system dynamics for decades to come, and likely with increasing strength. Thus, 
our hope is that this book initiates discussions, foments critical reviews of the 
ideas contained within, and informs future research, management, and conserva-
tion during this period of the worldwide natural experiment in which we currently 
find ourselves engaged.
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1 Western Climate Change

Philip W. Mote and Kelly T. Redmond

INTRODUCTION

Earth’s global climate is determined by a balance between absorbed solar radiation 
and emitted infrared radiation. The amount of absorbed solar radiation in turn is 
determined by the sun’s emissions and the Earth’s reflectivity, primarily the frac-
tion of the planet covered by clouds and ice. Infrared emissions come predomi-
nantly from gases in the atmosphere: water vapor, carbon dioxide, methane, nitrous 
oxide, and many more. The atmosphere also emits energy toward Earth, keeping 
it warmer than it would otherwise be, and providing roughly twice the energy as 
is provided by absorbed solar energy (e.g., Trenberth et al. 2009). At the surface, 
the absorbed solar energy plus atmospheric infrared energy is balanced globally 
by radiation of infrared radiation plus latent and sensible heat flux (Trenberth et al. 
2009), all of which are mediated by vegetation, especially moisture fluxes. In turn, 
the expression of global climate and of atmospheric fluctuations helps determine 
the distribution, health, function, reproductive rates, and much more, of organisms 
on the landscape.
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Through technology and sheer numbers, humans have acquired the ability to 
modify climate in many ways. Chief among these are the production of (1) green-
house gases, such as carbon dioxide, ozone, nitrous oxide, methane, chlorofluoro-
carbons; and (2) aerosols that originate from disturbed soils, soot, ash, pollution, 
and gases transformed through photochemistry to particles. All of these affect the 
flow of radiant energy through air. Deforestation, irrigation, agricultural practices, 
paving, and other kinds of development change land surface properties and influence 
the dynamics of energy exchange, heat transfer, and surface winds. Recent findings 
indicate that changes in atmospheric particle concentration can greatly alter cloud 
properties and reduce precipitation efficiency and amount (e.g., Forster et al. 2007). 
Anticipated changes in temperature may also affect precipitation type (rain or snow). 
Changes in atmospheric CO2, ozone, and other gaseous and aerosol constituents have 
direct but differential physiological effects on vegetation, species competitiveness, 
and amount and quality of light, which in turn affect soil moisture and recharge 
budgets, plant species composition, and community properties.

Assessing historical and future biological responses to global climate change 
requires an understanding of two causal connections. The first is the connection 
between the local climate variables and the biological system of interest. Because so 
many factors are at work simultaneously, this determination is seldom straightfor-
ward. For instance, temperature may affect tree growth; however, other climatic and 
nonclimatic factors like competition for light or other resources might be as impor-
tant. Put differently, if we knew perfectly how climate would change in the immedi-
ate vicinity of an ecological community, how well could we predict the ecological 
response? The second is the connection between the biologically important local 
climate variables and global climate drivers like greenhouse gases. In the field of 
climate research, this connection is called “detection and attribution.” These involve 
whether a change has actually been observed, within measurement error (detec-
tion), and whether any such change (e.g., in global average temperature) could have 
occurred naturally or can confidently be attributed to human activity (attribution; 
Stott et al. 2000; Broccoli et al. 2003; Meehl et al. 2004). Attribution is most success-
ful when the signal-to-noise ratio is high, that is, when the response of the variable 
in question to greenhouse-gas forcing is large relative to natural variability. Keeping 
the signal-to-noise ratio large typically requires considerable spatial averaging and 
a long period of record (>50 yr) for analysis. The two causal connections are in ten-
sion, owing to the inherently conflicting spatial and temporal scales. Detection and 
attribution are clearest at the global scale over multiple decades, but responses of 
ecosystems or species to climate are often clearest at the local scale and at shorter 
time periods.

