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and treatment techniques and therapies to effectively manage all BPD cases.

Key benefits include:
•  groundbreaking research—covers the latest discoveries in BPD genetics, 

epidemiology, and pathogenesis, as well as current—and sometimes 
controversial—therapies to help clinicians properly detect the disease and 
choose the best treatment plan 

•  expert editorship—Dr. Steven H. Abman, Director of the Pediatric Heart 
Lung Center, and a team of 49 highly experienced and respected contributors 
provide authoritative advice physicians can rely on

•  timely, stand-alone resource—this one-stop, convenient guide 
discusses all of the current, critical information clinicians need to manage the 
increase in diagnosed children

•  well-organized content—four clear and highly structured sections give 
busy physicians quick access to the key diagnostic and therapeutic intricacies 
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Introduction

Bronchopulmonary dysplasia (BPD) is a complex and challenging disease.
Since its original description by William Northway and his colleagues in
1967, many significant advances have occurred. Yet, it remains a major
cause of mortality and morbidity in premature neonates, the rates of which
are inversely related to the birth weight.

This new volume, Bronchopulmonary Dysplasia, edited by Dr Steven
Abman, presents the most recent progress to its readership. The role of genetic
determinants and of individual and environmental factors in the occurrence and
severity of BPD are extensively addressed throughout the chapters. Of great
interest is the discussion of biomarkers in BPD, as eventually they may help
predict the occurrence of the disease and thus lead to early application of
therapeutic options. This has the potential to reduce mortality and may limit
long-term consequences of the disease.

Recent studies underscore the significance of these consequences, that is,
residual lung structural changes very similar to those caused by emphysema (1–3).
This concept is not new as for years neonatologists and pediatricians have
called BPD a “chronic lung disease of early infancy.”

Today, chronic bronchitis and emphysema (currently termed chronic
obstructive pulmonary disease—COPD) are recognized as major worldwide
public health problems. Although smoking is undoubtedly the main risk factor,
we are well aware of the occurrence of these diseases in nonsmokers. Thus,
emphysema-like lesions and bronchial obstruction that develop in survivors of
BPD underscore the need for extended basic and clinical research on BPD.
Undoubtedly, as stated in the Preface, this volume will “stimulate the next
generation of investigators and clinicians to further improve long-term out-
comes of prematurely born infants.”

As the executive editor of the series of monographs Lung Biology in
Health and Disease, I express my gratitude to Dr Abman for giving us the
opportunity to present this volume. Both neonatologists and pulmonologists
will benefit from it but, more important, their patients will as well.

Claude Lenfant, MD

Vancouver, Washington, U.S.A.
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Preface

Over 40 years ago, Dr William Northway and his colleagues at Stanford
described the clinical, radiologic, and pathologic features of a new disorder—
bronchopulmonary dysplasia (BPD). Their comprehensive phenotyping of
patients with chronic lung disease following premature birth included numerous
insights into the pathogenesis of the disease, including mechanistic links with
hyperoxia, ventilator-induced lung injury, inflammation and infection, and its
time course. This insightful, landmark study laid a strong foundation and
provided the basis for subsequent work in the field, setting the stage for
numerous advances in neonatal respiratory care. After all these years, many
of these basic observations remain central to our current understanding of
BPD.

BPD remains a disease partly defined and altered by its treatments.
Despite major differences in the nature of BPD that have followed the intro-
duction of surfactant therapy, prenatal steroids, and changes in neonatal care,
BPD remains a major cause of neonatal morbidity and mortality. As survival of
the tiniest of premature babies increases, many infants still develop significant
impairment of lung function, leading to prolonged ventilator and NICU
courses, frequent hospitalizations after NICU discharge, recurrent respiratory
exacerbations, and problems with late cardiorespiratory diseases.

Nearly 10 years ago, Drs Richard Bland and Jacqueline Coalson edited an
important volume that highlighted the current state of the art in our under-
standing of BPD (1). This book provided an important resource for basic
scientists, clinician-scientists, and practicing clinicians alike. Chapters provided
historical perspectives on BPD, highlighted basic mechanisms of lung develop-
ment, characterized the clinical course and treatment strategies of premature
infants at risk for developing BPD or with established BPD, and related topics.
Their book especially highlighted the changing epidemiology and clinical
course of premature newborns with BPD in the post-surfactant era, providing
in-depth reviews of normal lung development, mechanisms of lung injury and
repair, and clinical and pathologic features of the disease. In addition to its
state-of-the-art reviews, this previous volume was especially useful for helping
to define persistent questions and challenges for laboratory investigators and
clinicians to better understand and treat premature newborns at risk for BPD.
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Over the past decade, much work has been done to address the many
challenges of premature birth and to further extend our understanding of BPD.
The purpose of this current book is to simply provide an update of recent
progress made in this field, and to once again raise new questions worthy of
pursuit in the laboratory and clinical settings. The first section presents new
advances in lung development, including recent insights into molecular path-
ways and the integration of growth factors, transcription factors, and cell-cell
interactions in this process. The second section highlights mechanisms of lung
injury and repair that disrupt normal lung airspace and vascular growth, and
lead to the abnormalities of lung structure and function that characterize BPD.
The third section highlights novel insights into clinical aspects of BPD,
including new information on the genetic basis for BPD, its changing epidemi-
ology, clinical course, and physiology, and updated reviews of its treatment.
Finally, the fourth section presents an update on emerging therapies for the
prevention of BPD, based on recent preclinical studies and multicenter
randomized clinical trials.

Overall, this volume provides new insights into the pathobiology and
treatment of BPD. I dedicate this book to our patients and their families,
and hope that this work will help stimulate the next generation of investigators
and clinicians to further improve long-term outcomes of prematurely born
infants.

In addition, I would like to personally thank and acknowledge support in
my career as provided by “mentors from afar,” including Alan Jobe, Eduardo
Bancalari, Richard Bland, and Marlene Rabinovitch, as well as local friends
and colleagues who keep me in line, especially David Cornfield, John Kinsella,
Vivek Balasubramaniam, Jason Gien, and Peter Mourani. Finally, I thank my
family (Carolyn, Ryan, Lauren, Mark, and Megan) for their loving support.

Steven H. Abman, MD
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I. Lung Development and Bronchopulmonary Dysplasia

The major function of the human neonatal lung is to rapidly clear fluid from the airways
and to begin to exchange gas. The gas diffusion surface of the mature human neonatal
lung has a honeycomb-like structure, comprising extensively branched, perfectly
matched ducts for air and blood. This configuration maximizes the gas exchange surface
area between air and blood, and facilitates maximally efficient packing within the chest
cavity. In humans, the gas exchange membrane, which is about 1-mm thick, consists of
type I alveolar epithelial cells (AECI), basement membrane, and endothelial cells, with a
total surface area that increases in the adult to about 70 m2. This vast and complex
structure is developed sequentially by early epithelial tube branching and late septation
of terminal air sacs. Perturbation of this developmental process results in abnormal lung
structure and, hence, deficiency of the gas exchange function. Thus, premature human
delivery interrupts this developmental process, resulting in an injury response phenotype
that depends on the stage of lung maturity at the time of delivery. Northway et al. (1)
coined the term bronchopulmonary dysplasia (BPD) to label the clinical, radiographic,
and pathological features of chronic airway obstruction (broncho) and interstitial lung
disease (pulmonary) with emphysema-like alveolar destruction and abnormal peripheral
lung development (dysplasia). In those now far-off days respiratory distress syndrome
(RDS) due to a combination of delayed fluid clearance, structural immaturity, and
surfactant deficiency of the premature lung with the radiographic appearance of hyaline
membrane disease were recognized as the major etiological factors from about 32 up to
36 weeks’ gestation. Supportive treatment (oxygen plus pressure plus time) (2) plus fluid
overload and left-to-right shunting through a patent ductus arteriosus (3) were recog-
nized early on as the key postnatal, mostly iatrogenic, factors. With the widespread
implementation of prophylactic artificial surfactant therapy, coupled with improvements
in neonatal care including control of thermoregulation, judicious fluid therapy, gentler
ventilation, and so on, the threshold for survival in human prematurity moved steadily
downward toward 24 weeks’ gestation. In these extremely premature infants, alveola-
rization has barely started, and accordingly, the critical feature of the “new BPD” was
recognized to be alveolar hypoplasia (4). This chapter provides an overview of the
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integrated genetic and molecular processes that drive lung development and discusses
concisely how lung injury, repair, and regeneration impact them in the context of BPD.

II. Early Lung Development: The Bauplan of the Lung

The lung originates from the ventral surface of the primitive foregut at five weeks’
gestation in human. The lung anlage emerges as the laryngotracheal groove, located in
the ventral foregut endoderm, which invaginates into the surrounding splanchnic mes-
enchyme (Fig. 1). Then a pair of primary buds evaginate from the laryngotracheal
groove. The respiratory tree then develops by branching morphogenesis, in which
reiterated outgrowth, elongation, and subdivision of these epithelial buds occur in a
bilaterally asymmetrical pattern. Three lobes on the right side and two lobes on the left
side are formed in human lung. There are 23 generations of airway branching in human.
The first 16 generations branch stereotypically and are thus highly reproducible, and this
is completed by 16 weeks’ gestation, whereas the remaining 7 generations are random
and are completed by about 20 to 24 weeks’ gestation. Alveolarization begins around
20 weeks’ gestation in human and continues postnatally at least until 7 years of age.

A. Genes Controlling Induction of the Early Lung

Early lung induction is under control of many gene products that act cooperatively to
precisely define the location of laryngotracheal groove formation and specify proximal-
distal, dorsal-ventral, and left-right axes of the developing lung. The earliest endodermal
signals essential for gut morphogenesis and gut tube closure are the GATA (zinc finger
proteins that recognize GATA DNA sequence) and hepatocyte nuclear factor (HNF/Fox)
transcription factors. Foxa2 is required for gut tube closure, whereas GATA-6 is
required for activation of the lung developmental program in the foregut endoderm.
Hnf-3/Foxa2b is a survival factor for the endoderm, and its expression is induced by
Sonic hedgehog (Shh) signaling. Also, Tbx4 can induce ectopic bud formation in the
esophagus by activating the expression of Fgf10 (5). In addition, left-right asymmetry is
controlled by several gene products including nodal, Lefty-1,2, and Pitx-2. For example,
single-lobed lungs are found bilaterally in Lefty-1�/� mice, and isomerism of lung is
found in Pitx2 null mutants. Retinoids and their transcriptional factor receptors also play
key roles in induction of the early lung branching process.

