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Preface

The field of handling chemical information electronically—known as Chemoinfor-
matics or Cheminformatics—has received a boost in recent decades, in line with the
advent of tremendous computer power. Originating in the 1960s in both academic and
industrial settings (and termed by its current name only from around 1998), chemoin-
formatics applications are today commonplace in every pharmaceutical company.
Also, various academic laboratories in Europe, the United States, and Asia confer
both undergraduate and graduate degrees in the field.

But still, there is a long way to go.While resembling its sibling, bioinformatics, both
by name and also (partially) algorithmically, the chemoinformatics field developed
in a very different manner right from the onset. While large amounts of biological
information—sequence information, structural information, and more recently also
phenotypic information such as metabolomics data—found their way straight into the
public domain, large-scale chemical information was until very recently the domain
of private companies. Hence, public tools to handle chemical structures were scarce
for a very long time, while essential bioinformatics tools such as those for aligning
sequences or viewing protein structures were available at no cost to anyone interested
in the area. More recently—luckily—this situation changed significantly, with major
life science data providers such as the NCBI, the EBI, and many others also making
large-scale chemical data publicly available.

However, there is another aspect, apart from the actual data, that is crucial for
a scientific field to flourish—and that is the proper documentation of techniques
and methods, and, in the case of informatics sciences, the proper documentation
of algorithms. In the bioinformatics field, and in line with a tremendous amount
of open access data and tools available, algorithms were documented extensively
in reference books. In the chemoinformatics field, however, a book of this type is
missing until now. This is what the editors, with the help of expert contributors in the
field, are attempting to remedy—to provide an overview of some of the most common
chemoinformatics algorithms in a single place.

The book is divided into 15 chapters. Chapter 1 presents a historical perspective of
the applications of algorithms and graph theory to chemical problems. Algorithms to
store and retrieve two-dimensional chemical structures are presented in Chapter 2, and
three-dimensional representations of chemicals are discussed in Chapter 3. Molecular
descriptors, which are widely used in virtual screening and structure–activity/property
predictions, are presented in Chapter 4. Chapter 5 presents virtual screening methods
from a ligand perspective and from a structure perspective including docking meth-
ods. Chapters 6 and 7 are dedicated to quantitative structure–activity relationships
(QSAR). QSAR modeling workflow and methods to prepare the data are presented
in Chapter 6, while the development and validation of QSAR models are discussed
in Chapter 7. Chapter 8 introduces algorithms to enumerate and sample chemical
structures, with applications in combinatorial libraries design. Chapters 9 and 10 are

vii



viii Preface

dedicated to computer-aided molecular design: from a ligand perspective in Chap-
ter 9, where inverse-QSAR methods are reviewed, and from a structure perspective
in Chapter 10, where de novo design algorithms are presented. Chapter 11 covers
reaction network generation, with applications in synthesis design and biological net-
work inference. Closing the strictly chemoinformatics chapters, Chapter 12 provides a
review of Open Source software and database technologies dedicated to the field. The
remaining chapters (13–15) present techniques developed in the context of bioin-
formatics and computational biology and their potential applications to chemical
problems. Chapter 13 discusses possible applications of sequence alignment algo-
rithms to tree-like structures such as glycans. Chapter 14 presents classical machine
learning algorithms that can be used for both bioinformatics and chemoinformatics
problems. Chapter 15 introduces a systems biology approach to study the kinetics of
metabolic networks.

While our book covers many aspects of chemoinformatics, our attempt is
ambitious—and it is probably impossible to provide a complete overview of “all”
chemoinformatics algorithms in one place. Hence, in this work we present a selection
of algorithms from the areas the editors deemed most relevant in practice and hope
that this work will be helpful as a reference work for people working in the field.

MATLAB® and Simulink® are registered trademarks of The Math Works, Inc. For
product information, please contact:

The Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098, USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Jean-Loup Faulon, Paris, France
Andreas Bender, Leiden, the Netherlands
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2 Handbook of Chemoinformatics Algorithms

1.1 INTRODUCTION

Graphs are used as an efficient abstraction and approximation for diverse chemical
systems, such as chemical compounds, ensembles of molecules, molecular fragments,
polymers, chemical reactions, reaction mechanisms, and isomerization pathways.
Obviously, the complexity of chemical systems is significantly reduced whenever
they are modeled as graphs. For example, when a chemical compound is represented
as a molecular graph, the geometry information is neglected, and only the atom con-
nectivity information is retained. In order to be valuable, the graph representation of
a chemical system must retain all important features of the investigated system and
has to offer qualitative or quantitative conclusions in agreement with those provided
by more sophisticated methods. All chemical systems that are successfully modeled
as graphs have a common characteristic, namely they are composed of elements that
interact between them, and these interactions are instrumental in explaining a property
of interest of that chemical system. The elements in a system are represented as graph
vertices, and the interactions between these elements are represented as graph edges.
In a chemical graph, vertices may represent various elements of a chemical system,
such as atomic or molecular orbitals, electrons, atoms, groups of atoms, molecules,
and isomers. The interaction between these elements, which are represented as graph
edges, may be chemical bonds, nonbonded interactions, reaction steps, formal con-
nections between groups of atoms, or formal transformations of functional groups.
The chapter continues with an overview of elements of graph theory that are impor-
tant in chemoinformatics and in depicting two-dimensional (2D) chemical structures.
Section 1.3 presents the most important types of chemical and molecular graphs,
and Section 1.4 reviews the representation of molecules containing heteroatoms and
multiple bonds with weighted graphs and molecular matrices.

1.2 ELEMENTS OF GRAPHTHEORY

This section presents the basic definitions, notations, and examples of graph theory
relevant to chemoinformatics. Graph theory applications in physics, electronics,
chemistry, biology, medicinal chemistry, economics, or information sciences are
mainly the effect of the seminal book Graph Theory of Harary [1]. Several other books
represent essential readings for an in-depth overview of the theoretical basis of graph
theory: Graphs and Hypergraphs by Berge [2]; Graphs and Digraphs by Behzad,
Chartrand, and Lesniak-Foster [3]; Distance in Graphs by Buckley and Harary [4];
Graph Theory Applications by Foulds [5]; Introduction to Graph Theory by West [6];
Graph Theory by Diestel [7]; and Topics in Algebraic Graph Theory by Beineke and
Wilson [8]. The spectral theory of graphs investigates the properties of the spectra
(eigenvalues) of graph matrices, and has applications in complex networks, spectral
embedding of multivariate data, graph drawing, calculation of topological indices,
topological quantum chemistry, and aromaticity. The major textbook in the spectral
theory of graphs is Spectra of Graphs. Theory and Applications by Cvetković, Doob,
and Sachs [9].An influential book on graph spectra applications in the quantum chem-
istry of conjugated systems and aromaticity is Topological Approach to the Chemistry
of Conjugated Molecules by Graovac, Gutman, and Trinajstić [10]. Advanced topics
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of topological aromaticity are treated in Kekulé Structures in Benzenoid Hydrocarbons
by Cyvin and Gutman [11]; Introduction to the Theory of Benzenoid Hydrocarbons
by Gutman and Cyvin [12]; Advances in the Theory of Benzenoid Hydrocarbons by
Gutman and Cyvin [13]; Theory of Coronoid Hydrocarbons by Cyvin, Brunvoll, and
Cyvin [14]; and Molecular Orbital Calculations Using Chemical Graph Theory by
Dias [15]. The graph theoretical foundation for the enumeration of chemical isomers
is presented in several books: Graphical Enumeration by Harary and Palmer [16];
Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds by Pólya
and Read [17]; and Symmetry and Combinatorial Enumeration in Chemistry by Fujita
[18].A comprehensive history of graph theory can be found in the book Graph Theory
1736–1936 by Biggs, Lloyd, and Wilson [19].

