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Th e Handbook of Nanophysics is the fi rst comprehensive ref-
erence to consider both fundamental and applied aspects of 
nanophysics. As a unique feature of this work, we requested 
contributions to be submitted in a tutorial style, which means 
that state-of-the-art scientifi c content is enriched with funda-
mental equations and illustrations in order to facilitate wider 
access to the material. In this way, the handbook should be of 
value to a broad readership, from scientifi cally interested gen-
eral readers to students and professionals in materials science, 
solid-state physics, electrical engineering, mechanical engi-
neering, computer science, chemistry, pharmaceutical science, 
biotechnology, molecular biology, biomedicine, metallurgy, 
and environmental engineering.

What Is Nanophysics?

Modern physical methods whose fundamentals are developed 
in physics laboratories have become critically important in 
nanoscience. Nanophysics brings together multiple disciplines, 
using theoretical and experimental methods to determine the 
physical properties of materials in the nanoscale size range 
(measured by millionths of a millimeter). Interesting properties 
include the structural, electronic, optical, and thermal behavior 
of nanomaterials; electrical and thermal conductivity; the forces 
between nanoscale objects; and the transition between classical 
and quantum behavior. Nanophysics has now become an inde-
pendent branch of physics, simultaneously expanding into many 
new areas and playing a vital role in fi elds that were once the 
domain of engineering, chemical, or life sciences.

Th is handbook was initiated based on the idea that break-
throughs in nanotechnology require a fi rm grounding in the 
principles of nanophysics. It is intended to fulfi ll a dual purpose. On 
the one hand, it is designed to give an introduction to established 
fundamentals in the fi eld of nanophysics. On the other hand, it 
leads the reader to the most signifi cant recent developments in 
research. It provides a broad and in-depth coverage of the phys-
ics of nanoscale materials and applications. In each chapter, the 
aim is to off er a didactic treatment of the physics underlying the 
applications alongside detailed experimental results, rather than 
focusing on particular applications themselves.

Th e handbook also encourages communication across bor-
ders, aiming to connect scientists with disparate interests to begin 

interdisciplinary projects and incorporate the theory and method-
ology of other fi elds into their work. It is intended for readers from 
diverse backgrounds, from math and physics to chemistry, biology, 
and engineering.

Th e introduction to each chapter should be comprehensible to 
general readers. However, further reading may require familiar-
ity with basic classical, atomic, and quantum physics. For stu-
dents, there is no getting around the mathematical background 
necessary to learn nanophysics. You should know calculus, how 
to solve ordinary and partial diff erential equations, and have 
some exposure to matrices/linear algebra, complex variables, and 
vectors.

External Review

All chapters were extensively peer reviewed by senior scien-
tists working in nanophysics and related areas of nanoscience. 
Specialists reviewed the scientifi c content and nonspecialists 
ensured that the contributions were at an appropriate technical 
level. For example, a physicist may have been asked to review a 
chapter on a biological application and a biochemist to review one 
on nanoelectronics.

Organization

Th e Handbook of Nanophysics consists of seven books. Chapters 
in the fi rst four books (Principles and Methods, Clusters and 
Fullerenes, Nanoparticles and Quantum Dots, and Nanotubes 
and Nanowires) describe theory and methods as well as the 
fundamental physics of nanoscale materials and structures. 
Although some topics may appear somewhat specialized, 
they have been included given their potential to lead to better 
technologies. Th e last three books (Functional Nanomaterials, 
Nanoelectronics and Nanophotonics, and Nanomedicine and 
Nanorobotics) deal with the technological applications of nano-
physics. Th e chapters are written by authors from various fi elds 
of nanoscience in order to encourage new ideas for future fun-
damental research.

Aft er the fi rst book, which covers the general principles of 
theory and measurements of nanoscale systems, the organization 
roughly follows the historical development of nanoscience. Cluster 
scientists pioneered the fi eld in the 1980s, followed by extensive 
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work on fullerenes, nanoparticles, and quantum dots in the 1990s. 
Research on nanotubes and nanowires intensifi ed in subsequent 
years. Aft er much basic research, the interest in applications such 
as the functions of nanomaterials has grown. Many bottom-up 

and  top-down techniques for nanomaterial and nanostructure 
 generation were developed and made possible the development of 
 nanoelectronics and nanophotonics. In recent years, real applica-
tions for nanomedicine and nanorobotics have been discovered.
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1.1 Introduction

A number of chapters in this handbook refer to, or rest on, 
the control of nanocluster (NC) size and size distribution, i.e., 
the fi rst and second moments of the NC population. In fact, the 
entire, detailed shape of the NC size distribution is oft en very 
important. Its eff ect has actually been used for thousands of 
years. Th e colors of ancient or medieval glasses are generally 
due to the semiconducting or metallic NCs that they contain, 
and the varying shades of beautiful colors that we marvel at 
are most oft en due to the empirical control obtained by glass-
makers, via complex heat treatments, over NC sizes and size 
distributions. Today, these parameters are known to bear criti-
cally on such important properties as the optical emission lin-
ewidth or the magnetic anisotropy distribution. Th e obtention 
of narrow size distributions is also crucial to the fabrication of 
three-dimensional NC arrays in solar cells, photodetectors, or 
other photonic devices. Control over these parameters requires 
that we understand and monitor the physical processes that 
determine them. Our purpose in this chapter is to summarize 
the present status in this regard.

In order to predict and control the NC average size and size 
distributions, we would ideally need (1) a full description of 
nucleation processes and of growth processes; (2) criteria to 
avoid overlap of nucleation and growth, since this obviously 
broadens the size distribution; and (3) a full description of 
coarsening (mass transport from small particles to their larger 
counterparts), i.e., of the particle size distribution’s time evolu-
tion from an arbitrary initial distribution. Th is ideal situation is 
almost fully realized in techniques based on colloidal chemistry 
(e.g., Pileni 2001, 2003, Park et al. 2004, Weiss et al. 2008), which 

have provided a broad range of metal and semiconductor NCs in 
solution, in a variety of shapes and sizes and with excellent con-
trol over the size distribution (at the 5% level or under). Studies 
of intrinsic NC properties, and a number of applications, benefi t 
hugely from these techniques. Summarily, liquid-state chemis-
try is expected to provide more degrees of freedom in the NC 
synthesis process, and species diff usion does not limit interac-
tions. However, most applications—notably involving inorganic 
solid matrices—require that the NCs be transferred from a solu-
tion to a solid host. Th is generally poses serious problems related 
to solubility, to possible reactions of the NC element(s) with host 
components, to clustering, or to coalescence. In solids, none of 
the requirements listed above are fully available for several rea-
sons. Th e initiation of nucleation diff ers widely depending on 
the nature of the material in which the NCs are to be grown: 
e.g., in metals and many semiconductors, it usually depends on 
quasi-equilibrium thermodynamics and on diff usion, whereas 
in insulators and in some semiconductors, the primary aggre-
gation process also depends on the charge state properties (i.e., 
the chemistry) of moving species, including electrons and holes. 
Growth processes are correspondingly also very diff erent. As a 
result, except in the simplest cases, multiple mechanisms occur 
and interfere, a situation that generally leads, as we shall see, to 
diffi  culties in predicting how to control NC populations and 
narrow size distributions.

Our discussion starts with a short review of standard quasi-
equilibrium thermodynamics nucleation and growth, which 
provides us with some terms of reference. Although it is by no 
means ideal for obtaining narrow size distributions, it has the 
advantage of being predictive in simple cases. Th e best example 
is that of the late-stage coarsening process, very well described 
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by a scaling approximation. We then scrutinize nucleation con-
ditions in various cases, since they determine most of an NC’s 
“short and midterm” future. We summarize a generalization 
of the quasi-equilibrium thermodynamics approach, given by 
Binder, in terms of coupled rate equations. Th is provides a useful 
framework to evaluate conditions for the control of an NC popu-
lation’s evolution. It allows us to discern whether a study of the 
NC population moments’ time and/or temperature evolution, 
in some of the more common NC nucleation and growth cases, 
provides information on the corresponding mechanisms. It also 
provides a framework to estimate the possibility of obtaining 
narrow size distributions from diff erent classes of experimental 
synthesis techniques (near to, or far away from, equilibrium) as 
they are described elsewhere in this handbook.

Our topic involves many aspects of statistical physics, equi-
librium, and nonequilibrium thermodynamics that cannot be 
covered in this chapter—detailed treatments are given in the 
references. Th e aim here is to provide a rather pragmatic guide 
to experimentalists interested in a critical view of the physics 
underlying attempts to control the synthesis of NCs.

1.2  Mechanisms of Nanocluster 
Nucleation and Growth

1.2.1 A Word on Precipitation

As is obvious from their very name, NCs are formed by progres-
sively separating one or more constituents from a solid or a liquid 
solution or alloy, e.g., by cooling from the melt, modifying the 
system’s pressure, or via the addition of a chemical reagent. Th e 
common term for this operation is “precipitation,” a concept that 
covers a large variety of phenomena ranging from atmospheric 
rain droplet formation to solid-state nanoscale aggregation. 
Over more than a century, a rather general common descrip-
tion of all these occurrences has emerged, based on statistical 
physics and on the thermodynamics of phase transformation. 
Of course, there are limitations to the information derived from 
this description. From a theoretical viewpoint, precipitation is a 
highly nonlinear phenomenon, hence quite complex to formu-
late. Experimentally, material properties (e.g., rain versus sec-
ond-phase nanoclustering) will obviously aff ect the behavior at 
some level of detail. In all instances, a major diffi  culty remains 
in discerning the initial nucleation stage, which is found to be 
crucial for control over precipitation. We will go into this later. 
First, we briefl y review the more common physicochemical 
mechanisms of NC nucleation and growth, emphasizing those 
features that aff ect NC sizes and size distributions.

Th e essential driving force for precipitation of a new phase 
(e.g., ice from cooled water second-phase extraction from a liq-
uid or a solid solution, etc.) is the lowering of the potential energy 
of a group of atoms (or molecules) when they bond together. Two 
rather diff erent stages occur: nucleation and growth. Nucleation 
involves the formation of small clusters—it depends on an 
energy instability in the parent state, where lowering the tem-
perature provides a driving force toward equilibrium, and this 

driving force increases as the temperature is reduced. On the 
other hand, in order to cluster atoms must meet, so diff usion is 
essential, and diff usion increases at increasing temperatures. We 
recognize here that thermodynamics determines whether nucle-
ation is possible (tending to minimize the system’s free energy), 
whereas kinetics determine the nucleation rate. Th e two have 
opposite temperature dependences, so their multiplication leads 
to a maximum in the nuclei density temperature dependence. 
Th ere is also, as we will see shortly, a condition for the formed 
clusters to be stable. If it is satisfi ed, growth of these clusters is 
diff usion controlled (i.e., increases with temperature). Th e total 
rate of NC formation is then the product of the nucleation rate 
and the growth rate. Let us now briefl y quantify this picture.

1.2.2 Some Basic Thermodynamics

Quench the simplest binary system A–B (Figure 1.1, upper part): 
it will end up in a metastable state below a critical temperature, 
Tc (Porter and Easterling 1981, Binder and Fratzl 2001, Wagner 
et al. 2001). Th e locus of the Tc’s for diff erent compositions 
(coexistence line) defi nes a phase boundary. Th e evolution of 
a metastable system tends to minimize the Gibbs free energy, 
ΔG = ΔH − TΔS, where ΔH is the enthalpy, ΔS is the entropy, 
and T is the temperature. For an NC, the competition between 

T Single phase
(A,B)

Coexistence
line

Spinodal
line

Tc

cp

c

B
T1

T2

Á +B
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A B

FIGURE 1.1 Upper: Schematic binary A–B alloy phase diagram, 
showing the coexistence line and the spinodal line. Th e region in which 
unmixing—hence homogeneous nucleation—occurs lies between these 
two lines. Th e region below the spinodal line is the unstable decompo-
sition region, where spinodal decomposition (rather than nucleation) 
occurs. Lower: Th e free energy’s composition dependence for the same 
system at two diff erent temperatures (see text).
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the formation enthalpy f
0HΔ  (which is determined by the atomic 

interactions, hence size-dependent for small sizes) and the 
entropy term (also size-dependent) in the Gibbs free energy leads 
to a temperature (typically c f

0 2 ,/T H R= Δ  where R is the perfect 
gas constant) below which B-rich domains may form. Quenching 
to lower temperatures, two possibilities occur depending on the 
composition- and temperature-dependent free energy of the sys-
tem. Th e latter varies as shown for two temperatures in Figure 
1.1 (lower part)—the locus of all the free energy curves’ infl exion 
points is the so-called spinodal curve. Free energy fl uctuations 
exist even at thermodynamic equilibrium. In both the metasta-
ble and unstable part of the phase diagram, some of these fl uc-
tuations can diverge and start growing. As seen by inspection of 
Figure 1.1 (lower), they have very diff erent eff ects depending on 
the region of the phase diagram we consider. In the area under 
the spinodal (where the second derivative of the free energy is 
negative), any change in composition or temperature leads to 
an instability (there is no energy barrier and no phase transition 
at the spinodal line). If there is suffi  cient atomic mobility, the 
enhanced affi  nity of B for B, rather than for A, tends to form a 
solution with regions locally and randomly richer in B than in A. 
If kinetic blocking occurs (i.e., low temperatures freeze atomic 
movements in a region where typically T < 0.1Tc), diff usion con-
stants are very low and separation is limited. Th eoretical treat-
ments describing how concentration fl uctuations, particularly 
in the spinodal decomposition regime, can lead to nucleation 
and growth are summarized elsewhere (Binder and Fratzl 2001, 
Ratke and vorhees 2002). For an excellent introduction to rel-
evant phase transition theories, see Binder (2001).

Outside the spinodal region, between the spinodal and coexis-
tence lines, the second derivative of the free energy is positive, so 
that the system gains energy if a true second-phase nucleates (with 
an energy barrier!) and grows. Th is is the metastable region, in 
which unmixing occurs, producing locally organized precipitates, 
i.e., NCs. NCs generally grow in the low solute concentration/vol-
ume fraction part of the phase diagram, where unmixing occurs by 
metastable decomposition. Clusters form because of solute species 
mobility and chemical affi  nity (bond energies); monomers eventu-
ally bond to each other and form small aggregates that can grow or 
dissolve depending on their free energy. Once the NCs have reached 
a critical size (see below), the thermodynamic driving force induces 
further growth by capture of surrounding monomers, and later at 
the expense of surrounding precipitates (coarsening).

Microscopically, the very fi rst stage of phase separation is 
described by (1) near-neighbor bond energies and (2) diff ering 
energy barriers for B and A atomic jumps as they diff use and 
interact. Th ese parameters determine the crucial macroscopic 
quantities—the diff usion coeffi  cients and the solubility. As the cor-
responding cluster grows from 2, 3,… to n atoms, its energy changes 
relative to the surrounding solution, modifying its stability and 
internal and interface structure. Th e thermodynamics of binary 
systems provides a rather good initial approach (experimentally 
verifi ed in many simple metallic systems) to the origin and main 
parameters determining the unmixing phase evolution that leads 
to NC formation in solids as well as liquids or on surfaces.

Whereas the phase diagram is obtained from studies of bulk 
solids, surface eff ects must be taken into account when NCs are 
involved. Th is leads to changes in the position of the boundaries in 
the unmixing diagram of Figure 1.1. Microscopically, this is due to 
the fact that the NC (or, more generally the second-phase domain) 
exchanges atoms with the primary phase through the interface, 
which—the NC being small—is curved and comprises a large frac-
tion of NC atoms. Th e exchange rates depend on the curvature, so 
that the equilibrium concentration at any point in the interface 
vicinity also depends on the local curvature (Figure 1.2). Chemical 
and structural equilibrium conditions lead to the so-called Gibbs–
Th omson relation, relating the concentration of B in the vicinity of 
a planar interface to that around a single NC of radius R:

 − ∞
⎧ ⎫= ⎨ ⎬
⎩ ⎭

c
G T( ) exp Rc R c

R

where c∞ is the impurity equilibrium concentration at a fl at 
interface, the “capillary length” Rc = 2βVσ depends on the 
atomic volume V and the surface tension σ, and β = 1/kT. Th e 
smaller the NC, the higher the equilibrium concentration at 
the NC surface. Th is will therefore shift  the phase boundary 
upward in the unmixing diagram. Th ese eff ects are important 
in the 1–10 nm size range. Th e Gibbs–Th omson relation has a 
major eff ect on the entire NC population: it shows that when in 
thermodynamical equilibrium with their embedding medium, 
NCs of diff erent sizes will undergo correlated evolution. Due 
to the concentration gradient, the smaller ones tend to dissolve 
and the larger ones grow correspondingly. Th is process, known 
as Ostwald ripening, is rather widespread (Ratke and Vorhees 
2002). It is, in fact, the only feature of the NC population evolu-
tion that has been modeled analytically to a reasonable approx-
imation (based on scaling, see below). It is also the only one 
that is predictive as regards changes in the average NC size and 

Nucleation

c

cP

cR

c(t)

cS

Growth

2R

Final state r

FIGURE 1.2 Schematic view of the solute concentration fi eld in the 
host surrounding an NC with radius R and composition cR, when in 
the unmixing regime. Th e NC is fi rst shown in the initial, nucleation 
stage, then during growth, and lastly in its fi nal, equilibrium state. Th e 
quantity cs is the equilibrium concentration of the solute B in the host 
A. In the unstable spinodal regime, the progressively increasing con-
centration fl uctuation amplitudes (with a characteristic wavelength) 
would ultimately—above a critical concentration—also lead to a pre-
cipitate structure. Th e long-term structures in both cases are essentially 
indistinguishable.
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population, and which predicts a well-defi ned long-term size 
distribution.

A word on chemistry. As noted above, colloidal solution-based 
synthesis has met with huge success in those cases where the NCs 
produced may be manipulated and introduced into other media. 
Because the reacting system is liquid, it favors control over the 
way reagents are introduced as well as off ers considerable versa-
tility in exploring the infl uence of the environment. Chemical 
reagents are an excellent way to separate nucleation and growth 
(this approach is also used in glasses). Standard thermodynamics 
are at work here, and diff usion oft en plays a minor role as com-
pared to chemical reaction rates. A popular analysis of the pro-
cess is that of LaMer (LaMer and Dinegar 1950), oft en quoted by 
liquid solution chemists. It is a phenomenological description of 
the conditions required for obtaining narrow size distributions 
using a fl ash nucleation scheme—i.e., separating nucleation and 
growth. It has met with renewed interest because of the excit-
ing properties of metallic and semiconducting NCs grown in 
solution. Transition probabilities are connected via the detailed 
balance condition, the free energies of the states involved in the 
transition are used, and the mass action law describes the chemi-
cal kinetics (implying proximity to thermodynamic equilib-
rium). Th is is essentially identical to the nucleation and growth 
model described below, with diff erent notations.

