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Preface

The purpose of this book is twofold: It provides a detailed account of basic theory 
required for an understanding of the two-dimensional vibrational and electronic 
spectroscopy, and it also bridges the gap between the formal development of non-
linear optical spectroscopy and the application of the theory to the explanation of 
experimental results. The main emphasis is on principles rather than on practical 
aspects, though the reader may find sections where practical applications of the two-
dimensional optical spectroscopy to complicated molecular systems, such as pro-
teins and light-harvesting complexes, dominate.

It is assumed that the reader has the usual undergraduate background knowledge 
of quantum mechanics, electromagnetic theory, spectroscopy, statistical mechan-
ics, and physical chemistry. This book is intended to serve as a monograph for 
researchers in this particular topic as well as a textbook for advanced graduate 
students. I hope that it helps to fulfill the needs of time-domain spectroscopists 
who wish to deepen their understanding of the basic features of nonlinear response 
function theory and intermolecular interaction-induced phenomena and who intend 
to apply the recently developed tools of vibrational and electronic spectroscopy in 
two dimensions.

The scope of the material is restricted in various ways, but most importantly, theo-
retical descriptions of two-dimensional spectroscopy of coupled two-level systems and 
anharmonic oscillators are generally valid and can be easily extended to account for the 
two-dimensional spectroscopy of coupled multi-chromophore systems.
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1

1 Introduction

Two-dimensional (2D) optical spectroscopy is an optical analog of 2D nuclear mag-
netic resonance (NMR) and utilizes multiple ultrashort laser pulses in infrared or 
UV-visible (vis) frequency range. It has been used to study protein structure and 
dynamics, hydrogen-bonding dynamics in solutions, femtosecond solvation dynam-
ics, solute-solvent complexation, chemical reaction and exchange dynamics, exci-
tation migration process in photosynthetic light-harvesting complexes, exciton 
dynamics in semiconductors, and coherence transfers in electronically coupled 
multi-chromophore systems.1-19 Due to dramatic advancements of ultrafast laser 
technologies, femtosecond laser systems operating in infrared and visible frequency 
ranges have been commercially available so that we have seen a wide range of appli-
cations utilizing such ultrafast nonlinear optical spectroscopic techniques.

Most of the conventional linear spectroscopic methods, though they have been 
proven to be extremely useful for studying structural and dynamical properties 
of complex molecules in condensed phases, provide highly averaged information. 
Therefore, novel spectroscopic techniques capable of providing much higher infor-
mation content have been sought and tested incessantly. In the research community 
of NMR spectroscopy, such efforts led to developing a variety of 2D NMR tech-
niques such as NOESY (nuclear Overhauser enhancement spectroscopy) and COSY 
(correlation spectroscopy) methods among many others, and they have been exten-
sively used to study structural and dynamical properties of proteins in solutions.1, 2

Although the 2D optical spectroscopy that has been considered to be an opti-
cal analog of 2D NMR does not provide atomic resolution structures of complex 
molecules, optical domain multidimensional spectroscopy has certain advantages 
because of the dramatic gain in time resolution (~ subpicosecond scale) possible and 
the ability to directly observe and quantify the couplings between quantum states 
involved in molecular dynamical processes.19 An elementary and highly simplified 
schematic diagram in Figure 1.1 demonstrates that time-resolved 2D vibrational 
spectroscopic technique can provide detailed information on the 3D structure of a 
given complex molecule, that is, proteins.20 A pair of vibrational chromophores, for 
example, amide I local modes in polypeptide backbone, are coupled to each other via 
hydrogen-bonding interaction, which results in cross-peaks in the 2D amide I infra-
red (IR) spectrum. As a molecule undergoes a structural transition along a certain 
reaction (folding or unfolding) coordinate, where hydrogen-bond breaking occurs, 
the cross-peaks will disappear in time.21 Consequently, the transient 2D vibrational 
spectroscopy will provide information on the local conformational change of the 
target molecule in this case.

As theoretically and experimentally demonstrated over the last decade, the exis-
tence of cross-peaks is direct evidence on the vibrational couplings whose magnitudes 
depend on relative distances and orientations between vibrational chromophores 
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2 Two-Dimensional Optical Spectroscopy

that are comparatively localized anharmonic oscillators.10 Similarly, if two optical 
chromophores absorbing UV-vis lights are spatially close to each other, the elec-
tronic transition coupling between the two induces an electronic exciton formation 
and produces cross-peaks in the 2D electronic spectrum.22 Therefore, experimental 
observation of cross-peaks in a measured 2D electronic spectrum and their transient 
behaviors in time provides invaluable information about electronic coupling strength 
between two chromophores and about exciton-exciton coherence and population 
transfers or even on structural changes.9, 22, 23

Ultrafast nonlinear optical spectroscopy utilizing IR and/or visible field has been 
a vital and incisive tool with a rich and long history, and an optical analog of NMR 
phase coherent multiple pulse spectroscopy was alluded before, where the acousto-
optic modulation technique was used to generate an optical pulse sequence for a 
photon echo experiment.3 Particularly, optical photon echo spectroscopy has been 
extensively used to study solvation dynamics and ultrafast inertial motions of bath 
degrees of freedom coupled to electronic transitions of chromophores in condensed 
phases.24, 25 An IR photon echo experiment utilizing a free electron laser was per-
formed in early 1990s.26 Since the photon echo spectroscopy involves two either 
vibrational or electronic coherence evolutions during τ and t periods that are sepa-
rated by another delay time T, the measured echo signal is expressed as S t T( , , )τ .  
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Figure 1.1 Two-dimensional spectroscopy of changes in molecular structure. The peaks 
on the diagonal line of this typical 2D infrared spectrum are associated with vibrations of 
the chemical groups in red and blue in the structures above (the square and the triangle rep-
resent amino acid side groups). The cross-peaks in green are produced by the coupling of 
these vibrations. As the molecule unfolds, the length of the hydrogen bond increases and the 
vibrational coupling decreases, so that the cross-peaks become less intense. The cross-peaks 
disappear when the hydrogen bond is broken. By examining the amplitudes of cross-peaks 
from a series of time-resolved spectra, the breaking of a hydrogen bond, and so the structural 
evolution of a small molecule, can be probed in time.
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Introduction 3

The 2D spectrum �S Tt( , , )w wτ can therefore be obtained by carrying out double 
Fourier transformations of S t T( , , )τ  with respect to τ and t. T is the so-called wait-
ing time during which the system density matrix element is one of the diagonal ele-
ments (populations) or off-diagonal elements (coherences).