B. Complexities of Distal Airway Branching: Some
Simplifying Concepts

At first sight, intrapulmonary airway branching in the developing lung distal to the
primary bronchi appears to become increasingly complicated as it proceeds distally and
the number of individual branches increases into the millions. But, once the laryngo-
tracheal complex and left-right laterality are established, distal airway branching is
thought to be driven by a master branch generator routine, with three slave subroutines
instructing a periodicity clock that times the appearance of subsequent branches, a
rotational orientation subroutine that determines the orientation of the branches around
the axis of the airway, and finally, a bifurcation subroutine (6,7). Thus, branching
morphogenesis of the bronchi in early mouse embryo lung can be parsed anatomically
into three simple geometric forms, termed domain branching, planar, and orthogonal
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Figure 1 Diagrams showing key events in human lung morphogenesis. (A) The primitive lung

anlage emerging as the laryngotracheal groove from the ventral surface of the primitive foregut at

five weeks’ gestation in human. (B) The primitive trachea separating dorsoventrally from the

primitive esophagus as the two primary bronchial branches arise from the lateral aspects of the

laryngotracheal groove at 5 � 6 weeks’ gestation in human. (C) The embryonic larynx and trachea

with the two primary bronchial branches separated dorsoventrally from the embryonic esophagus at

six weeks in human. (D) The primitive lobar bronchi branching from the primary bronchi at seven

weeks in human. (E) A schematic rendering of the term fetal airway in human. The stereotypically

reproducible, first 16 airway generations are complete by 16 weeks in human. Between 16 and

23 weeks, the branching pattern is random and is completed by about 24 weeks in human. Alveo-

larization begins after about 20 weeks in human and is complete by 7 years of age at the earliest.
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bifurcation. These basic forms are repeated iteratively to form different arrangements of
branches. These arrangements have been termed bottlebrush array, planar array, and
rosette array. The bottlebrush array describes the sequential proximal to distal emer-
gence of secondary branches along the airway. The bottlebrush mechanism can be
reoriented to form a second row of branches at right angles to the first row. The planar
and rosette arrays describe the patterns formed by sequential bifurcation of the tip of
secondary, tertiary, and subsequent buds at right angles to each other. Repetition of these
simple branching modules together with the hierarchical control and coupling of them
may therefore explain how the genome could encode the highly complex yet stereotypic
pattern of early bronchial branch formation using a relatively simple toolbox of genetic
modules. Genes that drive these specific processes are discussed later on in this chapter.

C. The Impact of Hydraulic Pressure and Airway Peristalsis

The embryonic lung is filled with liquid. Active chloride secretion through the cystic
fibrosis transmembrane conductance regulator (CFTR) and other chloride ion channels
attracts sodium and thus creates an osmotic gradient, which draws water into the lumen.
Lung liquid is produced from the earliest stages of embryonic lung development up to
delivery. The hydraulic pressure within the lung lumen is determined by the rate of
production of liquid together with the pinch-cock valve function of the primitive larynx.
Obstruction of fluid outflow by clipping or cauterization of the embryonic trachea
increases the intraluminal pressure by about two- to threefold. This is accompanied by a
threefold increase in branching of the airway. Most notably, the rate of bud extension
increases by about twofold whereas the interbud distance is halved. These effects of
increased intraluminal pressure depend on FGF10-FGFR2b-Sprouty signaling (8).
Several clinical trials have been made to determine whether tracheal obstruction to
increase intraluminal pressure can accelerate fetal lung maturation in human fetuses with
congenital diaphragmatic hernia. However, clinical opinion remains divided on whether
there is any therapeutic role for this highly risky intervention. Nevertheless, the con-
nection between physical force, morphogenetic signaling, and lung development is
clearly important, and nowhere this is more evident than in BPD where barotrauma
clearly plays a major role in the etiology. The discovery that waves of airway peristalsis
that are calcium-driven and originate in a rhythm generator in the proximal airways also
play a key role in embryonic lung development suggests that airway smooth muscle has
an essential function even very early in lung development.

D. Coupling of Endothelial (Blood and Lymphatic Capillaries) with
Epithelial Morphogenesis

Tight coupling of endothelial with epithelial development is also clearly important for
efficient gas transport and fluid clearance at birth. Capillary plexi surround the primitive
airway from the earliest stages of development. Vascular endothelial growth factor (VEGF)
signaling from the epithelium to the developing capillary endothelium is essential for the
development of the primitive capillary hemangioblasts into mature networks of capillary
endothelium. Likewise, the endothelium signals back to the epithelium to coordinate
morphogenesis of these tissue compartments. There is a constant stereotypic anatomical
relationship between the developing pulmonary capillaries, arteries, and veins (Fig. 2).

The arteries run along the superior surface of the developing lobules, whereas the
veins run along the interior surface. The lymphatics also develop under the control of the
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VEGFR3 isoform of VEGF receptor and play a key role in regulating lung interstitial
liquid content. Null mutation of VEGR3 markedly retards mobilization of fetal lung
liquid at birth because of lymphatic hypoplasia, leading to failure of lymphatic drainage
of interstitial fluid.

III. Histological Stages in Lung Development

Histologically, lung development and maturation has been divided into four stages: the
pseudoglandular stage, the canalicular stage, the terminal sac stage, and the alveolar
stage (Fig. 3).

A. The Pseudoglandular Stage (5–17 Weeks of Human Pregnancy,
Embryonic E9.5–16.6 Days in Mouse Embryo)

This is the earliest lung development stage in which the embryonic lung undergoes
branching morphogenesis developing epithelial tubular structures with lining cuboidal
epithelial cells that resemble an exocrine gland. However, this fluid-filled respiratory
tree structure is too immature to perform efficient gas exchange.

B. The Canalicular Stage (16–25 Weeks of Human Pregnancy,
E16.6–E17.4 Days in Mouse Embryo)

The cranial part of the lung develops relatively faster than the caudal part, resulting in
partial overlap between this stage and the previous stage. During the canalicular stage,

Figure 2 Blood vessels of the developing lung are shown at E12.5 in a special transgenic mouse.

The blue signal is generated by staining for LacZ, driven in endothelial cells by the Flk-1 (VEGF

receptor) promoter. Source: Artwork by Pierre del Moral. Abbreviations: PA, pulmonary artery;

PV, pulmonary vein; Cr, cranial lobe; Med, median lobe; Ca, caudal lobe; Acc, accessory lobe of

right lung.
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the respiratory tree is further expanded in diameter and length, accompanied by vas-
cularization and angiogenesis along the airway. A massive increase in the number of
capillaries occurs. The terminal bronchioles are then divided into respiratory bronchioles
and alveolar ducts, and the airway epithelial cells are differentiated into peripheral
squamous cells and proximal cuboidal cells.

Figure 3 Histology of mouse lungs at various stages of development. Embryonic mouse lung

develops from early pseudoglandular stage (E14.5) to canalicular stage (E16.5) and further ter-

minal sac stage (E18.5 and P1). Neonatal lungs undergo further alveolarization, resulting in many

septa formation (P14). Finally, a mature honeycomb-like structure with normal respiratory function

is formed, as observed in adult. Scale bar: 100 mm.
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C. The Terminal Sac Stage [24 Weeks to Late Fetal Period in
Human, E17.4 to Postnatal Day 5 (P5) in Mouse]

There is substantial thinning of the interstitium during the terminal sac stage. This results
from apoptosis as well as ongoing differentiation of mesenchymal cells (9,10). Addi-
tionally, at this stage, the AEC are more clearly differentiated into mature squamous type I
pneumocytes and secretory rounded type II pneumocytes. The capillaries also grow
rapidly in the mesenchyme surrounding the saccules to form a complex network. In
addition, the lymphatic network in lung tissue becomes well developed. The thick wall of
these saccules, also called primary septae, comprises lining epithelial cells on both sides
of a connective tissue core, within which there is a double parallel network of capillaries.
Toward the end of this stage, the fetal lung can support air exchange in prematurely born
human neonates. Although human premature infants can breathe with the lung that has
developed to the end of terminal sac stage, the immature lung is nevertheless vulnerable
to hyperoxic injury and barotrauma, resulting in the alveolar hypoplasia phenotypes
described as new BPD. Maturation of surfactant synthesis and secretion is a key factor in
determining whether the newborn lung can sustain gas exchange without collapsing.
Another key factor is the rapid switch from chloride ion-driven fluid secretion into the
airway to sodium-driven uptake of fluid out of the airway. This latter is driven by the
birth response of the adrenergic system to cord cutting at birth.

How lung development is controlled at this stage is still incompletely known. The
hydrostatic pressure inside the lumen of the airway, which is due to chloride ion and
hence liquid secretion from epithelium in the developing lung (11–13), integrated with
chemotactic signals from the mesenchyme such as FGF10 play important roles in
forming terminal sacs. Mechanical factors also play an important role. Diaphragm
muscle in MyoD�/� mice is significantly thinned and cannot support fetal breathing
movements. As a result, lung is hypoplastic, and the number of proliferating lung cells is
decreased in MyoD�/� lungs at E18.5. Therefore, mechanical forces generated by
contractile activity of the diaphragm muscle play an important role in normal lung
growth at this stage (14).

D. The Alveolar Stage (Late Fetal Period to Childhood in Human,
P5–P30 in Mouse)

Alveolization is the last stage of lung development. The majority of the gas exchange
surface is formed during this stage. Alveolarization can be positively and negatively
influenced by many exogenous factors including oxygen concentration, stretch in fetal
airway, dexamethasone, and retinoic acid.