1.2.3 Kinetics and Nucleation

NC nucleation is generally by no means an irreversible pro-
cess smoothly evolving from a diatom to a several hundred- or 
thousand-fold confi guration. Subtle quasi-equilibrium thermo-
dynamics nucleation theories (Cahn and Hilliard 1958, 1959, 
Cook 1970, Binder and Fratzl 2001, Wagner et al. 2001) provide 
an adequate description of how concentration fl uctuations lead 
to incipient nucleation—as long as atoms are free to move. Hence 
the importance of kinetics combined with thermodynamics 
(Philibert 1991). Th is feature cannot be overestimated: the very 
fi rst steps of NC nucleation, their composition and structure at 
this early stage, are crucial to their evolution, since they deter-
mine the NC free energy (i.e., stability) and reactivity with their 
surroundings.

In order to obtain, aft er growth, as narrow a size distribution 
as possible, the initial NC population size distribution should 
itself be narrow—ideally, all nuclei should be formed simultane-
ously. Th is obviously depends on the nucleation speed, hence on 
an adequate combination of fast NC component diff usion, a large 
NC formation enthalpy, and free energy (the latter determining 
its stability). Th e ultimate NC density and average size, as well as 
the size distribution, all depend on how well this criterion is met. 
Now the metastable precipitation mechanism described above 
depends on an energy barrier, so it is relatively slow. As a result, 
in quasi-equilibrium thermodynamics conditions, a signifi cant 
fraction of NCs are still undergoing formation as others grow—
an eff ect that broadens the NC size distribution signifi cantly. In 
some cases, such as growth of selected NCs in glasses (Borelli 
et al. 1987), this is circumvented by a two-stage anneal: fi rst a 

low-temperature anneal to allow the slow nucleation process to 
develop, then—once the entire population of nuclei has been 
formed—a faster high-temperature anneal to induce growth. 
Th e effi  ciency of such procedures is limited by the phase dia-
gram and diff usion properties. Th e eff ort to fi nd tricks leading 
to a narrow, controlled initial NC population is one of the main 
reasons for developing techniques in which NCs are formed 
under far-from-thermodynamic equilibrium conditions.

What are the requirements for an NC to be stable? Th e pri-
mary one (notably in metals, many semiconductors, polymers, 
and liquids) is thermodynamical. In the binary system discussed 
above, for example, the volume term driving force for phase 
separation is the diff erence in B concentration between B-rich 
and B-poor domains: nucleation requires the existence of a steep 
concentration gradient. Forming these domains thus also leads 
to the formation of interfaces, hence to surface energetics terms. 
Th ese constitute another crucial thermodynamic driving force 
responsible for the change of equilibrium concentration in an 
NC’s vicinity (Gibbs–Th omson equation). Th is is schematized in 
Figure 1.3, which shows that the competition between the nega-
tive free energy volume term and the positive free energy surface 
(interface) term leads to a critical size below which the NC is 
unstable. Th ere is an energy cost in constructing an interface; 
hence, above some free energy threshold, the system will tend to 
minimize the interfacial energy by increasing the NC size.

Th is greatly simplifi ed presentation of the requirements for 
nucleation (Porter and Easterling 1981, Wagner et al. 2001) 
only considers the interplay between the surface and volume 
free energy terms in a binary system displaying homogeneous 
nucleation. Complications arise when aiming to synthesize 
compound NCs in the solid state. Clearly, working in a ter-
nary or multielement phase diagram introduces new degrees of 

Gibbs free energy

R

~ σint . R2

~ –(ΔGch + ΔGel) . R3

ΔG*

ΔG0

FIGURE 1.3 Competition between the negative free energy volume 
term and the positive free energy surface (interface) term for a coherent 
spherical precipitate in a host. Th e negative—energy-gaining—volume 
free energy is proportional to R3. It includes a chemical driving force 
and an elastic coherence driving force. Th e surface term, proportional 
to the surface (or interfacial) energy and to R2, is positive. Summing the 
two terms leads to a critical size Rc for growth.
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freedom, such as the diff erent diff usion coeffi  cients of the indi-
vidual species in the host or the competition between formation 
energies and stabilities of all possible compound NCs that may 
appear in the complex phase diagram, etc. Th e Gibbs–Th omson 
relation, for example, is substantially altered, involving diff usion 
of all alloy components and a competition between the chemi-
cal affi  nities of the components with diff erent solubilities. Th ere 
may also be strain- or defect-induced diff usion eff ects such as 
those observed, e.g., for transition metals in GaN or for chal-
cogenides in glass (e.g., see Espiau de Lamaestre et al. 2005). 
Similar or further complications arise when attempting to syn-
thesize so-called core-shell NCs with diff ering compositions of 
the core volume and of near-surface layers. Th is has been very 
successful via colloidal chemistry or cluster beam deposition, 
but is far more diffi  cult inside solid-state matrices. As discussed 
elsewhere in this volume, such structures are of considerable 
interest in order, e.g., to add a wide-gap semiconductor shell to a 
narrow-gap semiconductor core for exciton trapping (Hines and 
Guyot-Sionnest 1996, Peng et al. 1997), passivate semiconduct-
ing (Alivisatos 1998), or metallic (Skumryev et al. 2003, Morel 
et al. 2004) NCs by a surface oxide layer, e.g., to study magnetic 
exchange bias in NCs, or, by growing bimetallic NCs with dif-
ferent alloy compositions in the core and the shell, or to control 
the surface plasmon band emission wavelength (Mattei et al. 
2009). But their nucleation and growth again require working in 
a multielement phase diagram that includes the host elements, 
with major diffi  culties in controlling NC evolution and size 
distribution. Th is is where nonequilibrium techniques become 
necessary.

Our discussion has largely remained so far within the realm 
of classical thermodynamics. As we have just indicated, however, 
other contributions to the energetics of an NC oft en come into 
play. Th ese are quite diverse, as shown by two examples to which 
we return at the end of this chapter. (1) In a liquid or an insula-
tor, the fi rst stages of nucleation—typically involving just a few 
atoms—are largely a matter of chemistry. For a very small NC 
(say, well below a few hundred atoms), the free energy is a non-
monotonic function of its size and depends on charge equilibrium 
in the liquid or solid host. Th e stability and mobility of reaction-
induced ionic charge states are then important factors (possibly 
overriding, if there are only a few atoms). Also, in the same initial 
stage, redox eff ects usually dominate dynamics (reaction paths) 
and ultimate equilibrium among species. (2) If nucleation occurs 
in a host containing, say, interface dislocations or artifi cially 
introduced surface defects, these act as traps for heterogeneous 
nucleation. In such cases, surface energetics (including strain-
induced diff usion) dominate the nucleation process, aff ecting 
the predictability and control of the growth process.

1.3 Growth and Coarsening

Th e fi rst feature of growth according to thermodynamics is 
the concentration gradient around an NC nucleus (modifi ed 
by the eff ect of NC surface curvature, Gibbs–Th omson rela-
tion). An isolated nucleus, surrounded by such a concentration 

gradient, progressively accretes atoms from its surroundings, 
i.e., growth is diff usion controlled. Th is should lead to a para-
bolic growth law (R2 ∝ t)—a prediction that is rarely verifi ed 
experimentally, since dilution is never infi nite and other pro-
cesses intervene. Th ese are notably the birth of new nuclei while 
others grow and precipitate interaction (coarsening). Another 
important possibility is that growth not be diff usion limited, but 
interface limited, i.e., determined by the free energy gained by 
transferring an atom from the host to the NC, leading to a linear 
growth rate.

Th e growth law may be deduced in a very general way from a 
conservation equation for the NC size density distribution. Let 
f(R, t) be a population of NCs characterized by their size distri-
bution. In size space, as long as there is no creation or destruc-
tion of NCs, the conservation of NC number around radius R 
(at time t) may be written as
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Th e term in parentheses is the fl ux density in size space. Were 
the rate dR/dt of NC growth known, this continuity equation 
would predict the size distribution. Unfortunately, this is most 
oft en not the case: neither the number density nor the total NC 
mass are conserved, hence the diffi  culty in assessing how to con-
trol the size distribution.

If we now consider a population of grown NCs, it is clear that 
the system’s total energy is enhanced by the existence of a large 
interfacial area. Th e largest relative contribution to the latter 
being provided by the smallest NCs, the total energy is reduced 
if the larger NCs grow at the expense of the smaller ones. Th is is 
the coarsening (Ostwald ripening) process involving competitive 
growth. An important, experimentally discovered feature of the 
process is the possibility of scaling: at suffi  ciently long times, the 
entire size distribution remains self-similar when normalized by 
an appropriate length scale such as the average NC size or the 
average interparticle distance. Th is has opened the way to the 
analytical treatment of Ostwald ripening (see below).

A similar treatment may be performed in the case of a 
related problem—that of coagulation. Th is concerns growth by 
aggregation, in the absence of mass transfer, of clusters whose 
sizes may be similar or diff erent. Th is process oft en occurs in 
the case of NC diff usion on surfaces and dominates growth 
processes in polymers (e.g., those that encage metallic or semi-
conducting NCs).

Both coarsening and coagulation lead to an asymptotic size 
distribution; time and size scaling holds for both, so that an ana-
lytical treatment could be devised for the latter (Smoluchowski 
1916) and for the former (Lifshitz and Slyozov 1961, Wagner 
1961, commonly referred to as LSW). Th is was done in the 
framework of quasi-equilibrium thermodynamics, the evolu-
tion being due to a balance between thermodynamic and kinetic 
growth factors. We discuss these processes now, using the syn-
thetic approach of Binder.
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1.4  A General Description 
of Phase Separation

An extensive, generalized description of the phase separation in 
a binary mixture was proposed by Binder (Binder 2001, Binder 
and Fratzl 2001, Wagner et al. 2001). Th is is a microscopic aggre-
gation model involving attachment and detachment of clusters 
or monomers, quite analogous to the chemical reaction theory. 
Th e main result is an equation describing the cluster size distri-
bution’s evolution in size and time space. Both the coagulation 
and condensation regimes are derived as a limiting behavior 
from this equation.

Coagulation involves reactions between clusters of any size, 
occurring, for example, in liquid systems or at relatively high 
concentrations, as opposed to condensation dealing with aggre-
gation steps between a monomer and a cluster of any size.

In the case of the coagulation regime, the equation reads
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where
W are size-dependent kinetic factors
nl(t) is the population of l-size clusters at time t

Th is equation then reduces to that of Smoluchowski 
(Smoluchowski 1916), except that the latter used a discrete 
representation.

In the condensation regime, the equation reads
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where
Rl are the kinetic factors
ΔFl is the free energy of a l-size cluster

Th is equation has the form of a conservation equation
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where the cluster current in the size representation consists of 
two terms

 1. A thermodynamically driven drift  component that leads 
the system toward its minimum free energy. Th is is
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 2. A diff usion component describing the contribution of 
fl uctuations to the nucleation and growth process. Th is 
contribution is
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 and always tends to broaden the size distribution.

Th e evolution of the size distribution is thus determined by 
a highly nonlinear set of coupled diff erential equations, among 
which various approximations allow us to identify the main con-
tributions to either coagulation or condensation. For example, in 
a long-time approximation, the equation describing condensation 
provides the LSW expression for coarsening (late-stage growth):

 

LSW

1
exp

c

3 2 7/3 11/34 5/3
c0

0
c c c c c

2
3

3 2 3( , ) 3
2

1R
R

R e R R Rf R t n
R R R R R

− −−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
× ⎜ ⎟−⎝ ⎠

with

 ( )c c

BB

1/3

3
0 2

4 2( )
9

mV DR t R t
x k Tβ

⎛ ⎞σ⎜ ⎟= +
⎜ ⎟
⎝ ⎠

the average radius (Rc0 the initial mean radius, n0 the initial clus-
ter density, Vm the molar volume of the precipitates, σ the sur-
face tension, D the diff usion constant, and Bxβ the fraction of B in 
the precipitate—usually close to 1). Th is expression is derived by 
assuming (see Section 1.4.2) an adequate scaling law for diff usion 
as well as mass conservation, the validity of the Gibbs–Th ompson 
equation, and a very low cluster density, typically below 0.1 at%.

Binder’s derivation is suffi  ciently general to account for a cluster 
growth mechanism that includes not only the number of constitu-
ent atoms but also, for example, the number of surface atoms or 
the NC ionic charge (if there is one); it may be extended to clusters 
including more than one chemical component, i.e., other contri-
butions to their free energy. Unfortunately, due to the nonlinear 
nature of the problem, fi nding an analytical path to other than the 
long-term solution is diffi  cult, hence the use of elaborate simula-
tions (described in the references above). Th e fact that a general 
formulation of the nucleation, growth, and coarsening dynam-
ics is obtained remains a signifi cant advantage. In the latter two 
processes, the thermodynamical term dominates, whereas in the 
former, the diff usive term plays a crucial role in “igniting” the pro-
cesses. We briefl y review these two limiting cases.

1.4.1 Short-Term Behavior: Nucleation

Th e equation given above describes homogeneous nucleation, 
i.e., nucleation initiated only by intrinsic fl uctuations of the 
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system’s free energy. Nucleation can also be initiated by external 
perturbations such as defects or impurities. We have seen that in 
order to obtain narrow size distributions, control over growth 
should attempt to carefully separate the nucleation and the 
growth stages: if all clusters start growing together, the resulting 
size distribution will be narrower than if new nuclei are continu-
ously generated while older ones are growing.

Note that this rate equation approach is adequate for cluster 
precipitation in both liquid and solid-state matrices. In the for-
mer, it is oft en referred to as the method of LaMer (LaMer and 
Dinegar 1950, Park et al. 2007), in which reactants are rapidly 
introduced in the solvents to induce nucleation. We previously 
also mentioned the two-stage annealing technique (Borelli et al. 
1987) well known to glass makers.

1.4.2 Long-Term Behavior: Scaling

Th e long-term behavior of a precipitate system is far easier to 
observe than the nucleation and growth processes. Can we 
deduce any information from it as concerns the inception and 
evolution of the system’s essential features? As mentioned above, 
during long-term growth (the coarsening regime), the system’s 
main parameters (e.g., density of clusters and size distribution) 
are self-similar. One can therefore clearly distinguish the sys-
tem’s time evolution, well described by the time dependence of a 
typical size, and other normalized topological observables such 
as the NC spatial and size distributions.

In the long-term LSW size distribution (Lifshitz and Slyozov 
1961, Wagner 1961), the mean radius Rc is the scaling length. 
When the radius is normalized by Rc, the size distribution’s 
shape is invariant in time:
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Th is is referred to as the asymptotic form of the size distribu-
tion. It does contain some information about the system’s pre-
cipitation physics. An example (Valentin et al. 2001) is shown in 
Figure 1.4. Th e entire nuclei population was fi rst synthesized by 
ion irradiation (analogous to the fi rst stage of the photographic 
process) and then all nuclei grew simultaneously under a ther-
mal anneal. Th e conditions of this experiment were very close 
to LSW approximation conditions, and the resulting late-stage 
growth size distribution is in excellent agreement with the LSW 
prediction.

We have seen that the dynamics of Rc are determined by the 
diff usion constant, as expected, and also, more interestingly, 
by the surface tension that dominates coarsening in the LSW 
model. Note that Rc

3 ∝ t (this is also found in the experiment of 

Figure 1.4). Th e infl uence of the microscopic mechanism is fur-
ther illustrated by a comparison of the results above with those 
obtained when cluster condensation is no longer diff usion lim-
ited, but is limited by chemical reactions at the NC surface. Th is 
change in the microscopic conditions of aggregation leads to a 
broader size distribution (which still has a tail on the smaller-
size side, again due to the surface tension mechanism) with a 
growth law exponent ½ instead of ⅓.

Th ese examples reveal an infl uence of microscopic mechanisms 
on the fi nal size distribution shape and growth exponents. However, 
although this agreement validates the assumptions regarding the 
system’s long-term evolution, can one work backward and say 
anything at all about the earlier nucleation and growth mecha-
nisms from the post-coarsening size distribution? Clearly, this is 
at best very diffi  cult. For example, the long-term LSW solution is 
obtained whether or not there is an energy barrier for nucleation 
(spinodal or metastable decomposition). Other cases are worse, as 
shown by a scrutiny of the observable quantities.

1.4.2.1 Observable 1: Growth Time Exponent

Many experiments deal with the time-dependent growth law. 
However, its experimental determination is a very diffi  cult 
task, requiring studies over several decades to obtain suffi  cient 
 precision. When the experimental determination is based on a 
single decade, and since measurements are necessarily performed 
on small precipitate sizes, unequivocal results are unlikely. Th is 
diffi  culty is long known and needs to be carefully resolved in 
interpreting experiments. Worse still, agreement with a micro-
scopic mechanism is sometimes claimed on the basis of a growth 
law exponent in contradiction to the observed size distribution 
shape. Th is illustrates the fact that a growth exponent is not 
unequivocally related to a growth mechanism. In fact, theoreti-
cal considerations show that there is a degree of universality in 
this exponent, i.e., it is representative of families of fi rst order 
phase-separating systems (universality classes) rather than 
 identifying a particular mechanism (Binder 1977).
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FIGURE 1.4 Comparison of the LSW distribution with an experiment 
in which all the nuclei of the very dilute NC population grew together 
aft er being simultaneously produced by an ion irradiation, whose eff ect 
is analogous to a photographic exposure, see text. (From Valentin, E. 
et al., Phys. Rev. Lett., 86, 99, 2001.)
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1.4.2.2 Observable 2: Size Distribution Shape

We have seen, in the case of the LSW distribution, that changes 
in the shape of the size distribution were related to diff erences 
in the aggregation process. Th is is by no means a general result, 
as demonstrated by the example of lognormal size distributions. 
Th e lognormal distribution function reads
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where
σ is the geometric standard deviation
μ is the geometric average

Both are dimensionless. Experimental results on NC size dis-
tributions aft er more or less complex, nonequilibrium synthesis 
techniques oft en display such shapes, which are usually noted 
by authors, but not discussed. Could they possibly provide any 
information on operative mechanisms?

