

Computational
Statistics

An Introduction to

Computational
Statistics

An Introduction to

Günther Sawitzki

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑8678‑2 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Sawitzki, Günther.
Computational statistics : an introduction to R / Günther Sawitzki.

p. cm.
Includes bibliographical references and index.
ISBN 978‑1‑4200‑8678‑2 (hardcover : alk. paper)
1. R (Computer program language) 2. Mathematical statistics‑‑Data

processing. I. Title.

QA276.45.R3S29 2009
519.50285‑‑dc22 2008042298

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Introduction

This introduction to R is intended as course material to be used in a concise course or for
self-instruction. The course is for students with basic knowledge of stochastics. Notions
like distribution function, quantile, expected value and variance are presupposed, as
well as some familiarity with statistical features corresponding to these notions. Only a
condensed summary is included here. Classical distributions, such as binomial, uniform,
and Gaussian should be familiar, together with derived distributions and their asymp-
totic behaviour. An in-depth knowledge of statistics is not required. However, while this
course does cover much of statistics, it is not a substitute for a general statistics course.
This course concentrates on the “computing” aspects. Statistical concepts and statistical
points of view are introduced and discussed. For an in-depth discussion, the reader is
referred to statistics courses.

A working knowledge in computer usage is presupposed, at least rudimentary knowledge
of programming concepts like variables, loops, functions. No extended knowledge in
computing is required.

What Is R?

R is a programming language, and the name of a software system that implements
this language [31]. The R programming language has been developed for statistics and
stochastic simulation. By now, it has become a standard in these fields. To be precise, we
should use specific terms: the language is called S, its implementation and the environ-
ment are called R. The original authors of S are John M. Chambers, R. A. Becker and A.
R. Wilks, AT&T Bell Laboratories, Statistics Research Department. The language and
its development are documented in a series of books, commonly referred to according to
the colour of their cover as white ([5]), blue ([2]) and green book ([4]).

For a long time the AT&T implementation of S has been the reference for the S language.
Today, S is available in a commercial version called S-Plus <http://www.insightful.
com/> (based on the AT&T implementation) and as a free software version R1, or “Gnu
S” <http://www.r-project.org/>.

1 R got its name by accident — the same accident that made the first names of the original authors of
R (Ross Ihaka and Robert Gentleman) start with R.

v

vi INTRODUCTION

In the meantime, R has become the reference implementation. Essential more precise
definitions and — if necessary — even modifications of the language are given by R. For
simplicity, here and in the sequel we use “R language” as a common term even where
the precise term should be “the S language using the R implementation”.

R is an interpreted programming language. Instructions in R are executed immediately.
In addition to the original elements of S, R has several extensions. Some of these have
been introduced in response to recent developments in statistics, some are introduced
to open experimental facilities. Advancements in the S language are taken into account.

The most recent (2008) version of R is 2.x. This version is largely compatible with the
previous version R 1.x. The essential changes are internal to the system. For initial use,
there is no significant difference from R, 1.x. For the advanced user, there are three
essential innovations:

• Graphics: The basic graphics system in R implements a model inspired by pen and
paper drawing. A graphics port (paper) is opened, and lines, points or symbols are
drawn in this port. In R 2.x there is a second additional graphics system, oriented at
a viewport/object model. Graphical objects in various positions and orientations are
mapped in a visual space.
• Packages: The original R had a linear command history and a uniform workspace.

R 2.x introduced an improved support for “packages” that may have encapsulated
information. To support this, language concepts such as “name spaces” and various
tools have been introduced.
• Internationalisation: Originally, R was based on the English language, and ASCII

was the general encoding used. With R 2.x extensive support for other languages and
encodings has been introduced. With this, it has become possible to provide localised
versions.