The first edited book on chemical graphs is Chemical Applications of Graph Theory
by Balaban [20]. Several comprehensive textbooks on chemical graphs are available,
such as Chemical Graph Theory by Trinajstić [21], Mathematical Concepts in Organic
Chemistry by Gutman and Polansky [22], and Handbook of Chemoinformatics by
Gasteiger [23]. Applications of topological indices in quantitative structure–activity
relationships (QSAR) are presented in Molecular Connectivity in Chemistry and Drug
Research by Kier and Hall [24], Molecular Connectivity in Structure–Activity Analysis
by Kier and Hall [25], Molecular Structure Description. The Electrotopological State
by Kier and Hall [26], Information Theoretic Indices for Characterization of Chemical
Structure by Bonchev [27], and Topological Indices and Related Descriptors in QSAR
and QSPR by Devillers and Balaban [28]. A comprehensive text on reaction graphs is
Chemical Reaction Networks. A Graph-Theoretical Approach by Temkin, Zeigarnik,
and Bonchev [29], and a graph-theoretical approach to organic reactions is detailed in
Synthon Model of Organic Chemistry and Synthesis Design by Koča et al. [30]. Graph
algorithms for drug design are presented in Logical and Combinatorial Algorithms
for Drug Design by Golender and Rozenblit [31]. Graph theory concepts relevant to
chemoinformatics are introduced in this section, together with examples of graphs
and graph matrices.

1.2.1 GRAPHS

A graph G(V , E) is an ordered pair consisting of a vertex set V(G) and an edge set
E(G). Each element {i, j} ∈ E (where i, j ∈ V) is said to be an edge joining vertices
i and j. Because each edge is defined by an unordered pair of vertices from V , the
edge from vertex i to vertex j is identical with the edge from vertex j to vertex I ,
{i, j} = { j, i}. The number of vertices N defines the order of the graph and is equal to
the number of elements in V(G), N = |V(G)|, and the number of edges M is equal to
the number of elements in E(G), M = |E(G)|. Several examples of graphs relevant
to chemistry are shown in Graphs 1.1 through 1.5.

Vertices and edges in a graph may be labeled. A vertex with the label i is indicated
here as vi.An edge may be denoted by indicating the two vertices that define that edge.
For example, the edge connecting vertices vi and vj may be denoted by eij, ei,j, {i, j},
or vivj. Usually, graph vertices are labeled from 1 to N , V(G) = {v1, v2, . . . , vN }, and
graph edges are labeled from 1 to M, E(G) = {e1, e2, . . . , eM}. There is no special rule
in labeling graphs, and a graph with N vertices may be labeled in N! different ways.
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1.1 1.2 1.3

1.4 1.5

A graph invariant is a number, sequence of numbers, or matrix computed from the
graph topology (information contained in the V and E sets) that is not dependent on the
graph labeling (the graph invariant has the same value for all N! different labelings of
the graph). Two obvious graph invariants are the number of vertices N and the number
of edges M. Other invariants of molecular graphs are topological indices, which are
used as structural descriptors in quantitative structure–property relationships (QSPR),
QSAR, and virtual screening of chemical libraries (cf. Chapters 4 and 5).

Graphs that have no more than one edge joining any pair of vertices are also called
simple graphs. A multigraph is a graph in which two vertices may be connected by
more than one edge. A multiedge of multiplicity m is a set of m edges that connects
the same pair of distinct vertices. A loop eii ∈ E is an edge joining a vertex vi with
itself. A loopgraph is a graph containing one or more vertices with loops.

Simple graphs cannot capture the complexity of real life systems, such as electrical
circuits, transportation networks, production planning, kinetic networks, metabolic
networks, or chemical structures. In such cases it is convenient to attach weights to
vertices or loops, weights that may represent current intensity, voltage, distance, time,
material flux, reaction rate, bond type, or atom type. A graph G(V , E, w) is a weighted
graph if there exists a function w : E→ R (where R is the set of real numbers), which
assigns a real number, called weight, to each edge of E. Graph 1.6 has all edge weights
equal to 2, whereas in Graph 1.7 the edge weights alternate between 1 and 2. In the
loopgraph 1.8 all edges have the weight 1 and the loop has the weight 2. Alkanes
and cycloalkanes are represented as molecular graphs with all edges having a weight
equal to 1, whereas chemical compounds containing heteroatoms or multiple bonds
are represented as vertex- or edge-weighted molecular graphs. Section 1.4 reviews in
detail the representation of chemical compounds with weighted graphs.
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In many graph models, such as those of kinetic, metabolic, or electrical networks,
it is useful to give each edge a direction or orientation. The graphs used to model
such oriented systems are termed directed graphs or digraphs. A graph D(V , A) is an
ordered pair consisting of two sets V(D) and A(D), where the vertex set V is finite
and nonempty and the arc set A is a set of ordered pairs of distinct elements from V .
Graphs 1.9 through 1.12 are several examples of digraphs.A comprehensive overview
of reaction graphs is presented by Balaban [32], and graph models for networks of
chemical reactions are reviewed by Temkin et al. [29].

1.9 1.10 1.11 1.12

1.2.2 ADJACENCY, WALKS, PATHS, AND DISTANCES

Two vertices vi and vj of a graph G are adjacent (or neighbors) if there is an edge eij

joining them. The two adjacent vertices vi and vj are said to be incident to the edge
eij. The neighborhood of a vertex vi is represented by the set of all vertices adjacent
to vi. Two distinct edges of G are adjacent if they have a vertex in common.

The degree of a vertex vi, denoted by degi, is equal to the number of vertices
adjacent to vertex vi. The set of degree values for all vertices in a graph gives
the vector Deg(G) whose ith element represents the degree of the vertex vi. In a
weighted graph G(V , E, w), the valency of a vertex vi, val(w, G)i, is defined as
the sum of the weights of all edges eij incident with vertex vi [33,34]. The set of
valencies for all vertices in a graph forms the vector Val(w, G) whose ith element
represents the valency of the vertex vi. From the definition of degree and valency
it is obvious that in simple, nonweighted graphs, the degree of a vertex vi, degi,
is identical to the valency of that vertex, vali. Consider the simple labeled graph
1.13. A simple count of the neighbors for each vertex in 1.13 gives the degree vec-
tor Deg(1.13) = {2, 2, 3, 2, 2, 3, 2}. The second example considers a weighted graph
with the labeling given in Graph 1.14 and with the edge weights indicated in 1.15.
The degree vector of 1.14 is Deg(1.14) = {2, 3, 2, 3, 2, 2, 3, 2, 3, 2}, and the valency
vector is Val(1.14) = {1.5, 4, 3, 4, 1.5, 1.5, 4, 3, 4, 1.5}. Both degree and valency are
graph invariants, because their numerical values are independent of the graph
labeling.
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A walk W in a graph G is a sequence of vertices and edges W(G) = {va, eab, vb,
ebc, vc, ecd , vd , ede, ve, . . . , vi, eij, vj, . . . , vm, emn, vn} beginning and ending with ver-
tices, in which two consecutive vertices vi and vj are adjacent, and each edge eij is
incident with the two vertices vi and vj preceding and following it, respectively. A
walk may also be defined as a sequence of vertices W(G) = {va, vb, . . . , vn} in which
two consecutive vertices vi and vi+1 are adjacent. Similarly, a walk may be defined
as a sequence of edges W(G) = {eab, ebc, . . . , emn} in which two consecutive edges
eij and ejk are adjacent. In a walk any edge of the graph may appear more than once.
The length of a walk is equal to the total number of edges that define the walk. A walk
in which the initial and the terminal vertices coincide is called a closed walk. A walk
in which the initial and the terminal vertices are different is called an open walk. A
trail is a walk in which no edge is repeated. A certain vertex may appear more than
once in a trail, if the trail intersects itself. A path P is a walk in which all vertices (and
thus necessarily all edges) are distinct. The length of a path in a graph is equal to the
number of edges along the path.