Forming new septa within terminal sacs is the key step for differentiation of the
saccule into alveoli. This involves a complex interaction between myofibroblasts in the
mesenchyme, adjacent airway epithelial cells, and vascular endothelial cells. Controlled
multiplication and differentiation as well as migration of the myofibroblast progenitor
cells within terminal sac walls are important for new septa formation. Myofibroblasts,
smooth muscle precursor cells having the morphology of fibroblasts, migrate to the
proper position within nascent alveolar septa, and synthesize and deposit elastin (15,16).
This is the first step of new secondary septa development (16). Platelet-derived growth
factor-A (PDGF-A) and its receptor PDGF-a play important roles in forming new septa.
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Pdgf-a�/� or Pdgf-a�/� shows a phenotype comprising loss of alveolar myofibroblasts
and elastin, failure of alveolar septation, and this develops into emphysema due to
alveolar hypoplasia (15,17). Besides PDGF-A, there are some other key proteins that
mediate cell-cell interaction within terminal sac walls. For example, Roundabout
(ROBO) is a receptor known to be involved in repellent signaling controlling axonal
extension in the developing neuronal system. ROBO and its ligand SLIT are also
involved in the regulation of nonneuronal cell migration (18). In E18, one day before
birth, Slit-2 is expressed in the saccular mesenchyme surrounding the airways. At the
same time, Robo is expressed on the apical aspects of the airway epithelium adjacent to
the ligand Slit-2, suggesting interactive roles in pulmonary bronchiolar development
(19). A Robo knockout mouse has been shown to have loss of septation and thickened
mesenchyme (20). In addition, transforming growth factor b (TGF-b)-Smad3 signaling
in peripheral lung epithelial cells is also essential for secondary alveolar septa formation
(21). Abrogation of TGF-b type II receptor in lung epithelial cells results in reduction of
AECI and alveolar formation (22).

E. Alveolar Septum Formation

Two additional processes are necessary in septum differentiation to form a septum with
final mature morphology and function. One is the thinning out of the septal mesenchyme
and the other is the maturation of the double capillary network into a single capillary
bed. Thinning of the mesenchymal tissue involves apoptosis of “unwanted” cells in the
postnatal lung mesenchyme. There is a substantial reduction in the number of interstitial
myofibroblasts resulting from increased apoptosis during this phase of rapid alveolari-
zation (23,24). The immature lung contains at least two morphologically distinct
fibroblast populations, lipid-filled interstitial fibroblasts (LFIF) and non-LFIF (NLFIF).
After alveolarization, apoptosis occurs preferentially in only one of these fibroblast
populations, the LFIF. Apoptosis was correlated with downregulation of insulin-like
growth factor I receptor (Igf-IR) mRNA and cell surface protein expression (25). This
thinning of the previously thickened immature interstitium occurs simultaneously with
the ongoing expansion of the epithelial, blood vessel, and airspace compartments in the
rapidly developing septa. A mature capillary bed is also vital for the proper function of
alveoli, but the mechanism is still incompletely known. In the developing lungs, VEGF
isoforms and their receptors have been identified as being important for endothelial
survival and proliferation in the alveolar wall. Inhibition of VEGF signaling results in
abnormal lung vascular growth and reduced alveolarization (26). Finally, the new
septum differentiates into a functional respiratory membrane that consists of AECI,
basement membrane, and capillary endothelial cells. The respiratory membrane provides
a short distance for gases diffusion and thus facilitates optimal gas exchange. It is
estimated that about 50 million alveoli are present in neonatal lung at term. However, by
age seven to eight years, when the alveolarization is substantially complete, the number
of alveolar units in the lung has grown about six times, to about 300 million alveoli.

Retinoid acid (RA) has been shown to increase the number of alveoli (27) and can
partially rescue a block in alveolar formation induced by dexamethasone (28). In adult
rats, RA has also been reported to reverse the anatomical features of elastase-induced
emphysema, in which there is destruction of septa (27). In the RAR-g gene deletion
mouse, there is a developmental defect in alveolar formation most consistent with a
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defect in elastin deposition. The additional deletion of one retinoid X receptor (RXRa)
allele results in a decrease in alveolar surface area and alveolar number (29). Retinoids
affect multiple cellular functions that are involved in alveolar septal formation such as
proliferation, migration, and temporal differentiation of cells (30). Retinoic acid is an
active metabolite of vitamin A. Vitamin A deficiency has long been known to injure
lungs and impairs function of rat type 2 pneumocytes (29). Taken together, the evidence
suggests that RA may play an important role in alveolar development. For more on RA
signaling, see following text.

IV. Specific Cell Types in the Lung

More than 40 specific types of cells are differentiated during embryonic lung devel-
opment. The epithelial cell lineages are arranged in a distinct proximal-distal spatial
pattern in the airways.

Cartilage lies outside the submucosa and decreases in amount as the caliber of the
bronchi decreases. Cartilage is present in the bronchi, but not in the bronchioles. Two
major cell components of the proximal bronchial epithelium are identified: pseudos-
tratified ciliated columnar cells and mucous (goblet) cells. Both of them are derived
from basal cells, but ciliated cells predominate in number. Goblet cells release mucus
granules into the bronchial lumen to prevent drying of the walls and traps particulate
matter. Mucous cells begin to mature around 13 weeks’ gestation in humans, when the
mature ciliated columnar cells are already present. The molecular markers for mucous
cells are mucins (MUC5B, 5A, 5C). The beating of cilia results in a cephalad movement
of the mucus blanket, thereby cleaning and protecting the airway. In the case of cystic
fibrosis, cilia movement is disabled due to the thick mucous layer that is caused by
mutation of the Cftr gene, which encodes a transmembrane Na+ ion transporter protein.
This phenotype also makes the airway surface vulnerable to microbial infection. In
chronic airway injury, both repair and fully experimental exposure of the epithelium to
IL-9 before it becomes fully differentiated result in goblet cell hyperplasia. Exposure to
IL-9 resulted in increased lysozyme and mucus production by the epithelia (31). IL-4,
IL-13, and allergens enhance the release of TGF-a, which is a ligand for the epidermal
growth factor receptor (EGFR) that also stimulates fibroblast proliferation and goblet
cell differentiation (32).

There are three different types of cells in bronchial submucosal glands: myoe-
pithelial cells surround the gland, whereas mucous cells (pale cytoplasm) and serous
cells (basophilic cytoplasm) produce mucins. These secreted mucins mix with lysozyme
and IgA on airway surface.

Kulchitsky cells are also found on the airway surface next to bronchial glands.
Their precise function is unclear. It is believed that they are pulmonary neuroendocrine
cells that produce a variety of peptide hormones such as serotonin and calcitonin. Their
fingerlike cytoplasmic extensions usually reach the airway lumen. Kulchitsky cells
expressing the markers gastrin-releasing peptide, calcitonin gene-related peptide, and
chromogranin may be related to certain lung neoplasms (i.e., small cell carcinoma and
carcinoid tumors). However, pulmonary neuroendocrine cells differentiate earlier by
10 weeks of gestation in humans and are also the first airway epithelial cells to be fully
differentiated in mouse.
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Clara cells are found in the distal bronchiolar airway epithelium that normally
lacks mucous cells. They produce a mucus-poor, watery proteinaceous secretion. They
assist with clearance and detoxification, as well as reduction of surface tension in small
airways. The most important cellular marker of Clara cell is Clara cell–specific protein
(CC10, CCSP, or uteroglobin). Cytochrome P450 reductase and CC10 can also be used
as cellular markers for Clara cells. Clara cells begin to mature during the 19th week in
humans. In normal mice, only a small number of mucin-positive cells are present in the
airway. However, numerous mucous cells that are derived from Clara cells with
excessive mucin production or reduced mucin secretion can be detected during mucous
metaplasia.

The majority of the alveolar surface is normally covered by type I epithelial cells.
These flat cells are believed to be terminal differentiated cells, expressing several
specific molecular markers such as T1a and aquaporin 5. T1a is a differentiation marker
gene of lung alveolar epithelial type I cells. It is developmentally regulated and encodes
an apical membrane protein of unknown function. In the absence of T1a protein, type I
cell differentiation is blocked. Homozygous T1a null mice die at birth of respiratory
failure, and their lungs cannot be inflated to normal volumes (33). Aquaporin 5 is a
water channel in type I epithelial cells.

Type I epithelial cells only account for 40% of the total airway epithelial cells,
even though 95% of the surface area of the alveolar wall is covered by this type of cells.
The remaining 60% of the epithelial cells are rounded cells that cover only 3% of the
alveolar surface, named type II pneumocytes.

Type II pneumocytes are plump or cuboidal and have a finely stippled cytoplasm
and surface microvilli. They manufacture surfactant phospholipids and proteins that
reduce the surface tension in the lung. This equalizes pressures, stabilizes and maintains
alveoli in an open position despite the variation in alveolar size, and prevents atelectasis
at end-expiration. Four surfactant proteins, SP-A, -B, -C, and -D, also play critical roles
in maintaining lung function. SP-A and -D participate in host defense in the lung,
whereas SP-B and -C contribute to the surface tension–lowering properties of the lip-
oprotein complex termed pulmonary surfactant (34). Type II cells are capable of
regeneration and replacement of type I cells after injury. A commonly used cellular
marker of type II cell is SP-C (SftpC).

Alveolar macrophages constitute a small percentage of the cells in alveoli, but
they represent a major cellular sentinel of the host defense mechanism in the alveolar
space. They are part of the mononuclear phagocyte system and are derived primarily
from blood monocytes. However, once they get into the lung, their turnover rate is
extremely slow.

V. Stem and Progenitor Cells in the Respiratory System

Respiratory stem and progenitor cells have important functions in repairing damaged
trachea, bronchi, bronchioles, and alveoli. However, the precise identification of lung
stem/progenitor cells remains uncertain. The large surface area and highly branched and
folded geography of the lung dictates that there must be several kinds of stem or
progenitor cells in the respiratory system. In the trachea and bronchi, certain basal cells
and mucus-gland duct cells are believed to be stem/progenitor cells. Clara-like cells and
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type II pneumocytes are also thought to function as stem/progenitor cells in bronchioles
and alveoli, respectively. Another population of stem/progenitor cells lies at the bron-
choalveolar duct junction (35). They can function as bipotential precursors of both the
SP-C and CC10-expressing cell lineages.