Two aspects of R are active areas of recent developments: interactive access and in-
tegration in a networked environment. These and other aspects are part of Omega-
hat, an attempt to develop a next generation system based on the experiences from
R. This more experimental project is accessible at <http://www.omegahat.org/>. R
does already provide simple possibilities to call functions implemented in other lan-
guages like C or FORTRAN. Omegahat extends these possibilities and allows direct
access to Java, Perl A Java-based graphical interface for R is JGR, accessible at
<http://stats.math.uni-augsburg.de/software/>. A collection of interactive dis-
plays for R is in iplots, available at the same site.

Recent developments related to R are in <http://r-forge.r-project.org/>. Many
helpful extensions are in <http://www.bioconductor.org/>, a site that is targeted at
biocomputing.

R has been developed for practical work in statistics. Usability often has been given pri-
ority over abstract design principles. As a consequence, it is not easy to give a systematic

INTRODUCTION vii

introduction to R. A winding path is chosen here instead: case studies and examples,
followed by systematic surveys. Practical work should make use of the rich online ma-
terial that comes with R. Starting points are the “frequently asked questions” (FAQ)
<http://www.cran.r-project.org/faqs.html>. “An Introduction to R” ([30]) is the
“official” introduction. This documentation and other manuals can be downloaded from
<http://www.cran.r-project.org/manuals.html>.

R comes with an extensive online help system providing function descriptions and exam-
ples. Once you have become familiar with R, the online help and manuals will become
your first source of information. For off-line reference, we include some examples of in-
formation provided by the help system, with kind permission of The R Foundation for
Statistical Computing.

Many R functions are included in the basic system. Other functions must be loaded from
libraries. Some of these libraries are distributed with the R system. If additional packages
are needed, <http://www.cran.r-project.org/> is a first source for downloads, and
<http://r-forge.r-project.org/> for current projects.

The commercial S-Plus is available in various versions. S-Plus 4.x and S-Plus 2000 use S
version 3 and are largely compatible with R. S-Plus 5 is an implementation of S version
4 with some changes that need attention. These programming details of S-Plus are not
discussed here. Information about S-Plus can be found at <http://www.insightful.
com/>.

Contents and Outline of This Course

In its basic version, R contains more than 1500 functions, too many to introduce in just
one course, and too many to learn. This course can only open the door to R.

Course participants can come from various backgrounds, with different prerequisites.
For pupils and younger students, a mere programming course on technical basics may
be appropriate. Later, questions about meaningful classification and background will be
more important. This is the aim of the present course. The “technical” material provides
a skeleton. Beyond this, we try to open the view for statistical questions and to stimulate
interest in the background. This course should whet the appetite for the substance that
may be offered in a subsequent well-founded statistical course.

The first part of this course material is organised by themes, using example topics to
illustrate how R can be used to tackle statistical problems.

The appendix provides a collection of R language elements and functions. During the
course, it can serve as a quick reference and perhaps as a starting point and orientation
to access the rich information material that comes bundled with R. After the course, it
may serve as a note pad. Finally, in the long run for practical work, the online help and
online manuals for R are the prime sources of information. This appendix is not meant
to be comprehensive. If a concise syntax description or example could be given, it is
included. In other cases, the online help information should be consulted.

viii INTRODUCTION

Using a selection of the exercises, the course can be completed within about four days
of work. Conceptually, it is an introduction to statistics with the following topic areas:

• One-sample analysis and distributions
• Regression
• Two-sample problems and comparison of distributions
• Multivariate analysis

A generous time slot for exercises is recommended (an additional half day for the intro-
ductory exercises, an additional half day for one of the project exercises). The course
can then be covered in one week, provided follow-up facilities are established to answer
questions that have come up, and possibilities are available to follow the interest in the
statistical background that may have resulted.

At a more leisurely pace, Chapter 1 with its exercises can be used on its own. This should
provide a working base to use R, and more material from the subsequent chapters can be
added later as needed. The first chapter is fairly selfcontained, including the necessary
basic definitions of statistical terms. The other chapters assume that the reader can look
up terms if necessary.