Experiments on clusters provide evidence for lognormal distri-
butions in very diff erent nonequilibrium physical contexts (e.g., 
laser-, plasma-, or sputter-deposition, physical vapour deposition 
(PVD), ion implantation, etc.). For clusters synthesized by vac-
uum evaporation (Granqvist and Buhrman 1976), the observed 
lognormal shape originated in a single multiplicative stochastic 
process, i.e., the lognormal distribution of time spent by a nucleus 
in the region where growth occurred. Lognormal distributions 
were found in closed systems under coagulation of aerosols or 
colloids: Friedlander and Wang (1966) checked, by the approxi-
mate solution of the coagulation equation, that the asymptotic 
shape of the size distribution was close to the experimentally 
found lognormal shape. Note that, as in the case of the LSW dis-
tribution, this asymptotic size  distribution shape is independent 
of the initial nucleation conditions. Th is was demonstrated theo-
retically (Hidy 1965). In fact, a perusal of the scientifi c literature 
shows that lognormal distributions are ubiquitous. For example, 
a lognormal distribution was even found when measuring the 
height distribution of British infantry soldiers in the late nine-
teenth century. It does not, apparently, tell us much about the 
birth and growth conditions of these young men.

1.4.3  Amount of Information Contained 
in the Size Distribution Shape

Th ese results illustrate the diffi  culty in relating the shape of the 
size distribution to the existence of one or another growth mech-
anism. In order to estimate whether any information is obtain-
able at all, we may approach the problem in terms of information 
theory. Th e amount of information on a distribution is usually 
given by its entropy, defi ned by
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For example, the entropy of a normalized Gaussian is 
( )ln 2g l

S e= σ π . Th e entropy increases with the size distribution 
width, confi rming the intuition that the broader the distribution, 
the less controlled, or more disordered, the growth process.

Th is observation may be related to the example of LSW 
coarsening. We fi rst note that the derivation of LSW is valid 
for the limit of a very low fraction of NCs. Th is assumption 
allows an analytic solution to the problem within a mean fi eld 
approximation—clusters do not interact with one another, they 
are only subject to a mean solute concentration that fi xes the 
rate of growth/dissolution with the help of the Gibbs–Th omson 
relation. If we now increase the volume fraction of NCs, they 
begin to interfere through dipole and higher order interac-
tions. For a given NC, the rate of growth/dissolution diff ers 
depending on whether it is close to a large, or small, NC. Th e 
surroundings of a cluster are random because of the intrinsi-
cally random nature of nucleation, so the stochastic character 
of growth is enhanced. We then anticipate, from our initial 
comments to this section, a broadening of the size distribu-
tion. Th is is indeed the case, as confi rmed by experiments and 
theory (Ardell 1972).

Information theory does help us to understand the signifi -
cance of the lognormal shape. One of its principles (Jaynes 1957) 
is that entropy is maximized at equilibrium (the case here, since 
we consider long-term behavior) under a set of general con-
straints that can be written as
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As concerns nucleation and growth, these constraints are, for 
example, the matter conservation equation

 0
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and the size distribution’s evolution equation given above, which 
is a conservation equation in size space:
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Th ese two equations fully determine the system’s evolution. 
Each of them contains a diff erent amount of information on the 
growth process, and the entropy maximization principle allows 
determination of the main one. Specifi cally, it may be shown 
(Rosen 1984) that the distribution function obtained by using 
the sole constraint of matter conservation is simply

 v
ln e−=�

Th is equation is actually a very close approximation to the large-
size tail of the lognormal size distribution in the case of, e.g., 
Brownian coagulation studied by Rosen, as well as in the case 
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(Figure 1.5) of NC syntheses in which multiple growth mecha-
nisms combine and interfere (Espiau de Lamaestre and Bernas 
2006). It was also shown (Gmachowski 2001) that even the stan-
dard deviation of the lognormal distribution is a fairly universal 
quantity, independent of the growth process.

Whereas the shape aft er LSW ripening refl ected at least partially 
some aspects due to the initial nanocrystal population and its evo-
lution, the existence of a long-term lognormal size distribution in 
an NC population reveals that any memory of its evolution mecha-
nisms is lost in a maze of diff erent (possibly interfering) nucleation 
and growth processes. Th e lognormal shape of the distribution is 
simply due to the existence of matter conservation. Its occurrence 
in a particular process signals that the nucleation and growth are 
too complex to control, other than by clever empiricism.

1.5  Perspectives and Conclusion: How 
to Narrow Size Distributions?

Th is analysis leads to several general remarks regarding control 
over NC synthesis. (1) Conceptually, the procedure that consists 
in separating nucleation and growth may be viewed as a means to 
avoid the interference of two distinct processes. (2) Th e versatility 

and theoretical understanding provided by late-stage growth 
conditions are, unfortunately, less crucial to NC control than the 
nucleation stage conditions. Long-term size distributions are sys-
tematically broader and, as detailed above, are mostly controlled 
by general constraints such as the growth space dimensional-
ity, matter conservation, and basic thermodynamical (including 
entropy) contributions. (3) Th e properties of the late-stage NC 
ensemble generally lose memory of the system’s initial stage, i.e., 
the nucleation conditions. Th is emphasizes the radically diff er-
ent origin of the size distributions that are obtained in the two 
limiting stages, nucleation versus coarsening. For example, using 
recently developed techniques, one might wish to prepare an arti-
fi cial nanostructured system with inhomogeneous (local) super-
saturation and ordered nucleation centers. Th e discussion above 
shows that the long-term coarsening stage of such a system would 
behave exactly as one in which nucleation centers were initially 
random—all eff orts made to control NC position and size would 
be lost. (4) Control of the nucleation stage off ers the best condi-
tions for size distribution control. As long as we stay in its vicin-
ity, artifi cial structuring methods that localize (heterogeneous) 
nucleation or/and early growth (inhomogeneous supersaturation) 
tend to limit the disorder (entropy) increase during precipitation, 
leading to narrower size distributions. Th e price to pay for this 
is in the limitation of the NCs’ average sizes, typically below or 
around 10 nm. For optical quantum dots this is within the range 
of the exciton Bohr radii, hence is not a drastic problem.

Th ese considerations justify the broad interest in far-from-
equilibrium techniques described elsewhere in this book. Th ey 
are quite successful experimentally, but theoretical treatments 
for them are still rudimentary or absent. Here are a few general 
comments on NC population control in some of these cases.

First, what do we mean by nonequilibrium conditions? Consider 
our initial phase diagram: once thermodynamical conditions 
(formation enthalpy, free energies, surface energies, etc.) required 
for precipitation are fulfi lled, the system can relax to an equilib-
rium state, provided that some atomic mobility is introduced. 
Mobility can of course be due to temperatures high enough to 
overcome activation energy barriers. But external sources may 
have an overriding infl uence: species mobility may also be due 
to a nonequilibrium concentration of interstitials and vacancies 
produced in a crystalline solid by irradiation, to 3D bulk diff u-
sion in glasses, to diff usion on surfaces or in grain boundaries, 
and to convection in a liquid. Some of these processes involve 
random, homogeneous, nucleation; others (e.g., nucleation on 
lattice defects or grain boundaries) involve heterogeneous nucle-
ation. Th e latter is viewed as disadvantageous when nucleation 
sites or the resulting precipitate size distribution are uncon-
trolled. However, techniques have been developed to produce 
ordered arrays of NCs for applications to magnetism or optics, as 
discussed elsewhere in this handbook. In such instances, nucle-
ation of small NCs at defects such as surface defects produced by 
a focused ion beam impact (Bardotti et al. 2002), or by an ordered 
array of dislocations aft er surface (interface) strain relaxation 
(Romanov et al. 1999) or by ordered step formation on a specially 
chosen crystalline facet (e.g., Weiss et al. 2005) oft en allow control 
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FIGURE 1.5 Plot of u, the reduced volume’s probability density. 
Crosses are experimental data for semiconductor PbS, PbSe, CdSe, and 
PbTe nanocrystals grown aft er sequential implantation of the compo-
nents into pure silica and long-term annealing in quite diff erent condi-
tions. Despite their diff erences in preparation, average sizes, and depth 
distributions, all these data fall on the universal curve corresponding 
to the maximum entropy distribution, e−u, determined by the sole con-
straint of volume conservation. Th e dashed line is the best fi t of experi-
mental data (u > 1) to the reduced lognormal distribution m = 1: it is 
seen that the latter only deviates from the former when the NC sizes are 
extremely small. Th e existence of a lognormal distribution thus provides 
no information at all on the NC evolution. (From Espiau de Lamaestre 
and Bernas, H., Phys. Rev., B73, 125317, 2006.)
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over the NC density. All these methods are based on trapping 
by external forces (e.g., the introduction of a dislocation array) 
rather than on the internal evolution of the system. But since the 
latter is required in order to nucleate and grow the NCs them-
selves, successful size and size distribution control (generally via 
temperature-controlled diff usion) has been, so far, essentially 
dependent on trial and error. More generally, due to the impact 
of molecular beam deposition (MBE) methods, the extension of 
quasi-equilibrium thermodynamics to clustering (mediated by 
atomic-scale diff usion from a supersaturated solution) on sur-
faces has been a major area of activity, for which we refer to the 
literature (e.g., Villain and Pimpinelli 1998). As evidenced by the 
Stranski–Krastanov or van der Merwe growth modes, the NC 
surface energetics include large strain or stress contributions due 
to diff ering lattice cell parameters. Th is has a major infl uence on 
the kinetics of NC formation when surface diff usion dominates, 
and requires simulations (e.g., Amar and Family 1995) to predict. 
As mentioned previously, the surface’s detailed structural proper-
ties are also crucial to surface diff usion as well as to the trapping 
effi  ciency for diff erent elements.

In glasses, NC synthesis is of importance not only for stained-
glass window applications, but also for nanophotonics. Th is fi eld 
has been repeatedly revisited, and it has become increasingly 
clear that—just as in liquids—redox chemistry plays a crucial 
role in both thermodynamical and kinetic eff ects. Specifi cally, 
moving charged species play a crucial role in the clustering pro-
cess. Th eir relative stability and interactions (among themselves 
and with electrons or holes), as well as their chemical affi  nity 
for glass matrix components, all determine the nature and sta-
bility of the NC to be formed. In other words, NC formation is 
essentially analogous to the photographic process (Belloni and 
Mostafavi 1999, Espiau de Lamaestre et al. 2007). Th is means 
that, as in photography, it is possible to induce simultaneous 
nucleation of all incipient clusters (e.g., by irradiation with UV 
light, electrons, ions, etc.) and then—separately!—induce (and 
control) growth by a short thermal anneal.

A trick to obtain a rather dense, ordered NC array with a narrow 
size distribution is the nucleation and growth of NCs in nonreact-
ing “cages” that may be inorganic (e.g., zeolites) or organic (poly-
mers, biological systems, colloidal systems, see Sun et al. 2000). 
Th e size of the cage and the corresponding external forces may 
sometimes limit the amount of accretion to the growing NC. In 
some cases, this leads to a very narrow size distribution refl ecting 
that of the cages (determined in turn by the chemical processing). 
However, in other instances such attempts have led to the lognor-
mal-like size distributions described above, a strong indication 
that control over growth during the process was then mediocre.

Finally, a word on far-from-equilibrium techniques such as 
plasma deposition of cluster beams and UV, electron, or ion 
irradiations. In cryogenic plasma or thermal evaporation sys-
tems, as well as in techniques combining selective evaporation 
with incipient aggregation in a He jet, growth largely depends 
on (1) the mean time that a nucleus (typically a cluster of 2 to 
several atoms) spends in the region where it can grow and (2) 
the physical parameters governing the coagulation rate such 

as the monomer source temperature or plasma gas pressure. 
We then deal with an open system in which aggregates can be 
extracted from the growing zone and projected on a substrate 
on which they might be unstable. Growth on the substrate 
occurs essentially via coagulation (Smoluchowski, Binder), and 
if surface diff usion is involved, requires elaborate simulations 
(Politi et al. 2000). Experimentally, size sorting (via an electric 
or magnetic fi eld) of charged aggregates allows deposition of 
NCs with a highly nonequilibrium, narrow size distribution. 
Depending on the electronic properties of the matrix, UV or 
electron and Ion beam irradiations may assist in controlling 
nucleation and growth in diff erent ways. In metals, for instance, 
electron or, more usually, ion irradiation induces or accelerates 
species diff usion by producing a supersaturation of vacancies 
or interstitials. Processes that—at quasi-equilibrium—would 
occur at high temperatures then are active at temperatures that 
may be typically 200° lower. Playing on nucleation and growth 
with the combination of temperature and deposited energy 
density due to irradiation is a means of “driving” (and enhanc-
ing control of) the alloy system in a context where theoretical 
work relating driven alloys to thermodynamics has progressed 
(Martin and Bellon 1997, Averback and Bellon 2009). Th e “pho-
tographic process” in insulators mentioned above, or the use 
of defect creation and control to stabilize NC formation into 
well-defi ned arrays, are successfully implemented experimen-
tal techniques, but they remain to be systematically included 
in a predictive approach. If the reader comes away with the 
impression that each new NC synthesis technique enhances 
the need for a critical eye (and more theoretical work) on the 
conditions for size distribution control, we will have reached 
our purpose.
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2.1 Introduction

Hydrogen is expected to play an important role in the future as 
an alternative to the present fuels for the massive production of 
energy. Th e fi rst pillar, which still looks far away, will be the pro-
duction of electricity in nuclear fusion reactors, once the prob-
lem of sustaining and controlling the reactions is solved. Th e 
second pillar, which looks closer, is the production of electricity 
by means of hydrogen fuel cells, and its widespread application 
in cars as an alternative to gasoline. For these reasons, the study 
of hydrogen becomes an important subject from the technologi-
cal point of view. Th e basic aspects of the physics and chemistry 
of hydrogen are also interesting. Under normal conditions of 
pressure and temperature, hydrogen is a gas formed by H2 mol-
ecules. Th e binding energy of the two H atoms in the molecule is 
strong, 4.8 eV. In this molecule, which is the simplest and more 
abundant molecule in the universe, the two electrons form a 
closed shell. Th e molecule exists in two isomeric forms diff ering 
in their nuclear spin confi guration. In the para-hydrogen iso-
mer, the nuclear spins of the two nuclei are in an antiparallel 
confi guration, that is, they point in opposite directions, while 
in the ortho-hydrogen isomer, the two nuclear spins are paral-
lel, that is, they point in the same direction. When the gas con-
denses, it forms a molecular liquid or a molecular solid in which 
the H2 molecules interact weakly by van der Waals forces. Th e 
intensity of the H2–H2 interaction is intermediate between the 
He–He and Ar–Ar interactions. At low temperatures, the para-
hydrogen isomer, which is the isomer with lower energy, is in its 

ground rotational state (J = 0) and thus the molecule behaves as 
a boson of zero spin.

Th e condensation of the gas can also be forced by molecular 
beam techniques allowing the production of clusters formed by 
a fi nite number of H2 molecules. In this chapter, clusters formed 
by N hydrogen molecules will be denoted as (H2)N. Th ese clusters 
have attracted attention due to their peculiar properties, which 
arise from the coexistence of the strong intramolecular H–H 
bonding and weak H2–H2 intermolecular forces (Castleman 
et al. 1998, Alonso 2005). Part of the interest in para-hydrogen 
comes from the fact that it is considered to be the only natural 
species in addition to the He atom isotopes, which might exhibit 
superfl uidity (Ginzburg and Sobyanin 1972).

Nuclear fusion reactions have been observed to occur by 
irradiating a dense molecular beam of large deuterium clusters 
(deuterium is an isotope of hydrogen with a nucleus formed by 
a proton and a neutron) with an ultra-fast high-intensity laser 
(Zweiback et al. 2000). Th e laser irradiation produces the ioniza-
tion of the deuterium atoms and leads to a violent Coulombic 
explosion of the clusters; the nuclear fusion reactions occur in 
the collisions between the fl ying deuterium nuclei. Neutrons 
are produced in these nuclear reactions and tabletop neutron 
sources have been constructed based on this cluster beam tech-
nique. Many investigations of hydrogen clusters have focused on 
single-charged clusters of the family (H2)N H3

+ with N = 1, 2, .… 
Th e majority of the hydrogen clusters in the universe belongs 
to this family. On the other hand, these clusters are easily han-
dled in the laboratory. In this chapter, a review is provided of 
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the structure and properties of hydrogen clusters. Topics treated 
are the experimental production of hydrogen clusters in the 
laboratory, the structure of neutral and charged clusters, free 
and confi ned in cages, phase transitions, Coulombic explosions 
induced by laser irradiation, clusters on surfaces, and fi nally 
the manifestation of quantum eff ects and its possible relation to 
superfl uidity.

Th e theoretical treatment of the clusters using state-of-the-art 
methods is given strong emphasis in this chapter because these 
methods provide important insights into the structure and ener-
getics of the clusters, but connection to experiment is made in all 
possible cases. It is expected that the topics selected will give an 
idea of the wide reach of this fi eld.

2.2  Production of Hydrogen 
Clusters in Cryogenic Jets

An effi  cient method to produce hydrogen clusters (Tejeda et al. 
2004) consists in the expansion of extremely pure (99.9999%) 
H2 gas, originally at a pressure P0 of 1 bar, through a small hole 
(called nozzle) of diameter D = 35–50 μm into a second chamber 
at a lower pressure of 0.006 mbar. Th e fi rst chamber is cooled 
by a helium refrigerator, which provides a source temperature 
T0 of 24–60 K, regulated to within ±1 K. Th e vapor exiting the 
hole expands adiabatically into the vacuum, and the density 

and temperature of the jet rapidly decrease as the distance z to 
the orifi ce increases. Th e expansion produces an extremely cold 
molecular jet and small para-H2 clusters are formed by aggrega-
tion of the molecules in the jet. Th e analysis of the abundance 
of clusters of diff erent sizes has been made applying Raman 
spectroscopy techniques using an Ar+ laser. Th e spectrometer 
can be focused to diff erent regions of the jet, that is, at diff er-
ent distances z from the expansion orifi ce. Figure 2.1a shows fi ve 
Raman spectra measured at diff erent reduced distances ξ = z/D 
along the center line of the expanding jet. Th e reduced distances 
go from ξ = 1 to ξ = 24. Th e measuring time for each spectrum 
is between 4 and 15 min and it increases with z because the den-
sity of the jet is inversely proportional to ξ2 and varies between 
1020 and 1016 molecules cm−3. Th e large peak at 4161.18 cm−1 is the 
Q(0) line of the para-H2 molecule, characterizing the vibration 
of the molecule, and the small peak at 4155.25 cm−1, marked by 
an asterisk, is due to the small amount (<1%) of ortho-H2 in the 
jet. Th e interaction between the hydrogen molecules in the clus-
ter shift s the Q(0) line of (H2)N clusters to lower wave numbers, 
and each of the peaks at the left  of the para-H2 monomer line 
can be assigned to clusters of specifi c size N. Dimers, (H2)2, can 
already be identifi ed at ξ = 1, but not larger clusters. Trimers, 
tetramers, and pentamers are visible at ξ = 3. Th en, for ξ = 5, a 
broad peak appears at 4158 cm−1, which was assigned to N = 13. 
Th e intensity and the width of this peak suggest the formation 
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of a fi rst layer of H2 molecules and also indicate that completion 
of that shell makes the cluster highly stable. Sizes corresponding 
to very stable clusters are usually called magic numbers (Alonso 
2005). Measuring the spectrum at larger distances from the 
nozzle hole gives time for the formation of larger clusters. So, 
at ξ = 24, with the distribution approaching a steady state, addi-
tional peaks appear around N = 33 and N = 55. A good estimate 
of the abundance of the (H2)N clusters relative to the monomers 
is obtained by dividing the area under each peak by N.