A typical 2D spectrum �S Tt( , , )w wτ thus obtained exhibits a variety of peaks. There 
are diagonal and off-diagonal peaks revealing different dynamics of the complex 
system of interest. For a two-level system, the 2D shape of a diagonal peak provides 
information on the relative contributions from the inhomogeneous and homogeneous 
dephasing processes.27, 28 The extent of elongation along the diagonal and the slope 
of the elongation direction are often time-dependent, and their changes were found 
to be related to the transition frequency–frequency time–correlation function, which 
is in turn related to the associated solvation dynamics around the chromophore.10, 28 
For an anharmonic oscillator, which can be successfully modeled as a three-level 
system, the diagonal peak in the real part of the 2D photon echo spectrum is divided 
into two parts with positive and negative amplitudes, which reveals overtone anhar-
monicity. Here, it should be noted that the target oscillators should not be perfectly 
harmonic to make the associated nonlinear response function nonvanishing. Certain 
nonlinearities in nuclear and electronic motions are basic requirements. In a given 
2D spectrum of anharmonic oscillator, the negative peak corresponds to the excited 
state absorption contribution to the signal and the positive peak to the sum of ground 
state bleaching and stimulated emission contributions. The cross-peaks can also be 
either antidiagonally or diagonally elongated, which corresponds to the cases when 
the two different transition frequencies are negatively or positively correlated in time. 
For a coupled homo- or hetero-dimer system, a negative correlation can be induced 
by modulation of the coupling constant, and a positive correlation results from mod-
ulation of the transition frequencies of the two monomers. The intensities of the 
cross-peaks can change in time, and their time-dependencies originate from various 
processes such as excitation transfers between two different excitonic or monomeric 
states, coherence transfers, chemical exchanges and reactions, population-dependent 
dephasing processes, conformation and chemical structural transitions, and so 
forth.10 Thus, any 2D optical spectrum has undoubtedly high information content 
and uniquely provides underlying dynamics and mechanisms of chemical or physical 
processes considered.

By using femtosecond IR pulses and dispersive pump–probe spectroscopic tech-
nique, 2D IR spectroscopic measurements of proteins in solution were performed 
in 1998.4 Also, interesting combinations of IR and visible beams together to carry 
out IR-vis four-wave-mixing experiments were theoretically suggested in the late 
1990s and shown to be useful in studying electric and mechanical anharmonicity-
induced couplings between two different vibrational modes in 1999 experiment- 
ally.6, 8, 11, 29, 30 This is analogous to the heteronuclear NMR spectroscopy, since both 
vibrational (bosonic) and electronic (fermionic) degrees of freedom and their cou-
plings were under investigation. Also, electronic photon echo signals from a dye 
molecule or a photosynthetic light-harvesting protein complex were experimentally 
measured by using a Fourier transform (FT) spectral interferometry employing the 
Mach–Zehnder interferometer.7, 9 In the latter case, it was found that ultrafast excita-
tion relaxations within the manifold of one-exciton states and coherence evolution in 
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4 Two-Dimensional Optical Spectroscopy

electronically coupled multi-chromophore systems could be studied by examining 
the time-dependent changes of the 2D photon echo spectrum and by measuring the 
cross-peak amplitude changes in time T.22 A conditional probability of finding the 
system on a specific quantum state ψ k at a later time when it was initially on a differ-
ent state ψ j was found to be the key factor determining the time-dependency of the 
associated cross-peak amplitude at ( , )w w w wτt k j= = .19 In addition, we have seen 
2D IR spectroscopic studies of chemical exchange dynamics and hydrogen-bond net-
work in water.31–37 These works clearly demonstrated how such novel spectroscopic 
methods can be of use in studying fundamental solute-solvent interaction dynamics 
in real time with an unprecedented time resolution that cannot be reached by any 
other spectroscopic means. Technically, a femtosecond collinear phase-coherent 2D 
spectroscopy and a single-shot 2D pump–probe spectroscopy were experimentally 
demonstrated, which will speed up data collection times and extend applications of 
the technique to a wide variety of problems.38–40 In parallel with these experimen-
tal efforts, numerous theoretical and computational methods combining molecular 
dynamics (MD) simulation, quantum chemistry calculation, quantum mechanical/
molecular mechanical (QM/MM) simulation, and hybrid QM/MD simulation have 
been developed to accurately simulate the 2D vibrational and electronic spectra of 
complicated molecular systems such as proteins, nucleic acids, and light-harvesting 
complexes over the last decade.10

Before we close this chapter, it would be interesting to provide a viewpoint on how 
and why the 2D optical spectroscopy is a better tool for studying molecular structure 
and dynamics, in comparison with the other linear or quasi-linear spectroscopy. Note 
that the time-resolved spectroscopy capable of recording 1D spectra with respect to 
time is considered to be quasi-linear spectroscopy because quantitative information 
on couplings still cannot be directly provided. The discussion on this begins with 
comparing the hierarchy of protein structures with that of spectroscopic properties. 
Linear spectroscopy such as IR absorption and Raman scattering can provide critical 
information on the distribution of vibrational modes in a given polyatomic molecule. 
There are a variety of marker bands in an IR absorption spectrum of polyatomic 
molecule. Analysis of IR absorption spectrum of an unknown molecule can thus 
provide information on the constituent chemical groups and bonds included in the 
molecule. However, if these vibrational chromophores interact or couple to produce 
delocalized vibrational states, the linear absorption spectrum provides limited infor-
mation on such coupling strengths that are however keenly dependent on the 3D 
structure such as inter-chromophore distances and orientations. Thus, the 2D vibra-
tional spectroscopy capable of measuring such small quantities can be an incisive 
tool to shed light on the detailed structure and its structural change in time.