Using the course during a term in a weekly class requires more time, since repetitions
must be calculated in. Each of the first four chapters will cover about four lectures, plus
time for exercises. For this time schedule, a course covering the statistical background
is recommended, running in parallel with this one.

For a subsequent self-paced study that goes into detail on R as a programming language,
the recommended reading is ([51]).

Statistical literature is evolving, and new publications will be available at the time you
read this text. Instead of giving a long list of the relevant literature available at the time
this text is written, the sections include keywords that can be used to locate up-to-date
literature.

For economic reasons, most of the illustrations are printed in black and white. Colour
versions are available at the web site accompanying this book:

http://sintro.r-forge.r-project.org/.

Additional material and updates will be available at this site.

INTRODUCTION ix

Typographical Conventions

Examples and input code are formatted so that they can be used with “Cut & Paste”
and entered as program input. To allow this, punctuation marks are omitted and the
input code is shown without a “prompt”. For example:

Example 0.1:

Input
1 + 2

Output
3

may correspond to a screen output of

> 1+2

[1] 3

>

Depending on the configuration, the prompt ”>” may be represented by a different
symbol.

Acknowledgements

Thanks to the R core team for comments and hints. Special thanks to Friedrich Leisch (R
core team) and Antony Unwin (Univ. Augsburg) who worked through an early version
of this manuscript. Thanks to Rudy Beran, Lucien Birgé, Dianne Cook, Lutz Dümbgen,
Jan Johannes, Deepayan Sarkar, Bill Venables, Ali Ünlü and Adalbert Wilhelm for
comments and hints.

Thanks to Dagmar Neubauer and Shashi Kumar for helping with the TeX pre-production,
and very special thanks to Gerben Wierda for making the necessary tools accessible.

x INTRODUCTION

Literature and Additional References

[30] R Development Core Team (2000–2008): An Introduction to R.
See: <http://www.r-project.org/manuals.html>.

[34] R Development Core Team (2000–2008): R Reference Manual.
See: <http://www.r-project.org/manuals.html>.

The Omega Development Group (2008): Omega.
See: <http://www.omegahat.org/>.

[2] Becker, R.A.; Chambers, J.M.; Wilks, A.R. (1988): The New S Language.
Chapman & Hall, New York.

[5] Chambers, J.M.; Hastie, T.J. (eds.) (1992): Statistical Models in S.
Chapman & Hall, New York.

[6] Cleveland, W.F. (1993): Visualizing Data.
Hobart Press, Summit NJ.

[52] Venables, W.N.; Ripley, B.D. (2002): Modern Applied Statistics with S.
Springer, Heidelberg.
See: <http://www.stats.ox.ac.uk/pub/MASS4/>.

[51] Venables, W.N.; Ripley, B.D. (2000): Programming in S.
Springer, Heidelberg.
See: <http://www.stats.ox.ac.uk/pub/MASS3/Sprog>.