It has recently been reported that bone marrow–derived mesenchymal stem cells
can differentiate into airway epithelial cells in airway and type I pneumocytes in alveoli,
particularly by injury. In contrast, in vitro cell culture indicates that Syrian hamster fetal
lung epithelial M3E3/C3 cells can differentiate into Clara cells and type II pneumocytes
under different culture conditions. Whether CCSP-expressing cells with pre-Clara cell
phenotypes are stem cells for the entire respiratory tract remains to be determined. In
addition, the concept of a pluripotent stem cell for the whole lung needs to be further
investigated due to the great differences between identified stem cell and progenitor
candidates in proximal bronchi and distal alveoli. Recently, we have discovered that
lung contains populations of cells with stem or progenitor cell characteristics that can be
sorted by FACS from adult rat and also mouse lung. This population is relatively
resistant to apoptosis and may possibly be responsible for repopulation of the damaged
alveolar surface. Another such population of stem or progenitor cells sorted as “side
cells” on FACS has been identified to possibly repopulate in several different tissues,
including the bone marrow.

Airway smooth muscle is derived from at least two distinct progenitor cell pop-
ulations. One population comes from the periphery of the embryonic lung and is derived
from the Fgf10-expressing progenitor cells that lie in the submesothelial mesenchyme.
This population of cells at first plays a key role in mediating branching morphogenesis
of the peripheral airway by virtue of expression of FGF10 as a chemotactic and pro-
proliferative growth factor. However, as the airway extends outward into the peripheral
mesenchyme, these progenitor cells relocate to lie along the more proximal stalk portion
of the distal bud. In this location, they differentiate into smooth muscle cells (SMCs),
most probably under the paracrine inductive influence of bone morphogenetic protein 4
(BMP4) and SHH, which are secreted by the underlying airway epithelium (36). On the
contrary, another population of smooth muscle progenitor cells arises around the upper
airway and proximal bronchi (37). The two populations of smooth muscle progenitor
cells appear to meet distal to the major lobar and segmental branches. It is speculated
that the size of these smooth muscle progenitor populations that are laid down during
airway branching in the embryonic lung may determine the eventual propensity of the
airway to undergo obstructive disease processes later in life such as BPD and asthma.
Moreover, these progenitor pools may be targets for nicotine derived from maternal
smoking.

VI. Molecular Mechanisms of Lung Development

Normal lung development is controlled by many genes as well as physical and chemical
factors including intraluminal hydraulic pressure and relative hypoxia. Genetic factors
responsible for lung development include (i) transcription factors that directly modulate
gene expression in the cell nucleus, (ii) peptide growth factors and cytokines as well as
their related intracellular signaling components that mediate cell-cell interaction, and
(iii) extracellular matrix (ECM) that provides important environmental cues for
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developing lung cells to differentiate. The specification of all these integrated regulatory
mechanisms are still being explored, but the interaction between epithelium and mes-
enchyme compartments has long been known to play a critical role during airway
branching morphogenesis and lung maturation.

A. Transcription Factors

Lung growth is initiated and developed through changes in specific gene expression. The
activity and expression level of relevant transcription factors determine gene expression
profiles in the developing lung, and consequently, the morphogenetic process in a
particular temporospatial order. Recent advances in mouse genetic technology allow us
to evaluate each factor by either overexpressing or knocking out a specific gene. Three
major groups of transcription factors such as forkhead box transcription factors, Nkx
homeodomain transcription factors, and Gli play important roles in lung development.

Forkhead Box Transcription Factor Family

Many members of the forkhead box family transcription factors, such as Foxa1, Foxa2,
HFH8, and HFH4, are important regulatory factors involved in lung development. These
transcription factors share homology in the winged helix DNA-binding domain and play
important roles in pulmonary cellular proliferation and differentiation.

HNF-3a (Foxa1) and HNF-3b (Foxa2) share 93% homology in their amino acid
sequences and were first identified as essential factors in hepatocyte differentiation (38).
However, Hnf-3b is also expressed in developing lung, with higher levels in proximal
airway-lining epithelial cells and lower levels in the distal type II epithelial cells (39).
Overexpression of Hnf-3b under the control of the lung epithelial�specific SP-C pro-
moter in vivo inhibits lung branching morphogenesis and vasculogenesis (40). Also,
HNF-3a and HNF-3b have important functions in regulating expression of CCSP as well
as SPs in both bronchiolar and type II epithelial cells (41–43). Hnf-3b is inducible by
interferon and, in turn, regulates the expression of the Nkx homeodomain transcription
factor Nkx2.1 (also termed Ttf-1 and CebpI), which in turn regulates transcription of the
SP genes in lung peripheral epithelium (44,45).

HFH8 is another important member of this family of proteins that contribute to
lung development. At E9.5, Hfh-8 expression is restricted to the splanchnic mesoderm
contacting the embryonic gut and presumptive lung bud, suggesting that Hfh-8 may
participate in the mesenchymal-epithelial induction of lung and gut morphogenesis.
HFH-8 expression continues in lateral mesoderm-derived tissue during development. By
day E18.5, Hfh-8 expression is restricted to the distal lung mesenchyme and the mus-
cular layer of the bronchi (46). One important regulated target of HFH8 is Pdgf receptor
that is also expressed in mesenchyme (15,47,48). The level of Hfh-8 expression is
important for normal lung development, as an alveolar hemorrhage phenotype is
observed in Hfh8 (þ/�) mice, while Hfh8 (�/�) mice died in utero. In addition,
reduction of Hfh-8 expression in Hfh-8+/� mutants is accompanied by decreased
expression of VEGF and its receptor 2 (Flk-1), BMP4, and the transcription factors of
the Brachyury T-Box family (Tbx2–Tbx5) and lung Kruppel-like factor (49). HFH8-
binding sites are also found in the promoter region of genes such as Bmp4, Hgf, and
Hoxa5 that are very important in controlling lung morphogenesis (50,51).
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Hfh4 (Foxj1) is the key factor in controlling ciliated epithelial cell differentiation.
Hfh4 is expressed in E15.5 airway epithelium just before the appearance of ciliated
epithelial cells (52). Defective ciliogenesis in airway epithelial cells and randomized
left-right asymmetry are observed in Hfh4�/� null mutant mice, mimicking Kartagener
syndrome in humans. This congenital syndrome can result in perinatal lethality, but in
low penetrance gives rise to situs inversus, sinusitis, bronchoectasis, and sterility, all
caused by defects in ciliary beat (53,54). Interestingly, in mesenchyme-free airway
epithelial culture, inhibition of endogenous BMP4 signaling by adding exogenous BMP
antagonist Noggin results in increased expression of the proximal lung markers CCSP
and HFH4 (55).

Foxp1, Foxp2, and Foxp3 are newly discovered members of the forkhead box
family of transcription factors that are expressed at a high level in mouse lung and gut
tissues. All three proteins are expressed in lung epithelium. Foxp1 and Foxp4 are
expressed in both proximal and distal airway epithelium, whereas Foxp2 is expressed
primarily in distal epithelium. Foxp1 protein expression is also observed in the mes-
enchyme and vascular endothelial cells of the lung (10).

Nkx and Hox Homeodomain Transcription Factors

One of the most important homeodomain transcription factors in lung development is
NKX2.1, also called TTF-1 (thyroid-specific transcription factor) or CEBP-1. Nkx2.1 is
expressed in foregut endoderm-derived epithelial cells including developing lungs,
thyroid, and pituitary, as well as in some restricted regions of fetal brain (56,57).
Nkx2.1�/� mice suffer severe impairment in branching morphogenesis of the lung and
tracheoesophageal septum formation. The distal airway branches are totally absent,
while only the two main bronchial stems are formed in Nkx2.1 knockout mice, which
indicates that lung development is arrested at a very early stage (58,59). In developing
mouse lung, Nkx2.1 is expressed in the proximal and distal airway epithelia and, at later
stages of lung development, in the distal AEC (39). Nkx2.1 expression is strictly con-
trolled, and increased expression of Nkx2.1 causes dose-dependent morphological
alterations in postnatal lung. Modest overexpression of Nkx2.1 causes type II pneu-
mocyte hyperplasia and increased levels of SP-B. Higher expression level of Nkx2.1
disrupts alveolar septation, causing emphysema due to alveolar hypoplasia. The highest
overexpression of Nkx2.1 in transgenic mice causes severe pulmonary inflammation,
fibrosis, and respiratory failure, associated with eosinophil infiltration as well as
increased expression of eotaxin and IL-6 (60). Nkx2.1 is critical for SP, T1a, and Ccsp
gene expression (56,61–66). Nkx2.1-deficient pulmonary epithelial cells fail to express
nonciliated marker genes, including differentiated Sp-B, Sp-C, and Ccsp. Bmp4
expression in these cells is also reduced. Phosphorylation of NKX2.1 is important. Mice
with point mutation of seven serine phosphorylation sites of NKX2.1 died immediately
following birth with malformation of acinar tubules and pulmonary hypoplasia.
Meanwhile, expression of SPs, secretoglobulin 1A, and Vegf was decreased (67). Nkx2.1
expression can be activated by HNF-3b (44) and GATA-6 (68) transcription factors
during lung morphogenesis.

The expression of Hox transcription factors shows a proximal to distal polarity in
developing lung. Hoxa5, Hoxb2, and Hoxb5 expression are restricted to distal lung
mesenchyme. Hoxb3 and Hoxb4 genes are expressed in the mesenchyme of both
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proximal airway and distal lung (69–71). The importance of these genes during lung
development is well illustrated in gene-targeting experiments in mice. Hoxa5�/� null
mutant mice display defects of tracheal formation and impaired lung branching mor-
phogenesis, with tracheal occlusions, diminished SP expression, and thickening of
alveolar walls (69).

GLI Family of Zinc Finger Transcription Factors

GLI1, -2, and -3 are very important zinc-finger transcription factors, which are activated
by the SHH pathway. All of them are expressed in lung mesoderm rather than endoderm,
particularly in the distal portion (72). Null mutation of Gli2 plus Gli3 genes results in
total absence of lung. Mice with Gli3 single deficiency are viable, but the size of the
lung is smaller and the shape of the lung is also altered (72). In Gli2�/� null mutant
mice, the right and left lungs are not separated but exist as a single lobe with a reduced
size, and the primary branching in right lung is defective. Also, both trachea and
esophagus are hypoplastic, though separated from each other. However, proximal-distal
differentiation is normal (73). Therefore, Gli2 plays an important role in the asymmetric
patterning of the lung.

