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Introduction to Quantitative Fund
Management

A T THE TENTH TRIENNIAL INTERNATIONAL CONFERENCE on stochastic programming held at

the University of Arizona in October 2004, it was observed that the fund

management industry as a whole was far from the leading edge of research in financial

planning for asset allocation, asset liability management, debt management and other

financial management problems at the strategic (long term) level. This gap is documented

in the timely survey of quantitative equity management by Fabozzi, Focardi and Jonas

which forms the first chapter of this book. It was therefore agreed to bring out a special

issue of Quantitative Finance to partially address the imbalance between research and

practice by showcasing leading edge applicable theory and methods and their use for

practical problems in the industry. A call for papers went out in August and October of

2005. As an outcome of this, we were able to compile a first special issue with the papers

forming the ten chapters in Part 1 of this book. In fact, the response to the call was so

good that a second special issue focusing on tactical financial planning and risk

management is contained in the ten chapters of Part 2.

Taken together, the twenty chapters of this volume constitute the first collection to cover

quantitative fund management at both the dynamic strategic and one period tactical levels.

They consider optimal portfolio choice for wealth maximization together with integra-

ted risk management using axiomatically defined risk measures. Solution techniques con-

sidered include novel applications to quantitative fund management of stochastic control,

dynamic stochastic programming and related optimization techniques. A number of

chapters discuss actual implemented solutions to fund management problems including

equity trading, pension funds, mortgage funding and guaranteed investment products. All

the contributors are well known academics or practitioners. The remainder of this

introduction gives an overview of their contributions.

In Part I of the book on dynamic financial planning the survey by Fabozzi et al.

(Chapter 1) finds that, at least in the equity world, the interest in quantitative techniques

is shifting from basic Markowitz mean-variance portfolio optimization to risk manage-

ment and trading applications. This trend is represented here with the chapter by Fagiuoli,

Stella and Vetura (Chapter 5). The remaining chapters in Part 1 cover novel aspects of

lifetime individual consumption investment problems, fixed mix portfolio rebalancing

allocation strategies (including Cover-type universal portfolios), debt management for
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funding mortgages and national debt, and guaranteed return fund construction. Of the

ten chapters in Part 1, one is the mentioned survey, three are theoretical, two concern

proofs of concept for practical trading or fund management strategies and the remaining

four concern real-world implementations for major financial institutions.

Chapter 2 by Pirvu expands on the classical consumption investment problem of

Merton to include a value-at-risk constraint. The portfolio selection problem over a finite

horizon is a stochastic control problem which is reduced to pathwise nonlinear

optimization through the use of the stochastic Pontryagin maximum principal. Numerical

results are given and closed form solutions obtained for special cases such as logarithmic

utility. The third chapter by Hsuku extends the classical Merton problem in a different

direction to study the positive effects of adding derivatives to investors’ choices. The

model utilizes a recursive utility function for consumption and allows predictable

variation of equity return volatility. Both of these theoretical studies concern realistically

incomplete markets in which not all uncertainties are priced.

The next three chapters mainly treat variants of the fixed-mix rebalance dynamic asset

allocation strategy. The first of these (Chapter 4) by Dempster, Evstigneev and Schenk-

Hoppé shows under very general stationary ergodic return assumptions that such a

strategy, which periodically rebalances a portfolio to fixed proportions of the current

portfolio value, grows exponentially on almost every path even in the presence of suitable

transactions costs. Chapter 5 in this group by Fagiuoli, Stella and Ventura develops, and

tests on stock data from four major North American indices, an online algorithm for

equity trading based on Cover’s non-parametric universal portfolios in the situation when

some market state information is also available. Chapter 6 by Mulvey, Ural and Zhang

discusses return enhancing additions to both fixed mix rebalance strategies and optimal

dynamic allocation strategies obtained by dynamic stochastic programming in the context

of work for the U.S. Department of Labor. In particular, positive return performance is

demonstrated from diversification to non-traditional asset classes, leverage, and overlay

strategies which require no investment capital outlay.

The next two chapters concern debt management problems which use dynamic

stochastic programming to optimally fund mortgage lending and government spending

requirements respectively. These are asset liability management problems in which assets

are specified and decisions focus on liabilities, namely, when and how to issue bonds. The

first, Chapter 7 by Infanger, is an exemplary study conducted for Freddie Mac which

shows that significant extra profits can be made by employing dynamic models relative to

static Markovitz mean-variance optimization or traditional duration and convexity

matching of assets (mortgage loans) and liabilities (bonds). In addition, efficient out-of-

sample simulation evaluation of the robustness of the recommended optimal funding

strategies is described, but not historical backtesting. Chapter 8 by Bernaschi, Briani, Papi

and Vergni concentrates on yield curve modelling for a dynamic model for funding Italian

public debt by government bond issuance. The idea of this contribution, important in an

EU context, is to model the basic ECB yield curve evolution together with an orthogonal

national idiosyncratic component.
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The last two chapters of Part 1 describe the use of dynamic stochastic programming

techniques to design guaranteed return pension funds which employ dynamic asset

allocations to balance fund return versus guarantee shortfall. Chapter 9 by Hertzog,

Dondi, Keel, Schumann and Geering treats this asset liability management problem using

a deterministic evolution of the guarantee liability, while Chapter 10 by Dempster,

Germano, Medova, Rietbergen, Sandrini and Scrowston treats guarantee shortfall with

respect to a stochastic liability which is evaluated from the forward ECB yield curve

simulation used to price bonds in the dynamic portfolio. Both chapters employ historical

backtesting of their models for respectively a hypothetical Swiss pension fund and (a

simplified version of) actual funds backing guaranteed return products of Pioneer

Investments.

Taken together, the ten chapters of Part 1 give a current snapshot of state-of-the-art

applications of dynamic stochastic optimization techniques to long term financial

planning. These techniques range from new pathwise (Pirvu) and standard dynamic

programming (Hsuku) methods of stochastic control, through sub-optimal, but easily

understood and implemented policies (Dempster et al., Fagiouli et al., Mulvey et al.) to

dynamic stochastic programming techniques involving the forward simulation of many

risk factors (Mulvey et al., Infanger, Bernaschi et al., Hertzog et al., Dempster et al.).

Although there is currently widespread interest in these approaches in the fund

management industry, more than a decade after their commercial introduction they are

still in the early stages of adoption by practitioners, as the survey of Fabozzi et al. shows.

This volume will hopefully contribute to the recognition and wider acceptance of

stochastic optimization techniques in financial practice.

Part 2 of this volume on portfolio construction and risk management concerns the tactical

level of financial planning. Most funds, with or without associated liabilities—and

explicitly or implicitly—employ a three level hierarchy for financial planning. The top

strategic level considers asset classes and risk management over longer term horizons

and necessarily involves dynamics (the topic of Part 1). The middle tactical level of the

financial planning hierarchy concerns portfolio construction and risk management at the

individual security or fund manager level over the period up to the next portfolio

rebalance. This is the focus of the ten contributions of the second part of the book. The

third and bottom operational level of the financial planning hierarchy is actual trading

which, with the rise of hedge funds, and as the survey of quantitative equity management

by Fabozzi et al. in Chapter 1 demonstrates, is becoming increasingly informed by tactical

models and considerations beyond standard Markowitz mean-variance optimization

(MVO). This interaction is the evident motivation for many of the chapters in Part 2

with their emphasis on non-Gaussian returns, new risk-return tradeoffs and robustness of

benchmarks and portfolio decisions. The first two chapters are based on insights gained

from actual commercial applications, while of the remaining eight chapters all but one,

which is theoretically addressing an important practical issue, test new theoretical

contributions on market data. Another theme of all the contributions in this part is that

their concern is with techniques which are scenario—rather than analytically—based

(although the purely theoretical chapter uses a limiting analytical approximation). This
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theme reflects the necessity for nontrivial computational approaches when the classical

independent Gaussian return paradigm is set aside in favour of non-equity instruments

and shorter term (e.g. daily or weekly) returns.

The first chapter of Part 2, Chapter 11 by Dempster, Germano, Medova, Rietbergen,

Sandrini, Scrowston and Zhang treats the problem of benchmarking fund performance

using optimal fixed mix rebalancing strategies (a theme of Part 1) and tests it relative to

earlier work on optimal portfolios for guaranteed return funds described in Chapter 10.

Chapter 12 by Acerbi provides a timely and masterful survey of the recent literature on

coherent risk measures, including practical linear programming models for portfolios

constructed by their minimization. This theme is elaborated further by Krokhmal in

Chapter 13 which treats higher moment coherent risk measures. It examines their

theoretical properties and performance when used in portfolio construction relative to

standard mean variance and expected shortfall conditional value at risk (CVaR)

optimization.