Contents

Introduction v

1 Basic Data Analysis 1

1.1 R Programming Conventions 1

1.2 Generation of Random Numbers and Patterns 4

1.2.1 Random Numbers 4

1.2.2 Patterns 9

1.3 Case Study: Distribution Diagnostics 10

1.3.1 Distribution Functions 13

1.3.2 Histograms 17

Barcharts 21

1.3.3 Statistics of Distribution Functions; Kolmogorov-Smirnov Tests 22

Monte Carlo Confidence Bands 23

1.3.4 Statistics of Histograms and Related Plots; χ2-Tests 29

1.4 Moments and Quantiles 34

1.5 R Complements 39

1.5.1 Random Numbers 39

1.5.2 Graphical Comparisons 40

1.5.3 Functions 46

1.5.4 Enhancing Graphical Displays 50

1.5.5 R Internals 53

parse 53

eval 53

print 54

xi

xii CONTENTS

Executing Files 54

1.5.6 Packages 54

1.6 Statistical Summary 56

1.7 Literature and Additional References 57

2 Regression 59

2.1 General Regression Model 59

2.2 Linear Model 60

2.2.1 Factors 63

2.2.2 Least Squares Estimation 64

2.2.3 Regression Diagnostics 69

2.2.4 More Examples for Linear Models 75

2.2.5 Model Formulae 76

2.2.6 Gauss-Markov Estimator and Residuals 77

2.3 Variance Decomposition and Analysis of Variance 79

2.4 Simultaneous Inference 85

2.4.1 Scheffé’s Confidence Bands 85

2.4.2 Tukey’s Confidence Intervals 87

Case Study: Titre Plates 88

2.5 Beyond Linear Regression 96

Transformations 96

2.5.1 Generalised Linear Models 96

2.5.2 Local Regression 97

2.6 R Complements 101

2.6.1 Discretisation 101

2.6.2 External Data 101

2.6.3 Testing Software 101

2.6.4 R Data Types 102

2.6.5 Classes and Polymorphic Functions 103

2.6.6 Extractor Functions 104

2.7 Statistical Summary 105

2.8 Literature and Additional References 105

CONTENTS xiii

3 Comparisons 107

3.1 Shift/Scale Families, and Stochastic Order 109

3.2 QQ Plot, PP Plot, and Comparison of Distributions 111

3.2.1 Kolmogorov-Smirnov Tests 116

3.3 Tests for Shift Alternatives 117

3.4 A Road Map 125

3.5 Power and Confidence 126

3.5.1 Theoretical Power and Confidence 126

3.5.2 Simulated Power and Confidence 130

3.5.3 Quantile Estimation 133

3.6 Qualitative Features of Distributions 135

3.7 Statistical Summary 136

3.8 Literature and Additional References 137

4 Dimensions 1, 2, 3, . . . , ∞ 139

4.1 R Complements 140

4.2 Dimensions 143

4.3 Selections 145

4.4 Projections 145

4.4.1 Marginal Distributions and Scatter Plot Matrices 145

4.4.2 Projection Pursuit 150

4.4.3 Projections for Dimensions 1, 2, 3, . . . 7 153

4.4.4 Parallel Coordinates 154

4.5 Sections, Conditional Distributions and Coplots 156

4.6 Transformations and Dimension Reduction 162

4.7 Higher Dimensions 167

4.7.1 Linear Case 167

Partial Residuals and Added Variable Plots 168

4.7.2 Non-Linear Case 169

Example: Cusp Non-Linearity 169

4.7.3 Case Study: Melbourne Temperature Data 173

4.7.4 Curse of Dimensionality 174

4.7.5 Case Study: Body Fat 175

4.8 High Dimensions 189

4.9 Statistical Summary 190

xiv CONTENTS

R as a Programming Language and Environment A-193

A.1 Help and Information A-193

A.2 Names and Search Paths A-195

A.3 Administration and Customisation A-196

A.4 Basic Data Types A-197

A.5 Output for Objects A-199

A.6 Object Inspection A-200

A.7 System Inspection A-201

A.8 Complex Data Types A-202

A.9 Accessing Components A-204

A.10 Data Manipulation A-206

A.11 Operators A-208

A.12 Functions A-209

A.13 Debugging and Profiling A-211

A.14 Control Structures A-213

A.15 Input and Output to Data Streams; External Data A-215

A.16 Libraries, Packages A-218

A.17 Mathematical Operators and Functions; Linear Algebra A-220

A.18 Model Descriptions A-221

A.19 Graphic Functions A-223

A.19.1 High-Level Graphics A-223

A.19.2 Low-Level Graphics A-224

A.19.3 Annotations and Legends A-225

A.19.4 Graphic Parameters and Layout A-226

A.20 Elementary Statistical Functions A-227

A.21 Distributions, Random Numbers, Densities. . . A-228

A.22 Computing on the Language A-231

References 233

Functions and Variables by Topic 237

Function and Variable Index 245

Subject Index 249

CHAPTER 1

Basic Data Analysis

1.1 R Programming Conventions

Like any programming language, R has certain conventions. Here are the basic rules.