Using a lower source temperature and a higher pressure pro-
duces much larger clusters, as shown in Figure 2.1b. At ξ = 4.3, the 
maximum in the Raman spectrum is shift ed to 4151.5 cm−1, very 
close to the line for liquid para-H2 at 18 K, which is the dashed 
line in the fi gure. In addition to this liquid peak (L), at ξ = 7.1, 
a new peak (S) appears at 4150 cm−1, whose position agrees with 
the spectrum for the solid para-H2 at 2 K. Th e intensity of the 
solid peak (S) grows at larger distances from the  orifi ce, a fea-
ture that indicates that the cluster growth continues. Th e liquid 
peak is strongly shift ed at large ξ toward the position of the solid 
peak. Th e coexistence of the two peaks suggests that the solid 
clusters have a signifi cant liquid fraction, most likely located at 
the cluster surface.

2.3  Atomic Structure and Growth 
of Neutral Clusters

Th e depth of the interaction potential between two hydrogen 
molecules is very small, about 3 meV, but still several times larger 
than the interaction between two He atoms. Accurate ab initio 
quantum chemical calculations have been performed for the 
smallest clusters (H2)2, (H2)3, and (H2)4 using the Möller–Plesset 
(MP2) and Coupled Cluster (CC) methods (Diep and Johnson 
2000, Carmichael et al. 2004). Th ose methods treat accurately 
the correlations between the electrons. Th e dimer, (H2)2, has 
a T-shaped structure, that is, the axes of the two molecules lie 
in the same plane and are perpendicular to each other, and the 
separation between the two mass centers is 6.55 a.u. (the atomic 
unit of length is equal to 0.529 Å). Th e T shape optimizes the 
interaction between the permanent electric quadrupoles of the 
two molecules. Th e binding energy Eb of a cluster (H2)N can be 
defi ned as

 = −b 2 2( ) (H ) ((H ) ),NE N NE E  (2.1)

where
E( (H2)N) is the total energy of the cluster
E(H2) is the energy of an isolated hydrogen molecule

Th e energy of the cluster is smaller than the sum of the energies 
of the N separated molecules, and the binding energy measures 
the stabilization gained by the system when the molecules are 
brought together to form the cluster. Th e calculated binding 
energy of the dimer is between 4 and 5 meV. Th e potential energy 
surface of (H2)2, that is, the interaction potential as a function of 

the relative orientation of the molecules, shows some anisotropy, 
but interconversion to some other structural forms is easy. Th e 
trimer, (H2)3, is planar and cyclic (with C3h symmetry), with each 
pair of molecules slightly off set from the ideal T-shape orienta-
tion (Carmichael et al. 2004). Th e binding energy of the trimer 
is nearly equal to three times the H2–H2 interaction; this means 
that three-body forces are very small. A structure of the tetramer, 
(H2)4, that preserves the T-shape arrangements for each pair of 
adjacent molecules can be formed as a square planar cluster, but 
this is not the structure of lowest energy. Th e ground state is a 
nonplanar, near tetrahedral structure in which the molecules 
still preserve to a large extent the T-shape arrangements among 
adjacent molecules (Carmichael et al. 2004). Th e stabilization 
gained by the nonplanarity is quite small. Th e binding energy 
of the tetramer is more than four times the H2–H2 interaction 
energy, and this refl ects the contribution from quadrupole–
quadrupole interactions between molecules on opposite corners 
of the structure.

For larger cluster sizes, the quantum chemical calculations 
become prohibitive, and only calculations employing less accu-
rate methods have been performed. Carmichael et al. (2004) have 
used an empirical force fi eld fi tted to the ab initio results for the 
trimer and tetramer. Th e empirical total potential, V = Velect + 
V6–12, is the sum of a classical electrical interaction energy Velect 
and a site–site term V6–12. Th e site–site term is based on having 
a small number of selected sites distributed within the hydrogen 
molecule and a Lennard-Jones interaction

 = −12 6
ij ij

ij
ij ij

C DV
r r

 (2.2)

between every pair of sites i and j located in diff erent molecules. 
rij represent the distances between sites i and j, and the site-spe-
cifi c parameters Cij and Dij specify the potential. Th e fi rst term 
in Equation 2.2 is repulsive and the second term is attractive. 
Th is piece collectively represents nonelectrical eff ects, that is, 
van der Waals dispersion forces, quantum mechanical exchange 
(which arises from the antisymmetry of the many-electron wave 
function), and overlap between the electronic orbitals of diff er-
ent molecules. Th e electrical interaction energy Velect includes the 
quadrupole–quadrupole permanent moment interaction, plus 
direct (non-mutual) polarization eff ects. Th e polarization eff ects 
account for the interaction of the permanent quadrupole on a 
molecule with the induced dipoles and induced quadrupoles in 
other molecules. Because of these induction eff ects, in a cluster 
of more than two molecules, Velect implicitly includes three-body 
polarization eff ects. Th e calculations indicate that an increasing 
number of isomers with similar energies appear as the cluster size 
grows. Th e ground state of (H2)5 is a four-sided pyramid, nearly 
fl at tetramer with a molecule overhead. (H2)6 is a bipyramid, that 
is, molecules are placed on both sides of the tetramer. Th en, a 
pentagonal bipyramid is found for (H2)7. For larger clusters up 
to (H2)13, Carmichael et al. noticed the interesting trend that the 
energy of the ground state structure is close to the energies of 
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many other local minima. Th e zero point energy reduces further 
the small binding energy of these clusters.

Th e observation of magic numbers (Tejeda et al. 2004) moti-
vated a theoretical study of the structures of para-(H2)N clus-
ters (Martínez et al. 2007) using the density functional theory 
(DFT) with the local density approximation (LDA) for electronic 
exchange and correlation eff ects (Parr and Yang 1989). Th e cal-
culations are valid at T = 0 K. An intramolecular H–H bond 
length of 1.38 a.u., close to the experimental value of 1.40 a.u. 
for the isolated molecule, is obtained independent of the cluster 
size. In the optimized structure of (H2)2 the two molecules are in 
a perpendicular confi guration, a triangular structure is obtained 
for N = 3 and a bent rhombus for N = 4. Triangular, square, and 
pentagonal bipyramids are obtained for N = 5, N = 6, and N = 7, 
respectively. Th e optimized structures of these small clusters are 
similar, although not identical to the structures obtained with 
the ab initio MP2 and CC methods. Larger clusters grow fol-
lowing a pattern of icosahedral growth. Th e fi rst icosahedron is 
completed for N = 13, where a central molecule is surrounded by 
other 12 molecules occupying the vertices of the icosahedron. 
Th is structure is characteristic of clusters formed by equal atoms 
(or molecules) with closed electronic shells, like the inert gases 
neon or argon (Alonso 2005). Due to this similarity, calculations 
for larger clusters were restricted to specifi c growth models. An 
icosahedron is formed by 20 triangular faces joined by 30 edges 
and 12 vertices. Molecules can then be added in two diff erent 
ways to form a second shell. In a fi rst type of decoration, mol-
ecules are added on top of edge (E) and vertex (V) positions. 
Th ese provide a total of 42 sites (30 + 12), and a cluster with 
55 molecules is obtained. Th is is called multilayer icosahedral 
(MIC) growth. Alternatively, the 12 V sites and the 20 sites at the 
center of the triangular faces (F sites) can be covered to obtain a 
cluster with 45 molecules. Th is second type of decoration is oft en 
called face-centered (FC) growth.

Th e calculated binding energies per molecule indicate that FC 
structures are more stable than MIC structures in (H2)N clusters 
from N = 14 up to about N = 27. Between N = 27 and N = 35 (the 
largest cluster studied), the two structures are almost degen-
erate, and this trend suggests an imminent transition to MIC 
structures aft er N = 35. A similar transition occurs for inert 
gas clusters, although a bit earlier, for N = 27–28 (Alonso 2005). 
Th e quantity

 ( ) ( ) ( ) ( )[ ]Δ = − + + −b b b b2 1 1e N e N e N e N  (2.3)

gives the relative stability of the (H2)N cluster with respect to clus-
ters with sizes N + 1 and N − 1, and has been plotted in Figure 2.2 
for the FC and MIC families. In this equation, eb(N) = Eb(N)/N 
represents the binding energy per molecule of the cluster (H2)N. 
Th e peaks of Δeb(N) indicate the most stable clusters. For N larger 
than 13, the peaks reveal the progressive formation of the sec-
ond layer. For instance, the FC peak at (H2)19 corresponds to the 
decoration of (H2)13 with a cap of six molecules forming a pen-
tagonal pyramid. One molecule sits on a V site and the other 

fi ve molecules sit on the surrounding F sites. Th is structure is 
usually known as the double icosahedron. Filling adjacent caps 
leads to the structures of (H2)23, (H2)26, and so on. We notice 
that (H2)32 is a stability peak in both the FC and MIC structures. 
Some of the features of Figure 2.2 appear consistent with the 
Raman experiments. Large cluster abundance was observed for 
N ≈ 13, 32, and 55, and as discussed above the DFT calculations 
provide an interpretation of the fi rst two. Th e DFT calculations 
also suggest that a transition from FC to MIC structures occurs 
soon aft er (H2)35. Th e observed large abundance of (H2)55 is then 
trivially explained by the completion of the second icosahedral 
MIC shell.

Th e binding energy of (H2)2 obtained by the MP2 and CC 
methods is Eb = 4–5 meV and the LDA calculation gives 16.5 meV. 
Th e LDA overestimation of binding energies is well known, but 
considering the tiny binding energies of the (H2)N clusters, the 
result can be considered acceptable and it is probably the most 
one can expect from a simple density functional. All clusters are 
subject to similar errors, and consequently trends in the bind-
ing energy as a function of N are more trustable than the abso-
lute binding energies. Some recent implementations of van der 
Waals interactions in a DFT framework (Langreth et al. 2005) 
may improve matters. Zero point eff ects reduce substantially 
the binding energies. Accounting for anharmonicity in the zero 
point energy, a corrected value of Eb = 2.75 meV is obtained for 
(H2)2 in the LDA, and similar reductions aff ect other clusters. 
Due to those small binding energies, hydrogen is a molecular gas 
except at very low temperatures and high pressures. Th e small 
binding energies have other important consequences, as we dis-
cuss below.
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In the quantum chemical calculations mentioned above, 
including DFT, the intermolecular interactions are evaluated 
explicitly by a quantum mechanical treatment of the electrons 
for each confi guration of the molecules in the cluster, but the 
dynamics of the nuclei is classical. Other calculations of 
the structure of the clusters have been performed in which the 
bosonic nature of the para-H2 molecules is explicitly considered 
(Cuervo and Roy 2006, Guardiola and Navarro 2006, Khairallah 
et al. 2007). Th ese calculations make use of quantum Monte 
Carlo (MC) methods and include quantum eff ects by solving 
the Schrödinger equation to calculate the wave function for the 
system of N identical bosonic particles. However, the disadvan-
tage is that the H2–H2 interactions are described by an eff ective 
two-body potential. In these quantum MC calculations, the H2 
molecules do not have precise positions in the cluster, and, as for 
any other system of quantum particles, one can only talk about 
probability distributions for fi nding the molecules in diff erent 
regions of space. Th e quantum MC calculations of the structure 
at very low temperature of para-H2 clusters having up to about 
50 molecules employed the isotropic pairwise H2–H2 interac-
tions modeled by Buck et al. (1983) and by Silvera and Goldman 
(1978). Th e chemical potential

 ( ) ( )μ = − −1N E N E N  (2.4)

obtained from the ground state total energies of the clusters with 
N − 1 and N molecules, is the energy required to remove a hydro-
gen molecule from the (H2)N cluster, and gives a sensitive mea-
sure of its stability. Th e calculated μN shows a clear maximum 
for N = 13. Th is feature indicates the special stability of that clus-
ter. Th e chemical potential shows a less pronounced maximum 
at N = 19, and Khairallah et al. (2007) also obtained features 
for clusters with N = 23, 26, 29, and 32. Th e density of particles 
reveals that the molecules arrange in shells with a shape close to 
spherical. Th e radial thickness of those shells is about 2 Å. For 
clusters with sizes close to N = 13 and N = 50, the density of 
particles has a large peak near the center of mass of the cluster. 
Th is peak indicates that a molecule sits at the center of mass. 
More precisely, clusters with N between 7 and 16, and also with 
N between 43 and 50 have a molecule at the center, as indicated 
in Figure 2.3 (data for N larger than 50 was not reported). In 
contrast, for cluster sizes between N = 17 and N = 42, the mol-
ecules form two concentric spherical shells around an empty 
center. Th e radii of the shells and their population increase with 
increasing cluster size.

A comparison with the density functional results is not a sim-
ple task because of the intrinsic delocalization of the molecules 
in the quantum MC calculations. Nevertheless, similarities 
between the results of both methods can be established and are 
now discussed. (H2)13 is the best example. In the DFT calcula-
tions, this cluster has a central molecule surrounded by 12 other 
molecules at equal distances from the center, forming a shell, in 
agreement with the quantum MC result. DFT clusters with sizes 
near N = 13 also have a molecule at the center, like the quantum 
MC clusters (see Figure 2.3). Near N = 19, the DFT calculations 

predict structures with no central molecule, just like quantum 
MC. For instance, for N = 19, the DFT structure is the double 
icosahedron, a structure having an inner shell formed by two 
molecules. Near N = 55, the expected DFT structures are related 
to the icosahedron formed by a central molecule surrounded by 
two shells. Th e overall structural features in this size region are 
the same obtained in the quantum MC calculations, as shown 
in Figure 2.3. In summary, interesting similarities exist between 
the DFT and quantum MC structures. Th e similarities refer to 
the presence (of absence) of a molecule at the center of the clus-
ter and to the number of shells surrounding that molecule (or 
empty center site), but these should not be overstated.

It is intriguing that a pattern of cluster growth similar to that 
of the quantum clusters in Figure 2.3 was found years ago for 
a simple cluster model, the SAPS (spherically averaged pseudo-
potential) model, applied to simple metallic clusters (Lammers 
et al. 1990). In the SAPS model, the total ionic pseudopotential 
acting on the electrons is spherically averaged around the cluster 
center. Th e model forces these clusters to be rather spherical, and 
the resulting structures calculated by minimizing the total clus-
ter energy are formed by well-defi ned concentric shells of atoms, 
like shells in an onion. For instance, CsN clusters with N smaller 
than 7 do not have an atom at the center of the cluster. Clusters 
with N between 7 and 18 have a central atom surrounded by a 
single shell whose radius increases as N grows. Th e cluster cen-
ter is again empty between N = 19 and N = 39 and the cluster is 
formed by two shells. Between N = 40 and N = 62, two shells sur-
round an atom placed at the cluster center, and so on. Th e simi-
larity with the quantum MC structural features of Figure 2.3 is 
striking, although the two systems are physically diff erent. In 
the case of the SAPS model, the structural pattern arises from 
the interplay between electron–electron, electron-ionic pseudo-
potential, and ion–ion interactions in a constrained geometry 
imposed by the spherically averaged ionic pseudopotential. For 
the H2 clusters, we propose a tentative explanation. A hollow 
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spherical shell geometry with the center empty appears to be 
consistent with a wave function representing a system of N iden-
tical bosonic particles. Th en, as the size N grows, the increase of 
the surface energy associated to the increasing radius of the shell 
promotes the formation of a new shell in the inner region of the 
cluster, and so on.

Th e infl uence of thermal eff ects on the stability and abun-
dance of clusters at fi nite temperature has been studied by 
Guardiola and Navarro (2008). Th ey calculated cluster excita-
tions with angular momentum from L = 0 to L = 13 for sizes 
N = 3, …, 40. For each value of L (L is the angular momentum 
of the wave function of the N-particle system), the Schrödinger 
equation was solved using the diff usion Monte Carlo (DMC) 
method, describing the H2–H2 interactions by the pair poten-
tial of Buck et al. (1983). Besides the excited states with angular 
momentum L, vibrational excitations characterized by a quan-
tum number n were also considered. Th e excited states are then 
represented by the pair of quantum numbers (n, L), with ener-
gies ( )L

nE . Aft er calculating the ground state energy (0)
0 ( )E N  and 

the excited state energies ( )
0 ( )LE N  and (0)

1 ( )E N , the excitation 
energies are defi ned as

 Δ = − (0)
0 0( ) ( ) ( ),L

LE N E N E N  (2.5)

 Δ = −(0) (0)
0 1 0( ) ( ) ( ).E N E N E N  (2.6)

Comparison of the excitation energies with the chemical poten-
tial μ = − −(0) (0)

0 0( ) ( 1) ( )N E N E N  indicates which excited states 
are stable (those with energies smaller than μ; if the excitation 
energy is larger than μ, then the cluster will dissociate). Stable 
excitations exhibit size thresholds, as shown in Figure 2.4. 
All clusters with N ≥ 3 exhibit stable excitations (n = 0, L = 2), 
(n = 0, L = 3), and (n = 1, L = 0). Th e excited level (n = 0, L = 4) 

starts to be bound at N = 4, and the excited levels with L = 5 and 
L = 1 appear at N = 6. Th en, the next L levels appear at regularly 
increasing size thresholds. In the size range studied, the highest 
stable excited state is L = 13, which occurs for N ≥ 31. Th e qua-
drupolar, L = 2, is the lowest excitation for most sizes, except at 
N = 26, 28, 30, and 37, for which the lowest excitation is the octu-
polar, L = 3. Th e vibrational excitation (n = 1, L = 0), not shown in 
the fi gure, displays a smooth behavior with N, and its energy lies 
in between the energies of the excited (n = 0, L) levels. Another 
useful observation from this fi gure is the local maximum of the 
chemical potential for (H2)13 and a less pronounced maximum 
for (H2)36.

Th e knowledge of the excitation spectra allows for the analysis 
of thermal eff ects using the partition function FN of statistical 
mechanics. In particular, the temperature-dependent energy of 
the cluster, EN(T), becomes (Guardiola and Navarro 2008)

 
−Δ

−Δ
+ Σ + Δ= +

+ Σ +

( )/
(0)
0 ( )/

1 (2 1) ( ) ( ) ( ) ,
1 (2 1) 

L

L

E N kT
L L

N E N kT
L

L E N eE T E N
L e

 (2.7)

where k is Boltzmann’s constant. Noticeable eff ects on the energy 
values begin to appear at temperatures close to the energy of 
the fi rst excited state, L = 2. For instance, at T = 1 K the energy 
changes are minimal, with the exception of the clusters with 
N ≈ 20, which is related to a minimum of ΔE2 occurring at this 
size (see Figure 2.4).