A graph cycle or circuit is a closed walk in which all vertices are distinct,
with the exception of the initial and terminal vertices that coincide. In Graph 1.16
there are three cycles: C1(1.16) = {v1, v2, v5, v1}, with length three; C2(1.16) =
{v1, v2, v3, v4, v5, v1}, with length five; and C3(1.16) = {v2, v3, v4, v5, v2}, with length
four. In Graph 1.17 there are three cycles of length five: C1(1.17) = {v1, v2, v5, v6,
v3, v1}, C2(1.17) = {v2, v4, v7, v8, v5, v2}, and C3(1.17) = {v7, v9, v11, v10, v8, v7}.

1 
2 
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5

1.16

10

9

5
11

8

7

6

4

3

2 1

1.17

12
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4
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5

1.18

The cyclomatic number μ represents the number of cycles in the graph, μ = M −
N + 1. For Graph 1.16 we have μ(1.16) = 6− 5+ 1 = 2, for Graph 1.17 we have
μ(1.17) = 13− 11+ 1 = 3, and for Graph 1.18 we have μ(1.18) = 6− 6+ 1 = 1.

In a simple (nonweighted) connected graph, the graph distance dij between a pair
of vertices vi and vj is equal to the length of the shortest path connecting the two
vertices (i.e., the number of edges of the shortest path). The distance between two
adjacent vertices is 1. The graph distance satisfies the properties of a metric:

a. The distance from a vertex vi to itself is zero:

dii = 0, for all vi ∈ V(G). (1.1)

b. The distance between two distinct vertices vi and vj is larger than 0:

dij > 0, for all vi, vj ∈ V(G). (1.2)
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c. The distance between two distinct vertices vi and vj is equal to the distance
on the inverse path, from vj and vi:

dij = dji, for all vi, vj ∈ V(G). (1.3)

d. The graph distance satisfies the triangle inequality:

dik + dkj ≥ dij, for all vi, vj, vk ∈ V(G). (1.4)

The eccentricity ecc(vi) of a vertex vi is the maximum distance from the vertex vi

to any other vertex vj in graph G, that is, max [35] for all vj ∈ V(G). The diameter
diam(G) of a graph G is the maximum eccentricity. If the graph G has cycles, then
the girth of G is the length of a shortest cycle, and the circumference is the length of
a longest cycle.

A graph G may be transformed into a series of subgraphs of G by deleting one or
more of its vertices, or by deleting one or more of its edges. If V(G′) is a subset of V(G),
V(G′) ⊆ V(G), and E(G

′
) is a subset of E(G), E(G′) ⊆ E(G), then the subgraph

G′ = (V(G′), E(G′)) is a subgraph of the graph G = (V(G), E(G)). A subgraph
G− vi is obtained by deleting from G the vertex vi and all its incident edges. A
subgraph G− eij is obtained by deleting from G the edge eij. Graph 1.19 has four
subgraphs of the type G− vi, 1.20 through 1.23, which are obtained by deleting, in
turn, one vertex and all its incident edges from Graph 1.19.
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2 1
1.19

2

3 4

1.20
1

3 4

1.21
12

4

1.22
12

3

1.23

1.2.3 SPECIAL GRAPHS

A tree, or an acyclic graph, is a connected graph that has no cycles (the cyclomatic
numberμ = 0).Alternative definitions for a tree are the following: a tree is a connected
graph with N vertices and N−1 edges; a tree is a graph with no cycles, N vertices, and
N−1 edges. A graph that contains as components only trees is a forest. A k-tree is a
tree with the maximum degree k. Alkanes are usually represented as 4-trees. A rooted
tree is a tree in which one vertex (the root vertex) is distinct from the other ones.

A graph with the property that every vertex has the same degree is called a reg-
ular graph. A graph G is called a k-regular graph or a regular graph of degree k
if every vertex from G has the degree k. A ring RN with N vertices is a 2-regular
graph with N vertices, that is, a graph with all vertices of degree 2. The cycloalkanes
cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooc-
tane are examples of 2-regular graphs. The 3-regular graphs, or cubic graphs, 1.24
through 1.27, represent as molecular graphs the polycyclic hydrocarbons triprismane,
tetraprismane (cubane), pentaprismane, and hexaprismane, respectively. Fullerenes
are also represented as cubic graphs.
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1.24 1.25 1.26 1.27

1.2.4 GRAPH MATRICES

A graph is completely determined by indicating its adjacency relationships or its inci-
dence relationships. However, the algebraic properties of graphs are easier studied
by representing a graph as a matrix, such as adjacency matrix, incidence matrix,
cycle matrix, path matrix, Laplacian matrix, distance matrix, and detour matrix.
Graph matrices of chemical systems are used to investigate the spectral properties
of molecular graphs [9], to apply the Hückel molecular orbitals method to conjugated
molecules [10], to compute various topological indices for QSAR models [36,37],
and to study the topology of biological networks [38]. In presenting graph matrices
we consider only labeled, connected, simple graphs.

1.2.4.1 Adjacency Matrix

The adjacency matrix A(G) of a vertex labeled graph G with N vertices is a square
N × N symmetric matrix in which [A]ij = 1 if vertex vi is adjacent to vertex vj and
[A]ij = 0 otherwise. The adjacency matrix is symmetric, with all elements on the
main diagonal equal to zero. The sum of entries over row i or column i in A(G) is the
degree of vertex vi, degi. As an example we consider Graph 1.28 labeled from 1 to 8
and its adjacency matrix A(1.28).

8
7

65

4
3

2
1

1.28

1 2 3 4 5 6 7 8

A(1.28) =

1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 0 1 0 1 0 0 1 0
4 0 0 1 0 1 0 1 1
5 0 0 0 1 0 1 0 0
6 0 0 0 0 1 0 1 0
7 0 0 1 1 0 1 0 0
8 0 0 0 1 0 0 0 0
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From the definition of the adjacency matrix, it follows that if [A]ij = 1 then there
is a walk of length one between vertices vi and vj. Higher powers of the adjacency
matrix can be used to count the number of closed or open walks of a certain length
between two vertices. The element [Ak]ij of the kth power of the adjacency matrix
A is the number of walks of length k between vertices vi and vj [1]. If i = j then
the element [Ak]ii is the number of closed walks of length k that start and end at
the same vertex vi. Similarly, when i �= j, the element [Ak]ij is the number of open
walks of length k starting from vertex vi and ending at vertex vj. Because the kth
power of the adjacency matrix is symmetric, it follows that the number of walks of
length k from vi to vj is equal to the number of walks of length k from vj to vi, that
is, [Ak]ij = [Ak]ji. Ak matrices can also be used to determine the distances between
vertices in simple graphs. If in a sequence of Ak matrices all elements [Ak−1]ij = 0
and [Ak]ij �= 0, it follows that the distance between vertices vi and vj is k (the two
vertices are separated by k edges).A general procedure for computing graph distances,
which can be applied to general graphs, is presented in the section on the distance
matrix.

Randić suggested the use of the closed walk counts of different lengths origi-
nating from a vertex to describe the environment of that vertex [39]. He defined
the closed walk atomic code of the vertex vi, CWACi, as the sequence {[A1]ii,
[A2]ii, . . . , [Ak]ii, . . . , [AN ]ii}. The count of closed walks is also related to the graph
spectrum and spectral moments. The complete set of graph eigenvalues x1, x2, . . . , xN

of the adjacency matrix A(G) forms the spectrum of a graph G, Sp(A,G) = {xi,
i = 1, 2, . . . , N}. The kth spectral moment of A(G), SM(A, G)k , is defined as the
sum of the kth power of Sp(A, G). Finally, the sum of the diagonal elements of Ak

(the trace of the kth power of the adjacency matrix which is equal to the count of
closed walks of length k) equals SM(A, G)k . Spectral moments represent a powerful
theoretical tool in correlating structural features with various properties of chemical
systems. Burdett used spectral moments to estimate the electronic properties of solids
[40,41]. Spectral moments of conjugated compounds are correlated with the presence
of certain subgraphs [42–44], thus making possible the calculation of the resonance
energy per electron (REPE) from subgraph contributions [42].A similar approach was
proposed by Schmalz, Živković, and Klein for the decomposition of the π-electron
energy of conjugated acyclic hydrocarbons in terms of various substructures [45].