R Conventions

Numbers A point is used as a decimal separator. Numbers can be written
in exponential form; the exponential part is introduced by E.
Numbers can be complex numbers; the imaginary part is marked
by i.

Example: 1

2.3

3.4E5

6i+7.8

Numbers can take the values Inf, -Inf, NaN for “not a number”
and NA for “not available” = missing.

Example: 1/0 results in Inf

0/0 results in NaN

NA is used as a placeholder for missing numbers.

Strings Strings are delimited by " or '.

Example: "ABC"

'def'
"gh'ij"

Comments Comments start with # and go to the end of the current line.

To allow for non-trivial examples, we anticipate a detail: in R, a:b is a sequence of
numbers. If a ≤ b, a:b is the sequence starting at a to at most b in steps of 1. If a < b,
a:b is the sequence starting at a to at least b in steps of −1.

1

2 BASIC DATA ANALYSIS

R Conventions

Objects The basic elements in R are objects. Objects have types, for
example logical or integer. Objects can have a class attribute
specifying more complex type information.

Example: The basis objects in R are vectors.

Names R objects can have names, by which they can be accessed.
Names begin with a letter or a dot, followed by a sequence of
letters, digits, or the special characters _ or .

Examples: x

y_1

Lower- and uppercase are treated as different.

Examples: Y87

y87

Assignments Assignments have the form

Syntax: name <- value or alternatively name = value.

Example: a <- 10

x <- 1:10

Queries If only the name of an object is entered, the value of the object
is returned.

Example: x

Indices Vector components are accessed by index. The lowest index is 1.

Example: x[3]

The indices can be specified directly, or using symbolic names or
rules.

Examples:

a[1] the first element

x[-3] all elements except the third

x[x^2 < 10] all elements where x2 < 10

R PROGRAMMING CONVENTIONS 3

Help and
Inspection

Help Documentation and additional information about an object can
be requested using help.

Syntax: help(name)

Examples: help(exp)

help(x)

Alternative form ?name

Examples: ?exp

?x

A hypertext (currently HTML) version of R’s online documen-
tation is activated by help.start() . This allows us to search
by topics, and provides a more structured access to information.

Inspection help() can only provide information that has been prepared in
advance. str() can inspect the actual state of an object and
display this information.

Syntax: str(object, ...)

Examples: str(x)

R Conventions

Functions Function calls in R have the form:

Syntax: name(argument . . .)

Example: e_10 <- exp(10)

This convention holds even when there are no arguments at all.

Example: To quit R, you call a “quit” function q() .

Function arguments are treated in a very flexible way. They can
have default values, which are used if no explicit argument value
is given.

Examples: log(x, base = exp(1))

(cont.)→

4 BASIC DATA ANALYSIS

R Conventions

(cont.)

Functions can be polymorphic. For a polymorphic function,
the actual function is determined by the class of the actual ar-
guments.

Examples: plot(x) # a one-dimensional serial plot
plot(x, x^2) # a two-dimensional scatter plot
summary(x)

Operators When applied to vectors, operators operate on each of the vector
components.

Example: For vectors y, z, the product y*z is the vector
of component-wise products.

Operators are special functions. They can be called in prefix form
(function form).

Example: "+"(x, y)

When applied to two operands with different lengths, the smaller
operand is repeated cyclically.

Example: (1:2)*(1:6)

1.2 Generation of Random Numbers and Patterns

Our subject is statistical methods. As a first step, we apply the methods in simulations,
that is, we use synthetic data. Generating these data is largely under our control. This
gives us the opportunity to gain experience with the methods and allows a critical
evaluation. Only then will we use the methods for data analysis.