Th e eff ect of the temperature on the mechanism of cluster 
formation in a free jet expansion is also interesting. We assume 
that cluster growth in the jet is dominated by the chemical equi-
librium reaction

 − + + ⇔ +2 1 2 2( ) ( ) ,N NH H X H X  (2.8)
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where X is a spectator particle needed for the conservation 
of energy and momentum. Th e equilibrium constant KN for 
the reaction is obtained from the partition functions F as KN = 
FN /(FN−1 F1) and KN is dominated by the ratio

 
−Δ

μ
−Δ −

−

+⎛ ⎞= ⎜ ⎟−⎝ ⎠ +
∑
∑

( )/3/2
( )/

( 1)/
1

1
,

1 1

L

L

E N kT
LN N kT L

E N kT
N L

L

g eF N e
F N g e

 (2.9)

where the degeneracy factor for the excited state L is given by 
gL = 2L + 1. Evidently, the ratio FN /FN−1 refl ects the non-smooth 
behavior of the chemical potential and the excitation energies as 
a function of N. A plot (Guardiola and Navarro 2008) of FN/FN−1 
at several temperatures, lower than the source temperature of 
the experiments of Tejeda et al. (2004), exhibits peaks at N = 13, 
31, and 36, and a less pronounced peak at N = 26 in rough cor-
relation with the experimental abundance maxima at N = 13 
and 33. Th is points out the infl uence of the excited states on the 
abundance of hydrogen clusters produced in free jet expansions 
of pressurized gas.

2.4 Charged Clusters

Mass spectrometric experiments on positive cluster ions 
(Kirchner and Bowers 1987) have revealed that Hm

+ clusters with 
an odd number of atoms, m = 3, 5, 7,… are much more abun-
dant than those with even-number of atoms, m = 2, 4, 6, … Th e 
ionization of a neutral (H2)N cluster occurs in two steps. First, a 
H2 molecule of the cluster is ionized, and the charged molecule 
reacts with a neighbor neutral molecule, producing a trimer car-
rying the positive charge and a neutral H atom

 + ++ → +2 2 3H H H H.  (2.10)

Th is reaction is exothermic and the energy released, 1.7 eV, 
is enough to eject the H atom out of the cluster. Th e H3

+ cat-
ion is stabilized by the surrounding H2 molecules, which form 
solvation shells around the charged trimer (Bokes et al. 2001; 
Chermette and Ymmud 2001; Prosmiti et al. 2003). Th e compo-
sition of the cluster cations can be viewed as H3

+ (H2)N. Th e fact 
of being charged makes these clusters easier to handle experi-
mentally (Farizon et al. 1998). Th ese clusters can grow easily 
(Clampitt and Towland 1969). Th e gas-phase clustering reaction

 + +
++ →3 2 2 3 2 1H (H ) H H (H )N N  (2.11)

has been experimentally studied and the enthalpy ΔH of the 
reaction has been determined (Hiraoka and Mori 1989). Th e 
measurements, shown in Figure 2.5, indicate a stepwise decrease 
in the enthalpies at particular sizes. Th e gain in binding energy 
by adding a H2 molecule drops substantially aft er N = 3 and 
N = 6, and this indicates that H3

+ (H2)3 and H3
+ (H2)6 are spe-

cially stable clusters. Th is stability has been interpreted as indi-
cating shell formation.

Charged hydrogen clusters are important active species in 
the stratosphere and in interstellar clouds. Th e charged trimer, 
H3

+, and its deuterated variant D3
+ have attracted a lot of atten-

tion. Th e unusual nature of its bonding leads to an exceptional 
roto-vibrational spectrum (Kostin et al. 2003). Experiments 
and calculations (Tennyson and Miller 1994) have shed light on 
the electronic structure, the infrared photodissociation spec-
trum, and the classical and quantal behavior of the molecule at 
its dissociation limit. H3

+ is present in any environment where 
molecular hydrogen gas is ionized: It has been detected in the 
atmospheres of Jupiter, Saturn, and Uranus. It was also identi-
fi ed in the supernova SN1987A (Miller et al. 1992) and in the 
interstellar medium (McCall et al. 1998). H3

+ is, in fact, the main 
agent responsible for the formation of complex molecules in the 
reaction network of the interstellar medium.

Th e charge state has infl uence on the binding energy of the 
H3

+ (H2)N clusters. Taking H3
+ (H2)5 as an example, the average 

binding energy of the H2 molecules in the cluster, which can be 
defi ned as

 3 2 5 3 2
av

(H (H ) ) (H ) 5 (H )(cation)
5

E E Ee
+ +− −=  (2.12)

is equal to 60 meV in an LDA calculation. For comparison, the 
average binding energy of fi ve H2 molecules attached to a sixth 
H2 molecule to form the neutral (H2)6 cluster,

 2 6 2
av

((H ) ) 6 (H )(neutral)
5

E Ee −=  (2.13)

is 25 meV. So, the eff ect of the charge localized at the cluster cen-
ter is to increase the binding energy substantially. Zero-point 
corrections lower those binding energies.
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Accurate theoretical studies of the ground-state confi guration 
and binding energies of the H3

+ (H2)N clusters have been per-
formed using diff erent levels of theory. Th e results for N = 1–7 
obtained using ab initio quantum chemical methods (Bokes 
et al. 2001) are shown in Figure 2.6. In H3

+ (H2), H3
+ (H2)2, and 

H3
+ (H2)3, each H2 molecule is chemically attached to one of the 

H atoms of H3
+. Th e center of mass of each of those H2 molecules 

is in the plane of H3
+, and the molecular axes are perpendicu-

lar to that plane. A fi rst shell is completed at H3
+ (H2)3 with the 

three H2 molecules forming an external triangle with the same 
form as that of the internal H3

+ core. Th e experiments show 
that H3

+ (H2)3 is especially stable (notice the drop aft er N = 3 in 
Figure 2.5). Addition of more H2 molecules builds up a second 
shell with the molecules at a longer distance from H3

+. Th e bind-
ing of these molecules to H3

+ is weaker compared to those in 
the fi rst shell. Figure 2.6 shows the calculated structure for H3

+ 
(H2)4, H3

+ (H2)5, H3
+ (H2)6, and H3

+ (H2)7. Th ere are small dif-
ferences of detail among diff erent calculations concerning the 
location of the added molecules (Bokes et al. 2001; Prosmiti et al. 
2003; Seo et al. 2007), but the structures reported here are suf-
fi ciently representative. Th ose clusters show several isomers with 
similar energies (Seo et al. 2007). For instance, for H3

+ (H2)4, 
Bokes et al. (2001) found six diff erent isomers, three with the 
additional H2 molecule above the H3

+ moiety and three with the 
molecule below. A second shell appears to be completed for H3

+ 
(H2)6, as indicated by the measured drop of the binding energy 
of an additional molecule (see Figure 2.5), also reproduced by 
the calculations. Th e three molecules of the second shell are on 
the same side of the H3

+ plane in Figure 2.6, but in other calcu-
lations two molecules are on one side and one molecule on the 
other side (Seo et al. 2007). Although the enthalpy appears to 
indicate that a new shell is opened at H3

+ (H2)7, the distance from 
the last added molecule to the H3

+ core is similar to those for the 
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FIGURE 2.6 Structure of H3
+ (H2)N clusters calculated by ab initio 

quantum chemical methods. (Reproduced from Bokes, P. et al., Int. J. 
Quantum Chem., 83, 86, 2001. With permission.)
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molecules in the second shell. Further work should be welcome 
to clarify if a shell is completed or not at H3

+ (H2)6.
Because of the weak bonds in these clusters, thermal and 

quantum fl uctuations can cause fl uxional behavior of the system. 
As an example, we summarize the study of Bokes et al. (2001) of 
the behavior of the most weakly bound H2 molecule in H3

+ (H2)4. 
Th at molecule is the fi rst one in the second shell around H3

+. 
For this purpose, Figure 2.7 shows the potential energy surface 
of the system obtained by scanning the two angle parameters u 
and v defi ned in the inset of this fi gure. In calculating the energy 
for each (u, v) point, the rest of the structural parameters of the 
cluster are free to relax. Th e calculations were performed with 
the Hartree–Fock method. Th ere are three equivalent minima 
above the H3

+ plane and three below. Th e transition path with 
the lowest energy barrier connecting two neighboring minima 
corresponds to the H2 molecule moving, as indicated in the 
inset of the fi gure (from minimum 1 to minimum 2 through the 
saddle point). Th e barrier height is ΔE = 0.078 kcal mol−1, and 
a more accurate, coupled-cluster (CC) calculation gives a simi-
lar value, ΔE = 0.084 kcal mol−1. Th e lowest vibrational energy 
of the hydrogen molecule in the potential well is (1/2)ћωmin = 
0.066 kcal mol−1, and the thermal energy at temperature T is 
kT = 0.0020T kcal mol−1. Th erefore, we can expect that zero-
point motion fl uctuations and temperature eff ects for T = 10 K 
and higher will enable the outermost H2 molecule to pass the 
barriers from one minimum of the potential energy surface to 
another, resulting in fl uctional behavior. H2 molecules in the 
successive coordination shells will be even more mobile.

2.5 Liquid-to-Gas Phase Transition

A good identifi cation of a fi rst- or second-order phase transition 
in a cluster is provided by the specifi c shape of the caloric curve, 
that is, the thermodynamic temperature as a function of the total 
energy. Th e caloric curve of size-selected hydrogen clusters has 
been determined in high energy collision experiments (Gobet 
et al. 2001, 2002), and has been interpreted as indicating the 
transition from a bound cluster to the gas phase. In those experi-
ments, the hydrogen clusters are fi rst formed in a cryogenic clus-
ter expansion source, then ionized using a high-performance 
electron ionizer and fi nally size-selected in an ion accelerator. 
Th e collisions between size-selected H3

+ (H2)N clusters with N 
smaller or equal to 14, accelerated to kinetic energies of 60 keV 
amu−1, and a helium gas target were analyzed. Collisions lead to 
the fragmentation of the clusters

 

3 2 3 2 3 2

2

H (H ) He  H (H )  H  H  H

 H  H,

N ka b c d

e f

+ + + + ++ → + + +

+ +  (2.14)

where a − f = 0, 1, …, and for each collision event, a multidetector 
records simultaneously the number (multiplicity) of each mass-
identifi ed fragment ion resulting from the reaction (neutral spe-
cies larger than H2 are absent). Th e construction of the caloric 
curve requires the simultaneous determination of the energy 

and the temperature of the system. Th e cluster energy, that is the 
energy deposited into the cluster by the collision with a He atom, 
is determined by the nature and multiplicity of the products in 
reaction (2.14). Th e temperature of the cluster prior to decay is 
obtained using a relationship (Fisher 1967), tested successfully 
in nuclear physics collisions, between the characteristic shape of 
the fragment mass distribution and the temperature of decaying 
nuclei (Belkacem et al. 1995).

Th e results for H3
+ (H2)N with N = 6, 8, 9, 11, 12, and 14 (Gobet 

et al. 2001, 2002) are shown in Figure 2.8. Th e caloric curves show 
three parts: aft er an initial rise, a plateau follows before the curve 
rises again. Th e curves show the typical features of a fi rst-order 
phase transition. According to Gobet et al., the curves show back-
bending, that is, a negative heat capacity, which has been predicted 
to be possible for small systems (Gross 1997). Th is feature becomes 
more clear by plotting a single curve with the geometric means for 
all the clusters. Th ere is, however, some controversy on the method 
of constructing the caloric curves (Chabot and Wohrer 2004).

2.6  Laser Irradiation 
and Coulomb Explosion

Th e advances in laser technology permit the study of the 
interaction between matter and ultrafast lasers with intensi-
ties higher than 1014 W cm−2 and pulse duration below 100 fs. 
Available lasers achieve intensities exceeding the electric fi eld 
created by an atomic nucleus, and the timescale of femtosec-
onds is also typical of the electron motion. Th is fi eld of research 
allows for the exploration of the nonlinear response of atoms 
to intense laser pulses, leading to the observation of new pro-
cesses. Th e behavior of molecules and clusters under similar 
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FIGURE 2.8 Caloric curves for hydrogen cluster fragmentation 
induced by collisions with helium. Reduced temperature T/T0 (T0 is 
the temperature in the plateau of the curve) is given as a function 
of the energy deposited on the clusters H3

+ (H2)N, with N = 6 (open 
squares), N = 8 (open circles), N = 9 (triangles), N = 11 (diamonds), 
N = 12 (inverted triangles), and N = 14 (fi lled circles). (Reproduced from 
Gobet, F. et al., Phys. Rev. Lett., 89, 183403, 2002. With permission.)
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laser conditions off ers new challenges due to the existence of 
additional degrees of freedom, such as the nuclear motion or the 
presence of  intramolecular and intermolecular forces. Th is gives 
rise to complex phenomena: above-threshold dissociation, bond 
soft ening, and enhanced ionization. Some of these phenomena 
are followed by a Coulomb explosion. Th at is, when molecules 
or clusters are multiply ionized by laser pulses of very short 
duration, the unbalanced positive charges are suffi  ciently close 
together to cause a repulsion-induced explosion of the nuclear 
skeleton (Poth et al. 2002, Heidenreich et al. 2007).

In a series of interesting experiments, Ditmire and cowork-
ers irradiated a dense molecular beam of large deuterium clus-
ters, (D2)N, with intense femtosecond lasers (Ditmire et al. 1999, 
Zweiback et al. 2000). Th e irradiation induces the multiple ion-
ization of the clusters, which then explode due to the repulsive 
Coulomb forces between the bare nuclei of the ionized atoms of 
the cluster. Some of those fl ying nuclei collide with nuclei ejected 
from other clusters in the plasma, and when the kinetic energies 
of the colliding nuclei are higher than a few keV, nuclear D-D 
fusion processes D + D → 3He + n can occur with high prob-
ability. Th e kinetic energies of the bare deuterium nuclei depend 
only on the size of the original cluster, and for the cluster sizes 
in the experiments of Ditmire et al., the resulting kinetic ener-
gies are high enough to produce nuclear fusion reactions. Apart 
from the obvious interest for future thermonuclear devices, 
this technique has led to the development of tabletop neutron 
sources (Hartke et al. 2005): the D + D fusion reaction produces 
a neutron (n) with energy of 2.45 MeV, and those neutrons could 
potentially be used in neutron radiography and in materials 
research.

Motivated by those works, two groups (Ma et al. 2001, 
2005; Isla and Alonso 2005, 2007) have studied the dynamical 
response of deuterium clusters irradiated by an intense femto-
second laser. Th is study simulates the fi rst stages in the experi-
ments of Ditmire and coworkers. Th e time-dependent density 
functional theory (TDDFT) (Gross et al. 1996) was the method 

used for the simulations. Th e TDDFT gives the response of the 
system to a time-dependent external perturbation Vext(r, t), in 
the present case the laser fi eld, by directly solving the funda-
mental equations of the formalism, the time-dependent Kohn–
Sham equations. Th is gives directly the time-evolution of the 
electronic orbitals. One advantage of explicitly propagating 
the time-dependent Kohn–Sham equations is that it permits 
to couple the electronic system to the ionic background, which 
can be, for many purposes, treated classically. It is then possible 
to perform a combined dynamics of electrons and nuclei. Th e 
method allows to study both linear and nonlinear excitations. 
Th e simulation of the laser irradiation of D3

+ (D2)5 and D3
+ is 

now described.
Th e structure of the free D3

+ (D2)5 cluster is shown in the left -
most panels of Figure 2.9 (the spheres represent the hydrogen 
atoms, and two mutually perpendicular views of the cluster are 
presented). Th e cluster then was perturbed by a laser pulse, whose 
time-dependent electric fi eld E(t) has a cosinoidal envelope,

 ⎛ ⎞π − τ −= ω − < τ⎜ ⎟⎝ ⎠τ
0 0

0 0 0
0

2 ˆ( ) cos   ( ) , ,
2

t tE t A sen t e t t  (2.15)

where
ω is the frequency of the fi eld
ê is the polarization vector
2τ0 is the total duration of the pulse
A0 its amplitude

Th e frequency of the laser is an important parameter in order 
to achieve an effi  cient coupling between the laser radiation and 
the cluster. Th e fi rst peak in the calculated photoabsorption 
spectrum of the cluster occurs at a frequency ω = 0.352 a.u. 
(ћω = 9.58 eV, where ћ is the reduced Planck constant). Th e 
results of a simulation in which a laser pulse of this resonant 
frequency is applied to the cluster are shown in Figure 2.9. Th e 
duration of the pulse is 9.6 fs and the amplitude of the fi eld is 

0 fs 12.1 fs 21.8 fs 31.4 fs 41.1 fs

0 fs 12.1 fs 21.8 fs 31.4 fs 41.1 fs

FIGURE 2.9 Snapshots of the structure of the cluster D3
+ (D2)5 at diff erent times aft er application of a short laser pulse of resonant frequency 

ћω = 9.58 eV, intensity of 1.4 × 1013 W cm−2, and duration 9.6 fs. A slow fragmentation of the cluster occurs. Two mutually perpendicular views are 
presented for each snapshot.
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0.02 a.u., giving a pulse intensity of 1.4 × 1013 W cm−2. A few 
snapshots showing the evolution of the structure of the clus-
ter in time are shown in that fi gure. Th e cluster maintains its 
original structure during the initial 10 fs of the simulation 
approximately, due to the inertia of the atoms and the time the 
cluster needs to absorb the necessary energy to break bonds. Th e 
absorbed energy causes the splitting of the inner D3

+ trimer in 
two fragments, a D2 molecule and a D atom, which are emitted 
in opposite directions. As the emitted molecule moves upward, 
it passes near two D2 molecules, and these two molecules are 
set in motion and move apart. Th e intramolecular bond lengths 
of those two molecules oscillate but the bonds remain intact, 
that is, the molecules do not dissociate. On the other hand, the 
D atom moving downward collides with a molecule of the sol-
vation shell, and an atom is exchanged in the collision. As the 
cluster dissociates, the two D2 molecules originally most distant 
from the trimer remain little aff ected. Th is dissociation mode 
of the cluster can be characterized as a slow fragmentation. Th e 
laser frequency has infl uence on the results. For pulses of the 
same intensity as above, but half of the resonance frequency, 
the atoms oscillate around their equilibrium positions, but the 
cluster does not dissociate.