1.2.4.2 Laplacian Matrix

Consider a simple graph G with N vertices and M edges, and its adjacency matrix
A(G). We define the diagonal matrix DEG(G) with the diagonal elements [DEG]ii =
degi (the degree of vertex vi) and with the nondiagonal elements [DEG]ij = 0, i �= j.
The Laplacian matrix of the simple graph G, L(G), is the difference between DEG
and A [46–48]:

L(G) = DEG(G)−A(G). (1.5)

The most significant chemoinformatics applications of the Laplacian matrix are in
computing topological indices [48,49], defining the resistance distance matrix [50],
and interpolating QSAR models based on molecular networks [51–54].
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1.2.4.3 Distance Matrix

The distance matrix D(G) of a simple graph G with N vertices is a square N × N
symmetric matrix in which [D]ij = dij, where dij is the distance between vertices vi

and vj, that is, the length of the shortest path that connects vertices vi and vj [1,4].
The distance matrix is symmetric, with all elements on the main diagonal equal to
zero. Applications of the distance matrix to chemical graphs may be found in several
reviews [37,55]. As an example we consider Graph 1.29 labeled from 1 to 9 and its
distance matrix D(1.29).

9

1

2

3

4 5 6

7

8

1.29

1 2 3 4 5 6 7 8 9

D(1.29) =

1 0 1 2 3 3 4 4 3 2
2 1 0 1 2 2 3 3 2 1
3 2 1 0 1 2 3 4 3 2
4 3 2 1 0 1 2 3 3 2
5 3 2 2 1 0 1 2 2 1
6 4 3 3 2 1 0 1 2 2
7 4 3 4 3 2 1 0 1 2
8 3 2 3 3 2 2 1 0 1
9 2 1 2 2 1 2 2 1 0

In a simple graph, the distances between one vertex and all other vertices may
be computed with the algorithm proposed by Dijkstra [35], which may also be
applied to graphs with non-negative edge weights. Unlike the Dijkstra algorithm,
the Floyd–Warshall algorithm [56,57] may be applied to graphs that have some edges
with negative weights, as long as all cycle weights are non-negative.

ALGORITHM 1.1 FLOYD–WARSHALL

01. Consider the labeled, weighted graph G with N
vertices, M edges, the vertex set V(G), the edge
set E(G), and with a weight wij for each edge eij ∈ E(G).

02. Define the cost matrix 1Co = 1Co(G) of the
labeled graph G as the square N× N symmetric matrix
in which [1Co]ii = 0, [1Co]ij = wij if
eij ∈ E(G), and [1Co]ij = ∞ otherwise.

03. For each k ∈ {1,2, . . . ,N} do
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04. For each i ∈ {1,2, . . . ,N} do
05. For each j ∈ {1,2, . . . ,N} do
06. Update the cost matrix kCo:

[Co]ij = min{[k−1Co]ij, [k−1Co]ik + [k−1Co]kj}
07. End do
08. D = NCo

Step 06 in the Floyd–Warshall algorithm is based on the triangle inequality men-
tioned in Equation 1.4. If a graph contains cycles with negative weights, then the cost
matrix Co has some negative numbers on the main diagonal. If Coii < 0, then the ver-
tex vi belongs to at least one cycle with negative weight. The distance matrix is used
to compute many important topological indices, such as Wiener index W [58], Bala-
ban index J [59,60], Kier–Hall electrotopological indices [26,61], information theory
indices [62], and molecular path code indices [63]. The distance matrix is the source
of several molecular matrices [37,64], namely the reciprocal distance matrix [65],
the distance-valency matrix [33], the distance complement matrix [66], the reverse
Wiener matrix [67], the distance-path matrix [68,69], and the Szeged matrix [70,71].
These distance-related molecular matrices are used to compute topological indices
and related graph descriptors for QSPR and QSAR.

1.3 CHEMICAL AND MOLECULAR GRAPHS

Chemical compounds are usually represented as molecular graphs, that is, nondi-
rected, connected graphs in which vertices correspond to atoms and edges represent
covalent bonds between atoms. The molecular graph model of the chemical structure
emphasizes the chemical bonding pattern of atoms, whereas the molecular geometry
is neglected. Among other applications, molecular graphs are used in chemoinformat-
ics systems, chemical databases, design of combinatorial libraries, reaction databases,
computer-assisted structure elucidation, molecular design of novel chemicals, and
computer-assisted organic synthesis. Molecular graphs are the basis for computing
the structural descriptors used in QSPR and QSAR models to predict physical, chem-
ical, biological, or toxicological properties. The molecular graph representation of
chemical structure reflects mainly the connectivity of the atoms and is less suitable
for modeling those properties that are determined mostly by molecular geometry,
conformation, or stereochemistry.

1.3.1 MOLECULAR GRAPHS

A chemical structure may be represented by a large number of different molecular
graphs, depending on the translation rules for depicting atoms and chemical bonds.
The translation rules, that is, “atom→ vertex” and “bond→ edge,” should preserve
the features of the molecular structure that are relevant for the scope of the modeling,
for example, database search, reaction representation, molecular design, or property
prediction. Cayley introduced the concept of molecular graphs in 1874, as “plero-
grams” and “kenograms,” in which graph edges correspond to covalent bonds [72]. In
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a plerogram all atoms (including hydrogen atoms) are represented as vertices, whereas
in a kenogram only non-hydrogen atoms are represented, because the hydrogen atoms
can be reconstructed from the skeleton of a molecule. In modern terminology a plero-
gram is a hydrogen-included molecular graph, and a kenogram is a hydrogen-excluded
molecular graph (called also hydrogen-depleted or hydrogen-suppressed molecular
graph).

Using different rules for converting a chemical structure into a molecular graph,
methylcyclopropane can be represented by Graphs 1.30, 1.31, and 1.32. Graph 1.30 is
a hydrogen-included molecular graph with labeled vertices, Graph 1.31 is a hydrogen-
included molecular graph in which hydrogen and carbon atoms are not differentiated,
and Graph 1.32 is a hydrogen-excluded molecular graph.

C

C C

C

H

H

H

H

H

H

H H

1.30 1.31 1.32

The usual graph representation of an organic chemical compound is as a nondi-
rected, connected multigraph in which vertices correspond to non-hydrogen atoms
and edges represent covalent bonds between non-hydrogen atoms. For hydrocarbons,
the vertices in the molecular graph represent carbon atoms. Using this convention,
alkanes are represented as 4-trees, that is, acyclic graphs with the maximum degree 4.
Several studies compared structural descriptors (topological indices) computed from
hydrogen-included and hydrogen-excluded molecular graphs of alkanes, and found
that the topological indices are correlated [73,74]. These results support the prepon-
derant use of hydrogen-excluded molecular graphs. To accommodate the presence of
heteroatoms, a molecular graph has vertex labels corresponding to the atomic sym-
bol of the heteroatoms, as shown for 2-methyl-1-bromobutane 1.33 (molecular graph
1.34) and for ethyl tert-butyl ether 1.35 (molecular graph 1.36).