The next three chapters treat the robustness properties of the numerical minimization

of CVaR using linear programming as employed in practice, for example, for bond

portfolios. The first, Chapter 14 by Ciliberti, Kondor and Mezard, uses limiting

continuous approximations suggested by statistical physics to define a critical threshold

for the ratio of the number of assets to the number of historical observations beyond

which the expected shortfall (CVaR) risk measure is not well-defined—a phase-change

phenomenon first noted by Kondor and co-authors. Next Kaut, Vladimirou, Wallace and

Zenios examine in Chapter 15 the stability of portfolio solutions to this problem with

respect to estimation (from historical data) errors. They conclude that sensitivity to

estimation errors in the mean, volatility, skew and correlation all have about the same

non-negligible impact, while error in kurtosis has about half that of the other statistics.

Finally, Chapter 16 by Dupačova and Polı́vka discusses stress-testing the CVaR

optimization problem using the contamination scenario technique of perturbation

analysis. They also show that similar techniques may be applied to the minimal analytical

value at risk (VaR) problem for the Gaussian case, but are not applicable to the

corresponding historical scenario based problem.

The next group of three chapters extend the treatment of portfolio construction and

risk management beyond the usual simple tradeoff of volatility risk and return embodied

in MVO. Chapter 17 by Giacometti, Bertocchi, Rachev and Fabozzi shows that the Black-

Litterman Bayesian approach to portfolio construction, incorporating both market and

practitioner views, can be extended to Student-t and stable return distributions and VaR

and CVaR risk measures. Pflug and Wozabal consider in Chapter 18 the robust

optimization problem of finding optimal portfolios in the Knightian situation when the

distributions underlying returns are not perfectly known. They develop and test an

algorithm for this situation based on two level convex optimization. In the last chapter in

this group, Chapter 19, Roman, Darby-Dowman and Mitra consider the multi-objective

problem of simultaneously trading off expected return with two risk measures based on

variance and expected shortfall (CVaR). In tests with FTSE 100 index securities they find

that an optimal balance with the two risk measures dominates those using either alone.
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The final chapter in Part 2, Chapter 20 by Charalambous, Christofides, Constantinide

and Martzoukos, treats the basic requirement for pricing exotic and over-the-counter

options—fitting vanilla option market price data—using non-recombining (binary) trees, a

special case of the multi-period scenario trees used in Part 1 for strategic portfolio

management. The authors’ approach dominates the usual recombining tree (lattice) in

that it can easily handle transactions costs, liquidity constraints, taxation, non-Markovian

dynamics, etc. The authors demonstrate its practicality using a penalty method and quasi-

Newton unconstrained optimization and its excellent fit to the volatility surface—crucial

for hedging and risk control.

The ten chapters of Part 2 provide an up-to-date overview of current research in tactical

portfolio construction and risk management. Their emphasis on general return distribu-

tions and tail risk measures is appropriate to the increasing penetration of hedge fund

trading techniques into traditional fund and asset liability management. We hope that this

treatment of tactical problems (and its companion strategic predecessor) will make a

valuable contribution to the future practical use of systematic techniques in fund

management.

M.A.H. DEMPSTER, GAUTAM MITRA and GEORG C. PFLUG

Cambridge, London & Vienna
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1.1 INTRODUCTION

I N THE SECOND HALF OF THE 1990s, there was so much skepticism about quantitative fund

management that Leinsweber (1999), a pioneer in applying advanced techniques

borrowed from the world of physics to fund management, wrote an article entitled: ‘Is

quantitative investment dead?’ In the article, Leinweber defended quantitative fund

management and maintained that in an era of ever faster computers and ever larger

databases, quantitative investment was here to stay. The skepticism towards quantitative

fund management, provoked by the failure of some high-profile quantitative funds, was

related to the fact that investment professionals felt that capturing market inefficiencies

could best be done by exercising human judgement.

Despite mainstream academic theory that had held that markets are efficient and

unpredictable, the asset managers’ job has always been to capture market inefficiencies for

their clients. At the academic level, the notion of efficient markets has been progressively

relaxed. Empirical evidence that began to be accumulated in the 1970s led to the gradual
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acceptance of the notion that financial markets are somewhat predictable and that

systematic market inefficiencies can be detected (see Granger 1992 for a review to various

models that accept departures from efficiency). Using the variance ratio test, Lo and

MacKinlay (1988) disproved the random walk hypothesis. Additional insights return

predictability was provided by Jegadeesh and Titman (1993), who established the existence

of momentum phenomena. Since then, a growing number of studies have accumulated

evidence that there are market anomalies that can be systematically exploited to earn

excess profits after considering risk and transaction costs (see Pesaran 2005 for an up-to-

date presentation of the status of market efficiency). Lo (2004) proposed replacing the

Efficient Market Hypothesis with the Adaptive Market Hypothesis arguing that market

inefficiencies appear as the market adapts to changes in a competitive environment.

The survey study described in this paper had as its objective to reveal to what extent the

growing academic evidence that asset returns are predictable and that predictability can be

exploited to earn a profit have impacted the way equity assets are being managed. Based

on an Intertek 2003 survey on a somewhat different sample of firms, Fabozzi et al. (2004)

revealed that models were used primarily for risk management, with many firms

eschewing forecasting models. The 2006 survey reported in this chapter sought to reveal to

what extent modelling has left the risk management domain to become full-fledged asset

management methodology. Anticipating the results discussed below, the survey confirms

that quantitative fund management is now an industrial reality, successfully competing

with traditional asset managers for funds. Milevsky (2004) observes that the methods of

quantitative finance have now been applied in the field of personal wealth management.

We begin with a brief description of the field research methodology and the profile of

responding firms. Section 1.3 discusses the central finding, that is, that models are being

used to manage an increasing amount of equity asset value. Section 1.4 discusses the

changing role of modelling in equity portfolio management, from decision-support

systems to a fully automated portfolio construction and trading system, and from passive

management to active management. Section 1.5 looks at the forecasting models most

commonly used in the industry and discusses the industry’s evaluation of the techniques.

Section 1.6 looks at the use (or lack of use) of high-frequency data and the motivating

factors. Section 1.7 discusses risk measures being used and Section 1.8 optimization

methodologies. The survey reveals a widespread use of optimization, which is behind the

growing level of automation in fund management. The wide use of models has created a

number of challenges: survey respondents say that differentiating quantitative products

and improving on performance are a challenge. Lastly, in looking ahead, we discuss the

issue of the role of models in market efficiency.

1.2 METHODOLOGY

The study is based on survey responses and conversations with industry representatives in

2006. In all, managers at 38 asset management firms managing a total of t3.3 trillion ($4.3

trillion) in equities participated in the survey. Participants include persons responsible for

quantitative equity management and quantitative equity research at large and medium-

sized firms in North America and Europe.
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The home market of participating firms is 15 from North America (14 from U.S. 1 from

Canada) and 23 from Europe (U.K. 7, Germany 5, Switzerland 4, Benelux 3, France 2 and

Italy 2). Equities under management by participating firms range from t5 bn to t800 bn.

While most firms whose use of quantitative methods is limited to performance analysis or

risk measurement declined to participate in this study (only 5 of the 38 participating firms

reported no equity funds under quantitative management), the study does reflect the use of

quantitative methods in equity portfolio management at firms managing a total of t3.3

trillion ($4.3 trillion) in equities; 63) of the participating firms are among the largest asset

managers in their respective countries. It is fair to say that these firms represent the way a

large part of the industry is going with respect to the use of quantitative methods in equity

portfolio management. (Note that of the 38 participants in this survey, 2 responded only

partially to the questionnaire. For some questions, there are therefore 36 (not 38) responses.)

1.3 GROWTH IN EQUITY ASSETS UNDER QUANTITATIVE
MANAGEMENT

The skepticism relative to the future of quantitative management at the end of the 1990s

has given way and quantitative methods are now playing a large role in equity portfolio

management. Twenty-nine percent (11/38) of the survey participants report that more

than 75) of their equity assets are being managed quantitatively. This includes a wide

spectrum of firms, with from t5 billion to over t500 billion in equity assets under

management. Another 58) (22/38) report that they have some equities under

quantitative management, though for most of these (15/22) the percentage of equities

under quantitative management is less than 25)—often under 5)—of total equities

under management. Thirteen percent (5/38) report no equities under quantitative

management. Figure 1.1 represents the distribution of percentage of equities under

quantitative management at different intervals for responding firms.

Relative to the period 2004�/2005, the amount of equities under quantitative manage-

ment has grown at most firms participating in the survey. Eighty-four percent of the

respondents (32/38) report that the percentage of equity assets under quantitative

management has either increased with respect to 2004–2005 (25/38) or has remained

stable at about 100) of equity assets (7/38). The percentage of equities under quantitative

management was down at only one firm and stable at five.
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FIGURE 1.1 Distribution of the percentage of equities under quant management.
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One reason given by respondents to explain the growth in equity assets under

quantitative management is the flows into existing quantitative funds. A source at a large

U.S. asset management firm with more than 50) of its equities now under quantitative

management said, ‘The firm has three distinct equity products: value, growth and quant.