In this chapter we highlight the meteorological and physical background of 
observed climate variability and change, and recent attribution efforts related to 
contemporary climate change. We also describe scenarios of future climate for the 
western United States. Climate is a principal driver of the natural and managed envi-
ronmental systems of the western United States, and is such a pervasive influence 
that its properties and behavior in space and time must be taken into account and 
factored into the management of western lands and resources (Redmond 2007).
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OBSERVED CLIMATE VARIABILITY AND CHANGE 
IN THE WESTERN UNITED STATES

The western United States is a land of juxtapositions and sharp contrasts in physiog-
raphy, climate, vegetation, and other biophysical attributes. In addition to the sharp 
contrasts across short distances, the West has striking seasonality in precipitation; 
in most of the West, summer precipitation is substantially less than winter precipita-
tion. Fundamental attributes of average climate, notably precipitation, can change 
greatly over short distances (Figure  1.1), as can precipitation seasonality, annual 
amount, and phase (i.e., rain vs. snow). Properties of temporal variability can also 
vary over short distances (Redmond 2003). Elevation plays a key role in shaping the 
patterns of temperature and precipitation (Daly et al. 2008), and mountain ranges 
greatly modify and sometimes cause their own weather. Mountain time series of cli-
matic variables can be very different from those in the adjoining valleys. Large-scale 
“teleconnections” with other parts of the globe lead to spatially different responses 
in reaction to faraway phenomena such as tropical El Niño and La Niña events. 
Examples of observed variability and change, and global processes affecting climate 
in the western United States are described in the next section.

The fundamental issue is the following: to fully understand the interrelation 
between ecosystems and the climate system, we must ideally first understand the 
properties of spatial and temporal variability (and in addition, combined spatiotem-
poral variability) of each of these two sets of systems, across their characteristic 

FIGURE 1.1  (See color insert.) Mean annual precipitation from PRISM (Daly et al. 2002, 
2004, 2008) for the 1971–2000 period of record. Note the sharp gradients in much of the 
West.
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range of spatial and temporal scales. Ecological systems have evolved to selectively 
take advantage of regularities in physical environmental drivers (such as climate) 
across a very large range of scales, and in addition must respond to more stochas-
tic variability in both space and time of these drivers, also across a broad range of 
scales, from that of a stomate or needle (1 mm) to the globe (10,000 km), a range of 
scales that encompasses approximately 7–10 orders of magnitude.

Temperature Variability and Change

Studies of variability and change in climate variables utilize several common gridded 
datasets. Station data are the basis for all of these datasets, which make use of different 
ways of aggregating or averaging station data over regions. Here we use gridded 0.5° 
(longitude) × 0.5° (latitude) annual mean temperature data from CRUv2.1 (Brohan et 
al. 2006), which have been widely used in global-trends analyses. We use a domain 
from the Pacific Ocean to 107.5° west longitude, and from 30 to 52.5° north latitude, 
and select the longest period for which all grid points have complete records: the 1920–
2008 period of record. Figure 1.2 shows the trends in annual mean temperature from 
the HadCRU dataset. There are a few patches of negative trends over this time period, 
but for most of the western United States, the trends have been upward.

In order to better understand the time dimension of these changes, we regionally 
average the HadCRU data to produce a West-wide annual mean temperature each year. 
Only HadCRU grid points with at least some data in the first 5 and last 5 years are 
used. We also use the regionally averaged temperature data from WestMap (www.
cefa.dri.edu/Westmap) derived from the PRISM dataset (Daly et al. 2008). These two 
datasets are derived from different station data and give somewhat different results 
that depend on how elevation–temperature relationships are treated, resulting in a sys-
tematic difference stemming from systematic station-grid elevation differences. The 
time series for the regionally averaged temperature (Figure 1.3) shows a strong upward 
trend, reflecting the warming of the West during the time period of analysis. The mag-
nitude and frequency of negative anomalies dwindled during the 1970s and 1980s, as 
nearly every year since 1985 has been near average or above average in temperature. 
The record warmest year remains 1934 but the warmest 10- and 20-year periods are 
recent. The two time series differ the most in the early years and consequently have 
different trends (0.6°C for HadCRU and 1.0°C for WestMap). Slow variations high-
lighted by the (smoothed) curves are substantially the same, with a bit of warming 
between about 1910 and 1930, fairly level temperatures until 1970, and then warming.