1.2.1 Random Numbers

Random variables with a uniform distribution can be generated by the function runif()

Using help(runif) or ?runif we get information on how to use this function:

GENERATION OF RANDOM NUMBERS AND PATTERNS 5

help(runif)

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval
from min to max. dunif gives the density, punif gives the distribution function
qunif gives the quantile function and runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to
be the number required.

min,max lower and upper limits of the distribution. Must be finite.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise,
P [X > x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.
The uniform distribution has density

f(x) =
1

max−min
for min ≤ x ≤ max.
For the case of u := min == max, the limit case of X ≡ u is assumed, although
there is no density in that case and dunif will return NaN (the error condition).
runif will not generate either of the extreme values unless max = min or max-min
is small compared to min, and in particular not for the default arguments.

6 BASIC DATA ANALYSIS

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also

.Random.seed about random number generation, rnorm, etc for other distributions.

Examples

u <- runif(20)

The following relations always hold :

punif(u) == u

dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

The help information tells us that as an argument for runif() we have to supply the
number n of random variates to generate. As additional arguments for runif() we can
specify the minimum and the maximum for the range of the random numbers. If we do
not specify additional arguments, the default values min = 0 and max = 1 are taken.
For example, runif(100) generates a vector with 100 uniform random numbers with
range (0, 1). Calling runif(100, -10, 10) generates a vector with 100 uniform random
numbers in the range (−10, 10).

The additional arguments can be supplied in the defined order, or specified by name.
If the name of the argument is given, the position can be chosen freely. So instead
of runif(100, -10, 10) it is possible to use runif(100, min = -10, max = 10) or
runif(100, max = 10, min = -10). Using the name, it is also possible to set only
chosen arguments. For example, if the minimum is not specified, the default value for
the minimum is taken: using runif(100, max = 10) is equivalent with runif(100,

min = 0, max = 10). For better readability, we often write the names of arguments,
even if it is not necessary.

Each execution of runif() generates 100 new uniform random numbers. We can store
these numbers.

x <- runif(100)

generates a new vector of random numbers and stores it in the variable x.

x

returns the values. By default, it is written to the output, and we can inspect the result.
We get a graphical representation, the serial plot , a scatterplot of the entries x against
its running index, by using

plot(x)

GENERATION OF RANDOM NUMBERS AND PATTERNS 7

Example 1.1: A Simple Plot
Input

x <- runif(100)

plot(x)

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

x

Exercise 1.1

Try experimenting with these plots and runif(). Do the plots show
images of random numbers?

To be more precise: do you accept these plots as images of 100
independent realisations of random numbers, distributed uniformly
on (0, 1)?

Repeat your experiments and try to note as precisely as possible
the arguments you have for or against (uniform) randomness. What
is your conclusion?

Walk through your arguments and try to draft a test strategy to
analyse a sequence of numbers for (uniform) randomness. Try to
formulate your strategy as clearly as possible.

(cont.)→

8 BASIC DATA ANALYSIS

Exercise 1.1 (cont.)

Hint: For comparison, you can keep several plots in a window. The
code

par(mfrow = c(2, 3))

parametrises the graphics system to show six plots simultaneously,
arranged rowwise as a 2× 3 matrix (2 rows, 3 columns).

The function par is the central function to control graphics param-
eters. For more information, see help(par).

We reveal the secret1: the numbers are not random, but completely deterministic. In the
background, runif() builds a deterministic sequence zi using iterated functions. In the
simplest case, for linear congruence generators, subsequent values zi, zi+1 are generated
simply by a linear function. To keep the values in a controlled range, calculation is done
modulo an upper bound, that is

zi+1 = a zi + b mod M.

The resulting values are re-scaled by
zi
M
· (max−min) + min

and returned to us. To start, an initial value z0, the seed , must be given. Computa-
tionally there is just one variable, .Random.seed, which holds the current state zi for
i = 0, 1, . . ., and is managed by the system. The successive values returned are in the
hands of the user.