Quant is the biggest and is growing the fastest.’ The trend towards quantitative

management is expected to continue.

According to survey respondents, the most important factor contributing to a wider use

of quantitative methods in equity portfolio management is the positive result obtained

with these methods. Half of the participants rated positive results as the single most

important factor contributing to the widespread use of quantitative methods. Other

factors contributing to a wider use of quantitative methods in equity portfolio

management are, in order of importance attributed to them by participants, the

computational power now available on the desktop, more and better data, and the

availability of third-party analytical software and visualization tools. Figure 1.2 represents

the distribution of the score attributed to each factor. Participants were asked to rate from

1 to 5 in order of importance, 5 being the most important. Given the sample of 36 firms

that responded, the maximum possible score is 180.

Sources identified the prevailing in-house culture as the most important factor holding

back a wider use of quantitative methods (this evaluation obviously does not hold for

firms that can be described as quantitative): more than one third (10/27) of the

respondents at other than quant-oriented firms considered this the major blocking factor.

Figure 1.3 represents the distribution of the total score attributed to each factor.

The positive evaluation of models in equity portfolio management is in contrast with

the skepticism of some 10 years ago. A number of changes have occurred. First,

expectations are now more realistic. In the 1980s and 1990s, traders were experimenting

with methodologies from advanced science in hopes of making huge excess returns.

Experience of the last 10 years has shown that models can indeed deliver but that their

performance must be compatible with a well-functioning market.1

Other 
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Contributing to a Wider Use of Quant Methods

FIGURE 1.2 Score attributed to each factor contributing to a wider use of quant methods.

1 There was a performance decay in quantitatively managed equity funds in 2006�/2007. Many attribute this decaying
performance to the fact that there are now more portfolio managers using the same factors and the same data.
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Other technical reasons include a manifold increase in computing power and more and

better data. Modellers have now available on their desktop computing power that, at the

end of the 1980s, could be got only from multimillion dollar supercomputers. Data,

including intraday data, can now be had (though the cost remains high) and are in general

‘cleaner’ and more complete. Current data include corporate actions, dividends, and fewer

errors—at least in developed-country markets.

In addition, investment firms (and institutional clients) have learned how to use

models throughout the investment management process. Models are now part of an

articulated process that, especially in the case of institutional investors, involves satisfying

a number of different objectives, such as superior information ratios.

1.4 CHANGING ROLE FOR MODELS IN EQUITY PORTFOLIO
MANAGEMENT

The survey reveals that quantitative models are now used in active management to find

alphas (i.e. sources of excess returns), either relative to a benchmark or absolute. This is a

considerable change with respect to the past when quantitative models were used

primarily to manage risk and to select parsimonious portfolios for passive management.

Another finding of this study is the growing amount of funds managed automatically by

computer programs. The once futuristic vision of machines running funds automatically

without the intervention of a portfolio manager is becoming a reality on a large scale: 55)
of the respondents (21/38) report that at least part of their equity assets are now being

managed automatically with quantitative methods; another three plan to automate at least

a portion of their equity portfolios within the next 12 months. The growing automation of

the equity investment process indicates that that there is no missing link in the technology

chain that leads to automatic quantitative management. From return forecasting to

portfolio formation and optimization, all the needed elements are in place.

Until recently, optimization represented the missing technology link in the automation

of portfolio engineering. Considered too brittle to be safely deployed, many firms

eschewed optimization, limiting the use of modelling to stock ranking or risk control

functions. Advances in robust estimation methodologies and in optimization now allow a

manager to construct portfolios of hundreds of stocks chosen in universes of thousands of

stocks with little or no human intervention outside of supervising the models.
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FIGURE 1.3 Score attributed to each factor holding back a wider use of quant methods.
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1.5 MODELLING METHODOLOGIES AND THE INDUSTRY’S
EVALUATION

At the end of the 1980s, academics and researchers at specialized quant boutiques

experimented with many sophisticated modelling methodologies including chaos theory,

fractals and multi-fractals, adaptive programming, learning theory, complexity theory,

complex nonlinear stochastic models, data mining and artificial intelligence. Most of these

efforts failed to live up to expectations. Perhaps expectations were too high. Or perhaps

the resources or commitment required were lacking. Derman (2001) provides a lucid

analysis of the difficulties that a quantitative analyst has to overcome. As observed by

Derman, though modern quantitative finance uses some of the techniques of physics, a

wide gap remains between the two disciplines.

The modelling landscape revealed by the survey is simpler and more uniform.

Regression analysis and momentum modelling are the most widely used techniques:

respectively, 100) and 78) of the survey respondents say that these techniques are being

used at their firms. Other modelling methods being widely used include cash flow analysis

and behavioural modelling. Forty-seven percent (17/36) of the participating firms model

cash flows; 44) (16/36) use behavioural modelling. Figure 1.4 represents the distribution

of modelling methodologies among participants.

Let us observe that regression models used today have undergone a substantial change

since the first multifactor models such as Arbitrage Pricing Theory (APT) were

introduced. Classical multifactor models such as APT are static models embodied in

linear regression between returns and factors at the same time:

ri ¼ ai þ
Xp

j¼1

bij fj þ ei:

Models of this type allow managers to measure risk but not to forecast returns, unless the

factors are forecastable. Sources at traditional asset management firms typically use factor

models to control risk or build stock screening systems. A source doing regression on

factors to capture the risk-return trade-off of assets said, ‘Factor models are the most

intuitive and most comprehensive models for explaining the sources of risk.’

Shrinkage/Averaging 9 
4 

7 
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17 
16 

28 
36 
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Regime Shifting 
Nonlinear 

Cointegration 
Cash Flow 

Behavioural
Momentum/Reversal 

Regression 

FIGURE 1.4 Distribution of modelling methodologies among participants.
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However, modern regression models are dynamic models where returns at time t � 1

are regressed on factors at time t:

ri;tþ1 ¼ ai þ
Xp

j¼1

bij fj;t þ ei;t :

Models of this type are forecasting models insofar as the factors at time t are predictors of

returns at time behaviour t � 1. In these models, individual return processes might

exhibit zero autocorrelation but still be forecastable from other variables.

Predictors might include financial and macroeconomic factors as well as company

specific parameters such as financial ratios. Predictors might also include human

judgment, for example analyst estimates, or technical factors that capture phenomena

such as momentum. A source at a quant shop using regression to forecast returns said,

‘Regression on factors is the foundation of our model building. Ratios derived from

financial statements serve as one of the most important components for predicting future

stock returns. We use these ratios extensively in our bottom-up equity model and

categorize them into five general categories: operating efficiency, financial strength,

earnings quality (accruals), capital expenditures and external financing activities.’

Momentum and reversals are the second most widely used modelling technique among

survey participants. In general, momentum and reversals are used as a strategy not as a

model of asset returns. Momentum strategies are based on forming portfolios choosing

the highest/lowest returns, where returns are estimated on specific time windows. Survey

participants gave these strategies overall good marks but noted that (1) they do not always

perform so well, (2) they can result in high turnover (though some use constraints/

penalties to deal with this problem) and (3) identifying the timing of reversals is tricky.

Momentum was first reported in Jegadeesh and Titman (1993) in the U.S. market.

Jegadeesh and Titman (2002) confirm that momentum continued to exist in the 1990s in

the US market throughout the 1990s. Karolyi and Kho (2004) examined different models

for explaining momentum and introduced a new bootstrap test. Karolyi and Kho

conclude that no random walk or autoregressive model is able to explain the magnitude of

momentum empirically found; they suggest that models with time varying expected

returns come closer to explaining the empirical magnitude of momentum.

Momentum and reversals are presently explained in the context of local models

updated in real time. For example, momentum as described in Jegadeesh and Titman

(1993) is based on the fact that stock prices can be represented as independent random

walks when considering periods of the length of one year. However, it is fair to say that

there is no complete agreement on the econometrics of asset returns that would justify

momentum and reversals and stylized facts on a global scale, and not as local models. It

would be beneficial to know more about the econometrics of asset returns that sustain

momentum and reversals.

Behavioural phenomena are considered to play an important role in asset predictability;

as mentioned, 44) of the survey respondents say they use behavioural modelling.

Behavioural modellers attempt to capture phenomena such as departures from rationality
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on the part of investors (e.g. belief persistence), patterns in analyst estimates, and

corporate executive investment/disinvestment behaviour. Behavioural finance is related to

momentum in that the latter is often attributed to various phenomena of persistence in

analyst estimates and investor perceptions.

A source at a large investment firm that has incorporated behavioural modelling into its

active equity strategies commented, ‘The attraction of behavioural finance is now much

stronger than it was just five years ago. Everyone now acknowledges that markets are not

efficient, that there are behavioural anomalies. In the past, there was the theory that was

saying that markets are efficient while market participants such as the proprietary trading

desks ignored the theory and tried to profit from the anomalies. We are now seeing a

fusion of theory and practice.’