Dependence of Trends on Elevation

For the mountainous West, a critical question about long-term change concerns the 
relative rates of warming at mountaintops, mid-slopes, and valley floors. Do these 
rates differ, and if so, do they vary among the seasons? Whether these rates should 
be similar depends ultimately on the physical mechanisms for potential variation in 
rates across elevations. Unfortunately, long-term climate stations in mountainous 
regions are fairly rare: for example, the state of Washington has no climate-qual-
ity stations above 1300 m that provide full annual measurements before 1945 and 
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continue today. In most western states there are at least a few stations above 2000 
m, but most are in valley bottoms. In many areas the data are too sparse to draw a 
conclusion about whether trends in temperature depend on elevation alone.

In evaluating temperature trends in the mountains, for example, the issue of whether 
temperature trends depend on elevation, a critical question concerns the separate roles 
of “advection” (the heat carried by the wind) and local surface-energy balance, and 
different studies have reached different conclusions. Diaz and Bradley (1997) analyzed 
surface-temperature records at 116 sites and found that many high-elevation sites had 
warmed more than lower-elevation sites during the twentieth century, but questions 
have been raised about whether these findings represent true surface trends or are 
determined by the varying exposure to advection. Changes in free-air temperature 
(away from the surface, measured by balloon) have generally exceeded surface tem-
perature changes (Karl et al. 2006), but not all studies reach this conclusion (Pepin and 
Losleben 2002; Vuille and Bradley 2000). Most studies found no clear relationship 
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FIGURE 1.2  (See color insert.) Linear trends in temperature (°C/century) from the 
HadCRU 0.5° × 0.5° dataset, evaluated over the 1901–2000 period. The contour interval is 
0.5°C per century.
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with elevation (Vuille et al. 2003; Pepin and Seidel 2005; Liu et al. 2006; You et al. 
2008). Pepin and Seidel (2005) noted that the correspondence between surface and 
free-air variability and trends depended on the convexity (hilltop vs. valley or frost 
hollow) of the terrain in which the station was situated, such that variability at stations 
higher than surrounding terrain more closely resembled that of the free air, while sta-
tions in valley bottoms were more likely to differ from the free air.

As illustrated by Pepin and Seidel, the key question in evaluating the dependence of 
trends on elevation is the extent to which surface temperatures are determined by local 
energy balance as opposed to mere exposure to free air. Local advection (drainage 
winds, upslope winds) can exert significant influence as well. Some areas may remain 
for some time as cold-air pools and in effect serve as “climate refugia” (Ashcroft 2010; 
Petit et al. 2003; Bennett and Provan 2008). Another approach to evaluating trends 
that brought the surface-energy balance into clearer focus was the work of Pepin and 
Lundquist (2008). Examining trends globally, they noted that the largest warming 
trends were found at locations whose mean annual temperature was near 0°C, sug-
gesting a strong role for snow-albedo feedback. This observational result was largely 
corroborated by the regional modeling work of Salathé et al. (2010), who noted the 
largest warming trends in a future scenario in montane areas presently near snowline. 
In short, there are ample reasons to believe that topographic complexity may produce 
considerable small-scale variability in change rates that could rival or exceed (posi-
tively or negatively) regionally averaged rates (Daly et al. 2009).