The sequence so defined can be regular and soon lead to a periodic solution. With
appropriate choice of the parameters, however, like in the example given in the footnote,
it can result in a long period (in the order of magnitude of M) and appear random. But
the sequence of numbers is not at all a sequence of independent random numbers, and
its distribution is not a uniform distribution on (min,max).

This is the simplest case. Various other algorithms for random number generation are
available, but all follow the same scheme. For more information on available random
number generators, see help(.Random.seed). See also Appendix A.21 (page A-228).

Even knowing the secret, a lot of additional knowledge is needed to prove that the gen-
erated sequence does not follow the rules that apply to a sequence of independent identi-
cally distributed random numbers from a uniform distribution. Sequences that claim to
work like random numbers are called pseudo-random numbers, if it is important to
mark the difference. We use these pseudo-random numbers to generate convenient test
data sets. Using these test data sets we can analyse how statistical methods perform

1 . . . at least part of it. The random number generators used in R can be customised and are usually
more complex than the simple variant introduced here. For our discussion, the family of linear
congruence generators suffices as an illustration. The usual reference here is the “minimal standard
generator” with xi+1 = (xi × 75) mod 231 − 1.

GENERATION OF RANDOM NUMBERS AND PATTERNS 9

under known conditions. In this context, we use pseudo-random numbers as if we had
true random numbers.

On the other hand, we can take pseudo-random numbers as a challenge: are we capable of
detecting that they are not independent random numbers? If we can detect the difference,
we would try to replace the pseudo-random number generator by a better one. But first
we have a challenge. Are we capable at all of detecting that the sequence generated by
a linear congruence generator, say, is not random but deterministic? If we cannot, what
are the intellectual consequences to draw from this?

1.2.2 Patterns

Besides the possibility of generating pseudo-random numbers, R provides several pos-
sibilities of generating regular sequences. In many cases these can replace loops, which
are common in other languages. Here is an initial survey:

R Sequences

: generates a sequence from 〈begin〉 to at most 〈end〉.

Syntax: 〈begin〉:〈end〉

Examples: 1:10

10.1:1.2

c() “combine”. combines arguments to a new vector.

Syntax: c(..., recursive = FALSE)

Examples: c(1, 2, 3)

c(x, y)

If the arguments are complex data types, the function will de-
scend recursively if called with recursive = TRUE.

seq() generates general sequences.

Syntax: See help(seq)

rep() repeats an argument.

Syntax: rep(x, times, ...)

Examples: rep(x, 3)

rep(1:3, c(2, 3, 1))

Here “. . . ” denotes a variable list of arguments. We will use this notation frequently.

10 BASIC DATA ANALYSIS

Exercise 1.2

Use
plot(sin(1:100))

to generate a plot of a discretised sine function. Use your strategy
from Exercise 1.1. Does your strategy detect that the sine function
is not a random sequence?

Hint: If you do not recognise the sine function at first sight, use
plot(sin (1:100), type = "l") to connect the points.

Listing the numbers of a data set, as for example the output of a random number
generator, rarely helps detect underlying structures. Simple unspecific graphical repre-
sentations like the serial plot have some, but only limited, use. Even with clear patterns
the information provided by these plots is rarely meaningful. Purposeful representations
are needed to investigate distribution properties of data. The line plot suggested by the
hint in Exercise 1.2 already illustrates an analysis beyond scatterplot. It uses a crude
interpolation.

1.3 Case Study: Distribution Diagnostics

We need specific strategies to detect the presence or the violation of structures. We
use random numbers to illustrate how these strategies can look. Here we concentrate
on the distribution properties. Let us assume that the sequence consists of independent
random numbers with a common distribution. How do we check whether this distribution
is a uniform distribution? We will ignore a re-scaling to (min,max), which might be
necessary, but it is a technical detail that does not affect the investigation substantially.
So for now we consider the case min = 0; max = 1.