We remark that the term behavioural modelling is often used rather loosely. Full-

fledged behavioural modelling exploits a knowledge of human psychology to identify

situations where investors are prone to show behaviour that leads to market inefficiencies.

The tendency now is to call ‘behavioural’ any model that exploits market inefficiency.

However, implementing true behavioural modelling is a serious challenge. Even firms with

very large, powerful quant teams say that ‘considerable work is required to translate

[departures from rationality] into a set of rules for identifying stocks as well as entry and

exit points for a quantitative stock selection process.’

As for other methodologies used in return forecasting, sources cited nonlinear methods

and co-integration. Nonlinear methods are being used to model return processes at 19)
(7/36) of the responding firms. The nonlinear method most widely used among survey

participants is classification and regression trees (CART). The advantage of CART is its

simplicity and the ability of CART methods to be cast in an intuitive framework.

A source using CART as a central part of the portfolio construction process in enhanced

index and longer-term value-based portfolios said, ‘CART compresses a large volume of

data into a form which identifies its essential characteristics, so the output is easy to

understand. CART is non-parametric—which means that it can handle an infinitely wide

range of statistical distributions—and nonlinear so as a variable selection technique it is

particularly good at handling higher-order interactions between variables.’

Only 11) (4/36) of the respondents use nonlinear regime-shifting models; at most

firms, judgment is used to assess regime change. Obstacles to modelling regime shifts

include the difficulty in detecting the precise timing of a regime switch and the very long

time series required for true estimation.

A source at a firm where regime-shifting models have been experimented with

commented, ‘Everyone knows that returns are conditioned by market regimes, but the

potential for overfitting when implementing regime-switching models is great. If you

could go back with fifty years of data—but we have only some ten years of data and this is

not enough to build a decent model.’

Co-integration is being used by 19) (7/36) of the respondents. Co-integration models

the short-term dynamics (direction) and long-run equilibrium (fair value). A perceived

plus of co-integration is the transparency that it provides: the models are based on

economic and finance theory and calculated from economic data.

10 j CHAPTER 1



1.6 USING HIGH-FREQUENCY DATA

High frequency data (HFD) are being used at only 14) of the responding firms (5/36), to

identify profit opportunities and improve forecasts. Another three plan to use HFD within

the next 12 months. A source at a large investment firm that is using HFD said, ‘We use

high-frequency data in event studies. The objective is to gain an understanding of the

mechanisms of the market.’ A source which is planning to use high-frequency data in the

coming 12 months remarked, ‘We believe that high-frequency data will allow us to

evaluate exactly when it is optimal to trade, for example at close, VWAP, or midday, and to

monitor potential market impact of our trades and potential front-running of our

brokers.’ (VWAP stands for volume-weighted average price.)

Though it is believed that HFD could be useful, cost of data is the blocking factor.

Survey participants voiced concerns that the cost of data will hamper the development of

models in the future. One source observes, ‘The quasi monopolistic positioning of data

vendors allows them to charge prices that are incompatible with the revenues structure of

all but the biggest firms.’ Other reasons cited by the sources not using HFD are a

(perceived) unattractive noise-to-signal ratio and resistance to HFD-based strategies on

the part of institutional investors.

1.7 MEASURING RISK

Risk is being measured at all the responding firms. Risk measures most widely used among

participants include variance (97) or 35/36), Value at Risk (VaR) (67) or 24/36) and

downside risk measures (39) or 14/36), Conditional VaR (CVaR), and extreme value

theory (EVT) are used at 4 (11)) and 2 (6)) firms, respectively. The considerable use of

asymmetric risk measures such as downside risk can be ascribed to the growing popularity

of financial products with guaranteed returns. Many firms compute several risk measures:

the challenge here is to merge the different risk views into a coherent risk assessment.

Figure 1.5 represents the distribution of risk measures used by participants.

It is also interesting to note that among survey participants, there is a heightened

attention to model risk. Model averaging and shrinkage techniques are being used by one-

fourth (9/36) of the survey participants. The recent take-up of these techniques is related

to the fact that most firms are now using multiple models to forecast returns, a trend that

is up compared to two or three years ago. Other techniques to mitigate model risk, such as

EVT 2
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4

24

35

Downside Risk

Risk Measures Being Used

CVaR

VaR

Variance

FIGURE 1.5 Distribution of risk measures adopted by participants.
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random coefficient models, are not used much in the industry. In dealing with model risk

we must distinguish between averaging model results and averaging models themselves.

The latter technique, embodied in random coefficient models, is more difficult and

requires more data.

1.8 OPTIMIZATION

Another area where much has changed recently is optimization. According to sources,

optimization is now performed at 92) (33/36) of the participating firms, albeit in some

cases only rarely. Mean-variance is the most widely used technique among survey

participants: it is being used by 83) (30/36) of the respondents. It is followed by utility

optimization (42) or 15/36) and, more recently, robust optimization (25) or 9/36).

Only one firm mentioned that it is using stochastic optimization. Figure 1.6 represents the

distribution of optimization methods.

The wider use of optimization is a significant development compared to just a few years

ago when many sources reported that they eschewed optimization: the difficulty of

identifying the forecasting error was behind the then widely held opinion that

optimization techniques were too brittle and prone to ‘error maximization.’ The greater

use of optimization is due to advances in large-scale optimization coupled with the ability

to include constraints and robust methods for estimation and optimization itself. It is

significant: portfolio formation strategies rely on optimization. With optimization now

feasible, the door is open to a fully automated investment process. In this context, it is

noteworthy that 55) of the survey respondents report that at least a portion of their

equity assets is being managed by a fully automated process.

Optimization is the engineering part of portfolio construction. Most portfolio

construction problems can be cast in an optimization framework, where optimization

is applied to obtain the desired optimal risk-return profile. Optimization is the technology

behind the current offering of products with specially engineered returns, such as

guaranteed returns. However, the offering of products with particular risk-return profiles

requires optimization methodologies that go well beyond the classical mean-variance

optimization. In particular one must be able to (1) work with real-world utility functions

and (2) apply constraints to the optimization process.

Stochastic Opt 1

9

15

3

30

Optimization Methods in Use

Robust Opt

Utility Opt

Mean-Var

None

FIGURE 1.6 Distribution of optimization methods adopted by participants.
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1.9 CHALLENGES

The growing diffusion of models is not without challenges. Survey participants noted

three:

� increasing difficulty in differentiating products;

� difficulty in marketing quant funds, especially to non-institutional investors; and

� performance decay.

Quantitative equity management has now become so widespread that a source at a

long-established quantitative investment firm remarked, ‘There is now a lot of

competition from new firms entering the space [of quantitative investment management].

The challenge is to continue to distinguish ourselves from competition in the minds of

clients.’

With many quantitative funds based on the same methodologies and using the same

data, the risk is to construct products with the same risk-return profile. The head of active

equities at a large quantitative firm with more than a decade of experience in quantitative

management remarked, ‘Everyone is using the same data and reading the same articles: it’s

tough to differentiate.’

While sources report that client demand is behind the growth of (new) pure

quantitative funds, some mentioned that quantitative funds might be something of a

hard sell. A source at a medium-sized asset management firm servicing both institutional

clients and high net worth individuals said, ‘Though clearly the trend towards quantitative

funds is up, quant approaches remain difficult to sell to private clients: they remain too

complex to explain, there are too few stories to tell, and they often have low alpha. Private

clients do not care about high information ratios.’

Markets are also affecting the performance of quantitative strategies. A recently released

report from the Bank for International Settlements (2006) noted that this is a period of

historically low volatility. What is exceptional about this period, observes the report, is the

simultaneous drop in volatility in all variables: stock returns, bond spread, rates and so on.

While the role of models in reducing volatility is unclear, what is clear is that models

produce a rather uniform behaviour. Quantitative funds try to differentiate themselves

either finding new unexploited sources of return forecastability, for example novel ways of

looking at financial statements, or using optimization creatively to engineer special risk-

return profiles.

A potentially more serious problem is performance decay. Survey participants remarked

that model performance was not so stable. Firms are tackling these problems in two ways.

First, they are protecting themselves from model breakdown with model risk mitigation

techniques, namely by averaging results obtained with different models. It is unlikely that

all models breakdown in the same way in the same moment, so that averaging with

different models allows managers to diversify model risk. Second, there is an on-going

quest for new factors, new predictors, and new aggregations of factors and predictors. In

the long run, however, something more substantial might be required: this is the subject of

the next and final section.
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1.10 LOOKING AHEAD

Looking ahead, we can see a number of additional challenges. Robust optimization, robust

estimation and the integration of the two are probably on the research agenda of many

firms. As asset management firms strive to propose innovative products, robust and

flexible optimization methods will be high on the R & D agenda. In addition, as asset

management firms try to offer investment strategies to meet a stream of liabilities (i.e.,

measured against liability benchmarking), multistage stochastic optimization methods

will become a priority for firms wanting to compete in this arena. Pan et al. (2006) call

‘Intelligent Finance’ the new field of theoretical finance at the confluence of different

scientific disciplines. According to the authors, the theoretical framework of intelligent

finance consists of four major components: financial information fusion, multilevel

stochastic dynamic process models, active portfolio and total risk management, and

financial strategic analysis.