Variability and Changes in Precipitation

Although trends in temperature are positive almost everywhere in the western United 
States, trends in precipitation are far more diverse. Linear fits are a poor description 
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FIGURE 1.3  Values of annual mean temperature over the western United States calculated 
from the CRUv2.1 dataset (dashed) and the PRISM dataset (solid). Linear trends (straight 
lines) and slow variations (curves) were calculated using locally weighted regression (loess; 
Cleveland 1995). For both curves, the mean over the entire record is subtracted.
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of the patterns of precipitation variability because the sign of the fit can change over 
short spatial distances and with slightly different periods of analysis. The time series 
of total precipitation (which includes the water equivalent in snowfall) for the October 
through September water year illustrate temporal patterns (Figure  1.4). The time 
series of average total precipitation for the 11 western states shows some interesting 
features, especially a pronounced increase in the mid-1970s in both the variance and 
the year-to-year persistence of precipitation anomalies, as has been noted by Hamlet 
et al. (2005) and Pagano and Garen (2005). Many of the extreme years—both dry 
and wet—have occurred since 1975. The increase in year-to-year persistence (i.e., 
multiyear episodes or regimes) is visible first as several unusually wet years in the 
early 1980s, which were followed by several unusually dry years in the late 1980s, 
then several wet years in the late 1990s, then several dry years in the early 2000s. 
There is little theoretical basis to expect such a shift to accompany rising greenhouse 
gases, and it may simply be a statistical artifact of a red noise time series.

Hydrologic Responses to Changes in Temperature

Fluctuations in streamflow are closely linked to fluctuations in precipitation, but a 
large body of literature emphasizes that western hydrology also responds to tem-
perature. An analysis of fine-scale gridded meteorological data, specifically the 
fraction of annual precipitation falling at temperatures between 0°C and –6°C, 
what might be called warm snow, illustrates the West’s hydrologic sensitivity 
to temperature fluctuations (Bales et al. 2006). Temperature increases of 2–4°C 
(likely to occur during the twenty-first century; see the following) during pre-
cipitation events could lead to a considerable increase in precipitation falling as 
rain rather than snow. The more immediate runoff has numerous hydrologic and 
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FIGURE 1.4  Water year (October–September) precipitation 1899–1900 through 2009–2010 
for the 11 western United States. Data from 4-km resolution PRISM grid using the WRCC 
Westmap (www.cefa.dri.edu/Westmap/) application. Smooth grey curve calculated using 
loess as in Figure 1.3.
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water-management consequences. The analysis of Bales et al. (2006) shows that 
within certain elevation bands in the Cascade and Sierra Nevada Ranges, over half 
of the annual precipitation historically falls in this temperature range. The vulner-
ability to a change from snow to rain is next greatest in the mountains of Idaho and 
parts of the Great Basin, and least in the highest and thus coldest parts of Colorado 
and the southern High Sierra Nevada.

Consistent with the physical sensitivity analysis of Bales et al. (2006), several 
studies have demonstrated a statistical connection between fluctuations and trends in 
temperature and fluctuations and trends in various hydrologic variables. Knowles et 
al. (2006) used weather station data and reported that rain/snow ratios have increased 
in most of the West since about 1950, with spatial patterns resembling those of tem-
perature change and the temperature sensitivity noted by Bales et al. (2006). Mote et 
al. (2005) and Hamlet et al. (2005), using observations and modeling, demonstrated 
that springtime mountain snowpack declined at roughly 75% of locations in the 
West since the mid-twentieth century. These changes were dependent on elevation 
(and thus temperature, because temperature usually decreases with elevation), with 
warmest locations losing the largest fraction of snow. Stewart et al. (2005) showed 
that streamflow in much of the West has changed in a manner consistent with the 
observations of declining mountain snowpack. In basins with a significant snowmelt 
contribution, winter and early spring flows generally increased, summer and late 
spring flows generally decreased, and the date of peak spring snowmelt shifted ear-
lier by, on average, 2 weeks. Stewart et al. (2005), Hamlet et al. (2005), and Mote 
(2006) all evaluated the possible contributions of changes in precipitation and of 
changes in atmospheric circulation over the Pacific Ocean and concluded that the 
dominant factor in western trends in hydrology was the widespread increase in tem-
perature unrelated to atmospheric circulation.

Increases in temperature with no change in precipitation can cause evapotrans-
piration (ET) to increase. Hidalgo et al. (2005) estimate an average temperature 
increase of +3°C could increase potential evapotranspiration (i.e., what evapotrans-
piration would be if not limited by water availability) by about 6% in California. 
However, the physiological response of plants to increased CO2 concentration would 
likely act to reduce water loss.