In Figure 1.2, there is an interesting analogy between various levels of spectro-
scopic properties and hierarchical protein structures.10, 18, 20 The primary structure 
of protein is nothing but a sequence of amino acids encoded in the corresponding 
gene. The relevant energy associated with the primary protein structure formation 
is the covalent bond energy, that is, peptide bond, of which magnitude is about 100 
kJ/mol. The secondary protein structures such as α-helix, β-sheet, β-hairpin, and 
so forth are mainly determined by the relatively weak hydrogen bonds with energy 
of about 10 kJ/mol. The protein tertiary (domain) structure formation involves a 
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Introduction 5

variety of interactions such as electrostatic, hydrophobic, van der Waals, disulfide 
bond interactions and the like. Thus, the protein structure hierarchy can be viewed 
as a descending order of interaction energy. Similarly, one can develop the same 
hierarchical concept for spectroscopically measurable properties. The primary spec-
troscopic properties are fundamental transition frequencies and transition dipole 
strengths that are principal quantities extracted from an analysis of 1D spectrum, 
and such primary spectroscopic properties are largely determined by the nature of 
covalent bonds involved in a given vibrational (or electronic) chromophore, (e.g., 
C=O stretch, C-H stretch and bend). Most of the 1D spectroscopic means are con-
sequently very useful in delineating the distribution of individual chromophore in 
the target molecule, and thus they can be considered to be a one-body spectroscopy 
identifying each single chromophore. On the other hand, the coupling between two 
different chromophores (electronic or vibrational oscillators) within a molecule is 
associated with comparatively weak inter-chromophore interactions such as hydro-
gen bond. Consequently, the secondary spectroscopic properties (e.g., vibrational 
or electronic couplings, nonlinear optical strengths, anharmonic couplings) require 
nonzero two-body interactions between different chromophores and thus are very 
sensitive to the detailed configuration, that is, 3D structure, of the constituent chro-
mophores in the molecule. As has been shown over the last decade, the coherent 
2D optical spectroscopy based on a variety of nonlinear optical spectroscopic tech-
niques is superior to the 1D method in extracting such quantitatively small second-
ary spectroscopic properties of complicated molecules like proteins and molecular 
aggregates via measuring the two-body interaction terms. Thus, the 2D spectroscopy 
can be considered as two-body spectroscopy. Extending this analogy further, one 
can envisage the 3D (three-body) spectroscopy, which is likely to be of use in mea-
suring the tertiary spectroscopic properties such as three-body (three-chromophore) 
couplings and higher-order nonlinear optical strengths, as a technique that enables 
determination of higher-order hierarchical molecular structure.

In this book, we will provide detailed discussions on the underlying physics and 
interpretation methods of a variety of 2D optical spectroscopic methods. Novel 

Spectroscopic Property

C–N bond
(~100 kJ/mol)

Secondary
α helices & β stands 

Tertiary
domain structures

–O···H–bond
(~10 kJ/mol)

van der Waals etc.
(≥1 kJ/mol)

Secondary
binary coupling

& nonlinear polarization 

Tertiary
many-body coupling & higher-

order polarization

Protein Structure

Primary
amino acid sequence

Primary
transition frequency
& dipole strength   

Figure 1.2 Analogy between hierarchies of spectroscopic properties and protein structures.
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6 Two-Dimensional Optical Spectroscopy

diagrammatic techniques will be presented and shown to be useful in graphically 
describing the associated nonlinear optical transition pathways and involved popula-
tion (diagonal density matrix elements) or coherence (off-diagonal density matrix 
elements) evolutions. The basics of quantum dynamics are explained first, and time-
dependent perturbation theories that are required in describing nonlinear optical 
processes. Although a number of nonlinear spectroscopic investigations have been 
performed in frequency domain, we will focus on time-domain spectroscopy only 
because it is far more suitable for describing ultrafast coherent 2D optical measure-
ments as well as directly analogous to the 2D NMR spectroscopy in many ways.
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2 Quantum Dynamics

A principal goal of spectroscopic investigation is to study electronic or magnetic 
properties of materials by measuring radiation–matter interaction-induced changes 
of radiation states in frequency and/or time domains.1–4 Since the electromagnetic 
field amplitude oscillates and the temporal envelope of laser pulse used changes in 
time,5 the radiation–matter interaction Hamiltonian is intrinsically time-dependent, 
and the time evolutions of the matter states might be fully determined by the time-
dependent Schrödinger equation,

 

∂
∂

> = - >
t

t
i

H t t| ( ) ˆ ( ) | ( )ψ ψ
�  

(2.1)

Here, | ( )ψ t > is the Dirac ket state. The corresponding bra state is denoted as 
< ψ( ) |t . The time-dependent Schrödinger equation (2.1) is one of the most funda-
mental and important postulates in quantum mechanics.6–8 In this chapter, we intro-
duce the concept of linear vector (wavefunction) and matrix (density operator) spaces 
to describe the quantum dynamics of matters interacting with external radiations.

2.1  Time evoluTioN iN HilberT SpaCe

Hilbert space is a linear vector space of functions. In quantum mechanics, a vector 
in the Hilbert space is wavefunction ψ(t) and the complete and orthonormal basis set 
used to define the quantum mechanical Hilbert space consists of eigenvectors of the 
time-independent Schrödinger equation, that is,

 
ˆ | | .H En n nf f> = >

 
(2.2)

From the orthonormalization condition of unit vectors in the Hilbert space, we have

 
< > =f f δn m nm| .

 (2.3)

From the completeness condition, the identity operator is defined as

 

| | .f fm m

m

>< =∑ 1

 

(2.4)

With the Dirac’s bra-ket notation, the inner product of any given pair of vectors 
(wavefunctions) is defined as

 
< > ≡ ∫ψ ψ ψ ψj k j k

V
t t t t d( ) | ( ) ( , ) ( , )* r r r,

 
(2.5)

where V is the quantization volume.

84291_Book.indb   9 5/11/09   2:10:05 PM
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Any vector, wavefunction in this Hilbert space can therefore be expanded as

 

| ( ) ( ) |ψ ft c tn n

n

> = >∑
 

(2.6)

where the expansion coefficient is the projection of the vector onto each unit vector,

 
c t tn n( ) | ( ) .≡ < >f ψ

 (2.7)

ExErCIsE 2.1
Consider a two-level system. Assume that the system at time t0 is a superposition 
state of the two eigenvectors, that is, | ( ) (| | )ψ f ft0

1
2 1 2> = > + > , and that the 

Hamiltonian is given as ˆ (| | | |).H = >< + ><D f f f f1 2 2 1 Calculate the ket function
| ( )ψ t > at time t. 