The future role of high-frequency data is not yet clear. HFD are being used (1) to

improve on model quality thanks to the 2000-fold increase in sample size they offer with

respect to daily data and (2) to find intraday profit opportunities. The ability to improve

on model quality thanks to HFD is the subject of research. It is already known that

quantities such as volatility can be measured with higher precision using HFD. Using

HFD, volatility ceases to be a hidden variable and becomes the measurable realized

volatility, introduced by Torbin et al. (2003). If, and how, this increased accuracy impacts

models whose time horizon is in the order of weeks or months is a subject not entirely

explored. It might be that in modelling HFD one captures short-term effects that

disappear at longer time horizons.

Regardless of the frequency of data sampling, modellers have to face the problem of

performance decay that is the consequence of a wider use of models. Classical financial

theory assumes that agents are perfect forecasters in the sense that they know the

stochastic processes of prices and returns. Agents do not make systematic predictable

mistakes: their action keeps the market efficient. This is the basic idea underlying rational

expectations and the intertemporal models of Merton.

Practitioners (and now also academics) have relaxed the hypothesis of the universal

validity of market efficiency; indeed, practitioners have always being looking for asset

mispricings that could produce alpha. As we have seen, it is widely believed that

mispricings are due to behavioural phenomena, such as belief persistence. This behaviour

creates biases in agent evaluations—biases that models attempt to exploit in applications

such as momentum strategies.

However, the action of models tends to destroy the same sources of profit that they are

trying to exploit. This fact receives attention in applications such as measuring the impact

of trades. In almost all current implementations, measuring the impact of trades means

measuring the speed at which models constrain markets to return to an unprofitable

efficiency. To our knowledge, no market impact model attempts to measure the opposite

effect, that is, the eventual momentum induced by a trade.

It is reasonable to assume that the diffusion of models will reduce the mispricings due

to behavioural phenomena. However, one might reasonably ask whether the action of
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models will ultimately make markets more efficient, destroying any residual profitability

in excess of market returns, or if the action of models will create new opportunities that

can be exploited by other models, eventually by a new generation of models based on an

accurate analysis of model biases. It is far from being obvious that markets populated by

agents embodied in mathematical models will move toward efficiency. In fact, models

might create biases of their own. For example, momentum strategies (buy winners, sell

losers) are a catalyst for increased momentum, farther increasing the price of winners and

depressing the price of losers.

This subject has received much attention in the past as researchers studied the

behaviour of markets populated by boundedly rational agents. While it is basically

impossible, or at least impractical, to code the behaviour of human agents, models belong

to a number of well-defined categories that process past data to form forecasts. Studies,

based either on theory or on simulation, have attempted to analyse the behaviour of

markets populated by agents that have bounded rationality, that is, filter past data to form

forecasts.2 One challenge going forward will be to understand what type of inefficiencies

are produced by markets populated by automatic decision-makers whose decisions are

based on past data. It is foreseeable that simulation and artificial markets will play a

greater role as discovery devices.
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CHAPTER 2

Portfolio Optimization under the
Value-at-Risk Constraint
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2.1 INTRODUCTION

M ANAGERS LIMIT THE RISKINESS of their traders by imposing limits on the risk of their

portfolios. Lately, the Value-at-Risk (VaR) risk measure has become a tool used to

accomplish this purpose. The increased popularity of this risk measure is due to the fact

that VaR is easily understood. It is the maximum loss of a portfolio over a given horizon,

at a given confidence level. The Basle Committee on Banking Supervision requires U.S.

banks to use VaR in determining the minimum capital required for their trading

portfolios.

In the following we give a brief description of the existing literature. Basak and Shapiro

(2001) analyse the optimal dynamic portfolio and wealth-consumption policies of utility

maximizing investors who must manage risk exposure using VaR. They find that VaR risk
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managers pick a larger exposure to risky assets than non-risk managers, and consequently

incur larger losses when losses occur. In order to fix this deficiency they choose another

risk measure based on the risk-neutral expectation of a loss. They call this risk measure

Limited Expected Loss (LEL). One drawback of their model is that the portfolios VaR is

never re-evaluated after the initial date, making the problem a static one. In a similar

setup, Berkelaar et al. (2002) show that, in equilibrium, VaR reduces market volatility, but

in some cases raises the probability of extreme losses. Emmer et al. (2001) consider a

dynamic model with Capital-at-Risk (a version of VaR) limits. However, they assume that

portfolio proportions are held fixed during the whole investment horizon and thus the

problem becomes a static one as well.

Cuoco et al. (2001) develop a more realistic dynamically consistent model of the

optimal behaviour of a trader subject to risk constraints. They assume that the risk of the

trading portfolio is re-evaluated dynamically by using the conditioning information, and

hence the trader must satisfy the risk limit continuously. Another assumption they make is

that when assessing the risk of a portfolio, the proportions of different assets held in the

portfolio are kept unchanged. Besides the VaR risk measure, they consider a coherent risk

measure Tail Value at Risk (TVaR), and establish that it is possible to identify a dynamic

VaR risk limit equivalent to a dynamic TVaR limit. Another of their findings is that the

risk exposure of a trader subject to VaR and TVaR limits is always lower than that of an

unconstrained trader.

Pirvu (2005) started with the model of Cuoco et al. (2001). We find the optimal growth

portfolio subject to these risk measures. The main finding is that the optimal policy is a

projection of the optimal portfolio of an unconstrained log agent (the Merton proportion)

onto the constraint set with respect to the inner product induced by the volatility matrix of

the risky assets. Closed-form solutions are derived even when the constraint set depends on

the current wealth level.

Cuoco and Liu (2003) study the dynamic investment and reporting problem of a

financial institution subject to capital requirements based on self-reported VaR estimates.

They show that optimal portfolios display a local three-fund property. Leippold et al.

(2002) analyse VaR-based regulation rules and their possible distortion effects on financial

markets. In partial equilibrium the effectiveness of VaR regulation is closely linked to the

leverage effect, the tendency of volatility to increase when the prices decline.

Vidovic et al. (2003) considered a model with time-dependent parameters, but the risk

constraints were imposed in a static fashion.

Yiu (2004) looks at the optimal portfolio problem, when an economic agent is

maximizing the utility of her intertemporal consumption over a period of time under a

dynamic VaR constraint. A numerical method is proposed to solve the corresponding HJB

equation. They find that investment in risky assets is optimally reduced by the VaR

constraint. Atkinson and Papakokinou (2005) derive the solution to the optimal port-

folio and consumption subject to CaR and VaR constraints using stochastic dynamic

programming.

This paper extends Pirvu (2005) by allowing for intertemporal consumption. We address

an issue raised by Yiu (2004) and Atkinson and Papakokinou (2005) by considering a
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market with random coefficients. It was also suggested as a new research direction by

Cuoco et al. (2001). To the best of our knowledge this is the first work in portfolio choice

theory with CRRA-type preferences, time-dependent market coefficients, incomplete

financial markets, and dynamically consistent risk constraints in a Brownian motion

framework.

2.1.1 Our Contribution

We propose a new approach with the potential for numerical applications. The main idea

is to consider, on every probabilistic path, an auxiliary deterministic control problem,

which we analyse. The existence of a solution of the deterministic control problem does

not follow from classical results. We establish it and we also show that first-order necessary

conditions are also sufficient for optimality. We prove that a solution of this deterministic

control problem is the optimal portfolio policy for a given path. The advantage of our

method over classical methods is that it allows for a better numerical treatment.

The remainder of this chapter is organized as follows. Section 2.2 describes the model,

including the definition of the Value-at-Risk constraint. Section 2.3 formulates the

objective and shows the limitations of the stochastic dynamic programming approach in

this context. Section 2.4 treats the special case of logarithmic utility. The problem of

maximizing expected logarithmic utility of intertemporal consumption is solved in closed

form. This is done by reducing it to a nonlinear program, which is solved pathwise. One

finding is that, at the final time, the agent invests the least proportion of her wealth in

stocks. The optimal policy is a projection of the optimal portfolio and consumption of an

unconstrained agent onto the constraint set. Section 2.5 treats the case of power utility, in

the totally unhedgable market coefficients paradigm (see Example 2.7.4, p. 305 of Karatzas

and Shreve 1998). The stochastic control portfolio problem is transformed into a

deterministic control problem. The solution is characterized by the Pontryagin maximum

principle (first-order necessary conditions). Section 2.6 contains an appropriate discretiza-

tion of the deterministic control problem. It leads to a nonlinear program that can be

solved by standard methods. It turns out that the necessary conditions of the discretized

problem converge to the necessary conditions of the continuous problem. For numerical

experiments, one can use NPSOL, a software package for solving constrained optimization

problems that employs a sequential quadratic programming (SQP) algorithm. We end this

section with some numerical experiments. The conclusions are summarized in Section 2.7.