CH Br

CH3

CH3 CH2 CH2

1.33

Br

1.34

CH3

CH3

CH3CH3 CH2 CO

1.35

O
1.36
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Multiple bonds are represented as multiedges, as shown for 1,4-dibromo-2-butene
1.37 (molecular graph 1.38). Conjugated systems may be represented with the usual
pattern of alternating double and single bonds, or with two lines, one continuous and
the second broken, as shown for the aromatic system of benzyl chloride 1.39 (molecu-
lar graph 1.40). The differences between these two representations of conjugated sys-
tems are significant when computing topological indices that have special parameters
for aromatic bonds, and in chemical database registration, search, and retrieval.

CH2 CH CH CH2

Br Br

1.37
Br

Br

1.38

CH2Cl

1.39

Cl

1.40

1.3.2 MOLECULAR PSEUDOGRAPH

There are a multitude of molecular graph models, each one developed with a specific
set of rules, and fit for particular applications, such as structure elucidation, chemical
synthesis design, or structure–property relationships. Koča et al. defined a mathe-
matical model of organic synthesis design based on the graph theory formalism [30].
In this model, a chemical compound is represented by a molecular pseudograph (or
general graph, containing multiedges and loops) G(V , E, L, ϕ, υ), where V is a vertex
set, E is an edge set, L is a loop set, and ϕ is a mapping of the vertex set into the
vocabulary υ of vertex labels. A single bond is represented by an edge, a double bond
is represented by a multiedge of double multiplicity, and a triple bond is represented
by a multiedge of triple multiplicity. A pair of free, unshared valence electrons of an
atom is represented as a loop. Nitrogen is represented by a vertex with a loop, oxygen
is represented by a vertex with two loops, whereas a halogen atom is represented by a
vertex with three loops, as shown for 2-bromopropanoic acid 1.41 (molecular graph
1.42) and for morpholine 1.43 (molecular graph 1.44).

1.3.3 MOLECULAR GRAPH OF ATOMIC ORBITALS

Toropov introduced the molecular graph of atomic orbitals (GAO) as a source of
structural descriptors for QSPR and QSAR [75–77]. GAO is based on the hydrogen-
included molecular graphs, in which each atom is substituted by the corresponding set

CH3 CH

Br

COOH

1.41 1.42
NH

O

1.43 1.44
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of atomic orbitals: H, 1s1; C, 1s2, 2s2, 2p2; N, 1s2, 2s2, 2p3; O, 1s2, 2s2, 2p4; F, 1s2,
2s2, 2p5; S, 1s2, 2s2, 2p6, 3s2, 3p4; Cl, 1s2, 2s2, 2p6, 3s2, 3p5; Br, 1s2, 2s2, 2p6, 3s2,
3p6, 3d10, 4s2, 4p5. Using this convention, C is represented in GAO by three vertices,
Cl is represented by five vertices, and Br is represented by eight vertices. A covalent
bond between atoms i and j is represented in GAO by ni × nj edges between the ni

atomic orbitals of atom i and the nj atomic orbitals of atom j. As example we show the
GAO of fluorobenzene (Figure 1.1).Another example of atomic orbitals graphs are the
molecular graphs proposed by Pogliani, based on the hydrogen-excluded pseudograph
augmented with information regarding the inner-core electrons [78–82].

1.3.4 MARKUSH STRUCTURES

A major branch of chemoinformatics is represented by the development of efficient
algorithms for the computer storage and retrieval of generic chemical structures.
Using special topological representations, generic chemical structures encode into a
single chemical graph an entire family of structurally related compounds. Among the
different generic chemical structure representations, Markush structures have a special
place because of their use in representing generic structures in patents. In a 1925

1s2
4

2s2
5

1s2
19

2s2
20

2p5
21

1s2
16

2s2
17

2p2
18

1s2
13

1s1
26

1s1

2s2
14

2p2
15

1s2
10

1s1
24

2s2
11

2p2
12

1s2
1

2s2
2

2p2
3

2p2
6

2p2
9

2s2
8

1s2
7

1s1
2322

1s1

–

25

FIGURE 1.1 GAO of fluorobenzene.
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court case Eugene Markush put forward such structures, which were later accepted
in patent claims by the US Patent Office. Several approaches for the implementation
of Markush structures are in use [83]. Among them, the Chemical Abstracts Service
[84,85] and the Questel.Orbit [86] systems are more prominent. Markush structures
1.45 through 1.47 represent several examples of generic chemical structures.

(CH2)n OH

R1

1.45
S

N

O

R1

1.46

R1

N

1.47

The Sheffield University group led by Lynch [87,88] developed graph representa-
tions for generic chemical structures, together with the GENSAL language [89] that
is used to encode patent information into a computer-readable form [90]. The sys-
tem developed by Lynch is a comprehensive collection of algorithms and procedures
for the utilization of generic chemical structures: connection table representation
[91], generation of fragment descriptors [92–94], computer interpreter for GENSAL
[95,96], substructure search algorithm [97], reduced chemical graphs [98,99], algo-
rithm to find the extended set of smallest rings [100], chemical ring identification
[101], chemical graph search [102,103], and atom-level structure matching [104].

1.3.5 REDUCED GRAPH MODEL

A more abstract representation of chemical structures is achieved with reduced graphs,
in which each vertex represents a group of connected atoms, and an edge links two
such vertices if in the original molecule there is a bond between an atom within one
group and an atom in the second group [98,99]. A vertex in a reduced graph may
represent a ring system, aromatic rings, aliphatic rings, or functional groups. There
are several systems to transform a molecule into a reduced graph, by highlighting and
grouping together different substructures in a chemical compound. We demonstrate
here four types of reduced graphs that start from the same molecular graph and end
up with different simplified representations.

Type 1. Vertices in the reduced graph correspond to ring systems (R) and connected
acyclic components (Ac). The ring system R from compound 1.48 (shown inside a
circle) corresponds to the central vertex in the reduced graph 1.49.
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Ac

Ac

1.49
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Type 2. Vertices in the reduced graph correspond to connected carbon components
(C) and connected heteroatom components (H). Each heteroatom component in 1.50
is depicted inside an ellipse, and the corresponding reduced graph is shown in 1.51.
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O
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O

1.50
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H

H

H

C

C

C H

1.51

Type 3. Vertices in the reduced graph correspond to aromatic rings (Ar), aliphatic
rings (R), and functional groups (F). Each functional group from molecular graph
1.52 is depicted inside a circle, with the final reduced graph depicted in 1.53.
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F

R
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Type 4. Vertices in the reduced graph correspond to aromatic rings (Ar), functional
groups (F), and linking groups (L). Each functional group from molecular graph
1.54 is depicted inside a circle, and the linker group is shown inside an ellipse. The
corresponding reduced graph 1.55 has the same topology as reduced graph 1.53, but
with a different fragment type for the vertex between vertices labeled Ar and F.

When using a reduced graph to screen chemical libraries, different molecules
may generate the same reduced graph, thus clustering together chemicals that have
the same topological distribution of various types of subgraphs. The value of this
approach is given by the fact that chemicals with similar bioactivities are translated
into identical or highly similar reduced graphs. Several experiments show that reduced
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O

O

O

O

1.54

Ar

F

L

F

F

1.55

graphs may identify bioactive compounds that are missed with a fingerprint similarity
search [105–108]. As expected, across a large spectrum of bioactivities, there is no
definite advantage of using only reduced graphs, but these studies demonstrate the
complementary nature of reduced graph similarity compared to fingerprint similarity.

1.3.6 MOLECULE SUPERPOSITION GRAPHS

The molecular alignment of chemicals in a QSAR dataset is a characteristic of three-
dimensional (3D) QSAR models. Similarly, the topological information encoded
into the molecular graph may be used to obtain a 2D alignment of all molecules
in a QSAR dataset. Such a molecule superposition graph, which is obtained from
structurally related compounds by superposing the molecules according to a set of
rules, may be considered as a supermolecule with the property that any molecule in
the QSAR dataset is its subgraph. An early 2D alignment model is represented by
the DARC (description, acquisition, retrieval, correlation) system, which applies the
supermolecule approach by considering that molecules are composed of a common
skeleton and a variable collection of substituents [109–114]. The contribution of the
variable part of the structure to the overall property value of a molecule is determined
by regression analysis to predict various physical, chemical, and biological properties.