In the case when the Hamiltonian is time-independent, the formal solution of the 
time-dependent Schrödinger equation is given as

 
| ( ) exp ˆ ( ) | ( ) ( , ) | (ψ ψ ψt

i
H t t t u t t t> = - -



 > =

� 0 0 0 0)) >
 

(2.8)

where u t t( , )0 represents the forward time evolution operator when t t> 0:

 
u t t

i
H t t( , ) exp ˆ ( ) .0 0≡ - -



�  

(2.9)

The backward time evolution operator is then defined as

 
u t t

i
H t t†( , ) exp ˆ ( ) .0 0≡ -



�  

(2.10)

It is noted that the Hamiltonian operator is Hermitian. The time evolution opera-
tor u t t u t t( , ) ( ( , ))†

0 0 describes the forward (backward) time evolution of the ket (bra) 
vector, whereas the same operator does backward (forward) time evolution of the bra 
(ket) vector. The Hilbert space for a ket vector is nothing but a mirror image of that 
for a bra vector. The two spaces are related to each other via Hermitian conjugate 
relationship. Note that the quantum mechanical Hilbert space is a complex space 
where a vector can have both real and imaginary parts. If one needs to calculate any 
real observable at time t, one should consider the ket and bra vectors at t simulta-
neously. However, since the time evolution of the ket vector is just a mirror image 
of (Hermitian conjugate relationship to) that of the corresponding bra vector, it is 
enough to consider one of the two time-evolved vectors in a given Hilbert space.

ExErCIsE 2.2
Prove that u t t u t t u t t u t t( , ) ( , ) ( , ) ( , ) .† †

0 0 0 0= = 1 (Hint: use exp( ) ( / !)x n xn
n= + ∑1 1  

and the Baker-Haudorf lemma, e e e eA B A B A Bˆ ˆ ˆ ˆ ( / )[ ˆ , ˆ ]= + 1 2 ).9
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In the Schrödinger picture, where the wavefunction is time-dependent whereas an 
operator Â corresponding to the observable A is not, the expectation value may be 
calculated as, on the basis of one of the quantum mechanical postulates,

 
A t t A t t u t t Au t t( ) ( ) | ˆ | ( ) ( ) | ( , ) ˆ ( , ) | (†= < > = <ψ ψ ψ ψ0 0 0 tt0) .>

 
(2.11)

The physical meaning of the right-hand side of Equation 2.11 is that when the ini-
tial wavefunction is known at time t0, the ket vector | ( )ψ t0 > evolves in the forward 
direction in time from t0 to t by the u t t( , )0 operator, and the bra vector < ψ( ) |t0 also 
does from t0 to t by the u t t†( , )0 operator. Then, the expectation value of Â over the 
wavefunction at time t provides the value of A t( ).

Defining the time-dependent operator ˆ( )A t as

 

ˆ ( ) ( , ) ˆ ( , ) exp ˆ ( ) ˆ e†A t u t t Au t t
i

H t t AH = = -



0 0 0�

xxp ˆ ( ) ,- -





i
H t t

� 0

 
(2.12)

the expectation value of Â at time t can be rewritten as

 
A t t A t tH( ) ( ) | ˆ ( ) | ( ) .= < >ψ ψ0 0  (2.13)

This route to the calculation of any expectation value has been known to be the 
Heisenberg picture.

ExErCIsE 2.3
Show that the time-dependent operator defined in Equation 2.12 obeys the 
Heisenberg equation, i.e., ∂

∂ =t H
i

HA t H A tˆ ( ) [ ˆ , ˆ ( )].� Here, it is assumed that the 
operator Â does not depend on time explicitly.

In spectroscopy, the radiation–matter interaction Hamiltonian is time-dependent so 
that the time evolution of the wavefunction needs to be described differently from 
the case of time-independent Hamiltonian. The total Hamiltonian of the composite 
system consisting of matter and radiation may be written as

 
ˆ ( ) ˆ ˆ ˆ ( ).H t H H H tmat rad rad mat= + + -  (2.14)

From the time-dependent Schrödinger equation (2.1), let us assume that the formal 
solution of the wavefunction of the ket vector is given as

 
| ( ) ( , ) | ( ) .ψ ψt U t t t> = >0 0  (2.15)

To determine the time evolution operator,U t t( , ),0 in Equation 2.15, one can substi-
tute Equation 2.15 into 2.1 and find that

 

∂
∂

= -
t
U t t

i
H t U t t( , ) ˆ ( ) ( , ).0 0�  

(2.16)
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Carrying out the integration of Equation 2.16 with respect to t, we have

 
U t t

i
d H U t

t

t

( , ) ˆ ( ) ( , ).0 01
0

= - ∫� τ τ τ
 (2.17)

By repeatedly inserting the right-hand side of Equation 2.17 into theU t( , )τ 0 term 
in the integrand, one can formally derive the following series solution for the time 
evolution operator,U t t( , )0 , when the Hamiltonian is explicitly time-dependent, as

U t t
i

d d d
n

n
t

t

n
t t

n

( , ) ˆ
0 1 11

0 0 0

2

= + -



 ∫ ∫ ∫-�

�τ τ τ
τ τ

HH H Hn

n

n( ) ˆ ( ) ˆ ( ).τ τ τ
=

∞

-∑
1

1 1�
 

(2.18)

Note that the above series expansion is not identical to the Taylor expansion of the 
exponential function and that the integration time variables have the following order, 
τ τ τn n≥ ≥ ≥-1 1� . For the sake of notational simplicity of the forward time evolution 
operatorU t t( , )0 , the positive time-ordering exponential operator is defined as

 
U t t

i
d H

t

t

( , ) exp ˆ ( ) .0
0

= -




+ ∫� τ τ

 
(2.19)

ExErCIsE 2.4
Show that the forward time evolution operatorU t t( , )0 defined in Equation 2.19 
with 2.18 becomes u t t( , )0 when the Hamiltonian is time-independent. 