We conclude the paper with an appendix containing the proofs of the lemmas.

2.2 MODEL DESCRIPTION

2.2.1 The Financial Market

Our model of a financial market, based on a filtered probability space

ðO; fF tg0�t�1;F ;PÞ satisfying the usual conditions, consists of m � 1 assets. The first,

fS0ðtÞgt2½0;1
, is a riskless bond with a positive interest rate r, i.e. dS0ðtÞ ¼ S0ðtÞr dt . The

remaining m are stocks and evolve according to the following stochastic differential

equation:
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dSiðtÞ ¼ SiðtÞ aiðtÞdt þ
Xn

j¼1

sijðtÞdWjðtÞ
" #

;

0 � t � 1; i ¼ 1; . . . ;m;

ð2:1Þ

where the process fW ðtÞgt2½0;1Þ ¼ fðWjðtÞÞj¼1;...;ngt2½0;1Þ is an n-dimensional standard

Brownian motion. Here, faðtÞgt2½0;1Þ ¼ fðaiðtÞÞi¼1;...;mgt2½0;1Þ is an Rm-valued mean rate

of return process, and fsðtÞgt2½0;1Þ ¼ fðsijðtÞÞ
j¼1;...;n

i¼1;...;mgt2½0;1Þ is an m�n matrix-valued

volatility process. We impose the following regularity assumptions on the coefficient

processes a(t) and s(t).

� All the components of the process faðtÞgt2½0;1Þ are assumed positive, continuous and

fF tg-adapted.

� The matrix-valued volatility process fsðtÞgt2½0;1Þ is assumed continuous, fF tg-
adapted and with linearly independent rows for all t 2 ½0;1Þ, a.s.

The last assumption precludes the existence of a redundant asset and arbitrage

opportunities. The rate of excess return is the Rm-valued process fmðtÞgt2½0;1Þ ¼
fðmiðtÞÞi¼1;...;mgt2½0;1Þ, with miðtÞ ¼ aiðtÞ 
 r, which is assumed positive. This also covers

the case of an incomplete market if n �m (more sources of randomness than stocks).

2.2.2 Consumption, Trading Strategies and Wealth

In this model the agent is allowed to consume. The intermediate consumption process,

denoted fCðtÞgt2½0;1Þ, is assumed positive, and fF tg-progressively measurable. Let

fðzðtÞ; cðtÞÞgt2½0;1Þ ¼ fðziðtÞi¼1;...;m; cðtÞgt2½0;1Þ be an Rmþ1-valued portfolio-proportion

process. At time t its components are the proportions of the agent’s wealth invested in

stocks, z(t), and her consumption rate, c(t). An R
mþ1-valued portfolio-proportion process is

called admissible if it is fF tg-progressively measurable and satisfies

Z t

0

zTðuÞmðuÞ
�� ��du þ

Z t

0

zTðuÞsðuÞ
�� ��2

du

þ
Z t

0

cðuÞdu <1; a.s.; 8t 2 ½0;1Þ;
ð2:2Þ

where, as usual, I �I is the standard Euclidean norm in R
m. Given fðzðtÞ; cðtÞÞgt2½0;1Þ is a

portfolio-proportion process, the leftover wealth Xz;cðtÞð1

Pm

i¼1 ziðtÞÞ is invested in the

riskless bond S0(t). It may be that this quantity is negative, in which case we are borrowing

at rate r � 0. The dynamics of the wealth process fXz;cðtÞgt2½0;1Þ of an agent using the

portfolio-proportion process fðzðtÞ; cðtÞÞgt2½0;1Þ is given by the following stochastic

differential equation:
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dXz;cðtÞ ¼ Xz;cðtÞ zTðtÞaðtÞ 
 cðtÞ
� 	

dt þ zTðtÞsðtÞdW ðtÞ
� 	

þ 1

Xm

i¼1

ziðtÞ
 !

Xz;cðtÞr dt

¼ Xz;cðtÞ r 
 cðtÞ þ zTðtÞmðtÞ
� 	

dt

þ zTðtÞsðtÞdW ðtÞÞ:

Let us define the p-quadratic correction to the saving rate r:

Qpðt ; z; cÞ¼
4

r 
 c þ zTmðtÞ þ p 
 1

2
zTsðtÞ
�� ��2

: ð2:3Þ

The above stochastic differential equation has a unique strong solution if (2.2) is satisfied

and is given by the explicit expression

Xz;cðtÞ ¼ Xð0Þ exp

�Z t

0

Q0ðu; zðuÞ; cðuÞÞdu þ
Z t

0

zTðuÞsðuÞdW ðuÞ


: ð2:4Þ

The initial wealth Xz;cð0Þ ¼ Xð0Þ takes values in (0,�) and is exogenously given.

2.2.3 Value-at-Risk Limits

For the purposes of risk measurement, one can use an approximation of the distribution

of the investor’s wealth at a future date. A detailed explanation of why this practice should

be employed can be found on p. 8 of Cuoco et al. (2001) (see also p. 18 of Leippold et al.

(2002)). Given a fixed time instance t ] 0, and a length t � 0 of the measurement

horizon [t, t � t], the projected distribution of wealth from trading and consumption is

usually calculated under the assumptions that

1. the portfolio proportion process fðzðuÞ; cðuÞÞgu2½t ;tþt
, as well as

2. the market coefficients fðaðuÞgu2½t ;tþt
Þ and fðsðuÞgu2½t ;tþt
,

will stay constant and equal their present value throughout [t, t �t]. If t is small, for

example t � 1 trading day, the market coefficients will not change much and this

supports assumption 2. The wealth’s dynamics equation yields the projected wealth at t�t:

Xz;cðt þ tÞ ¼ Xz;cðtÞ exp
�

Q0ðt ; zðtÞ; cðtÞÞt
þ zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ

�
;

whence the projected wealth loss on the time interval [t, t�t] is

X z;cðtÞ 
 Xz;cðt þ tÞ ¼ Xz;cðtÞ½1
 exp
�

Q0ðt ; zðtÞ; cðtÞÞt
þ zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ

��
:
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The random variable zTðtÞsðtÞðW ðt þ tÞ 
W ðtÞÞ is, conditionally on F t , normally

distributed with mean zero and standard deviation kzTðtÞsðtÞk
ffiffiffi
t
p

. Let the confidence

parameter a 2 ð0; 1=2
 be exogenously specified. The a-percentile of the projected loss

X z;cðtÞ 
 Xz;cðt þ tÞ conditionally on F t is

X z;cðtÞ
�
1
 exp

�
Q0ðt ; zðtÞ; cðtÞÞtþ N
1ðaÞkzTðtÞsðtÞk

ffiffiffi
t
p ��

;

where N( �) denotes the standard cumulative normal distribution function. This prompts

the Value-at-Risk (VaR) of projected loss

VaRðt ; z; c; xÞ¼4 x
�
1
 exp

�
Q0ðt ; z; cÞtþ N
1ðaÞ

��zTsðtÞ
�� ffiffiffi

t
p ��þ

:

Let aV �(0,1) be an exogenous risk limit. The Value-at-Risk constraint is that the agent at

every time instant t ] 0 must choose a portfolio proportion (z(t), c(t)) that would result

in a relative VaR of the projected loss on [t, t�t] less than aV. This, strictly speaking, is the

set of all admissible portfolios which, for all t ] 0, belong to FV(t), defined by

FV ðtÞ¼
4 ðz; cÞ 2 Rm � ½0;1Þ; VaRðt ; z; c; xÞ

x
� aV

� 

: ð2:5Þ

The fraction VaRux rather than VaR is employed, whence the name relative VaR. If one

imposes VaR in absolute terms, the constraint set depends on the current wealth level and

this makes the analysis more involved (see Cuoco et al. 2001; Pirvu 2005). For a given path

v let us denote oðtÞ ¼ ðosÞs�t as the projection up to time t of its trajectory. One can see

that, for a fixed vt, the set FV(t) is compact and convex, being the level set of a convex,

unbounded function fV(t, z, c),

FV ðtÞ ¼ ðz; cÞ 2 Rm � ½0;1Þ; fV ðt ; z; cÞ � log
1

1
 aV

( )
;

where

fV ðt ; z; cÞ¼
4 
 Q0ðt ; z; cÞt
 N
1ðaÞ

��zTsðtÞ
�� ffiffiffi

t
p
: ð2:6Þ

The function fV, although quadratic in z and linear in c, may still fail to be convex in (z, c)

if a]1u2, thus FV (t) may not be a convex set (see Figure 2.1, p. 10 of Cuoco et al. 2001).

However, the choice of a 2 ð0; ð1=2Þ
 makes N
1ðaÞ � 0 and this yields convexity.