B. Peptide Growth Factors That Mediate Lung Morphogenesis

E11 mouse embryo lung can grow and branch spontaneously in serum-free medium in
vitro. A variety of growth factors added into the culture medium can influence lung
growth in the culture system (74,75). Such experiments indicate that the embryonic lung
mesenchymal and epithelial cells can communicate through autocrine or paracrine
factors. In this way, different signaling pathways are coordinated to control lung growth
at the right time and right place. Many of those factors are peptide growth factors,
including FGF, EGF, TGFb, IGF, PDGF, SHH, etc. The expression and modification of
these proteins and their downstream signaling components are strictly controlled during
normal lung development. Loss of function of many of these genes perturbs normal lung
development and function in mice.

FGF Family

FGF family members can be found in all vertebrate and invertebrate animals. Their
regulatory functions during respiratory organogenesis are very well conserved from
drosophila (76,77) to mammals. On the basis of their protein sequence homology, FGFs
have been divided into several subgroups. Similarly, their cognate transmembrane
protein tyrosine kinase receptors are classified into several different types, contributing
to the specificity of FGF ligand binding (78). Heparin or heparan sulfate proteoglycan,
an ECM protein, has been reported to be essential for FGF ligand–receptor binding and
activation (79,80). FGFs play important roles in cell proliferation, migration, and dif-
ferentiation during embryo development. Inhibition of fibroblast growth factor receptor
signaling at different stages of embryo development shows that FGF signaling is
required for branching morphogenesis early in lung development. Later inhibition of
FGFR signaling in E14.5 lung decreased lung tubule formation before birth and caused
severe emphysema at maturity. In E16.5, FGFR inhibition caused mild focal emphy-
sema. Inhibition of FGFR signaling after birth did not alter alveolarization (81).
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One of the best-studied FGF family members during embryonic lung development
is FGF10. Despite the formation of larynx and trachea, the distal embryonic lung is
completely missing in Fgf10�/� null mice (82). Fgf10 is expressed in the mesenchyme
of E11 to E12 mouse lungs, adjacent to distal epithelial tubules. These sites of
expression change dynamically in a pattern that is compatible with the idea that FGF-10
appears in the mesenchyme at prospective sites of bud formation (83). Culture experi-
ments have shown that FGF10 has a chemotactic effect on nearby epithelium, so that the
nearby epithelial tips proliferate and migrate toward FGF10-expressing mesenchyme or
FGF10 beads (84,85). FGF10 also controls the differentiation of the epithelium by
inducing Sp-C expression and by downregulating the expression of Bmp4 (55). Several
other regulatory molecules such as SHH, BMPs, and TGF-bs may cross talk with FGF10
to coordinate control of embryonic lung morphogenesis. These interactions will be
further discussed later in this chapter.

FGF7 (KGF) is found in the developing lung mesenchyme during late stages (86).
In early cultured mouse embryonic lung, addition of FGF7 promotes epithelium growth
and formation of a cyst-like structure with extensive cell proliferation. FGF7 can also
contribute to distal airway epithelial cell differentiation (87,88). Erm and Pea3 are ETS
domain transcription factors known to be downstream of FGF signaling. FGF7 can
induce Erm/Pea3 expression more effectively than FGF10. Erm is transcribed exclu-
sively in the epithelium, whereas Pea3 is expressed in both epithelium and mesenchyme.
When examined at E18.5, transgenic expression of a repressor form of Erm, specifically
in the embryonic lung epithelium, shows that the distal epithelium of Sp-C-Erm trans-
genic lungs is composed predominantly of immature type II cells, while no mature type I
cells are observed. In contrast, the differentiation of proximal epithelial cells, including
ciliated cells and Clara cells, appears to be unaffected (89,90). FGF7 does not seem to
protect against hyperoxic inhibition of normal postnatal alveoli formation and early
pulmonary fibrosis, but FGF7 consistently had a significant protective/preventive effect
against the development of pulmonary hypertension during hyperoxia (91). However,
Fgf7�/� mutant mice have apparently no gross abnormalities in the lung (92), suggesting
a redundant function of FGF7 with other factors during lung development.

Another FGF family member FGF9 also regulates branching morphogenesis. In
E10.5 lung, Fgf9 is expressed in the visceral pleura lining the outside of the lung bud as
well as in the epithelium of the developing bronchi. At E12.5 and E14.5, Fgf9 expression
persists in the mesothelium of the visceral pleura, but is no longer detected in airway
epithelium (93). Fgf9 null mice exhibit reduced mesenchyme and decreased branching of
the airways, but show significant distal airspace formation and pneumocyte differentia-
tion. The reduction in the amount of mesenchyme in Fgf9�/� lungs limits the expression
of mesenchymal Fgf10 (94). Recombinant FGF9 protein inhibits the differentiation
response of the mesenchyme to N-SHH, but does not affect proliferation (95).

The signaling cascade activated by FGF-10 and -9 involves Raf, MAP ERK
kinase, and extracellular-regulated kinases (ERK) 1 and 2 as signal transducers. MAP
ERK kinase inhibition has been shown to reduce lung branching and epithelium cell
proliferation, but increase mesenchyme cell apoptosis in fetal lung explants (13). FGF
signaling is regulated at several levels. One of the key negative regulators is the Sprouty
family. There are four sprouty (Spry) genes in mouse (mSpry1–4) and human (hSpry1–4).
Murine Spry2 is expressed in the distal tip of embryonic lung epithelial branches, but
is downregulated between the sites of new bud formation. Murine Spry4 is predominantly
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expressed in the distal mesenchyme of the embryonic lung (96) and may play roles in
branching morphogenesis. Sprouties (SPRY1, -2, and -4) act as suppressors of Ras-MAP
kinase signaling (97–99). Overexpression of mSpry2 or mSpry4 can inhibit lung
branching morphogenesis through reducing epithelium cell proliferation (100–102).
SPRED-1 and -2 are two sprouty-related proteins, which contain EVH-1 domains.
Spreds are predominantly expressed in mesenchymal cells. Expression of Spreds is
especially strong in the peripheral mesenchyme and epithelium of new bud formation.
After birth, Spreds expression decreases, while the expression of Sprouties expression is
still high. Both Sprouties and Spreds play important roles in mesenchyme-epithelium
interaction during lung development (9).

TGF-b/BMP Family

The TGF-b superfamily comprises a large number of structurally related polypeptide
growth factors including TGF-b, BMP, and activin subfamilies. TGF-b ligands bind to
their cognate receptors on cell surface and activate downstream Smad proteins, which
translocate into the nucleus and modulate target gene expression (103).

TGF-b Subfamily

TGF-bs are well known for their inhibitory effects on embryonic lung branching mor-
phogenesis. There are distinct expression patterns for the three isoforms of TGF-bs,
TGF-b1, -b2, and -b3. In early mouse embryonic lung (E11.5), TGF-b1 is expressed in
the mesenchyme, particularly in the mesenchyme underlying distal epithelial branching
points, whereas TGF-b2 is localized in distal epithelium. TGF-b3 is mainly expressed in
proximal mesenchyme and mesothelium. Each isoform of TGF-bs plays a unique and
nonredundant role during embryonic development. Mice lacking TGF-b1 develop nor-
mally but die within the first two months of life as a result of aggressive pulmonary
inflammation (104). A TGF-b2�/� null mutation results in embryonic lethality around
E14.5 in mice, and one of the abnormally developed organs is lung (105). TGF-b3�/�

null mutant mice display cleft palate, retarded lung development, and neonatal lethality
(106,107). Misexpression of TGF-b1, leading to excessive TGF-b1 activation, always
results in an adverse phenotype that depends on the developmental stages at which TGF-b1
is expressed. Overexpression of TGF-b1 in early mouse embryonic lung epithelium
inhibits lung branching morphogenesis in vitro (108), while misexpression of Sp-C
promoter-controlled TGF-b1 in embryonic lung epithelium results in arrest of embry-
onic lung growth and epithelial cell differentiation as well as inhibition of pulmonary
vasculogenesis (109,110). Clinically, the presence of excess TGF-b1 activity in tracheal
aspirates of human premature infants who develop more severe BPD suggests a crucial
role for TGF-b1 in lung maturation (111,112). On the other hand, misexpression of
TGF-b1 in adult rats results in a chronic, progressive interstitial pulmonary fibrosis with
increased proliferation and matrix secretion by the mesenchyme (113,114). Mis-
expression of TGF-b1 in neonatal rat lung using recombinant adenoviral vectors results
in neonatal alveolar hypoplasia and interstitial fibrosis that phenocopies BPD (115). In
addition, TGF-b1 may be one of the most important factors that are involved in the
pulmonary inflammation response to exogenous factors, such as infection, bleomycin, or
endotoxin. Blockade of the TGF-b-Smad3 pathway in Smad3�/� null mutant mice
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strongly attenuates bleomycin-induced pulmonary fibrosis (114). TGF-b-activated kinase-
1-binding protein-1 (TAB1) was identified as a molecule that activates TGF-b-activated
kinase-1 (TAK1). Tab1 mutant embryonic fibroblast cells displayed drastically reduced
TAK1 kinase activities and decreased sensitivity to TGF-b stimulation. Tab1 mutant mice
died of cardiovascular and lung dysmorphogenesis (116).