Then, the backward time evolution operator, which is the Hermitian conjugate of 
U t t( , ),0 is found to be

 
U t t

i
d H

t

t
†( , ) exp ˆ ( )0

0

=




- ∫� τ τ

 

= + 



 ∫ ∫ ∫-

=

1
0 0 0

2

1 1 1

1

i
d d d H

n

n
t

t

n
t t

n

n

�
�τ τ τ τ

τ τ
ˆ ( )

∞∞

∑ ˆ ( ) ˆ ( ).H H nτ τ2 �
 

(2.20)

ExErCIsE 2.5
Show that U t t U t t U t t U t t( , ) ( , ) ( , ) ( , ) .† †

0 0 0 0 1= =

2.2  Time-DepeNDeNT perTurbaTioN 
THeory iN HilberT SpaCe

Although the time evolution operators in Equations 2.18 and 2.20 are exact for describ-
ing the quantum dynamics of composite system consisting of materials, bath, and 
radiation, the corresponding time-dependent Schrödinger equation cannot be directly 
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solved to calculate any expectation values, quantum transition amplitudes and prob-
abilities, and matter’s electronic and magnetic properties. That is not only because the 
series summation requires an infinite number of terms but also because the eigenvalue 
equation such as ˆ ( ) | |H Eτ ψ ψ1 > = > cannot be easily solved for the Hamiltonian 
describing optical chromophores interacting with both surrounding bath degrees of 
freedom and external radiations. Therefore, it is inevitable to develop a proper time-
dependent perturbation theory, and the total Hamiltonian is divided into two parts as

 
ˆ ( ) ˆ ( ) ˆ ( ),H t H t H t= + ′0  (2.21)

where the zero-order Hamiltonian ˆ ( )H t0 serves as the reference and the second term 
ˆ ( )′H t is treated as perturbation Hamiltonian. In spectroscopy, the system, bath, and 

radiation Hamiltonians constitute the zero-order Hamiltonian, and the field-matter 
interaction is considered to be the perturbation Hamiltonian. The perturbation theory 
can thus provide quantitatively reliable information when ˆ ( )′H t is properly chosen so 
that the perturbation series successfully converges.

It turns out that the interaction picture instead of the Schrödinger or Heisenberg 
picture discussed above is quite useful for a development of time-dependent pertur-
bation theory. In the interaction picture, the time evolutions of the wavefunction is 
fully described by the zero-order Hamiltonian ˆ ( ),H t0 not by the total Hamiltonian 
ˆ ( ).H t In addition, the perturbation Hamiltonian ˆ ( )′H t also evolves in time in the 

Heisenberg picture determined by ˆ ( ).H t0 Thus, the interaction picture can be viewed  
as a hybrid of both Schrödinger and Heisenberg pictures. We assume that the for-
ward time evolution operatorU t t( , )0 can be written as a product of two operators as

 
U t t U t t U t tI( , ) ( , ) ( , ),0 0 0 0=

 (2.22)

where

 
U t t

i
d H

t

t

0 0 0
0

( , ) exp ˆ ( )= -




+ ∫� τ τ

 
(2.23)

 
U t t

i
d HI

t

t

I( , ) exp ˆ ( ) .0
0

= - ′




+ ∫� τ τ

 

(2.24)

Here, the time-dependent perturbation Hamiltonian operator in the Heisenberg pic-
ture described by the zero-order Hamiltonian, ˆ ( )H t0 , is defined as

 
ˆ ( ) ( , ) ˆ ( ) ( , ).†′ = ′H t U t t H t U t tI 0 0 0 0  (2.25)

In this interaction picture, the expectation value of the time-dependent operator ˆ( )A t
is given as

 
A t t U t t U t t A t U t t U tI I( ) ( ) | ( , ) ( , ) ˆ( ) ( , ) († †= < ψ 0 0 0 0 0 0 ,, ) | ( )t t0 0ψ >

 
= < >ψ ψI I It A t t( ) | ˆ ( ) | ( ) ,

 (2.26)
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where

 
ˆ ( ) ( , ) ˆ( ) ( , ).†A t U t t A t U t tI ≡ 0 0 0 0  (2.27)

 | ( ) ( , ) | ( ) .ψ ψI It U t t t> ≡ >0 0  (2.28)

Note that, in the interaction picture, both the wavefunction and operator evolve in 
time.

ExErCIsE 2.6
Show that | ( ) ( , ) ( , ) | ( )ψ ψt U t t U t t tI> = >0 0 0 0 indeed obeys the time-dependent  
Schrödinger equation. 

In order to develop a time-dependent perturbation theory, one can expandU t tI ( , )0  
given in Equation 2.24 as a power series of the time-evolved perturbation Hamiltonian
ˆ ( )′HI τ and find that the forward time evolution operator can be expanded as

U t t U t t
i

d U t H
t

t

( , ) ( , ) ( , ) ˆ (0 0 0 1 0 1 1
0

= + -



 ′∫�

τ τ τ )) ( , )U t0 1 0τ

 
+ -



 ′∫∫i

d d U t H U
tt

t

�

2

2 1 0 2 2 0 2
0

2

0

τ τ τ τ τ
τ

( , ) ˆ ( ) ( ,ττ τ τ1 1 0 1 0) ˆ ( ) ( , )′ +H U t �

 

=
=

∞

∑U t tn

n

( , ),0

0  

(2.29)

where the nth-order perturbation term,U t tn( , )0 , is defined as

 
U t t

i
d d d Un

n

n n
tt

t

t

n

( , )0 1 1 0
00 0

2

≡ -



 -∫∫ ∫�

�τ τ τ
τ τ

(( , ) ˆ ( ) ( , )t H Un n n nτ τ τ τ′ ×-0 1 �

 
× ′U H U t0 2 1 1 0 1 0( , ) ˆ ( ) ( , ).τ τ τ τ

 
(2.30)

Similarly, the backward time evolution operator in the interaction picture can be 
written as

 

U t t U t t U t t U t tI n

n

† † † †( , ) ( , ) ( , ) ( , )0 0 0 0 0

0

= =
=

∞

∑
 

(2.31)

where

 
U t t

i
d d d Un

n

n n
tt

t

t

n
†( , )0 1 1 0

00 0

2

≡ 



 -∫∫ ∫�

�τ τ τ
τ τ

†† †( , ) ˆ ( ) ( , )τ τ τ τ1 0 1 0 2 1t H U′ ×�

 
× ′-U H U tn n n n0 1 0

† †( , ) ˆ ( ) ( , ).τ τ τ τ
 

(2.32)
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ExErCIsE 2.7
To obtain Equations 2.30 and 2.32, the following operator equalities, 
U t t U t U t0 0 0 0 0( , ) ( , ) ( , )† τ τ= andU t U t t U t0 0 0 0 0( , ) ( , ) ( , ),† †τ τ= were used. Prove these 
two equalities.