2.3 OBJECTIVE

Let finite time horizon T and the discount factor d (the agent’s impatient factor) be

primitives of the model. Given X(0), the agent seeks to choose an admissible portfolio-

proportion process such that ðzðtÞ; cðtÞÞ 2 FV ðtÞ for all 05t5T, and the expected value

of her CRRA utility of intertemporal consumption and final wealth,
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Z T

0

e
dt UpðCðtÞÞdt þ e
dT UpðXz;cðT ÞÞ; ð2:7Þ

is maximized over all admissible portfolios processes satisfying the same constraint. Here,

UpðxÞ¼
4

xp=p, with pB1 the coefficient of relative risk aversion (CRRA). Let us assume for

the moment that the market coefficients are constants. In this case the constraint set FV(t)

does not change over time and we denote it by FV. Then one can use dynamic

programming techniques to characterize the optimal portfolio and consumption policy.

The problem is to find a solution to the HJB equation. Define the optimal value function as

V ðx; tÞ ¼ max
ðz;cÞ2FV

Et

Z T

t

e
dt UpðCðuÞÞdu þ e
dT Up Xz;cðT Þ
� 	� �

;

where Et is the conditional operator given the information known up to time t and

Xz;cðtÞ ¼ x. The HJB equation is

max
ðz;cÞ2FV

Jðt ; x; z; cÞ ¼ 0;

where

Jðt ; x; c; zÞ¼4 e
dt UpðcxÞ þ @V

@t
þ x r 
 c þ zTm
� 	 @V

@x

þ kz
Tsk2

x2

2

@2V

@x2
;

with the boundary condition V ðx;T Þ ¼ e
dT UpðxÞ. The value function V inherits the

concavity of the utility functions Up. Being jointly concave in (z, c), the function J is

maximized over the set FV at a unique point ð z; cÞ. Moreover, this point should lie on the

boundary of FV and one can derive first-order optimality conditions by means of Lagrange

multipliers. Together with the HJB equation this yields a highly nonlinear PDE that is hard

to solve numerically (a numerical scheme was proposed by Yiu (2004), but no convergence

result was reported). In the following we approach the portfolio optimization problem by

reducing it to a deterministic control problem. We are then able to obtain explicit solutions

for logarithmic utility.

2.4 LOGARITHMIC UTILITY

Let us consider the case where the agent is deriving utility from intermediate consumption

only. It is straightforward to extend it to also encompass the utility of the final wealth. In

light of (2.4),
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log Xz;cðtÞ ¼ log Xð0Þ þ
Z t

0

Q0ðs; zðsÞ; cðsÞÞds

þ
Z t

0

zTðsÞsðsÞdW ðsÞ:
ð2:8Þ

What facilitates the analysis is the decomposition of the utility from intertemporal

consumption into a signal, a Lebesque integral and noise, which comes at an Itô integral

rate. The decomposition is additive and the expectation operator cancels the noise. Indeed,

Z T

0

e
dt log CðtÞdt ¼
Z T

0

e
dt log ðcðtÞXz;cðtÞÞdt

¼ 1
 e
dT

d
log Xð0Þ þ

Z T

0

e
dt log cðtÞdt

þ
Z T

0

Z t

0

e
dt Q0ðs; zðsÞ; cðsÞÞds dt

þ
Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt :

By Fubini’s theorem

Z T

0

Z t

0

e
dt Q0ðs; zðsÞ; cðsÞÞds dt ¼
Z T

0

Z T

s

e
dt Q0ðs; zðsÞ; cðsÞÞdt

� �
ds

¼
Z T

0

e
dt 
 e
dT

d
Q0ðt ; zðtÞ; cðtÞÞdt ;

hence

Z T

0

e
dt log CðtÞdt ¼ 1
 e
dT

d
log Xð0Þ

þ
Z T

0

e
dt log cðtÞ þ 1

d
ð1
 e
dðT
tÞÞQ0ðt ; zðtÞ; cðtÞÞ

� �
dt

þ
Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt :

ð2:9Þ

The linearly independent rows assumption on the matrix-valued volatility process yields

the existence of the inverse ðsðtÞsTðtÞÞ
1
and so equation

sðtÞsTðtÞzMðtÞ ¼ mðtÞ ð2:10Þ

uniquely defines the stochastic process fzMðtÞgt2½0;1Þ ¼ fðsðtÞðsTðtÞÞ
1mðtÞgt2½0;1Þ, called

the Merton-ratio process. It has the property that it maximizes (in the absence of portfolio

constraints), the rate of growth, and the log-optimizing investor would invest exactly using
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the components of zM(t) as portfolios proportions (see Section 3.10 of Karatzas and Shreve

1991). By (2.10)

zT
MðtÞsðtÞ

�� ��2¼ zT
MðtÞmðtÞ ¼ mTðtÞðsðtÞsTðtÞÞ
1mðtÞ: ð2:11Þ

The following integrability assumption is rather technical, but it guarantees that a local

martingale (Itô integral) is a (true) martingale (see p. 130 of Karatzas and Shreve 1991).

Let us assume that

E

Z T

0

zT
MðuÞsðuÞ

�� ��2
du <1: ð2:12Þ

This requirement, although imposed on the market coefficients (see Equation (2.11)), is

also inherited for all portfolios satisfying the Value-at-Risk constraint.

Lemma 2.1: For every ðzðtÞ; cðtÞÞ 2 FV ðtÞ the process
R t

0
zTsðsÞsðsÞ dW ðsÞ, t �[0,T ], is a

martingale, hence E
R t

0
zTðsÞsðsÞ dW ðsÞ ¼ 0.

Proof: See Appendix 2.A. I

In light of this lemma, the expectation of the noise vanishes, i.e.

E

Z T

0

e
dt

Z t

0

zTðsÞsðsÞdW ðsÞdt ¼ 0;

after interchanging the order of integration. Thus, taking expectation in the additive

utility decomposition (2.9),

E

Z T

0

e
dt log CðtÞdt ¼ 1
 e
dT

d
log Xð0Þ

þ E

Z T

0

e
dt

�
log cðtÞ þ 1

d
1
 e
dðT
tÞ� 	

� Q0ðt ; zðtÞ; cðtÞÞ
�

dt :

ð2:13Þ

Therefore, to maximize

E

Z T

0

e
dt log CðtÞdt

over the constraint set, it suffices to maximize

gðt ; z; cÞ¼4 log cðtÞ þ 1

d
1
 e
dðT
tÞ� 	

Q0ðt ; zðtÞ; cðtÞÞ ð2:14Þ
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pathwise over the constraint set. For a fixed path v and a time instance t, we need to solve

ðP1Þ maximize gðt ; z; cÞ;

subject to fV ðt ; z; cÞ¼
4 
 Q0ðt ; z; cÞt
 N
1ðaÞkzTsðtÞk

ffiffiffi
t
p
� log

1

1
 aV

:

The optimal policy for an agent maximizing her logarithmic utility of intertemporal

consumption without the risk constraint is to hold the proportion fðzMðtÞ; cMðtÞÞgt2½0;T 
,

where cMðtÞ¼
4
d=½1
 e
dðT
tÞ
 (the optimum of (P1) without the constraint is

ðzMðtÞ; cMðtÞÞÞ.

Lemma 2.2: The solution of (P1) is given by

�zðtÞ ¼ ð1 ^ ðbðtÞ _ 0ÞÞzMðtÞ; ð2:15Þ

�cðtÞ ¼ uðt ; ð1 ^ bðtÞÞÞcMðtÞ1fbðtÞ> 0g

þ r þ 1

t
log

1

1
 aV

 !
1fbðtÞ�0g;

ð2:16Þ

where b(t) is the root of the equation

fV ðt ; zzMðtÞ; uðt ; zÞcMðtÞÞ ¼ log
1

1
 aV

ð2:17Þ

in the variable z, with

uðt ; zÞ¼4 1þ
ffiffiffi
t
p

zT
MðtÞsðtÞ

�� ��

N
1ðaÞ
ð1
 zÞ: ð2:18Þ

Proof: See Appendix 2.A. I

Theorem 2.3: To maximize the logarithmic utility of intertemporal consumption,

E

Z T

0

e
dt log CðtÞ dt ;

over processes ðzðtÞ; cðtÞÞ 2 FV ðtÞ, 05t5T, the optimal portfolio is fð�zðtÞ; �cðtÞÞgt2½0;T 
.

Proof: This is a direct consequence of (2.13) and Lemma 2.2. I
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Remark 1: Since at the final time cMðT Þ ¼ 1 and �cðtÞ is bounded we must have

b(T)50, so �zðT Þ ¼ 0, and this means that, at the final time, the agent invests the least

proportion (in absolute terms) of her wealth in stocks. By (2.15) and (2.16) it follows that
�zðtÞ � zMðtÞ, and �cðtÞ � cMðtÞ, for any 05t5T, which means that the constrained agent

is consuming and investing less in the risky assets than the unconstrained agent. Let T1 and

T2 be two final time horizons, T1 �T2. Because cMðt ;T1Þ< cM (t, T2), from Equations

(2.15) and (2.16) we conclude that bðt ;T1Þ> bðt ;T2Þ, hence �zðt ;T1Þ> �zðt ;T2Þ, and

�cðt ;T1Þ> �cðt ;T2Þ. Therefore, long-term agents can afford to invest more in the stock

market and consume more than short-term agents (in terms of proportions).