Realisations of random variables do not allow us to read off the distributions directly.
This is our critical problem. We need characterisations of the distribution which allow
an empirical inspection. Of course we can view the observations as measures. For n
observations X1, . . . , Xn we can define the empirical distribution Pn as Pn =

∑
(1/n)δXi ,

where δXi is the point measure at Xi. Hence,

Pn(A) = #{i : Xi ∈ A}/n.

Unfortunately, the empirical distribution Pn of a set of independent observations with
common distribution P is in general very different from the original distribution P .
Some properties get lost without repair. Infinitesimal properties are among these. So
for example Pn is always concentrated on finitely many points; empirical distributions
are always discrete, irrespective of the underlying distribution. To analyse distributions
based on data, we need functionals that can be determined based on realisations of ran-
dom variable and that can be compared to the corresponding functionals of theoretical
distributions. One strategy is to restrict ourselves to a family of test sets that is treatable
empirically.

CASE STUDY: DISTRIBUTION DIAGNOSTICS 11

Example 1.2: Distribution Function

Instead of the distribution P we consider its distribution function F = FP , where

F (x) = P (X ≤ x).

For an empirical distribution Pn of n observations X1, . . . , Xn, the corresponding em-
pirical distribution function is

Fn(x) = #{i : Xi ≤ x}/n.

Example 1.3: Histogram

We select disjoint test sets Aj , j = 1, . . . , J , covering the range of X. For example, for
the uniform distribution on (0, 1) we can choose the intervals

Aj =
(j − 1

J
,
j

J

]
as test sets.

Instead of the distribution P we consider the vector
(
P (Aj)

)
j=1,...,J

. Its graphical rep-
resentation is called a histogram . The empirical version is the vector

(
Pn(Aj)

)
j=1,...,J

.

We will discuss this example in some detail. Some general lessons can be drawn from
this example. We will take several passes, moving from a naive approach to an elaborate
statistical approach.

We take the opportunity here to point out that the histogram depends critically on
the choice of the test sets. In particular, if discretisations in the data meet with an
unfortunate choice of the test sets, the results may be misleading. As an alternative to
the histogram, we can choose to smooth the data.

Example 1.4: Smoothing

We replace each data point by a (local) distribution, that is, we blur the data points
somewhat. We can do this using weight functions. These weight functions are called
kernels and denoted by K. We require that the integral over a kernel exists, and con-
ventionally the kernel is normalised so that

∫
K(x)dx = 1. Some commonly used kernels

are listed in Table 1.9 and shown in Figure 1.1. For kernels with compact support, the
support is chosen to be the interval [−1, 1]. (The R convention is to standardise the
kernel, so that the standard deviation is 1.)

By shift and scaling each kernel gives rise to the family

1
h
K(

x− x0

h
).

For kernels, the scale factor h is called the kernel bandwidth . The kernel scaled by h,
is denoted by Kh:

Kh(x) =
1
h
K(

x

h
).

12 BASIC DATA ANALYSIS

The function

x 7→ 1
n

∑
i

Kh(x−Xi)

results in a smoothed display that can replace (or enhance) the histogram.

For more information, look for the keywords smoothing or kernel density estima-
tion .

Kernel K(x)

uniform 1/2

triangular 1− |x|
Epanechnikov (quadratic) 3/4(1− x2)

biweight 15/16(1− x2)2

triweight 35/32(1− x2)3

Gauss (2)−1/2 exp(−x2/2)

Table 1.9 Some commonly used kernels. See Figure 1.1.

−3 −2 −1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

R's density() kernels with bandwidth h = 1

D
e

n
s
it
y

gaussian
epanechnikov
rectangular
triangular
biweight
cosine
optcosine

Figure 1.1 Kernels in R. See Example 1.4 on page 11 and Table 1.9. See Colour Figure 1.