An example of a DARC supermolecule is demonstrated for the prediction of 13C
nuclear magnetic resonance (NMR) chemical shift in acyclic alkenes [113]. In Figure
1.2, the topo-stereochemical description of the environment of the α-sp2 resonating
carbon atom considers all sp3-hybridized carbon neighbors of types A, B, C, and
D situated at 1, 2, 3, and 4 bonds away from the resonating atom. The use of an
environment with a larger sphere of atoms does not add much information because
the influence on the chemical shift of atoms situated at a distance greater than four
bonds can be neglected. In a DARC supermolecule some sites collect a group of atoms
that have similar influence on the modeled property, such as site ΣC that collects all
carbon atoms situated three bonds away from C*, and site ΣD that collects all carbon
atoms situated four bonds away from C.

Simon developed the minimal topological difference (MTD) QSAR model by
superposing all molecules from the training set into a supermolecule [115]. Special
vertices and edges are then created to embed the substituents by maximizing the super-
position of their non-hydrogen atoms, and each molecule is embedded in a unique
way into the MTD supermolecule. The MTD map has three types of vertices, namely
with a positive contribution (increasing the bioactivity), with a negative contribution
(decreasing the bioactivity), and neutral (no influence on the bioactivity). The type
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FIGURE 1.2 DARC-type map for the topo-stereochemical environment of α-sp2 carbon
atoms. The 13C NMR chemical shift is predicted for the carbon atom labeled with *.

of each site in the MTD map is determined in an iterative process by embedding
the training molecules on the MTD supermolecule and by minimizing the regres-
sion error between the experimental and calculated bioactivity. Minailiuc and Diudea
extended the MTD supermolecule method by assigning vertex structural descriptors
to vertices from the MTD supermolecule that are occupied for a particular molecule
[116]. This QSAR model, called topological indices-minimal topological difference
(TI-MTD), is very versatile in modeling QSAR properties and can be extended to
other atomic properties, such as atomic charge or electronegativity. Recent studies
show that the MTD method may be improved by using partial least squares (PLS)
instead of multiple regression [117,118].

A similar supermolecule is generated in the molecular field topology analysis
(MFTA) model introduced by Palyulin et al. [119]. The atomic descriptors associated
with each vertex of the MFTA map are atomic charge, electronegativity, van der
Waals radius, and atomic contribution to lipophilicity. The contribution of each site
is determined with PLS.

1.3.7 REACTION GRAPHS

The utilization of reaction databases relies heavily on efficient software for storage
and retrieval of reactions and reaction substructure search. Although very useful in
suggesting individual reaction steps, reaction databases offer little help in devising
strategies for complex reactions. A major accomplishment of chemoinformatics is the
development of computer-assisted synthesis design systems and reaction prediction
systems (cf. Chapter 11).

The storage and retrieval of reactions in databases, the extraction of reactivity
knowledge, computer-assisted synthesis design, and reaction prediction systems are
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usually based on chemoinformatics tools that represent chemical reactions as a special
type of graph [120–122]. As an example we present here the imaginary transition
structure (ITS) model proposed by Fujita [120,123,124]. The ITS is a special type of
reaction graph that is obtained by superposing reagents and products, and in which
the bond rearrangement is indicated with special symbols. The reaction graph of an
ITS has three types of bonds: par-bonds, which are bonds that are not modified in
the reaction; out-bonds, representing bonds that are present only in reagents; and
in-bonds, which are bonds appearing only in products. The diagram of an ITS graph
contains distinctive symbols for each bond type: par-bonds are shown as solid lines;
out-bonds are depicted as solid lines with a double bar; and in-bonds are depicted
as solid lines with a circle. The ITS model is demonstrated here for nucleophilic
substitution, with reactants 1.56, ITS 1.57, and products 1.58.

C

HO

CH3 CH3

CH3

H

Cl

1.56

C CH3CH3

CH3

HO

H
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1.57
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HO

CH3 CH3

CH3

H

Cl

1.58

As can be seen from the above reaction, in which tert-butyl alcohol reacts with
hydrogen chloride to generate tert-butyl chloride, reaction mechanism details are
not encoded into ITS. The role of ITS is to describe only bond rearrangements that
transform reactants into products. The ITSs are not intended to represent reaction
mechanisms, but the definition of the ITS may be easily extended to encode them.

The ITS reaction graphs represent a comprehensive framework for the classifi-
cation and enumeration of organic reactions. The storage and retrieval of chemical
reactions are reduced to graph manipulations, and the identification of a reaction type
is equivalent to a subgraph search of an ITS database. A unique numerical represen-
tation (canonical code) of an ITS can be easily obtained [125,126] with a procedure
derived from the Morgan algorithm of canonical coding [127]. The canonical rep-
resentation of ITS graphs is an effective way of searching and comparing chemical
reactions and of identifying reaction types.

1.3.8 OTHER CHEMICAL GRAPHS

Many molecular graph models cannot handle systems with delocalized electrons, such
as diborane or organometallic complexes, and several special graph models were pro-
posed to encode these systems. Stein extended the bond and electron (BE) matrices
introduced by Dugundji and Ugi [128–130] with new bond types for delocalized
electrons [131]. Konstantinova and Skorobogatov proposed molecular hypergraphs
to depict delocalized systems [132]. Dietz developed a molecular representation for
computer-assisted synthesis design systems and for chemical database systems [133].
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This molecular representation encodes the constitution, configuration, and confor-
mation of a chemical compound. The constitution is represented as a multigraph
describing the unshared valence electrons and the bonding relationships in a molecule,
including valence electron sharing and electrostatic interactions. The chemical model
suggested by Bauerschmidt and Gasteiger defines a hierarchical organization of
molecular systems, starting from the electron system and ending with aggregates and
ensembles [134]. Multicenter bonds are described as a list of atoms, type (σ or π),
and number of electrons. This molecular representation is implemented in the reaction
prediction program elaboration of reactions for organic synthesis (EROS) [135].

Chemical graphs may also be used to model systems in which the interaction
between vertices represents hydrogen bonds, especially water, which consists of a
large number of locally stable structures with various arrangements of the constituent
water molecules. Each water cluster (H2O)n is represented by a graph in which ver-
tices are water molecules and bonds represent hydrogen bonds between two water
molecules.Although weaker than covalent bonds, hydrogen bonds can form long-lived
structures of water clusters for which the thermodynamic properties are determined
by the hydrogen bonding patterns. The number of possible configurations of a cluster
(H2O)n increases very rapidly with n, which makes the identification of all possible
local minima on the potential surface of a water cluster difficult [136–139].

1.4 WEIGHTED GRAPHS AND MOLECULAR MATRICES

Simple graphs lack the flexibility to represent complex chemical compounds, which
limits their application to alkanes and cycloalkanes, and many widely used topological
indices were initially defined for such simple molecular graphs (cf. Chapter 4). The
main chemical application of topological indices is that of structural descriptors in
QSPR, QSAR, and virtual screening, which requires the computation of these indices
for molecular graphs containing heteroatoms and multiple bonds. Such molecular
graphs use special sets of parameters to represent heteroatoms as vertex weights,
and multiple bonds as edge weights. Early applications of such vertex- and edge-
weighted (VEW) molecular graphs were initially developed for the Hückel molecular
orbitals theory [140] and were subsequently extended to general chemical compounds
[141]. In this section we present selected algorithms for the computation of weighted
molecular graphs that are general in scope and can be applied to a large range of
structural descriptors. The application of these weighting schemes is demonstrated
for a group of molecular matrices that are frequently used in computing topological
indices. Other weighting schemes were proposed for more narrow applications, and
are valid only for specific topological indices such as Randić–Kier–Hall connectiv-
ity indices [24,25], electrotopological indices [26,142], Burden indices [143], and
Balaban index J [60].