2.5 NONLOGARITHMIC UTILITY

Let us recall that we want to maximize the expected CRRA utility (UpðxÞ ¼ xp=p;p " 0)

from intertemporal consumption and terminal wealth,

E

Z T

0

e
dt UpðCðtÞÞdt þ Ee
dT UpðXz;cðT ÞÞ; ð2:19Þ

over portfolio-proportion processes satisfying the Value-at-Risk constraint, i.e.

ðzðtÞ; cðtÞÞ 2 FV ðtÞ, 05t5T. One cannot obtain an additive decomposition into signal

and noise as in the case of logarithmic utility. However, a multiplicative decomposition

can be performed. By (2.7),

UpðXz;cðtÞÞ ¼Xpð0Þ
p

exp

Z t

0

pQ0ðs; zðsÞ; cðsÞÞds þ
Z t

0

pzTðsÞsðsÞdW ðsÞ
� �

¼Xpð0Þ
p

exp

 Z t

0

pQpðs; zðsÞ; cðsÞÞ 

1

2
p2kzTðsÞsðsÞk2

� �
ds

þ
Z t

0

pzTðsÞsðsÞdW ðsÞ
!
¼ Xpð0Þ

p
N z;cðtÞZ zðtÞ;

where

N z;cðtÞ¼4 exp

Z t

0

pQpðs; zðsÞ; cðsÞÞds

� �
; ð2:20Þ

Z zðtÞ¼4 exp 
 1

2

Z t

0

p2jjzTðsÞsðsÞjj2ds

� �

þ
Z t

0

pzTðsÞsðsÞdWðsÞÞ;
ð2:21Þ

with Qp defined in (2.3). By taking expectation,
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EUpðXz;cðtÞÞ ¼ Xpð0Þ
p

EðN z;cðtÞZ zðtÞÞ: ð2:22Þ

The process N z,c(t) is the signal and Z z(t), a stochastic exponential, is the noise. Stochastic

exponentials are local martingales, but if we impose the assumption

E exp
p2

2

Z T

0

zT
MðuÞsðuÞ

�� ��2
du

� �� �
<1 ð2:23Þ

on market coefficients (see Equation (2.11)), the process Z z(t) is a (true) martingale for all

portfolio processes satisfying the constraint, as the following lemma shows.

Lemma 2.4: For every ðzðtÞ; cðtÞÞ 2 FV ðtÞ the process Z z(t), t �[0, T ], is a martingale,

hence EZ zðtÞ ¼ 1.

Proof: See Appendix 2.A. I

As for utility from intertemporal consumption,

Z T

0

e
dt UpðCðtÞÞdt ¼
Z T

0

e
dt UpðXz;cðtÞcðtÞdt

¼ Xpð0Þ
p

Z T

0

e
dt cpðtÞN z;cðtÞZ zðtÞdt :

ð2:24Þ

We claim that

E

Z T

0

e
dt cpðtÞN z;cðtÞðZ zðtÞ 
 Z zðT ÞÞdt

� �
¼ 0:

Indeed, by conditioning and Lemma 2.4 we obtain

E cpðtÞN z;cðtÞ Z zðtÞ 
 Z zðT Þ
� 	� 	

¼ E E cpðtÞN z;cðtÞ Z zðtÞ 
 Z zðT Þ
� 	

jF t

� �� 	

¼ E cpðtÞN z;cðtÞE Z zðtÞ 
 Z zðT Þ
� 	

jF t

� �� 	

¼ 0;

and Fubini’s theorem proves the claim. Hence, combined with (2.24), we obtain

E

Z T

0

e
dt UpðCðtÞÞdt ¼ Xpð0Þ
p

E Z zðT Þ
Z T

0

e
dt cpðtÞN z;cðtÞdt

� �
: ð2:25Þ

The decomposition for the total expected utility (Equations (2.22) and (2.25)) is
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E

Z T

0

e
dt UpðCðtÞÞdt þ Ee
dT Up Xz;cðT Þ
� 	

¼ Xpð0Þ
p

E Z zðT ÞY z;cðT Þ
� 	

;

ð2:26Þ

where the signal Yz, c(T) is given by

Y z;cðT Þ ¼
Z T

0

e
dt cpðtÞN z;cðtÞdt þ e
dT N z;cðT Þ; ð2:27Þ

with N z, c(t) defined in (2.20). It appears natural at this point to maximize Y z, c(T)

pathwise over the constraint set. For a given path v, the existence of an optimizer

fð�zðt ;oÞ; �cðt ;oÞÞgt2½0;T 
 is given by Lemma 2.5. Note that N z; cðt ;oÞ depends on the

trajectory of ðzð�;oÞ; cð�;oÞÞ on [0,t] so one is faced with a deterministic control problem.

From now on, to keep the notation simple we drop v. In the language of deterministic

control we can write (2.27) as a cost functional I [x, u] given in the form

I ½x; u
 ¼ gðxðT ÞÞ þ
Z T

0

f0ðt ; xðtÞ; uðtÞÞdt ; gðxÞ¼4 e
dT x; ð2:28Þ

where u�(z,c) is the control, x is the state variable, and the function

f0ðt ; x; uÞ¼
4

e
dt cpx ð2:29Þ

is defined on the set

A ¼ fðt ; x; uÞjðt ; xÞ 2 ½0;T 
 � ð0;K 
; uðtÞ 2 FV ðtÞg � R
mþ3: ð2:30Þ

The dynamics of the state variable is given by the differential equation

dx

dt
¼ f ðt ; xðtÞ; uðtÞÞ; 0 � t � T ; ð2:31Þ

with the boundary condition x(0)�1, where

f ðt ; x; uÞ¼4 x pr 
 pc þ pzTmðtÞ þ pð p 
 1Þ
2

zTsðtÞ
�� ��2

� �
: ð2:32Þ

The constraints are ðt ; xðtÞÞ 2 ½0;T 
 � ð0;K 
 and u(t) �FV(t). Due to the compactness of

the set FV(t), 05t5T, it follows that K B�. A pair (x, u) satisfying the above conditions is

called admissible. The problem of finding the maxima of I [x, u] within all admissible pairs

(x, u) is called the Bolza control problem. Classical existence theory for deterministic control

does not apply to the present situation and we proceed with a direct proof of existence.
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Lemma 2.5: There exists a solution f�uðtÞg0�t�T ¼
4 fð�zðtÞ; �cðtÞÞg0�t�T for the Bolza control

problem defined above.

Proof: See Appendix 2.A. I

An optimal solution f�uðtÞg0�t�T ¼
4 fð�zðtÞ; �cðtÞÞg0�t�T is characterized by a system of

forward backward equations (also known as the Pontryagin maximum principle). Let
~l ¼ ðl0; l1Þ be the adjoint variable and

Hðt ; x; u; ~lÞ ¼ l0 f0ðt ; x; uÞ þ l1 f ðt ; x; uÞ

the Hamiltonian function. The necessary conditions for the Bolza control problem (the

Pontryagin maximum principle) can be found in Cesari (1983) (Theorem 2.5.1.i). In

general, they are not sufficient for optimality. We prove that, in our context, the necessary

conditions are also sufficient, as the following lemma shows.

Lemma 2.6: A pair �xðtÞ; �uðtÞ ¼ ð�zðtÞ; �cðtÞÞ 2 FV ðtÞ, 05t5T, is optimal, i.e. it gives the

maximum for the functional I [x, u], if and only if there is an absolutely continuous non-zero

vector function of Lagrange multipliers �l ¼ ðl0; l1Þ, 05t5T, with l0 a constant, l0]0, such

that the function MðtÞ¼4 Hðt ; �xðtÞ; �uðtÞ; �lðtÞÞ is absolutely continuous and one has

1. adjoint equations:

dM

dt
¼ Htðt ; �xðtÞ; �uðtÞ; �lðtÞÞ a:e:; ð2:33Þ

dl1

dt
¼ 
Hxðt ; �xðtÞ; �uðtÞ; �lðtÞÞ a:e:; ð2:34Þ

2. maximum condition:

�uðtÞ 2 arg maxv2FV ðtÞHðt ; �xðtÞ; v; �lðtÞÞ a:e:; ð2:35Þ

3. transversality:

l1ðT Þ ¼ l0g 0ð�xðT ÞÞ: ð2:36Þ

Proof: See Appendix 2.A. I

The following technical requirement on the market coefficients is sufficient to make

fð�zðtÞ; �cðtÞÞgt2½0;T 
 an optimal portfolio process for maximizing the CRRA utility under

the Value-at-Risk constraint, as Theorem 2.7 shows. We assume that market coefficients are
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