The activity of TGF-b signaling is regulated precisely at multiple levels. For
example, b6 integrin, LTBPs, and thrombospondin are involved in regulating the release
of TGF-b mature peptide, whereas betaglycan, endoglin, or decorin influences the
affinity of TGF-b receptor binding. Mutation of the above genes display phenotypes
related to malfunction of TGF-bs. For example, loss-of-function mutation both in the
human and mouse endoglin gene, whose protein product binds to both TGF-b ligand and
its type I receptor (Alk1), causes hereditary hemorrhagic telangiectasia (117). Null
mutation of LTBP-3 or -4 causes profound defects in elastin fiber structure and lung
alveolarization, which is similar to the phenotypic changes observed in Smad3 knockout
mouse lung (118,119). In addition, TGF-b signaling in epithelial cells versus mesen-
chymal cells of developing mouse lung has distinct regulatory impacts on lung
branching morphogenesis and alveolarization in vivo. Selective blockade of endogenous
TGF-b signaling in embryonic lung mesenchymal cells results in retarded lung
branching after midgestation, while abrogation of epithelial cell–specific TGF-b sig-
naling only causes abnormal postnatal lung alveolarization, but does not have significant
impact on prenatal lung development (22).

BMP Subfamily

BMPs, with more than 20 ligand family members, have been shown to regulate many
developmental processes, including development of the lung. Expression of Bmp3, -4,
-5, and -7 are detected in embryonic lung. BMP4 is an important BMP member that plays
a key role in normal lung development. Addition of exogenous BMP4 to intact
embryonic lung explant culture stimulates lung branching, as reported by us and other
groups (120,121). However, in isolated E11.5 mouse lung endoderm cultured in
Matrigel, addition of BMP4 inhibited epithelial growth induced by the morphogen
FGF10 (85). On the other hand, transgenic overexpression of BMP4 in the distal
endoderm of fetal mouse lung, driven by a 3.7-kb human SP-C promoter, causes
abnormal lung morphogenesis with cystic terminal sacs (122). In contrast, SP-C pro-
moter-driven overexpression of either the BMP antagonist Xnoggin or the Gremlin to
block BMP signaling results in severely reduced distal epithelial cell phenotypes and
increased proximal cell phenotypes in the lungs of transgenic mice (51). Interestingly,
blockade of endogenous BMP4 in embryonic mouse lung epithelial cells using a con-
ditional gene knockout approach results in abnormal lung development with similar
dilated terminal sacs as seen in BMP4 transgenic mouse lung (123), suggesting that
appropriate level of BMP4 is essential for normal lung development. As extracellular
growth factors, BMPs bind to heteromeric complexes of BMP serine/threonine kinase
type I and type II receptors to activate intracellular signal pathway. Three cognate BMP
type I receptors (Alk2, Alk3, and Alk6) have been identified. Among them, Alk3
expresses predominantly in distal airway epithelial cells during mouse lung develop-
ment. Abrogation of Alk3 in mouse lung epithelia either from early lung organogenesis
or from late gestation resulted in similar neonatal respiratory distress phenotypes,
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accompanied with collapsed lungs (124). Early induction of Alk3 knockout in lung
epithelial cells causes retardation of early lung branching morphogenesis and reduces
cell proliferation and differentiation. But late gestation induction of Alk3 knockout also
causes significant epithelial apoptosis accompanied by lack of surfactant secretion (124).
Furthermore, canonical Wnt signaling was perturbed, possibly through reduced WIF-1
expression in Alk3 knockout lungs (124). Therefore, deficiency of appropriate BMP
signaling in lung epithelial cells results in prenatal lung malformation, neonatal ate-
lectasis, and respiratory failure.

In addition, BMP signaling is also important in lung vasculogenesis and angio-
genesis. Mutations of BMP type II receptor (BMPRII) and change in expression level of
BMP antagonist Gremlin are associated with primary pulmonary hypertension
(125,126). Moreover, upregulation of Gremlin is also associated with pulmonary fibrosis
and the severity of the pathology (127,128).

SHH Pathway

Sonic hedgehog is a vertebrate homologue of hedgehog (Hh) that patterns the segment,
leg, wing, eye, and brain in Drosophila. Hh binds to patched (Ptc), a transmembrane
protein, and releases its inhibitory effect on downstream smoothened (Smo), which is a
G-protein-coupled seven-span transmembrane protein. This leads to the activation of
cubitus interruptus (Ci), a 155-kDa transcription factor that is usually cleaved to form a
75-kDa transcription inhibitor in cytosol. Elements of the Drosophila Hh signaling
pathway and their general functions in the pathway are highly conserved in vertebrates,
albeit with increased levels of complexity. Gli1, -2, and -3 are the three vertebrate Ci
gene orthologues (129).

The SHH signal transduction pathway plays important roles in mesenchyme-
epithelium interaction, which is very important in morphogenesis. In developing mouse
lung, Shh is detected in the tracheal diverticulum, the esophagus, and later in the trachea
and lung endoderm. Shh is expressed at low levels throughout the epithelium, whereas at
higher level in the growing distal buds (130,131). Null mutation of Shh produces pro-
found hypoplasia of the lung and failure of trachea-esophageal septation. Mesenchymal
expression of Ptc, Gli1, and Gli3 are all downregulated in the Shh knockout lung.
However, proximal-distal differentiation of epithelial airway is preserved (132,133).
Also, Fgf10 expression is widespread in the epithelium in Shh null mutant lung, instead
of the precisely location-restricted expression seen in wild-type control. Lung-specific
Shh overexpression results in severe alveolar hypoplasia and a significant increase in
interstitial tissue caused by an increased proliferation of epithelium and mesenchyme
(130). Defective hedgehog signaling may lead to esophageal atresia and trache-
oesophageal fistula (134). Gli1, -2, and -3 are three zinc-finger transcription factors
activated by SHH signaling. Their functions in embryonic lung development have been
discussed earlier.

HIP1, a membrane-bound protein, directly binds all mammalian hedgehog (HH)
proteins and attenuates HH signaling (135). Hip1 is transcriptionally activated in
response to Hh signaling, overlapping the expression domains of Ptch1 (135,136).
Targeted disruption of Hip1 results in neonatal lethality with respiratory failure.
Although asymmetry in their growth was conserved, the initial stereotyped branching
from the two primary buds was absent in Hip1�/� lungs. Hedgehog signaling is
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upregulated in Hip1 mutants. Fgf10 expression was slightly downregulated at the distal
tips of the primary lung buds in Hip1�/� lungs at E10.5, but completely absent from the
mesenchyme where secondary branching normally initiates (136). Attenuated PTCH1
activity in a Hip1�/� mutant lungs leads to an accelerated lethality. Hip1 and Ptch1 have
redundant roles in lung branching control (136). Both of them can attenuate SHH signal
in lung development and pancreas development (136,137).

Wnt/b-Catenin Pathway

Wnt signals are transduced through seven-transmembrane-type Wnt receptors encoded
by Frizzled (Fzd) genes to activate the b-catenin–TCF pathway, the JNK pathway, or the
Ca2þ-releasing pathway. The Wnt/b-catenin pathway plays a critical role in many
developmental and tumorigenesis processes. Following Wnt binding to the receptor,
b-catenin is dephosphorylated and translocates to the nucleus to activate downstream
gene expression (138).

Interestingly, all members of the Fzd gene family are expressed in embryonic and
neonatal lung, albeit at different levels. Fzd genes are differentially expressed in the
epithelium and mesenchyme. Expression of the Fzd2, Fzd5, Fzd6, and Fzd8 was
observed predominantly in the epithelium, while Fzd4 and Fzd10 were expressed in the
mesenchyme. Expression of Fzd1 and Fzd7 was observed both in the epithelium and the
mesenchyme, while Fzd3 and Fzd9 were only marginally expressed. This spatial dis-
tribution suggests differential roles for different Fzd receptor genes in the Wnt signaling
pathway during the development of the lung (139).

In mouse lung development, between embryonic days 10.5 and 17.5 (E10.5–
E17.5), b-catenin was localized in the cytoplasm, and often also in the nucleus of the
undifferentiated primordial epithelium, differentiating alveolar epithelium, and adjacent
mesenchyme. Other Wnt/b-catenin pathway members, Tcf1, Lef1, Tcf3, Tcf4, sFrp1,
sFrp2, and sFrp4, are also expressed in the primordial epithelium, alveolar epithelium,
and adjacent mesenchyme in specific spatiotemporal patterns (140). In human fetal lung,
nuclear b-catenin is present in pulmonary acinar buds (141). Null mutation of b-catenin
in mice results in abnormal cystic structure formation in the lung and prenatal lethality.
On the basis of molecular marker detection, the lungs are composed primarily of
proximal airways, suggesting that b-catenin is one of the essential components to specify
proximal-distal axis of the lung (139).

EGF Family Growth Factors

EGF, TGF-a, and amphiregulin are all EGFR ligands. Loss or gain of function
experiments in mice, rat, or other animal models proves that EGF ligands can positively
modulate early mouse embryonic lung branching morphogenesis and cytodifferentiation
through EGFR (75,142,143). EGF is also expressed in mature AEC and regulates type 2
cell proliferation through an autocrine mechanism both in culture and in vivo (144).
However, respiratory epithelial cell overexpression of TGF-a under the control of the
Sp-C promoter of transgenic mice induces postnatal lung fibrosis (145). Overexpression
of TGF-a caused severe pulmonary vascular disease, which was mediated through
EGFR signaling in distal epithelial cells. Reductions in VEGF may contribute to the
pathogenesis of pulmonary vascular disease in TGF-a mice (146).
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EGFR is a tyrosine kinase receptor that transfers EGF signals into the cell.
Abnormal branching and poor alveolization are observed in mice deficient in Egfr�/�.
Mechanical stretch–stimulated EGFR phosphorylation, at least in part, induces differ-
entiation of fetal epithelial cells via EGFR activation of the ERK pathway. Blockade of
the EGFR or ERK pathway by specific inhibitors decreased stretch-inducible Sp-C
mRNA expression. Maybe EGFR is part of a mechanic stimulus signal sensor during
fetal lung development (147). Aberrant expression of matrix metaloprotease proteins
(MMPs) is also detected in Egfr�/� null mutant mice, which suggests that MMPs may be
involved in EGFR-regulated lung growth (148).

TNF-a-converting enzyme (TACE) is a transmembrane metalloprotease-
disintegrin that functions as a membrane sheddase to release the ectodomain portions of
many transmembrane proteins, including the precursors of TNFa and several other
cytokines, as well as the receptors for TNFa, and neuregulin (ErbB4) (149). Neonatal
TACE-deficient mice had visible respiratory distress, and their lungs failed to form
normal saccular structures, resulting in a reduction of normal air-exchange surface.
Mouse embryonic lung explant cultures show that TGF-a and EGF can rescue the
inhibition of TACE activity (150).