2.3  Diagram repreSeNTaTioN oF THe Time-DepeNDeNT 
perTurbaTioN THeory iN HilberT SpaCe

Formal expressions and results on the time evolution operators and expectation val-
ues in terms of perturbation series were presented and discussed above, but it has 
always been found to be useful to represent each term in terms of graphical diagrams. 
In this regard, the Feynman diagram representation of the perturbation theory has 
been considered to be one of the simplest pictures and allows one to understand the 
time evolution of the system when a certain number of perturbation actions to the 
zero-order wavefunction occur in time. Here, we will introduce a modified Feynman 
diagram technique for the perturbation theory. The complete time evolution operator
U t t( , )0 was given as a series of perturbation terms as

 U t t U t t U t t U t t( , ) ( , ) ( , ) ( , )0 0 0 1 0 2 0= + + +�  (2.33)

It will be assumed that the diagrams corresponding to each term in Equation 2.33 
are defined as

 
= ←  + ←  + ←  +τ τ τ1 2 1

�.
 

(2.34)

The thick, solid arrow pointing from right to left represents the total time evolu-
tion operatorU t t( , ),0 whereas the thin arrow represents the zero-order time evolu- 
tion operator,U t0 0( , ),τ which is determined by the zero-order Hamiltonian ˆ ( ).H t0

The wavy line symbol  in the Feynman diagrammatic representation ofU t t1 0( , ) cor-
responds to the action of the perturbation Hamiltonian at τ1. Note that the first-order  
term,U t t1 0( , ), describes the time evolution of the wavefunction from t0 to t when 
there is a single perturbation by ˆ ( )′H τ1 at time τ1 ( ).t t≥ ≥τ1 0 Since the perturbation 
action occurs at any time from t0 to t, one should take into consideration all possibili-
ties so that the integration over τ1 in the range from t0 to t should be performed. From 
Equation 2.15, the first time-derivative of  is given as

 

∂
∂

= -
t

i
H t �
ˆ ( ) .

 
(2.35)

Similarly, the backward time evolution operator given as a series of the perturbation 
terms is

 U t t U t t U t t U t t† † † †( , ) ( , ) ( , ) ( , )0 0 0 1 0 2 0= + + +�  (2.36)

and the corresponding diagram representation is

 
=  → +  → +  → +τ τ τ1 1 2

�.
 

(2.37)
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Note that the directions of the arrows are the opposite of those in the forward time 
evolution operators, indicating that the time runs from left to right. The first deriva-
tive of  satisfies the following differential equation:

 

∂
∂

=
t

i
H t �
ˆ ( ).

 
(2.38)

Using the diagrams introduced above, the time-evolved ket and bra vectors can be 
diagrammatically represented as

 
| ( ) | ( ) | ( ) | ( )ψ ψ ψ ψt t t t> = ←  + ←  > + ←  > +>0 0 0 �

 (2.39)

 
< = <  → + <  → + <  → +ψ ψ ψ ψ( ) | ( ) | ( ) | ( ) | .t t t t0 0 0 �

 
(2.40)

Therefore, the expectation value of an operator ˆ( )A t is, in the diagram representation, 
simply given as

 

A t t A t t( ) ( ) | ˆ ( ) ) .| (= < >ψ ψ0 0 
 

(2.41)

Then, the series expansion of A t( ) is

 

A t A tn

n

( ) ( ),( )=
=

∞

∑
0  

(2.42)

where the first three perturbation expansion terms are

A t t A t( ) ( ) ( ) | ˆ | ( )0
0 0= < → ← >ψ ψ

A t t A t t A t
( )

( ) ( ) | ˆ | ( ) ( ) | ˆ | ( )
1

0 0 0 0= < → ← > + < → ← >ψ ψ ψ ψ

 
A t t A t t A t

( )
( ) ( )| ˆ | ( ) ( )| ˆ | ( )

2
0 0 0 0= < → ← > + < → ← > + <ψ ψ ψ ψ ψψ ψ( )| ˆ | ( ) .t A t0 0→ ← >

  

  (2.43)

Instead of considering the perturbation expansion of the wavefunction, one can 
equally calculate the same expectation value in the Heisenberg picture as

 

A t t A t t t A tH H
n

n

( ) ( ) | ˆ ( ) | ( ) ( ) | ˆ ( )( )= < > = <
=

∞

∑ψ ψ ψ0 0 0

0

|| ( )ψ t0 >
 

(2.44)
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where, in the diagram representation, the perturbationally expanded time-evolved 
Heisenberg operators of ˆ( )A t are

 

ˆ ( ) ˆ( )A t A tH = 

 
ˆ ( ) ˆ( )( )A t A tH

0 =  → ← 

 
ˆ ( ) ˆ( ) ˆ( )( )A t A t A tH

1 =  → ←  +  → ← 

 
ˆ ( ) ˆ( ) ˆ( ) ˆ( )( )A t A t A t A tH

2 =  → ←  +  → ←  +  → ←   
(2.45)

ExErCIsE 2.8
Show that ˆ ( )A tH defined in Equation 2.45 is identical toU t t AU t t†( , ) ˆ ( , )0 0 and that 
its time evolution is determined by the Heisenberg equation (see Exercise 2.3).

2.4  TraNSiTioN ampliTuDe aND 
probabiliTy iN HilberT SpaCe

Most of spectroscopic observables require calculations of the amplitude or probabil-
ity of the transition from a specific initial state |m> at t0 to a final state |n> at a later 
time t, when such a transition is induced by the perturbation Hamiltonian ˆ ( )′H t . By 
definition, the transition amplitude in this case is calculated by

 
TA t n U t t m n U t t U t t mnm I( ) | ( , ) | | ( , ) ( , ) | .≡ < > = < >0 0 0 0  (2.46)

We shall assume that the initial and final states are eigenvectors (stationary states) 
of the zero-order Hamiltonian, i.e., H m E mm0 | |> = > and H n E nn0 | | .> = >   
Then, the first-order perturbation theory provides us the first-order transition 
amplitude as

 
TA t n U t t m

i
d n Unm

t

t
( ) ( ) | ( , )| |1

1 0 1 0
0

≡ < > = -



 <∫�

τ (( , ) ˆ ( ) ( , ) | .t H U t mτ τ τ1 1 0 1 0′ >
  

  (2.47)

This can be re-expressed as, in terms of the corresponding Feynman diagram,

 
TA t n mnm

( ) ( ) | | .1 = < ←  >
 

(2.48)