The behavior of the irradiated cluster changes drasti-
cally for a laser intensity five times larger, that is, 7 × 1013 
W cm−2 (with the same resonant frequency, ћω = 9.58 eV, and 
pulse duration, 9.6 fs, as above). The evolution of the cluster 
structure is shown in Figure 2.10. The laser pulse produces a 
massive ionization of the deuterium atoms, and this occurs 
simultaneously in all regions of the cluster. As a consequence, 
the nuclei repel each other due to the Coulomb interaction 
and the cluster explodes. Coulomb explosion is a violent 
dissociation process that generally occurs in molecules and 
clusters when these are multiply ionized by femtosecond 
laser pulses. In small clusters, stripping just two electrons 
may be sufficient to induce Coulomb fragmentation. In fact, 
cluster size is an important parameter determining whether 
the cluster will follow this decay channel. This is the mecha-
nism corresponding to the fast dissociation process shown 
in Figure 2.10. The irradiation of the cluster first produces a 
localized plasma of electrons and nuclei, and in a short inter-
val, roughly corresponding to the duration of the laser pulse, 
the plasma loses five electrons which f ly away. The loss of the 
remaining electrons continues afterward, at a slightly slower 
rate. Besides the size of the cluster, there is another require-
ment for a pure Coulomb explosion to take place: the cluster 
must be almost stripped of all their electrons in a timescale of 

only a few femtoseconds. This is achieved with the very high 
power femtosecond lasers now available.

Th e kinetic energy of the nuclei resulting from the Coulomb 
explosion of D3

+ (D2)5 is about 13 eV. In most nuclear fusion pro-
cesses, from controlled fusion reactors to solar reactions, the 
reacting particles have kinetic energies of a few keV, enough to 
overcome the Coulomb barrier for fusion. Th is indicates that the 
Coulomb explosion of D3

+ (D2)5 delivers kinetic energies that 
are very small compared to those required to produce nuclear 
D–D fusion. Of course, this is expected, since the cluster stud-
ied in these simulations is very small, whereas the clusters in 
the experiments of Ditmire and coworkers (Ditmire et al. 1999, 
Zweiback et al. 2000) are much larger: the average number of atoms 
is 1000 times larger. Th e maximum kinetic energy is propor-
tional to R2, where R is the radius of the cluster, and a beam of 
deuterium clusters with radii greater than 50 a.u. is necessary to 
produce ions with the multi-keV energies required for nuclear 
fusion. Last and Jortner (2001a,b) have proposed and con-
fi rmed by molecular dynamics simulations that very energetic 
deuterium or tritium nuclei (D+ or T+) can be produced by the 
Coulomb explosion of D2O and T2O clusters, similar to water 
clusters. Th ese clusters will provide substantially higher fusion 
reaction yields than the homonuclear deuterium or tritium clus-
ters of the same size.

Th e charged trimer D3
+ forms the central core of the D3

+ (D2)N 
clusters. Th e ground state geometry of D3

+ is a near equilateral 
triangle. Its calculated ionization potential, that is, the energy 
required to form D3

2+, is 35.35 eV, and this high value arises 
from the unscreened attraction of the electrons by the nuclei. 
Th e photoabsorption spectrum of D3

+ shows two dominant fea-
tures in the UV range (Isla and Alonso 2007). Th e fi rst one is a 
double-peak formed by two near degenerate excitations at 17.5 
and 17.8 eV, and its average value is in very good agreement 
with the lowest excitation energy of H3

+, 17.8 eV, found in the 
experiments of Wolff  et al. (1992). Th e second feature is a peak 
at 20.1 eV with lower absorption strength. Th e results of simu-
lations of the cluster excitation with laser pulses of 9.6 fs and 
diff erent frequencies and intensities are now discussed. First, 
the laser frequency is tuned to the resonant absorption peak 
at 17.65 eV (to perform this experiment in practice, this high 
frequency would require multiphoton absorption). In response 
to a pulse of intensity 1012 W cm−2, the atoms of the trimer 
oscillate in the plane of the cluster and the motion resem-
bles a breathing mode. However, when a high-intensity pulse 
of 1015 W cm−2 is applied, the cluster undergoes a Coulomb 
explosion. Th is occurs in two steps. First, the system reaches 

0 fs 7.3 fs 10.9 fs 13.3 fs

16.9 fs

FIGURE 2.10 Snapshots of the structure of the cluster D3
+ (D2)5 at diff erent times aft er application of a laser pulse of resonant frequency 

ћω = 9.58 eV, intensity 7 × 1013 W cm−2, and duration 9.6 fs. A Coulomb explosion occurs.
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a transient nanoplasma-like state; this state is short lived, and 
the two electrons quickly escape. Th e repulsion between the 
positive nuclear charges then causes the Coulomb explosion 
of the cluster. When the laser frequency is tuned to match the 
other absorption peak at 20.1 eV, the dynamical response of the 
cluster to a pulse of intensity 1012 W cm−2 is again an oscillatory 
motion of the atoms in the plane of the trimer; however, the 
amplitude of the oscillations is smaller. For a pulse of 1015 W 
cm−2, a Coulomb explosion occurs but some diff erences can be 
noticed compared to the case of frequency ћω = 17.65 eV. Th e 
transient plasma-like state has a longer lifetime and ionization 
is slower. Consequently, the velocities of the fl ying nuclei are 
25% slower. A last example corresponds to a nonresonant laser 
frequency of 5 eV. Atomic vibrations occur for low and high 
pulse intensities; however, the absorption of energy is not large 
enough to break the bonds.

The electronic response in the linear domain, which is the 
case for the low-intensity laser field, can be analyzed by fol-
lowing the time evolution of the dipole moment of the cluster, 
as shown in Figure 2.11. For a laser frequency ћω = 17.65 eV, 
the dipole moment is greatly amplified by resonance with the 
external field, and strong dipole oscillations are observed 
long after the laser pulse is switched off (the pulse duration 
is 9.6 fs; see above). The amplification benefits from the fact 
that both, the electrons and the nuclei, oscillate in the plane 
of the nuclei. The behavior for a laser frequency ћω = 20.1 eV 
is different. A field of this frequency induces oscillations of 
the electronic cloud perpendicular to the plane of the nuclei. 
Then, the electrons follow closely the excitation field during 
the approximately 10 fs that the pulse is acting, although the 
electronic response is small (this can be noticed by compar-
ing the scales of the left and center panels of Figure 2.11). The 
amplitude of the dipole oscillations is much less than in the 
previous case because the absorption strength of this peak is 
smaller and there is no enhancement due to the nuclear vibra-
tions. The extreme situation is found in the nonresonant case 
at ћω = 5 eV (Figure 2.11c), where the dipole moment first 
follows closely the laser fi eld, returning practically to its initial 
value when the field is turned off.

2.7  Endohedrally Confi ned 
Hydrogen Clusters

Solid hydrogen at low temperature and normal pressure is 
a molecular solid. Th eoretical calculations have predicted a 
metallic state at very high pressures; see, for instance, the work 
by Johnson and Ashcroft  (2000). However, the prediction is 
controversial. Shock-wave, pulsed-laser, and diamond anvil-
cell experimental techniques have played an important role in 
studying hydrogen under high pressures (Loubeyre et al. 2002). 
Th e metallic state has not yet been achieved for pressures up 
to about 300 GPa, and recent DFT calculations (Pickard and 
Needs 2007) have confi rmed that hydrogen remains insulating 
at 400 GPa. Loubeyre et al. (2002) estimated that pressures of 
at least 450 GPa will be required to achieve the closing of the 
electronic gap.

DFT calculations have also been performed to explore the 
eff ect of pressure on the structure and the properties of hydro-
gen clusters (Santamaria and Soullard 2005, Soullard et al. 2008). 
In these studies, the clusters were confi ned in model containers, 
rigid fullerene-like cages built of 60 hydrogen atoms, and com-
pression was simulated by reducing the radius of those model 
containers. Th e initial radius was chosen large enough so as to 
exert only a small pressure on the confi ned hydrogen molecules 
and to avoid the formation of bonds between the confi ned mol-
ecules and the atoms forming the cage. At any of the simulated 
pressures, the encapsulated hydrogen molecules assemble into 
clusters, with equilibrium structures which depend strongly on 
the number of molecules and the pressure exerted by the cage. 
Two pressure ranges have been identifi ed. In the fi rst one, with 
pressures up to 100 GPa, formation of molecular (H2)N clusters 
occurs. Figure 2.12 shows the preferred packing of the (H2)N 
clusters with N = 8–13 and 15, at pressures below 100 GPa. Th e 
equilibrium geometries can be described as antiprisms and 
capped antiprisms, with an approximate rotational symmetry 
axis changing from C4 (for N = 8, 9, 10, 11) to C5 (for N = 12, 13) 
and C6 (for N = 15). Th e growth pattern for N = 8 to N = 11 is 
based on the structure of (H2)8, which is a square antiprism. 
(H2)9 and (H2)10 are obtained by capping the two opposite basal 
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FIGURE 2.11 Evolution of the electric dipole moment of D3
+ with time aft er laser irradiation in the linear domain (laser intensity = 1012 W cm−2) 

with pulses of 9.6 fs. (a) Laser frequency corresponding to the excitation peak at 17.65 eV in the absorption spectrum. (b) Frequency corresponding 
to the excitation peak at 20.0 eV. (c) Nonresonant frequency at 5.0 eV. Notice the diff erent scales in the dipole axis. (Reproduced from Isla, M. and 
Alonso, J.A., J. Phys. Chem. C, 111, 17765, 2007. With permission.)
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faces on the antiprism. Placing an extra molecule in the center 
of the antiprism leads to (H2)11. Th e structure of the antiprism 
changes from square to pentagonal in (H2)12, which can also be 
considered as an icosahedron with a molecule at the center and a 
missing molecule on the surface. (H2)13 is a perfect icosahedron 
with a molecule at the center. Th e confi guration of (H2)15 is simi-
lar to that of (H2)13 but with the fi vefold molecular rings replaced 
by sixfold molecular rings. Th e structures of encapsulated (H2)12 
and (H2)13 coincide with those calculated for free (H2)12 and 
(H2)13 using DFT (see Section 2.3), but not for other clusters. 
Th is indicates that pressure aff ects the structure of the clusters. 
Only the magic cluster (H2)13 and its immediate neighbor (H2)12 
appear to be insensitive to this eff ect. It is interesting to notice 
that the structure of (H2)15 is based on a hexagonal antiprism, 
while the structure of free (H2)15 in a similar calculation (see 
Section 2.3) is a capped icosahedron. Th is provides a nice visu-
alization of the confi nement eff ect. Th e capped icosahedron is 
a prolate (elongated) structure, and transformation to the more 
spherical structure of the hexagonal antiprism is favorable inside 
the spherical cage of decreasing diameter (this tendency toward 
spherical structures is further discussed below).

Application of pressures higher than 100 GPa results in a 
gradual dissociation of the H2 molecules, as evidenced by the 
increasing interatomic distances, and in the formation of mixed 
clusters of atoms and molecules, with a molecular–atomic ratio 
dependent on the pressure. As pressure increases, the elec-
tronic HOMO–LUMO gap (the diff erence between the energy 
of the lowest unoccupied electronic state of the cluster and 
that of the highest occupied state) decreases. Th is shows a ten-
dency toward metallization, although for the pressures applied 
in the simulations, the metallization of the clusters is not yet 

achieved. Analysis of the pressure–volume curve for encapsu-
lated (H2)13 and (H2)15 leads to a zero-temperature equation of 
state (Santamaria and Soullard 2005), which was found to be 
consistent with the experimental data for a macroscopic hydro-
gen crystal (Hemley et al. 1990).

Motivated by the urgent search for effi  cient containers of 
hydrogen for automotive applications, the encapsulation of 
hydrogen clusters in carbon cages like fullerenes and closed 
nanotubes has been studied. Komatsu et al. (2005) reported a 
chemical method to encapsulate hydrogen in the C60 fullerene 
by organic synthesis. Using a semiempirical electronic structure 
method, the MNDO (modifi ed neglect of diatomic overlap), 
Barajas-Barraza and Guirado-López (2002) have studied the 
clustering of hydrogen molecules encapsulated in the fullerenes 
C60 and C82. Although hydrogen encapsulation in fullerene mol-
ecules is not directly relevant for gas storage applications, its 
study may help us to get insight into the structure and proper-
ties of small molecules encapsulated in confi ned environments. 
On the other hand, porous carbon, a promising hydrogen stor-
age material, contains interconnected pores of nanometric size, 
some of them with spheroidal shape. Th e number of encapsulated 
molecules studied by Barajas-Barraza et al. varied from 1 to 23 
for encapsulation in C60, and from 1 to 35 for C82. Th e two upper 
limits defi ne the maximum storage capacity for those two fuller-
enes. Beyond that, the cage breaks up. Inside C60, the structure 
of (H2)6 is an octahedron, and (H2)13 is an icosahedron with an 
atom at its center, as shown in Figure 2.13. Encapsulated (H2)19 
forms a spherical structure around a central molecule, diff erent 
from the elongated (prolate) structure of free (H2)19. Actually, 
the structures of encapsulated (H2)6 and (H2)13 are also rather 
spherical. To understand this tendency for spherical structures, 

P = 28 GPa

P = 79 GPa P = 89 GPa P = 39 GPa

P = 31 GPa P = 28 GPa P = 15 GPa

FIGURE 2.12 Preferred structures of confi ned (H2)N clusters (N = 8–13, 15) under pressure. Th e confi ning cage is not shown. Th e main rotational 
symmetry elements (planes and axes) are indicated. (Reproduced from Soullard, J. et al., J. Chem. Phys., 128, 064316, 2008. With permission.)
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one can fi rst notice that the equilibrium distance between the 
two hydrogen molecules in (H2)2 obtained in diff erent calcula-
tions is 3.4 Å, very close to the radius of the C60 fullerene, 3.5 Å. 
In addition, the hydrogen molecules maximize their attractive 
interaction with the carbon cage by occupying positions close 
to the inner wall of the fullerene. Th ese two features explain 
the structure of the encapsulated clusters. Th e axes of hydrogen 
molecules in encapsulated (H2)6 and (H2)13 show orientational 
order, which disappears in encapsulated (H2)19. Evidently, as the 
number of molecules increases, the enclosed molecules feel an 
increasing pressure that would eventually lead to the breaking 
of the carbon cage.

Th ese ideas are confi rmed by the analysis of the structures of 
the clusters encapsulated in C82. Th e cage of this fullerene shows 
some distortion from sphericity, and the structures of the encap-
sulated clusters become deformed, compared to their structures 
inside C60, in order to profi t from the interaction with the inner 
wall of the cage. Th is is clear in the panels d, e, and f of Figure 
2.13. Again, the case of (H2)19 is interesting. Th e deformed cage 
allows (H2)19 to adopt a structure which is similar, although not 
identical, to that of free (H2)19. Th e structure of free (H2)19 is the 
double icosahedron (see Section 2.3), and it looks like a cylinder 
formed by three parallel rings (each ring having fi ve molecules) 
plus one molecule at each end of the cylinder and two molecules 
inside the cylinder. Th e encapsulated (H2)19 is a similar cylin-
der, but with only a single internal molecule, and the middle 
ring is formed by six molecules. An additional set of calcula-
tions performed for (H2)6, (H2)13, and (H2)19 encapsulated in a 

particular isomer of C82 with spherical symmetry (not shown in 
the fi gure) indicate that those hydrogen clusters adopt spheri-
cal structures, nearly the same as the ones found inside C60. In 
summary, for hydrogen clusters encapsulated inside fullerenes, 
the interactions of the hydrogen molecules with the carbon walls 
of the cage dominate over the H2–H2 interactions and control 
the structure of the encapsulated clusters. Th is supports the 
expectation that porous carbons can act as effi  cient containers 
for hydrogen storage.

Th e same rules apply to the structures of hydrogen clus-
ters encapsulated in closed nanotubes (Barajas-Barraza and 
Guriado-López 2002). A (5,5) nanotube closed at both ends can 
be constructed with 110 carbon atoms. When the number of 
encapsulated hydrogen molecules is very small, the cluster adopts 
a linear shape with well-defi ned orientational ordering of the 
various molecular axes. Due to the fi nite length of the nanotube, 
the structure of the cluster becomes two-dimensional for fi ve 
H2 molecules, and three-dimensional for seven molecules. For 
encapsulation of larger quantities, for example 18 molecules, these 
form a shell with tubular shape, characterized by a strongly cor-
related orientation of the molecular axes. Th e structure changes 
when the number of encapsulated molecules is about 30: the 
cylindrical hydrogen shell adsorbed on the nanotube internal 
wall accommodates a one-dimensional chain of H2 molecules in 
its inner channel.

Experimental work to fi ll fullerenes with hydrogen is in 
the early stages, although encapsulation of a single molecule 
has been achieved (Komatsu et al. 2005). But the pressures 
produced inside by the encapsulated hydrogen and the maxi-
mum amount of encapsulated hydrogen before the carbon 
cage breaks have been studied theoretically. An interesting 
result obtained by Pupysheva et al. (2008) from DFT calcu-
lations is that the energy of formation of the encapsulated 
cluster

 60 60 2(H @C ) (C ) (H )
2n
nE E E EΔ = − −  (2.16)

is negative only for one or two molecules, and positive for four 
molecules and more. Th at is, all the structures with more than 
three encapsulated molecules are metastable, although once 
formed, dissociation of the system may have a substantial acti-
vation barrier. Th is critical number of three molecules may be 
underestimated, because the DFT calculations of Pupysheva 
et al. used the generalized gradient approximation (GGA) to 
electronic exchange and correlation, and there is some evi-
dence that the GGA tends to underestimate the attractive 
interaction between H2 and graphite-like carbon surfaces. 
Actually, Tada et al. (2001) obtained a purely repulsive interac-
tion between H2 and a graphene layer or a (6,6) nanotube using 
the GGA approximation. Th e last metastable structure of the 
Hn@C60 family in the study of Pupysheva et al. contains 29 H2 
molecules. Above that size, the pressure becomes too high, 
the system becomes unstable, and the carbon cage spontane-
ously breaks up. For a number of encapsulated atoms n smaller 
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FIGURE 2.13 Calculated lowest energy structures of (a) (H2)6@
C60, (b) (H2)13@C60, (c) (H2)19@C60, (d) (H2)6@C82, (e) (H2)13@C82, and 
(f) (H2)19@C82 (fi rst and third columns), together with the spatial distri-
bution of the centers of mass of the encapsulated hydrogen molecules 
(second and fourth columns). (Reproduced from Barajas-Barraza, 
R.E. and Guirado-López, R.A., Phys. Rev. B, 66, 155426, 2002. With 
permission.)
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than 20, all the hydrogen inside the fullerene exists only in 
molecular form. For n larger than 20, a part of the hydrogen 
remains in molecular form, but a few H2 molecules dissociate, 
a few triangular H3 molecules form, and some hydrogen atoms 
form covalent bonds with the carbon atoms of the cage. Th e 
fullerene cage deforms near the covalent C–H bonds in order to 
favor electronic sp3 hybridization of those particular C atoms. 
At the same time, the hydrogenized carbon atoms no longer 
contribute to the conjugated π-electron system of C60, and this 
breaks the fullerene aromaticity. Consequently, the cage stabil-
ity is weakened, and breakage occurs for n = 58. Th e estimated 
hydrogen pressure in H58@C60 is 1.3 Mbar. Th is pressure is of 
the order of magnitude of the hydrogen pressure in the giant 
planets Jupiter and Saturn.