Platelet-Derived Growth Factors

There are four types of PDGF peptides. The PDGF-A and PDGF-B can form homo-
dimers (AA or BB) or heterodimers (AB). Two types of PDGF receptors, a and b, are
present in embryonic mouse lung and are differentially regulated in fetal rat lung epi-
thelial cells and fibroblasts (151). PDGF-A regulates both DNA synthesis and early
branching in early mouse embryonic lung epithelium in culture (152). Pdgf-A homo-
zygous null mutant mice are perinatally lethal. The pulmonary phenotypes include lack
of lung alveolar SMCs, reduced deposition of elastin fibers in the lung parenchyma, and
developing lung emphysema due to complete failure of alveogenesis (15,17). Abroga-
tion of PDGF-B chain expression with antisense oligodeoxynucleotides reduces the size
of the epithelial component of early embryonic mouse lung explants, but does not reduce
the number of branches (153). PDGF-B and its receptor are crucial for vascular growth
and integrity during the alveolar phase (16). PDGF-C and -D also dimerize and bind to
PDGF-a or -b receptor (154,155). PDGF-C mRNA expression shows a significant
increase in lung fibrosis induced by bleomycin (156).

Insulin-like Growth Factors

The IGFs and their receptors are expressed in both rodent and human fetal lung (157–
161). Null mutant mice for the cognate type 1 IGF receptor (Igf1r) gene always die at
birth with respiratory failure and severe growth deficiency (45% of normal birth weight).
Dwarfism is further exacerbated (70% of size reduction) in either Igf1 and Igf2 double
null mutants or Igf1r and Igf2 double null mutants. There does not appear to be a gross
defect in primary branching morphogenesis per se; the lungs merely appear hypoplastic
(162). IGF signaling may play a role in facilitating other peptide growth factor pathways
during lung morphogenesis. IGF1R signaling function is required for both the mitogenic
and transforming activities of the EGF receptor (163). The lungs displayed reduced
airspace in the Igf1-deficient embryos and neonates, and the phenotype was exacerbated
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in additionally leukemia inhibitory factor (Lif) null mutant mice, which showed
abnormal epithelial cells and decreased Sp3 expression. In addition, Nkx2.1 and Sp-B
expression are reduced in the lung of these double null mutant neonates. Thus, LIF and
IGF-I have cooperative and distinct tissue functions during lung development (164).
IGF1 is also a potent trophic factor for fetal lung endothelial cells. In human fetal
lung explants, inactivation of IGF-IR results in a loss of endothelial cells, attenuates
time-dependent increase in budding of distal airway, and increases mesenchymal cell
apoptosis (165).

VEGF Isoforms and Cognate Receptors

Lung development must form a fine alignment between the alveolar surface and the
surrounding pulmonary capillary system for effective gas exchange. VEGF are potent
effectors of vascular development in lung morphogenesis. VEGF signals through the
cognate receptors fetal liver kinase-1 (Flk-1, VEGFR2) and fetal liver tyrosinase-1 (Flt-1,
VEGFR1) (166). VEGF is regulated by hypoxia-inducible transcription factor-2a (167).
During lung organogenesis in mouse, VEGF120, -164, and -188 isoforms are expressed
in pulmonary epithelial and mesenchymal cells around E12.5 and play a role in regu-
lating endothelial cell proliferation and maintaining microvascular structure (168,169).
Further, as epithelial branching progresses, Vegf-A expression becomes restricted to the
distal lung (170), which may be partly due to the high affinity of VEGF-A for matrix
components that concentrate VEGF-A around the branching tips (171,169). Thus,
leading to the speculation that VEGF signaling may play a critical role in lung vascular
development and diseases.

Vasculogenesis is initiated as soon as the lung evaginates from the foregut epi-
thelium (172). Development of the vascular system influences branching morphogenesis
of the airway as well as alveolarization. In transgenic mice, where the Vegf transgene is
misexpressed under the control of SP-C promoter, gross abnormalities in lung mor-
phogenesis are associated with a decrease in acinar tubules and mesenchyme (173); thus,
suggesting that excessive VEGF signaling may disrupt both vascular and epithelial
morphogenesis in the lung. Additionally, VEGF-A signaling through Flk-1 plays a key
functional role in mediating cross talk between the epithelial, mesenchymal, and
endothelial compartments during epithelial and vascular branching morphogenesis of the
early mouse embryonic lung in explant culture (174). VEGF has also been demonstrated
to play a role in maintaining alveolar structure (26). Lungs from newborn mice treated
with antibodies to Flt-1 were reduced in size and displayed significant immaturity with a
less complex alveolar pattern (175) (Fig. 4).

C. ECM and Lung Development

The protein components of extracellular basement membrane, laminins (LNs), entactin/
nidogen, type IV collagen, perlecan, SPARC, and Fibromodulin, are important in
mediating cell-cell and cell-ECM interaction during fetal lung morphogenesis. Basement
membrane components are differentially expressed and have a specific cell distribution
during lung morphogenesis. ECM components not only provide the support for tissue
architecture but also play an active role in modulation of cell proliferation and differ-
entiation (176). For example, basement membrane components may serve as a barrier
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Figure 4 Integrative summary of selected growth factor signaling events during early lung

morphogenesis. FGF9 is produced by the mesothelium, which signals through FGFR2c on the

underlying mesenchyme. This stimulates Fgf10, Ptc, and Hip gene transcription. FGF10 in turn

signals from the mesenchyme to FGFR2b on the epithelium. This signaling event is chemotactic

for the epithelium, in addition to stimulating Bmp4, Spry2, Vegf, and Sp-C transcription.

SPROUTY2 is an inducible negative downstream modulator of FGFR signaling. VEGF, produced

by the epithelium, signals through FLK1 on the endothelium. BMP4, produced by the epithelium,

signals back to the mesenchyme through its cognate receptors to modulate mesenchymal differ-

entiation, particularly into smooth muscle. BMP4 ligand bioavailability is in turn negatively

modulated by NOGGIN, which is produced in the mesenchyme. SHH, produced by the epithe-

lium, signals through its cognate receptors Ptc and Smo located on the mesenchyme to both

negatively modulate Fgf10 transcription, but also to positively regulate mesenchyme differenti-

ation into smooth muscle. This network diagram is highly simplified and does not include other

key signaling mechanisms including Wnt ligands, Wnt antagonists such as DKK1, and their role in

controlling fibronectin deposition at branch points. While all members of the network must

interact correctly to control morphogenesis, the ratio of FGF10 to SPROUTY2 is a major factor

that determines the periodicity and geometry of branching morphogenesis (7). Source: From Stijn

de Langhe and Pierre del Moral.
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and reservoir of growth factors, which in turn regulate epithelial and mesenchymal cell
proliferation. Absence or inhibition of the interaction of epithelial cells with the base-
ment membrane results in failure of normal lung development (177,178).

LNs are glycoproteins involved in cell adhesion, migration, proliferation, and
differentiation during tissue development and remodeling. LNs are composed of three
chains, one central (a) and two laterals (b and g), that are linked by disulfide bonds to
form a cross-shaped molecule (179). To date, five a, three b, and three g chain isoforms
have been identified, which suggests that their combination can lead to approximately
30 variants of LN (180–189). The a1 chain has been found principally localized in the
basement membrane at the epithelial-mesenchymal interface, with a predominant dis-
tribution in specific zones. The LN a1 chain has also been identified around some
mesenchymal cells. Molecular analysis dissecting the a1 chain isoform has shown that a
domain in the cross-region of the a1 chain is involved in the regulation of lung epithelial
cell proliferation (190). The a4 chain, found in LN8 and LN9 variants, has been reported
to highly express in lung and heart tissues during mouse development (191,183–185).
The LN a4 chain, localized principally around vessels in fetal lung, may play a role
principally in the organization of lung mesenchyme (188,192). The a5 chain, found in
LN10 and LN11, has been indicated abundantly expressed during fetal lung morpho-
genesis (188,193,194). Mouse embryos bearing mutated LN a5 chain isoform display a
poor lobe septation and bronchiolar branching, suggesting that the LN a5 chain isoform
might be the most indispensable LN variant for lung branching morphogenesis.

A constant expression of b1 and g1 is observed during fetal lung development
(195). These two chains also have a role in cell adhesion. The globular domains near the
N-terminal of b1 and g1 chains participate in the regulation of cell polarization
(196,197). Immunohistochemistry studies have demonstrated that the LN b2 chain
isoform is localized in the basement membrane of prealveolar ducts, airways, SMCs of
airways, and arterial blood vessels, as well as type II pneumocytes.

Nidogen (150 kDa) is a constituent of the basement membranes. Nidogen binds to
the g1 and g3 chains of LN and forms a link between LN and collagen IV (187,198,199).
Nidogen is actively synthesized by mesenchymal cell during fetal lung development,
which suggests that it has a key role in the organization of the basement membrane
during lung morphogenesis (200). Blocking the interaction of nidogen with LN affects
the progression of lung development (198,200,201). Susceptibility of nidogen to deg-
radation by matrix metalloproteinases may contribute in the remodeling and degradation
of the basement membrane (202).