However, what is experimentally measured is not the transition amplitude but the 
corresponding transition probability that is defined as the square of the transition 
amplitude as

 
TP t TA tnm nm( ) | ( )| .≡ 2

 (2.49)
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18 Two-Dimensional Optical Spectroscopy

We find that the second-order transition probability of being in state |n> at  
time t is

 
TP t n m m nnm

( ) ( ) | | | | .2 = < ←  ><  → >
 (2.50)

This expression can be written as a double integral as

 
TP t d d n U tnm

t

t

t

t
( ) ( ) | ( , ) ˆ2

2 1 2 0 1
1

0 0

= 



 < ′∫ ∫�

τ τ τ HH U t m( ) ( , ) |τ τ1 0 1 0 >

 × < ′ >m U t H U t n| ( , ) ˆ ( ) ( , ) | .† †
0 2 0 2 0 2τ τ τ  (2.51)

For the sake of simplicity, let us consider the case that the zero-order Hamiltonian 
does not explicitly depend on time. Then, Equation 2.51 can be simplified as

 
TP t d e Hnm

t

t
i

nm
nm( ) ( ) ( )2

2

2
1

0

= ′∫�
τ τw τ

 
(2.52)

where w w w wm m nm n mE≡ ≡ -/ , ,� and

 
′ ≡ < ′ >H n H mnm ( ) | ˆ ( ) | .τ τ

 (2.53)

If the initial time t0 is -∞, the transition probability evaluated at t = ∞ is

 
TP t Hnm nm nm

( ) ( ) | ( )|2
2

21= ∞ = ′
�

� w
 

(2.54)

where � ′Hnm nm( )w is the Fourier transform of ′H tnm ( ) at w w= nm. Throughout this book, 
the Fourier and inverse Fourier transforms are defined as

 

�f dt f t ei t( ) ( )w w=
-∞

∞

∫  
(2.55)

 
f t dt f e i t( ) ( ) .=

-∞

∞
-∫1

2p
w w�

 
(2.56)

ExErCIsE 2.9
One can derive the well-known Fermi’s Golden Rule (FGR) expression for a 
rate of transition, w E Hn nm= ′2 2p r� ( ) | | , where the perturbation Hamiltonian is 
time-independent so that ′Hnm is a constant. To obtain the FGR expression given 
above, it was assumed (1) that the final states are closely spaced in energy so 
that they form a continuum with density of states r( ),En (2) that only the long-
time behavior is considered, (3) that ′Hnm and r( )En do not strongly depend on 
n, and (4) that the above second-order expression for TP tnm

( ) ( )2 is valid. 
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In order to obtain the result in Equation 2.54, it was assumed that the initial state at 
t0 is a pure state on |m>. However, if the initial state is a mixed state such as a canoni-
cal ensemble, one should take an ensemble average over the thermal distribution of 
the initial states. Suppose that the probability of being in state |m> is P Tm ( ) at tem-
perature T. Then, the transition probability of finding the system being in state |n> is 
given by a sum over all |m> with distribution P Tm ( ) as

 

TP t P T TP tn m nm

m

( ) ( )( ) ( ) ( )2 2= ×∑

 

= < ←  > <  → >∑ n m P T m nm

m

| | ( ) | | .

 

(2.57)

If one introduces an operator r( )t0 in a matrix form and if the diagonal matrix ele-
ments, which are still operator, are given as rmm mt m P T m( ) | ( ) |0 = > < , the transition 
probability in Equation 2.57 can be rewritten as

 

TP t n t n

n t

n mm

m

( ) ( ) | ( ) |

| )

2
0

0

= < ←   → >

= < ← 

∑ r

rTr[ ( ]] | . → >n  (2.58)

Now, the second-order time-evolved density operator r( ) ( )2 t is graphically repre-
sented as

 
r r( ) ( ) ( )]2

0t t= ←   →Tr[
 

(2.59)

so that we have

 
TP t t n t nn nn

( ) ( ) ( )( ) ( ) | ( ) | .2 2 2= ≡ < >r r
 (2.60)

Using the description of the time evolution of wavefunction in Hilbert space in 
terms of the time evolution operators, one can calculate the transition amplitude but 
not probability directly. As shown above from Equations 2.57 to 2.60, the transi-
tion probability calculation requires a few more steps of derivations and additional 
ensemble averaging calculation when the system is initially in a thermal equilibrium 
state at finite temperature T. However, by directly considering the time evolution 
operator in a matrix form instead of a vectorial form, one can easily perform such 
multistep calculations. In addition, an ensemble averaging calculation is straight-
forward since the initial density operator contains information on the mixed state. 
Furthermore, for developing a higher-order time-dependent perturbation theory, the 
density operator representation has been found to be useful for bookkeeping quite a 
number of nonlinear optical transition pathways contributing to the transition prob-
ability or measured signal of interest.

84291_Book.indb   19 5/11/09   2:10:39 PM



20 Two-Dimensional Optical Spectroscopy

2.5  Time evoluTioN iN liouville SpaCe

In the Hilbert space spanned by the eigenvectors of the time-independent Schrodinger 
equation, wavefunction is a vector and its time evolution is determined by the time-
dependent Schrodinger equation. However, if one has to deal with a statistically 
mixed state such as systems in a canonical ensemble, transition probability calcu-
lation is often easier and conceptually simpler if the dynamics of the system are 
described in a Liouville (density matrix) space.2, 10, 11 In addition, time evolutions of 
quantum coherence and population can be easily described by using the density oper-
ator formalism.12 In the previous section, it was already shown that the second-order 
perturbation theory for calculating transition probability can be expressed in terms 
of density operator.