2.8 Supported Clusters

Under normal circumstances, the hydrogen clusters are formed 
by weakly interacting H2 molecules, as stressed in the previous 
sections of this chapter. But, by directly depositing hydrogen 
atoms on a graphite surface, supported two-dimensional clus-
ters have been obtained in which hydrogen is in the atomic 
state. Atomic deuterium has been deposited on graphite at 
210 K in experiments performed under ultra-high-vacuum 
conditions, and scanning tunneling microscopy (STM) was 
used to analyze the results (Hornekaer et al. 2006). At very low 
deuterium coverage (0.03%), STM images show only adsorbed 
isolated atoms. Th ose D atoms are in a chemisorbed state, 
covalently bonded to a C atom of the graphite surface. When 
the coverage increases to 1%, the STM images show a dominance 
of deuterium dimers. However, these are not D2 molecules. 
The two D atoms of a dimer are chemisorbed on C atoms, and 
the nearest-neighbor C–C distance is 1.41 Å, much larger than 
the bondlength, 0.79 Å, of the H2 molecule. As shown in Figure 
2.14, the most stable confi guration of the adsorbed dimer is not 
the ortho confi guration in which the two D atoms are adsorbed 
on fi rst nearest neighbor C atoms, but the para confi guration 
in which the two D atoms are bonded to C atoms on opposite 
vertices of a hexagon (third nearest neighbors). Th e para con-
fi guration is 0.2 eV more stable than the ortho, and another 
confi guration where the two D atoms are bonded to C atoms 
in second neighbor sites is 1.2 eV less stable than the para con-
fi guration. Th e formation of dimers and larger clusters was not 
ascribed to thermal diff usion eff ects. Th e barrier for surface 
diff usion of a D atom, 1.14 eV, is larger than the activation bar-
rier for desorption, 0.9 eV, so an isolated D atom would desorb, 
rather than diff use, under heating, and this is corroborated by 
the experiments, which show that the atoms are immobile at 
200 K and that heating to room temperature reduces the sur-
face coverage. Instead, the mechanism of formation of dimers 
and larger deuterium clusters is preferential sticking. As shown 
by the interaction energy curves of Figure 2.14, constructed 
from DFT calculations, the chemisorption of the fi rst D atom 
has a small barrier of 0.15 eV. Th en, the barrier for chemisorp-
tion of the second D atom in the ortho confi guration is only 

0.10 eV, and there is no barrier for chemisorption in the para 
confi guration. Th is means that para-dimer confi gurations 
should dominate at low coverage because there is no barrier 
for sticking into this state, and the experiments show that this 
is the case.

At higher coverages, 3% or more, the majority of the adsorbed 
D atoms form larger clusters, and the structures are again dom-
inated by preferential sticking. When a dimer is in the para 
confi guration shown in Figure 2.14a, the calculations for the 
adsorption of a third atom show reduced barriers (of 0.10 eV) 
when the third atom is in any of the fi ve positions on the right 
of the inset. One of those positions forms an ortho confi gu-
ration with one of the atoms of the original dimer, other two 
positions form para confi gurations, and the fi nal two are sec-
ond neighbor positions. For the sticking of a fourth atom, sites 
with reduced or vanishing barriers for adsorption also exist. 
In summary, the structures of the two-dimensional hydrogen 
clusters formed by deposition of atomic hydrogen on graphite 
are very diff erent from those of the usual molecular clusters. 
First of all, the basic unit is the chemisorbed H atom, covalently 
bonded to a surface C atom, and not the H2 molecule; second, 
the clusters are not compact and its structure is controlled by 
preferential sticking.
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shown in (c), the ortho-dimer (dash-dotted line), the second neigh-
bor site (dashed line), and the para-dimer (dash-double dotted line). 
(Reproduced from Hornekaer, L. et al., Phys. Rev. Lett., 97, 186102, 
2006. With permission.)
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2.9  Quantum Effects 
in Hydrogen Clusters

Superfl uidity is a fascinating manifestation of quantum behavior at 
a macroscopic scale. In a superfl uid liquid, the viscosity van-
ishes. Helium becomes superfl uid at very low temperature, below 
its lambda (λ) point. Th is lambda point depends on pressure, and 
for He at a pressure of 0.05 atm, it occurs at 2.17 K. A relevant ques-
tion is which condensed material, besides helium, can display 
superfl uidity. Molecular para-hydrogen is a candidate because 
of the bosonic character and the light mass of the para-H2 mol-
ecules. But, unlike helium, bulk para-H2 solidifi es at low temper-
ature, because the interaction between two hydrogen molecules 
is substantially more attractive than the interaction between two 
He atoms. However, the lowering of the melting point compared 
to the bulk is a well known and rather general phenomenon in 
clusters (Alonso 2005), and this has motivated the interest in 
studying the possible superfl uidity in para-H2 clusters. Using 
infrared spectroscopy to study the rotational spectrum of a dop-
ant molecule embedded in clusters of 4He or para-H2, the obser-
vation of the decoupling of the rotation of the dopant molecule 
from the surrounding medium gives evidence of the superfl u-
idity of the cluster. Using this technique for a linear carbo-
nyl sulfi de (OCS) chromophore molecule surrounded by 14–16 
para-H2 molecules, all inside large He droplets, Grebenev et al. 
(2000) obtained confi rmation of the occurrence of superfl uidity 
in liquid para-H2.

Mezzacapo and Boninsegni (2006, 2007) have presented a 
comprehensive theoretical study of (para-H2)N clusters using 
path-integral quantum MC simulations and the pair potential 
of Silvera and Goldman (1978). Tests with other established 
potentials were also performed and gave similar results. Th e 
calculated chemical potential μ(N), or energy to remove one 
molecule from the cluster (H2)N (see Equation 2.4), has local 
maxima for N = 13 and N = 26. Th e fi rst magic number, N = 13, 
was ascribed to the completion of the fi rst shell around a central 
atom (which is not inconsistent with liquid behavior; see below), 
and the peak at N = 26 was ascribed to solid-like behavior. Th e 
results for the superfl uid character of these clusters are summa-
rized in Figure 2.15, where the superfl uid fraction ρS is plotted 
as a function of the cluster size at a temperature T = 1 K. Th e 
superfl uid fraction is the fraction of molecules in the superfl uid 
phase, that is, the fraction of the system that decouples from an 
externally induced rotation. Three regions can be identified 
in this figure. In the fi rst region, formed by the clusters with 
less than 22 hydrogen molecules, the clusters are liquid-like and 
superfl uid at low temperature. In these clusters, the superfl uid 
fraction decreases monotonically as T increases. For instance, 
(H2)20 is entirely superfl uid (ρS = 1) at temperatures below 1.25 K, 
and its ρS drops fast with increasing T, reaching a value of 0.2 at 
T = 2.5 K. In the transition region of Figure 2.15, formed by clus-
ters with sizes between N = 22 and N = 30, the evolution from 
liquid-like character to solid-like character does not occur con-
tinuously. Th e superfl uid properties depend sensitively on the 

cluster size, and strong diff erences occur for clusters diff ering by 
just one single molecule. Th is was interpreted as indicating the 
alternating liquid-like (superfl uid) character or solid-like (insu-
lating) character of the clusters. For instance, plots of the atomic 
structure of the clusters with N = 25 and N = 26 at T = 1 K indi-
cate a clear solid-like structure of (H2)26; that is, the hydrogen 
molecules show a high degree of spatial localization. Quantum 
exchanges between molecules are suppressed and the superfl uid 
response is weak. In contrast, the molecules in (H2)25 are more 
delocalized and their positions cannot be clearly identifi ed. Th at 
delocalization promotes quantum exchanges responsible for the 
large superfl uid response.

A peculiar behavior was observed for some clusters in this 
region. A good example is (H2)23, for which the superfl uid fraction 
shows a local minimum in Figure 2.15. A detailed analysis of the 
computer simulations reveals the coexistence of two phases in 
this cluster, a liquid-like superfl uid phase and a solid-like phase. 
Th is means that in its time evolution at a given temperature, the 
system visits ordered solid-like confi gurations and liquid-like 
superfl uid confi gurations and the value of ρS in Figure 2.15 is 
the time average. A fascinating feature of this cluster is that, on 
lowering the temperature, the liquid-like phase becomes domi-
nant as T approaches 0 K, that is, this phase is observed during a 
higher fraction of the simulation time: the cluster melts at a low 
temperature. Melting in this case is due to zero-point motion 
which induces quantum exchanges of the molecules. Th is behav-
ior, which is driven by Bose statistics, was called quantum melt-
ing by Mezzacapo and Boninsegni (2006, 2007). On the other 
hand, for high T, the quantum exchanges are suppressed and the 
system solidifi es. Th is behavior becomes refl ected in the form of 
the radial density of particles ρ(r), that is, the density of particles 
taking the cluster center as the origin of coordinates. At T = 2 K, 
ρ(r) of (H2)23 displays a well-defined structure of two shells, 
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FIGURE 2.15 Solid symbols are the superfl uid fraction of (H2)N  clusters 
as a function on N, at T = 1 K, obtained by quantum MC  simulations. 
Other symbols are results of a previous calculation. (Reproduced from 
Mezzacapo, F. and Boninsegni, M., Phys. Rev. A, 75, 033201, 2007. With 
permission.)
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a sharp peak at a distance r ≈ 2 Å from the center of mass, and a 
broader peak centered at 5.5 Å; this is consistent with Figure 2.3. 
Lowering the temperature to T = 0.75 K, the fi rst peak experi-
ences a substantial broadening and a lowering of its height. Th is 
indicates that the molecules are less localized and that quantum 
exchanges between shells as well as within shells increase. (H2)23 
is not the only cluster in the transition region of Figure 2.15 
showing quantum melting. Some other clusters in this region 
show the same features. Th e behavior just discussed is diff erent 
from that of a cluster which is liquid but not 100% superfl uid. In 
this case, which corresponds to the region N < 22, the clusters 
are liquid at all temperatures and the superfl uid fraction grows 
at low T, but there is no coexistence between liquid and solid 
phases. Finally, Figure 2.15 shows that the superfl uid response is 
signifi cantly depressed above N = 30, consistent with the expec-
tation that a crystalline phase has to appear at large N.

Th e nucleus of the deuterium atom has total angular momen-
tum J = 1, and molecular ortho-deuterium (ortho-D2) occurs in 
nature as a mixture of S = 0 and S = 2 spin states. Th e S = 0 
state is a boson similar to para-H2 but with a larger mass. Th e 
mass diff erence is responsible of some subtle diff erences in the 
properties of para-H2 and ortho-D2. Quantum eff ects are weak-
ened in ortho-D2, or stated in an alternative way, the behavior of 
these clusters is more classic (Mezzacapo and Boninsegni 2007). 
Th e binding energy eb(N) and the chemical potential μ(N) show 
peaks at N = 13 and N = 19, and those features are sharper than 
in para-H2. Th e structure of (D2)13 and (D2)19 at T = 0.5 K is solid-
like. Actually, the calculated structure of (D2)19 is quite similar to 
a classical double icosahedron.

Very recently, the distribution of the superfl uid response 
across the clusters has been discussed with opposite views. 
Khairallah et al. (2007) have concluded that the superfl uid 
response is largely confi ned at the surface of small clusters and 
arises from the exchange cycles involving surface molecules. 
On the other hand, Mezzacapo and Boninsegni (2008) have 
presented persuasive arguments that the small clusters are uni-
formly superfl uid, that is, the superfl uidity response is not local-
ized at the cluster surface. In summary, the quantum properties 
of hydrogen clusters are a fascinating subject and intensive and 
interesting work on these nanoclusters is expected to continue 
in the near future.

2.10 Conclusions

Hydrogen clusters can be obtained by condensation of hydrogen 
gas in supersonic expansions. Th e clusters formed are molecular 
clusters with formula (H2)N. Th e experiments show that clusters 
of some particular sizes N are more abundant that other neigh-
bor sizes, and for this reason those are oft en called magic clus-
ters. It is diffi  cult to obtain direct experimental information of 
the structure of the hydrogen clusters, that is, of the geometri-
cal arrangement of the molecules, and theoretical calculations 
help a lot in this task. Th e calculations assign the fi rst, and more 
clear magic number, N = 13, to the completion of a fi rst shell 

around a central molecule. Both experiment and theory sug-
gest the  existence of other higher magic numbers. If one of the 
molecules of a hydrogen cluster is ionized, the structure of the 
cluster suff ers a drastic change: Instead of having a charged H2

+ 
molecule immersed in the cluster, it is more favorable to eject a 
neutral H atom and form a charged trimer solvated in the cluster, 
H3

+ (H2)n. Confi ning the hydrogen clusters in small cages, like 
fullerenes and nanotubes, aff ects the structure of the encaged 
clusters. Th e cluster roughly adapts its structure in order to max-
imize the interaction with the inner wall of the cage, and this 
eff ect may have consequences for the important technological 
problem of hydrogen storage. Clusters produced by direct depo-
sition of atomic hydrogen on a substrate form two-dimensional 
structures where the relevant units are the chemisorbed atoms, 
not the molecules. Nuclear fusion between colliding deuterium 
nuclei has been achieved in experiments in which dense molecu-
lar beams of large deuterium clusters were irradiated with strong 
femtosecond lasers. Th e mechanism generating the fl ying ener-
getic nuclei is the Coulombic explosion which follows the mas-
sive ionization of the deuterium clusters. Th e atomic part of the 
process, that is, the interaction between the cluster and the laser 
leading to ionization and Coulomb explosion is a fascinating 
area. At very low temperatures, hydrogen clusters display quan-
tum eff ects, and a beautiful manifestation of these is superfl uid-
ity, already detected experimentally in some hydrogen clusters.
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3.1 Introduction

Elemental mercury is the only metal that is liquid at room tem-
perature (melting temperature TM = −38.83°C); the only other 
low melting metal is gallium (TM = 29.76°C) [1]. Th is has been 
known since ancient times and is refl ected in the Greek name 
Hydrargyrum meaning “watery silver” and the Latin Argentum 
vivum meaning “quick silver.” It is speculated that its low melting 
point is due to relativistic eff ects [2–4], which energetically lowers 
the 6s band substantially [5], thus making mercury a very hard 
atom with a static dipole polarizability of only αD = 5.025(50) Å3 
[6,7]. It is clear that such strong and pronounced relativistic eff ects 
for the 6s shell [5], which are close to the relativistic 6s maxi-
mum of gold [4,8], makes mercury rather unique in chemical and 
physical properties among the other Group 12 metals zinc and 
cadmium. Some of the physical and chemical properties of the 
Group 12 elements are compared in Table 3.1, and in many of 
these properties we see anomalies that, most likely, are caused 
by relativistic eff ects. For the next Group 12 element (below Hg) 
with nuclear charge Z = 112 (Copernicium, Cn), even larger rela-
tivistic eff ects are predicted [9–11], and the dipole polarizability 
of this element is now the lowest of all the Group 12 elements 
(αD(112) = 3.8 Å3) [12].

Mercury occurs in many natural materials including coal, 
gas, and oil in small quantities; it is estimated that by burning 
fossil fuels about 2400 tons per year of mercury are released 
into the atmosphere [13]. Th us, the contamination of the atmo-
sphere and the bioaccumulation of it, especially in fi sh, present 
large-scale problems. Since oxidized mercury is easier removed 
than mercury in its elemental form, the search for effi  cient and 
regenerable oxidation catalysts like noble metals is important 
[14,15]. For humans, mercury is toxic and leads to damage to 
the nervous tissue, kidneys, and liver. It is therefore important 
that mercury be handled with care, which is the main reason 

why mercury is not the metal of choice in the study and design 
of new nanomaterials. In fact, most of the nanoscience research 
here concentrates on the development of sensors for the detec-
tion of small amounts of mercury [16].

Mercury is, however, an interesting element to be studied by the-
oreticians, as mercury clusters range from van der Waals bonded 
to more covalent systems, before fi nally reaching the metallic state 
at larger cluster size [17]. Th e dissociation energies (De) therefore 
vary widely from about 0.05 eV for the dimer [18] to 0.67 eV (cohe-
sive energy Ecoh) for the bulk metal. For an ideal Lennard-Jones sys-
tem, we have the simple relation Ecoh = 8.61De [19], which is obeyed 
for either the face-centered cubic fcc or the hexagonal close-packed 
hcp solid. Instead, Ecoh = 13.4De, i.e., mercury does not behave like 
an ideal Lennard-Jones system. It is therefore a challenge to simu-
late mercury in the gas, liquid, or the solid phase.

Th e fi rst appearance of the 6s–6p gap closure to the metallic 
state at a specifi c cluster size is still a matter of intense debate 
[20,21]. Early measurements by Rademann gave an estimated 
band gap closure for Hgn at n ≈ 70 [22,23], Singh obtained 
n ≈ 80 [24,25], Pastor et al. n ≈ 135 [26–28], and a recent photo-
electron study on negatively charged mercury clusters by Busani 
et al. gave n = 400 ± 30 [29–31]. In liquid mercury, the single 
6s–6p gap opens at a density of ρ = 8.8 g cm−3 (the density of liq-
uid mercury under standard conditions is 13.59 g cm−3 [32]). Th is 
agrees with experiment where a gradual transition from metallic 
to semiconducting and insulating properties has been observed 
at elevated temperatures and pressures [33]. An interesting com-
parison is to superheavy element 112; due to a very strong rela-
tivistic 7s stabilization element 112 never becomes metallic as 
recent solid-state calculations show [10].

Th ere is also a very large contraction of the Hg–Hg equilib-
rium bond length re when going from the van der Waals bonded 
dimer (re = 3.69 Å) [18] to the solid state (re = 3.01 Å) [1], which is 
not found in the rare gas elements. Such large diff erences indicate 
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the importance of many-body forces beyond the two-body force 
such as the two-body Lennard-Jones potential [34]. Th is clearly 
distinguishes mercury from rare gas interactions, which are rea-
sonably well described by two-body forces only [19]. Further, 
there is no bonding interaction at the Hartree–Fock level starting 
from the Hg dimer and up to the solid state, that is the interac-
tion between Hg atoms without taking electron correlation into 
account is purely repulsive [35,36]. Th is situation now resembles 
the bonding behavior in the rare gases. And fi nally, relativistic 
eff ects shorten the bond distance in Hg2 considerably (by 0.2 Å) 
[37], and solid Hg changes the crystal structure to hcp when 
neglecting relativistic eff ects, the bond distance in the crystal 
also being somewhat larger (3.06 Å at the nonrelativistic level of 
theory) than in the rhombohedral relativistic structure (3.00 Å) 
[38]. Th e correct description of both relativistic and electron 
 correlation eff ects is thus very important for the simulation of 
mercury in clusters, the liquid or the solid state.