1.4.1 WEIGHTED MOLECULAR GRAPHS

A VEW molecular graph G(V , E, Sy, Bo, Vw, Ew, w) is defined by a vertex set V(G),
an edge set E(G), a set of chemical symbols for vertices Sy(G), a set of topological
bond orders for edges Bo (G), a vertex weight set Vw(w, G), and an edge weight set
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Ew(w, G), where the elements of the vertex and edge sets are computed with the
weighting scheme w. Usually, the weight of a carbon atom is 0, whereas the weight
of a carbon–carbon single bond is 1. In the weighting schemes reviewed here, the
topological bond order Boij of an edge eij takes the value 1 for single bonds, 2 for
double bonds, 3 for triple bonds, and 1.5 for aromatic bonds. As an example of a
VEW graph, consider 3,4-dibromo-1-butene 1.59 and its corresponding molecular
graph 1.60.

CH2 CH CH CH2

Br Br
1.59

4
3

2
1 5

6

Br

Br

1.60

Graph distances represent the basis for the computation of almost all topological
indices, and their computation in VEW graphs is shown here. The length of a path pij

between vertices vi and vj, l(pij, w, G), for a weighting scheme w in a VEW graph G
is equal to the sum of the edge parameters Ew(w)ij for all edges along the path. The
length of the path p1(1.60)= {v1, v2, v3, v6} is l(p1) = Ew1,2 + Ew2,3 + Ew3,6. The
topological length of a path pij, t(pij, G), in a VEW graph G is equal to the number
of edges along the path, which coincides with the path length in the corresponding
unweighted graph. In a VEW graph, the distance d(w)ij between a pair of vertices
vi and vj is equal to the length of the shortest path connecting the two vertices,
d(w)ij = min(l(pij, w)).

1.4.2 ADJACENCY MATRIX

The adjacency matrix A(w, G) of a VEW molecular graph G with N vertices is
a square N × N real symmetric matrix with the element [A(w, G)]ij defined as
[34,144]

[A(w, G)]ij =

⎧
⎪⎪⎨

⎪⎪⎩

Vw(w)i if i = j,

Ew(w)ij if eij ∈ E(G),

0 if eij /∈ E(G),

(1.6)

where Vw(w)i is the weight of vertex vi, Ew(w)ij is the weight of edge eij, and w is the
weighting scheme used to compute the parameters Vw and Ew. The valency of vertex
vi, val(w,G)i, is defined as the sum of the weights Ew(w)ij of all edges eij incident
with vertex vi [49]:

val(w)i =
∑

eij∈E(G)

Ew(w)ij. (1.7)
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1.4.3 DISTANCE MATRIX

The distance matrix D(w, G) of a VEW molecular graph G with N vertices is a
symmetric square N × N matrix with the element [D(w, G)]ij defined as [144,145]

[D(w, G)]ij =
{

d(w)ij if i �= j,

Vw(w)i if i = j,
(1.8)

where d(w)ij is the distance between vertices vi and vj, Vw(w)i is the weight of vertex
vi, and w is the weighting scheme used to compute the parameters Vw and Ew. The
distance sum of vertex vi, DS (w, G)i, is defined as the sum of the topological distances
between vertex vi and every vertex in the VEW molecular graph G:

DS(w, G)i =
N∑

j=1

[D(w, G)]ij =
N∑

j=1

[D(w, G)]ji, (1.9)

where w is the weighting scheme. The distance sum is used to compute the Balaban
index J [59] and information on distance indices [62].

1.4.4 ATOMIC NUMBER WEIGHTING SCHEME Z

Based on the definitions of adjacency and distance matrices introduced above, we
demonstrate here the calculation of molecular matrices for weighted graphs. Barysz
et al. proposed a general approach for computing parameters for VEW graphs by
weighting the contributions of atoms and bonds with parameters based on the atomic
number Z and the topological bond order [141]. In the atomic number weighting
scheme Z , the parameter Vw(Z)i of a vertex vi (representing atom i from a molecule)
is defined as

Vw(Z)i = 1− ZC
Zi
= 1− 6

Zi
, (1.10)

where Zi is the atomic number Z of atom i and ZC = 6 is the atomic number Z of
carbon. The parameter Ew(Z)ij for edge eij (representing the bond between atoms i
and j) is defined as

Ew(Z)ij = ZCZC
(BoijZiZj)

= 6× 6

(BoijZiZj)
, (1.11)

where Boij is the topological bond order of the edge between vertices vi and vj. The
application of the Z parameters is shown for the adjacency matrix of 2H-pyran 1.61
and for the distance matrix of 4-aminopyridine 1.61 (molecular graph 1.63).
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A(Z , 1.61) =

1 0.250 0.750 0 0 0 0.750
2 0.750 0 1 0 0 0
3 0 1 0 0.500 0 0
4 0 0 0.500 0 1 0
5 0 0 0 1 0 0.500
6 0.750 0 0 0 0.500 0

1 2 3 4 5 6 7

D(Z , 1.63) =

1 0.143 0.571 1.238 1.905 1.238 0.571 2.762
2 0.571 0 0.667 1.333 1.810 1.143 2.190
3 1.238 0.667 0 0.667 1.333 1.810 1.524
4 1.905 1.333 0.667 0 0.667 1.333 0.857
5 1.238 1.810 1.333 0.667 0 0.667 1.524
6 0.571 1.143 1.810 1.333 0.667 0 2.190
7 2.762 2.190 1.524 0.857 1.524 2.190 0.143

1.4.5 RELATIVE ELECTRONEGATIVITY WEIGHTING SCHEME X

The extension of the Balaban index J to VEW molecular graphs is based on relative
electronegativity and covalent radius [60]. First, the Sanderson electronegativities of
main group atoms are fitted in a linear regression using as parameters the atomic
number Z and the number of the group Ng in the periodic system:

Si = 1.1032− 0.0204 Zi + 0.4121 Ngi. (1.12)

Taking as reference the calculated electronegativity for carbon SC = 2.629, the
relative electronegativities X are defined as

Xi = 0.4196− 0.0078 Zi + 0.1567 Ngi. (1.13)

This weight system, developed initially for J , was extended as the relative elec-
tronegativity weighting scheme X , in which the vertex parameter Vw(X)i is defined
as [36,146]

Vw(X)i = 1− 1

Xi
. (1.14)
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The edge parameter Ew(X)ij that characterizes the relative electronegativity of a
bond is computed with the equation

Ew(X)ij = 1

(BoijXiXj)
. (1.15)

From its definition, the weighting scheme X reflects the periodicity of electroneg-
ativity and can generate molecular descriptors that express both the effect of topology
and that of electronegativity. A related set of parameters, the relative covalent radius
weighting scheme Y , was defined based on the covalent radius [36,146].

1.4.6 ATOMIC RADIUS WEIGHTING SCHEME R

The atomic radius computed from the atomic polarizability is the basis of the atomic
radius weighting scheme R, in which the vertex parameter Vw(R)i is defined as
[144,147]

Vw(R)i = 1− rC
ri
= 1− 1.21

ri
(1.16)

and the parameter Ew(R)ij of the edge eij representing the bond between atoms i and
j is equal to

Ew(R)ij = rCrC
(Boijrirj)

= 1.21× 1.21

(Boijrirj)
, (1.17)

where rC = 1.21 Å is the carbon radius and ri is the atomic radius of atom i. Similar
sets of parameters for VEW graphs were obtained with other atomic parameters,
namely the atomic mass weighting scheme A, the atomic polarizability weighting
scheme P, and the atomic electronegativity weighting scheme E [144,147].