The conventional definition of density operator is

 
r ψ ψ( ) | ( ) ( ) | .t t t= ><

 (2.61)

Using the diagrammatic representations of the forward and backward time evolution 
operatorsU t t( , )0 andU t t†( , )0 , one can re-express Equation 2.61 as

 
r r( ) ( )t t= 0

 (2.62)

with r ψ ψ( ) | ( ) ( ) |t t t0 0 0= >< . In comparison to the Hilbert space where wavefunc-
tion is a linear vector, the corresponding vector in Liouville space is density operator. 
One can prove that the density operator defined above obeys the following differen-
tial equation:

 

∂
∂

= -
t

t
i

H t tr r( ) [ ˆ ( ), ( )],
�  

(2.63)

which is the quantum Liouville equation. Equation 2.63 can be obtained by using 
Equations 2.35 and 2.38 and taking the first derivative of Equation 2.62, that is,

 

∂
∂

= ∂
∂







∂
∂





+

t
t

t
t

t
tr r r( ) ( ) ) .(   0 0

 
(2.64)

We now search for a simple diagrammatic representation of the time evolution 
operator in the Liouville space. In the case of the time evolution of a wavefunction in 
a Hilbert space, a single arrow  was enough, since the time evolution of either ket 
or bra vector is all we need. On the other hand, since the density operator is a product 
of ket and bra vectors, one should take into consideration of time evolutions of ket 
and bra sides altogether. Therefore, we introduce another type of arrow representing 
the time evolution of the density operator as

 
r r( ) ( ).t t= 0

 (2.65)

Introducing the Liouville operator, L, defined as

 L t A t H t A t( ) ˆ( ) [ ˆ ( ), ˆ ( )],=  (2.66)
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the quantum Liouville equation in 2.63 can be rewritten as

 

∂
∂

= -
t

t
i

L t tr r( ) ( ) ( ).
�  

(2.67)

Then, one can find that the time evolution operator in the Liouville space is given as

 
V t t

i
d L

t

t

( , ) exp ( ) ,0
0

= -




+ ∫� τ τ

 

(2.68)

which corresponds to , that is,

 
V t t( , )0 = . (2.69)

The Hermitian conjugate ofV t t( , )0 is then

 
V t t

i
d L

t

t
†( , ) exp ( )0

0

=




- ∫� τ τ

 
(2.70)

so that we have

 
V t t†( , )0 = . 

(2.71)

Now, from the definition of the expectation value in Equation 2.41 and using the 
completeness condition in Equation 2.3, we can rewrite the expectation value as

 

A t t t n

A t n

m n

mn

mn

m A t( ) ( ) ( ) | | )

( )

,

| | ( .= < <

= <

∑ > >ψ ψ0 0 

|| | ) ( )

( ) ( )

[ ˆ

( | |
,

,

 ψ ψ

r

t mt

A t t

Tr

m n

mn nm

m n

0 0><

=

=

∑

∑

>

AA t t

A t t

( ) ( )]

ˆ( ) ( ) .

r

r= < >
 (2.72)

Here, the angle bracket < >Ô without bra-ket notation means taking the trace of Ô in 
matrix representation. Using the diagrammatic technique, the expectation value can 
be simply represented as

 
A t A t t( ) ˆ( ) ) .(= < >r 0

 (2.73)
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22 Two-Dimensional Optical Spectroscopy

2.6  Time-DepeNDeNT perTurbaTioN 
THeory iN liouville SpaCe

When the total Hamiltonian is divided into the zero-order reference Hamiltonian 
and the perturbation Hamiltonian as Equation 2.21, the Liouville operator can also 
be written as

 L t L t L t( ) ( ) ( ).= + ′0  (2.74)

Then, in the interaction representation, the time evolution operator in the Liouville 
space is found to be

 V t t V t t V t tI( , ) ( , ) ( , )0 0 0 0=  (2.75)

where

 
V t t

i
d L

t

t

0 0 0
0

( , ) exp ( )= -




+ ∫� τ τ

 
(2.76)

 
V t t

i
d LI

t

t

I( , ) exp ( ) .0
0

= - ′




+ ∫� τ τ

 
(2.77)

Here, the time-dependent operator ′L tI ( ) in the interaction representation is defined 
as

 
′ = ′L t V t t L t V t tI ( ) ( , ) ( ) ( , ).†

0 0 0 0  (2.78)

Following the same procedure used to derive the time-ordered expansion expres-
sion forU t t( , )0 with respect to ′H t( ) , one can expand the Liouville space time- 
evolution operatorV t t( , )0 as

 
V t t V t t

i
d V t L

t

t

( , ) ( , ) ( , ) ( )0 0 0 1 0 1 1
0

= + -



 ′∫�

τ τ τ VV t0 1 0( , )τ

 
+ -



 ′∫∫i

d d V t L V
tt

t

�

2

2 1 0 2 2 0 2
0

2

0

τ τ τ τ τ τ
τ

( , ) ( ) ( , 11 1 0 1 0) ( ) ( , )′ +L V tτ τ �

 

=
=

∞

∑V t tn

n

( , ),0

0  

(2.79)
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where the nth-order perturbation expansion term,V t tn( , )0 , is defined as

 
V t t

i
d d d Vn

n

n n
tt

t

t

n

( , )0 1 1 0
00 0

2

≡ -



 -∫∫ ∫�

�τ τ τ
τ τ

(( , ) ( ) ( , )t L Vn n n nτ τ τ τ′ ×-0 1 �

 
× ′V L V t0 2 1 1 0 1 0( , ) ( ) ( , ).τ τ τ τ

 (2.80)

Similarly, the backward time evolution operator in the interaction picture can be 
written as

 

V t t V t t V t t V t tI n

n

† † † †( , ) ( , ) ( , ) ( , )0 0 0 0 0

0

= =
=

∞

∑
 

(2.81)

where

 
V t t

i
d d d Vn

n

n n
tt

t

t

n
†( , )0 1 1 0

00 0

2

≡ 



 -∫∫ ∫�

�τ τ τ
τ τ

†† †( , ) ( ) ( , )τ τ τ τ1 0 1 0 2 1t L V′ ×�

 
× ′-V L V tn n n n0 1 0

† †( , ) ( ) ( , ).τ τ τ τ
 (2.82)

The time evolution operators in the Liouville space are directly analogous 
to those in the Hilbert space, except that the vector in the Liouville space is 
the density operator instead of wavefunction. Since the time evolution operator, 
which is a commutator instead of a normal linear operator, describes propagation 
of both ket and bra vectors in time, the corresponding diagrams in the Liouville 
space should be different from those in the Hilbert space. The first few terms in 
the perturbation expansion of V t t( , )0 in Equation 2.79 are now graphically rep-
resented as

  =  +  +  +  + …. (2.83)

The Hermitian conjugate ofV t t( , )0 is then

  =  +  +  +  + …. (2.84)

Although the corresponding diagram in the Hilbert space (see Equation 2.34) is 
identical to a single integral expression, that in the Liouville space is given as a 
sum of 2n distinctively different terms for the nth-order perturbation expansion 
term.
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