Global Teleconnections

Spatial patterns of climate variability in the western United States are correlated 
with patterns of climate variability in other parts of the world. For example, winter 
precipitation in the West frequently exhibits a “dipole” pattern (wet in the Pacific 
Northwest and dry in the Southwest, or vice versa), and that this pattern is strongly 
related to tropical Pacific Ocean temperatures and to atmospheric pressure patterns 
in the Southern Hemisphere (Redmond and Koch 1991). The sense of the relationship 
is such that the phenomenon known as El Niño is associated with wet winters in the 
Southwest and dry winters in the Northwest and northern Rockies, and that La Niña 
is associated with dry winters in the Southwest and wet winters in the Northwest and 
northern Rockies.
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There is much popular confusion between the El Niño phenomenon and its 
effects. El Niño refers to ocean warming in the top 100–200 meters in a narrow band 
between South America and the international date line, typically within 5° latitude 
of the equator. The effects of El Niño, by contrast, are global in reach. At time scales 
between the regular seasonal cycle and several years, El Niño is the single largest 
contributor to climate variability on earth. The warm area may look small on a map 
of the Pacific Ocean, but can easily be larger than the United States. The shape, mag-
nitude, extent, duration, and longitudinal position of the warm-water patch can vary 
from one episode to the next—factors that can significantly influence the impacts of 
the phenomenon on the West (Hoerling and Kumar 2002). Typical events last 6–18 
months and recur irregularly at 2- to 7-year intervals. La Niña refers to unusually 
cool temperatures in this same area.

El Niño exhibits characteristics of an oscillation in the sense that during one 
phase of the cycle, forces are at work that lead to the demise of that phase and often 
even the eventual growth of the opposite phase, like a very complicated pendulum, 
albeit one subject to irregular forcing by short-term weather events. The atmospheric 
pressure difference between stations at Tahiti and Darwin (Australia) is negatively 
correlated with ocean temperatures in the El Niño/La Niña area—a phenomenon 
known as the Southern Oscillation: it is the atmospheric counterpart of the oceanic 
El Niño. The magnitude of this correlation, usually strong, has varied somewhat 
through time (McCabe and Dettinger 1999), so the atmosphere and the ocean each 
carry somewhat different information. In recognition of the coupled oceanic and 
atmospheric nature of this vacillation, this phenomenon is called ENSO (“El Niño/
Southern Oscillation”).

In the Western United States, the effects of El Niño and La Niña are experienced 
during the cold half of the year, from approximately October through March; sum-
mer signals are very weak. The climatic effects of ENSO are also found in stream-
flow (Andrews et al. 2004; Barnett et al. 2004) where they are greatly accentuated 
with respect to precipitation (Cayan et al. 1999) in the western states. Because annual 
tree growth in the Southwest is strongly dependent on prior winter precipitation, these 
ENSO effects are clearly seen in tree ring widths (Swetnam and Betancourt 1990).

The frequency of El Niño has varied through time. During the period 1947–1976, 
El Niño occurred relatively infrequently and La Niña was common. A sudden and 
still unexplained change (the “1976–1977 shift”) in the Pacific ushered in an era 
of much more common El Niño and a virtual dearth of La Niña. This appeared to 
many observers to have switched again in the late 1990s, although present evidence 
remains somewhat ambiguous.

In higher latitudes, this slow variation of about 50 years’ duration is expressed 
in a pattern of ocean temperatures, atmospheric pressures, jet stream positions, 
and ocean currents seen from the tropics to the high latitudes in the Pacific, first 
described by Mantua et al. (1997) and Mantua and Hare (2002) as the Pacific 
Decadal Oscillation (PDO) and elaborated by others. They related the PDO to 
strong differences in salmon abundance between Alaska and the Pacific Northwest. 
There is much debate about the origin of the PDO, whether it truly is an oscilla-
tion, and even whether it really exists except as a response to ENSO (Zhang et al. 
1996; Newman et al. 2003) with strong elements of chaotic behavior (Overland et 