Proteoglycans comprise a core protein with sulfated carbohydrate side chains.
They function as flexible structures in the organization of the basement membrane and
may also play an important role as a reservoir for growth factors, water, and ions.
Perlecan is a predominant proteoglycan in the basement membrane. It is composed of an
approximately 450-kDa core protein with three heparan sulfate chains. Perlecan is
involved in the control of smooth cell proliferation and differentiation since increased
cell proliferation of fetal lung SMCs is accompanied by a highly increased synthesis of
perlecan (203). Growth and branching of E13 mouse lung explants can be disrupted by
inhibiting PG sulfation. The migration of epithelial cells toward invaded lung mesen-
chyme as well as toward beads soaked in FGF10 is inhibited when PG sulfation fails;
chlorate severely decreased branching morphogenesis in lung mesenchymal and epi-
thelial tissue recombinants (204).
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Fibronectin also plays important roles in lung development. In branching mor-
phogenesis, repetitive epithelial cleft and bud formation create the complex three-
dimensional branching structures characteristic of many organs. Fibronectin is essential
for cleft formation during the initiation of epithelial branching in salivary gland.
Immunofluorescence comparisons of fibronectin localization during early branching of
lung and kidney also showed an accumulation of fibronectin at sites of epithelial con-
striction and indentation (205), supporting possible roles for fibronectin in branching
morphogenesis of the lung (206). Direct tests for roles of fibronectin, by treatment of
developing lung rudiments with antifibronectin antibody or siRNA, inhibited branching
morphogenesis, while fibronectin supplementation promoted branching of lung (205).
The EIIIA segment of fibronectin is one of the major alternatively spliced segments and
modulates the cell proliferative potential of fibronectin in vitro. The EIIIA-containing
fibronectin isoform localized in both the epithelial cells and the mesenchyme. Its
expression gradually decreased from the pseudoglandular stage to the saccular stage and
then slightly increased from the saccular stage to the alveolar stage. This change in
expression pattern of EIIIA-containing fibronectin seemed to be in accord with the
change in the number of PCNA-positive cells in the distal pulmonary cells throughout
lung development (207).

Extracellular matrix is under dynamic control during lung development. The
MMPs are a large family of ECM-degrading enzymes. MMPs are inhibited by the family
of tissue inhibitors of metalloproteinases, termed TIMPs. Activity of MMPs may be
required during development and normal physiology in several ways: (i) to degrade
ECM molecules and allow cell migration, (ii) to alter the ECM microenvironment and
result in alteration in cellular behavior, and (iii) to modulate the activity of biologically
active molecules by direct cleavage, release from bound stores, or modulating of activity
of their inhibitors (208). In Timp3 null mutant mouse, lung airway branching is inhib-
ited. Compared with wild type, the number of bronchioles is reduced and alveologenesis
was attenuated in the Timp3 null (209). The Timp3 null animals spontaneously develop
progressive alveolar air space enlargement similar to that seen in human emphysema
(210). Early postnatal exposure to dexamethasone (Dex) influences MMP2 and MMP9,
as well as their tissue inhibitors (TIMP1 and TIMP2) in the developing rat lung: the
expression of Timp2 is reduced and that of Mmp9 increases. These changes may be
responsible, in part, for some of the known adverse maturational effects of steroids on
lung structure in the newborn (211). MT1-MMP, which acts as a potent activator of
MMP2, is a major downstream target of EGFR signaling in lung. Egfr�/� mice had low
expression of MT1-Mmp. Extracts from lungs of Egfr�/� mice showed a tenfold
reduction in active MMP-2. At birth, the abnormal lung alveolization phenotype of
Mmp2�/� mice is similar to that of Egfr�/� mice, albeit somewhat less severe (148). The
balance between the activity of MMPs and TIMPs is important to normal lung devel-
opment.

Retinoic Acid and Lung Morphogenesis

Retinoids (all-trans, 9-cis, and 13-cis) are fundamental for normal development and
homeostasis of a number of biological systems including the lung. There is a precisely
controlled RA synthesis and degradation system in mammals. Retinaldehyde dehydro-
genase-2 (RALDH-2) plays a prominent role in generating RA during organogenesis
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(212–214). RA signaling is mediated by its nuclear receptors of the steroid hormone
receptor superfamily: RAR (a, b, g) and retinoid RXR (a, b, g). RAR/RXR heterodimers
have also been shown to transduce RA signaling in vivo (215). Within the E13.5 lung,
Rar-b isoform transcripts are specifically localized to the proximal airway epithelium
and immediately adjacent mesenchyme, whereas Rara1, Rara2, and Rarg2 isoforms are
ubiquitously expressed (216).

RA signaling is required for lung bud initiation. Acute vitamin A deprivation in
pregnant rats at the onset of lung development results in blunt-end tracheae and lung
agenesis in some embryos, which is similar to Fgf10�/� null mutant mice (217,218).
Disruption of RA signaling in Rara/b2 knockout mice leads to agenesis of the left lung
and hypoplasia of the right lung (219). Interestingly, lung branching morphogenesis is
characterized by a dramatic downregulation of RA signaling in the lung. Prevention of
downregulating RA signal by treating embryonic lung explants with high concentrations
of RA (10�6 to 10�5 M) results in dramatic disruption of distal budding and formation of
proximal-like immature airways (220,221). Continued RA activation by overexpression
of constitutively activated Rara chimeric receptors also resulted in lung immaturity.
Lungs did not expand to form saccules or morphologically identifiable type I cells. High
levels of Sp-C, Nkx2.1, and Gata6 but not Sp-A or Sp-B in the epithelium at birth
suggested that in these lungs differentiation was arrested at an early stage. Down-
regulation of RA signaling, however, is required to allow completion of later steps of this
differentiation program that ultimately form mature type I and II cells (222). RA inhibits
expression and alters distribution of Fgf10 and Bmp4, which are required for distal lung
formation (220,221). Pan-RAR antagonism alters the expression of Tgf-b3, Hnf-3b, and
Cftr in proximal tubules and that of Bmp4, Fgf10, and Shh within the distal buds (216).

It is also noteworthy that during early stages of lung branching (day 11–12.5),
Raldh-2 expression is concentrated in trachea (mesenchyme) and proximal lung (mes-
othelium) at sites of low branching activity. The Raldh-2 pattern is not overlapping with
that of Fgf-10, supporting the idea that RA signaling restricts Fgf-10 expression and
helps to define the proximal-distal axis of the developing lung. However, during later
postnatal stages of lung development, RA has been shown to increase the number of
alveoli, and therefore, partially rescue dexamethasone-induced suppression of alveola-
rization. In adult rats, RA has also been reported to reverse the anatomical features of
elastase-induced emphysema in which there is destruction of septal structures
(27,28,223). In Rarg gene deletion mouse, there is a developmental defect in alveolar
formation, consistent with a defect in elastin deposition (30). This combined evidence
suggests that RA may play an important but rather complex role in alveolar development
during late lung development.

Fetal Lung Surfactant Maturation, Lung Liquid Absorption, and the
Transition to Air Breathing

Maturation of the fetal lung surfactant system is one of the two key steps to prepare the
lung for air breathing. During the last eight weeks of human gestation, fetal lung gly-
cogen is broken down and converted into surfactant phospholipids, the most important
of which is disaturated phosphatidylcholine. This maturation is under the control of and
can be stimulated by corticosteroids. Null mutation of the glucocorticoid receptors and
of corticotrophin-releasing hormone block this maturation in mice. Human mutations in
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various components of the surfactant system have been found such as SP-B that
adversely affect stability of pulmonary surfactant and hence the ability to maintain lung
inflation.

The transition to air breathing occurs rapidly in the mature neonatal lung.
Immediately following severance of the umbilical circulation, a significant spike in
catecholamine levels switches off chloride secretion and stimulates sodium/potassium
ATPase (224–226). This reverses the production of tracheal fluid and leads to its rapid
absorption into the lung interstitium and thence into the lymphatic and pulmonary
capillary circulation. Null mutation of Na/K ATPase in mice leads to failure to absorb
fetal lung liquid, which causes significant respiratory distress and even neonatal lethality
(227). In human infants, delayed lung liquid absorption can manifest as transient
tachypnea of the newborn.

Impact of Lung Injury on the Developmental Program

The lung has a relatively limited genetic repertoire to respond to injury. Initial injury to
the epithelium results in an outpouring of cyotokines and chemoattractants including
IL1, IL6, IL8, etc. Macrophages are recruited into the lung and enter the airways
together with neutrophils and lymphocytes. Physiological levels of TGFb peptides are
actually protective of the airway and prevent inflammation, as revealed by null mutation
in mice. Yet excessive amounts of TGFb1 activity have been detected in the tracheal
fluid of human premature infants who go on to get severe forms of BPD and hence have
a worse pulmonary prognosis (228). As discussed earlier, transgenic misexpression of
TGFb1 in mice substantially phenocopies BPD (115). Another important feature of the
airway cytokine milieu in human prematures who do badly with BPD is deficiency of
IL10 (229,230). IL10 is an important anti-inflammatory cytokine, leading to the
hypothesis that the airway of the human premature may be particularly prone to acute
and eventually chronic inflammation, which in turn leads to production of TGFb1 by
inflammatory cells in the airway. Targets for suppression by excessive TGFb1 signaling
include epithelial and endothelial proliferation, while mesenchymal lineages may be
stimulated. Likewise suppressive interactions of TGFb signaling with morphogenetic
pathways such as VEGF, FGF, PDGF, and SHH signaling may also play an important
role in mediating the alveolar hypoplasia and airway obstruction phenotype character-
istic of BPD.

The Hope of Recovery and Regeneration

Clinical experience in the special care nursery demonstrates that in most cases BPD is
apparently at least somewhat reversible, that airway inflammation eventually resolves,
and that lung alveolar growth can sometimes resume. This gives hope that with sup-
portive care, even severe cases of BPD may eventually move toward resolution.
However, one current view of BPD is that it is a disease in which damage to progenitor
cells in the peripheral airway may be compounded by failure to resolve inflammation
within a reasonable period. Thus, full recovery may be marred by failure to continue to
grow alveoli. Survivors of extreme prematurity are now beginning to appear in adult
pulmonary practice with reduced diffusion capacity, airways obstruction, and an “empty
chest” on CT radiography as a result of BPD in infancy. Some of this is due to airway
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epithelial damage and smooth muscle hypertrophy and some due to endothelial vascular
damage, while some may be due to subsequent intercurrent infections, particularly RSV.
Nevertheless, the neonatal lung is reassuringly relatively resilient. Newer studies in mice
show that oxygen-induced BPD models can be ameliorated in terms of alveolarization both
by VEGF therapy and by various kinds of exogenous stem cells. Thus, hope springs eternal
for improved postnatal lung recovery from the ravages of prematurity, oxygen plus pressure
plus time. Translation of this hope into practices that can prevent or improve BPD out-
comes may depend on an increasingly thorough integrative understanding of the genetics of
lung development, injury, repair, and regeneration in the human premature lung.
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