1.4.7 BURDEN MATRIX

The Burden molecular matrix is a modified adjacency matrix obtained from the
hydrogen-excluded molecular graph of an organic compound [143]. This matrix is the
source of the Burden, CAS, and University of Texas (BCUT) descriptors, which are
computed from the graph spectra of the Burden matrix B and are extensively used in
combinatorial chemistry, virtual screening, diversity measure, and QSAR [148–150].
An extension of the Burden matrix was obtained by inserting on the main diagonal
of B a vertex structural descriptor VSD, representing a vector of experimental or
computed atomic properties [151]. The rules defining the Burden matrix B(VSD, G)

of a graph G with N vertices are as follows:

a. The diagonal elements of B, [B]ii, are computed with the formula

[B(VSD, G)]ii = VSDi, (1.18)

where VSDi is a vertex structural descriptor of vertex vi, that reflects the
local structure of the corresponding atom i.
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b. The nondiagonal element [B]ij, representing an edge eij connecting vertices
vi and vj, has the value 0.1 for a single bond, 0.2 for a double bond, 0.3 for
a triple bond, and 0.15 for an aromatic delocalized bond.

c. The value of a nondiagonal element [B]ij representing an edge eij connecting
vertices vi and vj is augmented by 0.01 if either vertex vi or vertex vj have
degree 1.

d. All other nondiagonal elements [B]ij are set equal to 0.001; these elements
are set to 0 in the adjacency matrix A and correspond to pairs of nonbonded
vertices in a molecular graph.

Examples of the vertex structural descriptor VSD for the diagonal of the Burden
matrix are parameters from the weighting schemes A, E, P, R, X, Y , Z , various atomic
properties (Pauling electronegativity, covalent radius, atomic polarizability), or vari-
ous molecular graph indices, such as degree, valency, valence delta atom connectivity
δ, intrinsic state I , electrotopological state S, distance sum DS, or vertex sum VS. An
example of the Burden matrix is shown for 4-chloropyridine 1.64 (molecular graph
1.65) with the Pauling electronegativity EP on the main diagonal.
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B(EP, 1.65) =

1 3.040 0.150 0.001 0.001 0.001 0.150 0.001
2 0.150 2.550 0.150 0.001 0.001 0.001 0.001
3 0.001 0.150 2.550 0.150 0.001 0.001 0.001
4 0.001 0.001 0.150 2.550 0.150 0.001 0.110
5 0.001 0.001 0.001 0.150 2.550 0.150 0.001
6 0.150 0.001 0.001 0.001 0.150 2.550 0.001
7 0.001 0.001 0.001 0.110 0.001 0.001 3.160

1.4.8 RECIPROCAL DISTANCE MATRIX

Starting with the Wiener index W , graph distances represented a prevalent source of
topological indices.A possible drawback of using graph distances directly is that pairs
of atoms that are separated by large distances, and thus have low interaction between
them, have large contributions to the numerical value of the index. Because physical
interaction between two objects decreases with increasing distance, the reciprocal
distance 1/dij was introduced. Using the reciprocal distance, it is possible to define
graph descriptors in which the contribution of two vertices decreases with increase
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of the distance between them [152]. The reciprocal distance matrix of a simple graph
G with N vertices RD(G) is a square N × N symmetric matrix whose entries [RD]ij

are equal to the reciprocal of the distance between vertices vi and vj, that is, 1/dij =
1/[D]ij, for nondiagonal elements, and is equal to zero for the diagonal elements
[65,153,154]:

[RD(G)]ij =

⎧
⎪⎨

⎪⎩

1

[D(G)]ij if i �= j,

0 if i = j.

(1.19)

The reciprocal distance matrix of octahydropentalene 1.66 is shown as an example.

8

7

6 5 4

3

21

1.66

1 2 3 4 5 6 7 8

RD(1.66) =

1 0 1 0.500 0.500 1 0.500 0.500 1
2 1 0 1 0.500 0.500 0.333 0.333 0.500
3 0.500 1 0 1 0.500 0.333 0.250 0.333
4 0.500 0.500 1 0 1 0.500 0.333 0.333
5 1 0.500 0.500 1 0 1 0.500 0.500
6 0.500 0.333 0.333 0.500 1 0 1 0.500
7 0.500 0.333 0.250 0.333 0.500 1 0 1
8 1 0.500 0.333 0.333 0.500 0.500 1 0

Formula 1.19 can be easily extended to weighted molecular graphs. The reciprocal
distance matrix RD(w, G) of a VEW molecular graph G with N vertices is a square
N × N symmetric matrix with real elements [144,145]:

[RD(w, G)]ij =

⎧
⎪⎨

⎪⎩

1

[D(w, G)]ij if i �= j,

Vw(w)i if i = j,

(1.20)

where [D(w)]ij is the graph distance between vertices vi and vj, [D(w)]ii is the diagonal
element corresponding to vertex vi, and w is the weighting scheme used to compute the
parameters Vw and Ew. The reciprocal distance matrix of 2-hydroxypropanoic acid
(lactic acid) 1.67 (molecular graph 1.68) computed with the atomic electronegativity
weighting scheme E is presented as an example.
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1.68 Source: From Encyclopedia of Chemoinformatics.
 With permission.

1 2 3 4 5 6

RD(E, 1.68) =

1 0 1 0.500 0.425 0.587 0.370
2 1 0 1 0.740 1.420 0.587
3 0.500 1 0 2.839 0.587 1.420
4 0.425 0.740 2.839 0.296 0.486 0.946
5 0.587 1.420 0.587 0.486 0.296 0.415
6 0.370 0.587 1.420 0.946 0.415 0.296

1.4.9 OTHER MOLECULAR MATRICES

We have presented here a selection of molecular matrices that are used as a source of
topological indices and other graph descriptors. Other types of molecular matrices are
investigated with the goal of exploring novel procedures for translating graph topology
into a matrix [64]. The search for new structural descriptors based on molecular graphs
is the catalyst that prompted the development of many molecular matrices, such as
the edge Wiener matrix We [155], the path Wiener matrix Wp [155], the distance-
valency matrix Dval [34], the quasi-Euclidean matrix ρqε [156,157], the distance
complement matrix DC [66], the complementary distance matrix CD [145,158], the
reverse Wiener matrix RW [67], the distance-path matrix Dp [68], the Szeged matrix
Sz [70], the Cluj matrix Cj [70], and the resistance distance matrix Ω [50], which is
based on a novel distance function on graphs introduced by Klein and Randić and
inspired by the properties of electrical networks.

1.5 CONCLUDING REMARKS

This chapter reviewed the applications of graph theory in chemistry. Many objects
manipulated in chemistry, such as atomic orbitals, chemical compounds, and reaction
diagrams, can be represented as graphs. Graph operations, such as generating reduced
graphs, and the calculation of various matrices derived from the connectivity of the
graph can thus be applied to chemicals with applications including virtual screening,
topological indices calculations, and activity/property predictions such as spectra
predictions. Many algorithms have been and are being developed to solve graph
problems, and some of these can be applied to chemistry problems. The goal of the
next chapter is to present graph algorithms applied to chemicals.
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66. Randić, M., Linear combinations of path numbers as molecular descriptors. New Journal
of Chemistry 1997, 21(9), 945–951.

67. Balaban,A. T., Mills, D., Ivanciuc, O., and Basak, S. C., Reverse Wiener indices. Croatica
Chemica Acta 2000, 73(4), 923–941.



Representing Two-Dimensional Chemical Structures with Molecular Graphs 31

68. Diudea, M.V., Wiener and hyper-Wiener numbers in a single matrix. Journal of Chemical
Information and Computer Sciences 1996, 36(4), 833–836.
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