Several groups have studied neutral and charged Hgn clus-
ters in the gas phase, in particular the transitions in chemical 
bonding from van der Waals to metallic [17]. For small van der 
Waals clusters (n < 13) the band gap is large and little 6s–6p 
hybridization is observed. Aft er a transition region, the bonding 
becomes covalent (30 < n < 100); 6s–6p hybridization leads to an 
increase of the binding between the atoms beyond the normal 
two-body interaction. At much larger cluster size we enter the 
metallic phase. In this process both the bond distances and the 
ionization potential decrease toward the bulk value. Th is transi-
tion for a fi nite system has been described as being somewhat 
similar to a Mott transition for the bulk [17]. It is clear that mer-
cury is a complex system to be studied by both theoretical and 

experimental methods. Here, we want to outline the progress 
made in the last two decades in simulating Hg clusters, the liq-
uid and the bulk system, and how well the results compare with 
experiment.

3.2 The Mercury Atom

We brief ly mention both, theoretical and experimental work 
on the Hg atom, mainly to discuss the importance of relativis-
tic effects necessary to understand the physical properties of 
the Hg clusters. The most accurate calculations for Hg come 
from Kaldor’s group using Fock-space coupled-cluster theory 
starting from a Dirac–Coulomb Hamiltonian including Breit 
interactions in the low-frequency limit [39,40]. They repro-
duce experimental ionization potentials and electronic exci-
tations [1,41] within a few 100 cm−1. In fact, such calculations 
are now so precise that quantum electrodynamic effects have 
to be taken into account to produce results of experimental 
accuracy [42]. Figure 3.1 shows ionization potentials and 
static dipole polarizabilities for all group 12 metals. It is clear 
that relativistic effects in such properties are large and cannot 
be neglected anymore. The relativistic increase in the ioniza-
tion potential and the subsequent decrease in the polarizabil-
ity has led to the conclusion, that both Hg and element 112 
are chemically inert [9]. The (indirect) relativistic expansion 
of the core 5d orbitals also leads to a larger 5d/6s mixing [5]. 
Finally, spin–orbit coupling splits both the 5d and 6p levels 
in Hg. The splitting between the 3P0/3P2 states of neutral Hg 
is 0.79 eV, while the 2D3/2/2D5/2 splitting in Hg+ is 1.86 eV [41]. 
The 6p1/2 spin–orbit stabilization will reduce the 6s/6p band 
gap and therefore shift the onset of metallicity to smaller Hg 
clusters. Further, in a mercury vapor lamp the UV light pro-
duced at 253.7 nm comes from the spin-forbidden 3P1 → 1S0 
transition, which becomes allowed in the spin–orbit coupled 
case [45].

TABLE 3.1 A Comparison of Chemical and 
Physical Properties of the Group 12 Elements

Property Zn Cd Hg

I1 (eV) 9.394 8.994 10.438
I2 (eV) 17.96 16.908 18.757
Iw (eV) 3.63 4.08 4.48
αD (Å3) 5.75 7.36 5.02
TM (°C) 419.53 321.07 −38.83
TB (°C) 907 767 356.62
Tc (°C) 0.85 0.517 3.95
λ (W m−1 K−1) 116 96.8 8.34
ρ (10−8 Ω m) 5.9 7.6 95.78
M 0.38 0.38 1.0
B (GPa) 70 42 25
Structure hcp hcp rhomb

Notes: I1 and I2 are the fi rst and second ionization 
potentials of the atom; Iw is the work function of the 
bulk; αD the static electric dipole polarizability; TM 
and TB are the melting and boiling points; Tc the 
superconducting transition temperature; λ the ther-
mal conductivity; ρ the specifi c resistance; M the 
electron–phonon coupling constant; B the bulk mod-
ulus, and for the bulk structures; hcp refers to hexago-
nal closed packing; rhomb to rhombohedral. Results 
are taken from Ref. [1].
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FIGURE 3.1 A comparison between experimental (or relativistic 
coupled cluster) ionization potentials and static dipole polarizabilities 
for the group 12 metals with (R) and without (NR) relativistic eff ects. 
Experimental values for Zn, Cd, and Hg are taken from Refs. [1,6,43,44], 
relativistic coupled-cluster calculations come from Refs. [12,39].
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3.3 Mercury Clusters

It is obvious that any theoretical method able to accurately 
describe Hg clusters from small to large sizes has to reproduce 
experimental values reasonably well for the smallest cluster, 
the dimer Hg2, as well as for the solid metal. For Hg2, accurate 
experimental results are scarce. Table 3.2 shows a comparison 
between diff erent theoretical results with experiment. As the 
interaction between two Hg atoms in Hg2 is of van der Waals 
(dispersive) type with possibly a rather small dissociation energy 
of 400 cm−1 [46], it is currently not easy to obtain accurate values 
from both theory or experiment. Currently, the most precise cal-
culations come from Peterson [47] using a small-core relativistic 
pseudopotential for Hg, including spin–orbit corrections and 
extrapolating to the basis set limit using correlation consistent 
basis sets at the coupled-cluster level of theory. Relativistic eff ects 
are important, as they decrease the bond distance by about 0.2 Å, 
and slightly lower the dissociation energy [18,37,48]. Table 3.2 
clearly shows the huge stabilization eff ect on removing an elec-
tron out of the antibonding orbital in Hg2, i.e., the dissociation 
energy increases by a factor of 29 when going from Hg2 to 2Hg +. 
Th is rather large eff ect will diminish with increasing cluster size 
toward the solid state. Excited states of Hg2 and 2Hg + were also 
studied in the past by both experimental [51–53,55,58–60] and 
theoretical methods [61–64]. Also, some excited states of Hg2 are 
found to be more stable due to the excitation of an electron out 
of the antibonding orbital; the dissociation energy increases up 
to a factor of 25 and the bond length is strongly reduced to about 
3 Å, the distance found in solid Hg (see Ref. [63] and references 
therein). We note here that the importance of relativistic eff ects 
in optical transitions in Hg-containing alloys was already dis-
cussed in 1972 by Kisiel and Lee [65].

Th e study of large mercury clusters to, for example, probe the 
convergence toward the bulk is a nontrivial task for both theore-
ticians and experimentalists. As calculations show, for the sim-
ple mercury dimer as well as for the solid state, relativistic eff ects 
have to be included [24,37,48]. For larger clusters, the computer 
time becomes prohibitively large for all electron methods at the 
Hartree–Fock or density functional level of theory, so natu-
rally the relativistic pseudopotential approximation (also called 

eff ective core potential method) is used, which has been proven 
to be very accurate compared to all electron calculations if care 
is taken for the proper choice of the core and in the adjustment 
procedure [66]. While the inclusion of scalar relativistic eff ects is 
more or less straightforward, spin–orbit eff ects, electron correla-
tion, and the basis set superposition error present a much larger 
problem [18,47,67]. Th eoretical studies of clusters have therefore 
been limited to rather small cluster sizes, where the extrapola-
tion to the bulk limit is questionable. Nevertheless, a number 
of interesting computational studies on mercury clusters have 
appeared in the past decade.

Dolg and coworkers have studied small neutral and charged 
mercury clusters [49,68]. An ELF (electron localization function) 
analysis showed predominantly van der Waals type bonding for 
Hgn (n ≤ 4) [68]. Th ey also investigated the size dependence of 
ionization potentials, electron affi  nities, and binding energies 
with increasing cluster size up to Hg15 and found signifi cant 
covalent bonding character for these clusters. For medium-sized 
clusters, Dolg and coworkers suggested a hybrid model consist-
ing of a pairwise additive dispersion potential proportional to 
R−6 together with a two-valence electron relativistic pseudo-
potential. Th e latter is a so-called large-core pseudopotential 
which includes core-polarization eff ects describing dynamic 
correlation from the 5d core of Hg, and fi nally core–core repul-
sion eff ects between the Hg atoms [69]. Th is hybrid model is a 
good approximation for Hg2 as comparison with more accurate 
coupled-cluster calculations using a small-core pseudopoten-
tial, which does not include the 5d electrons as core electrons, 
for Hg show [69]. A simulated annealing procedure confi rmed 
the Lennard-Jones behavior of these structures with icosahe-
dral structures for Hg13 and Hg55 [69]. However, in a later paper 
they used a genetic algorithm procedure when searching for the 
global minima and found very unusual structures from Hg7 to 
Hg13, which deviate substantially from the compact Lennard-
Jones like shapes [70,71], which for small- to medium-sized 
closed atom-shell clusters are Mackay icosahedra [72]. As two-
body interactions favor compact structures due to maximizing 
the number of interacting pairs, this result would imply that 
the many-body expansion of the interaction potential does not 
converge smoothly. Th is was indeed found in a recent paper by 

TABLE 3.2 Spectroscopic Properties for the Hg2 +Σ1
g  and + +Σ2

2 gHg  Ground States from Experimental 
and Th eoretical Work

Molecule Method re D0 ωe ωexe I.P. Refs.

Hg2 Th eo. 3.687 0.048 19.8 0.23 8.85a/9.60b [47,49]
Exp. 3.69 ± 0.01 0.047 ± 0.002 19.6 ± 0.3 0.26 ± 0.05 9.0–9.5 [23,50–55]

Hg +
2 Th eo. 2.74 1.40 112 — — [49,56]

Exp. — 1.6 ± 0.2 — — 14.5a,c [57]

Notes: Th e equilibrium bond distance re is given in Å, the dissociation energy D0 in eV (zero-point vibrational 
energy correction included), the harmonic vibrational frequency ωe and the anharmonicity correction ωexe in 
cm−1, and the ionization potential I.P. in eV. 

a Adiabatic I.P.
b Vertical I.P.
c Own unpublished results at the MP2 level of theory. Th e local minimum of metastable Hg +2

2  was taken as a 
reference. Th e vertical I.P. is only slightly diff erent to the adiabatic value.
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Moyano et al. [35]. However, more recent accurate coupled-clus-
ter calculations show that, beside the importance of such many-
body eff ects, the mercury clusters do follow the usual growth 
pattern of compact cluster structures [73], which contradicts the 
original results [70,71].

Moyano et al. used two-body and eff ective three-body inter-
actions between the mercury atoms in a simulated annealing 
approach to obtain global minimum structures for larger mer-
cury clusters up to Hg40 [35]. Again these clusters show rather 
compact structures similar to the Lennard-Jones structures 
with magic cluster numbers of 6, 13, 19, 23, 26, and 29 atoms, 
in agreement with diatomic-in-molecules (DIM) calculations 
by Kitamura [74]. Th ese values also coincide with the mass dis-
tribution of mercury–cesium cluster ions observed by Ito et al. 
[75]. Th e calculations of Moyano et al. also reveal a fast conver-
gence of the polarizability toward the bulk limit in contrast to 
the singlet–triplet gap or the ionization potential. However, the 
cluster sizes were far too small to accurately predict the onset of 
metallicity.

It is now evident that it remains a challenge to accurately 
describe electronic properties for global minimum structures for 
larger mercury clusters, and, what is required at fi nite tempera-
tures, to perform molecular dynamic simulations to obtain prop-
erties, which can be compared to the experiment. Nevertheless, 
a number of theoretical studies appeared in the past dealing 
with neutral or charged mercury clusters in ground and excited 
electronic states [56,76–78]. Hg3 is the smallest cluster which can 
bind an extra electron (electron affi  nity of 0.13 eV at the coupled-
cluster, CCSD(T), level of theory) [77]. Gaston et al. studied the 
photoabsorption spectra of cationic mercury clusters [56]. Th e 
experimental photoabsorption spectra of singly charged cationic 
mercury clusters +Hgn  carried out by Haberland and coworkers 
show a sharp change in behavior at cluster size n = 6 [60,79]. It 
has been interpreted as the onset of a plasmon-like resonance in 
the 6s–6p transition. Both, relativistic density functional theory 
DFT and wavefunction-based methods revealed that the onset 
of a plasmon-like resonance corresponds to a structural change 
from linear to three-dimensional cluster isomers, i.e., a change 
from single electron–hole excitations in small linear clusters to 
plasmon-like collective transitions for the larger three-dimen-
sional clusters [56].

Medium- to large-sized mercury clusters have been studied 
extensively in the past by experimental methods [20–23,26–31, 
80–84], mainly to answer the question at what cluster size the 
transition from van der Waals to metallic bonding occurs [26]. 
An excellent review on cluster size eff ects and the extrapola-
tion to the bulk for metallic clusters is given by Johnston [21]. 
Here we mention the most recent work of Busani et al. [29]. Th ey 
measured photoelectron spectra of the mass-resolved negatively 
charged mercury clusters up to Hg250

−. Upon photoexcitation, 
the 6p electron can be detached leaving the resulting neutral 
cluster in its electronic ground state. Alternatively, electrons can 
be detached from the 6s band of the mercury cluster leaving the 
resulting neutral cluster in an “electron–hole pair” excited state. 
Th e diff erence between both results is a direct measure for the 

HOMO–LUMO (6s–6p) gap in the photoelectron spectrum of 
the negatively charged cluster, which approximately provides the 
excitation band gap for the corresponding neutral cluster. Large 
changes in the structure of mercury clusters due to the excess 
electron are not expected at larger cluster size as the charge will 
be smeared out. Extrapolation to higher cluster sizes indicates a 
band gap closure at the size range of n = 400 ± 30, a considerably 
larger value than previously reported (see Section 3.1) [29].

Bescós et al. studied time-resolved ultrafast multiphoton ioniza-
tion and fragmentation dynamics of mercury clusters Hgn (n ≤ 110) 
with femtosecond pulses [81]. At laser intensities of 1011 W cm−2, 
they observed singly, doubly, and triply charged mercury clusters. 
Ionization potentials and electron excitation energies for mercury 
clusters up to Hg109 were determined by photoelectron and UV/
vis-photoabsorption spectroscopy by Rademann et al. [22,23,84]. 
Th eir estimate for the onset of the metallic phase is at much smaller 
cluster size compared to Busani et al. [29]. Blanc et al. looked at the 
stability of triply charged mercury clusters, 3Hgn

+ [82]. Th ey found 
3

60Hg + to be stable with respect to fragmentation into 2Hgm
+ and 

Hg ( 60)n n m+ + = , but not Hg 3
50

+.

3.4  Liquid Mercury and the 
Mercury Surface

Along with the lowest melting point Tm = −38.83°C = 234.32 K 
[1] of all metals, assumed but not yet proven to be due to large 
relativistic eff ects lowering the 6s band substantially [2–5], 
mercury also shows the lowest critical temperature of all met-
als. Accepted experimental values for the liquid–gas critical 
point are a critical temperature Tc = 1751 K at a critical density 
ρc = 5.8 g cm−3 and a critical pressure pc = 1673 bar [85,86]. Since 
these values are experimentally accessible, mercury presents an 
ideal system to investigate liquid properties close to the critical 
region. Th erefore, over the last decades, extensive research on 
the experimental as well as on the theoretical side of the liquid–
vapor coexistence curve up to the critical region has been taken 
place. Most of the studies focus on the interesting region of the 
metal to nonmetal (M–NM) transition which occurs when fl uid 
mercury is expanded close to the critical values. At ambient 
conditions, the density of liquid Hg is 13.6 g cm−3; the M–NM 
transition takes place at densities around 9 g cm−3 (see, e.g., the 
review on experimental evidence in Ref. [87] and theoretical 
calculations in Refs. [32,88]). In recent years, development in 
experimental techniques, especially the use of x-ray scattering 
methods based on third-generation synchrotron sources, as well 
as on the theoretical side (particularly in computational simula-
tions) allowed for an improved understanding of the underlying 
mechanism of this M–NM transition (see, e.g., Refs. [89–97]) as 
well as for a better understanding of liquid metal surfaces where 
the existence of surface-induced atomic layering in liquid mer-
cury was established [98,99]. New developments include the use 
of liquid Hg as a novel substrate for the deposition of Langmuir 
monolayers of organic substances [100–103] and the investiga-
tion of geometrically confi ned liquid Hg in nanopores [104–108] 
or carbon nanotubes [109,110]. Of interest are also the study of 
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the liquid mercury–water interface [111–113] due to its impor-
tance in electrochemical cells and the adsorption of Hg on metal 
surfaces [114] in connection with the search for Hg oxidation 
catalysts.

Despite the fundamental, unsolved question, why mercury is 
liquid at ambient conditions, to our knowledge, there has only 
been one molecular dynamics study by Sumi et al. [115] trying 
to determine the melting temperature. Th ey found a melting 
point of 232 K in accidentally good agreement with experiment, 
regarding the facts that their study relied on an ab initio poten-
tial curve of Hg2 which considerably exceeds the bond length of 
the Hg dimer by 0.6 Å and that many-body eff ects were totally 
neglected. In later work, they used a scaled version of their 
potential in order to match the bond length better allowing them 
to reproduce experimental data at the M–NM transition region, 
but they did not calculate the melting point anew [116]. A prom-
ising ansatz to get information about the melting temperature 
is the cluster approach: Here, the melting temperature of nano-
clusters, with several complete shells of atoms around a central 
atom therefore showing an enhanced stability, are extracted out 
of MC simulations and are extrapolated to the bulk value. Th is 
has recently been shown to be successful for neon and argon [117] 
where bulk melting points could be determined with high accu-
racy in a pure ab initio treatment. Of course, for Hg, great care of 
the treatment of the interparticle potential has to be taken, since 
the many-body expansion is known to fail (see below).

All computer simulations like molecular dynamics or Monte 
Carlo methods for liquids need, of course, information about 
the electron distribution of the system. Th e electronic distri-
bution can either be modeled by a form of density functional 
theory (for liquid Hg, see, e.g., Refs. [32,118]) or by modeling or 
approximating directly the potential energy [119]. In most com-
putational simulations of liquid Hg, the latter ansatz is chosen 
and the interparticle potential Vint is divided into pairwise V(2) 
and higher terms:

 
int

( ) (2) (3)( ) ( )n
ij ij ik jk

n i j i j k

V V V r V r r r
< < <

= = + , , +∑ ∑ ∑ �

 
(3.1)

Th e sums run over all particles in the simulation cell or up to 
a chosen cutoff  distance and rij is the interparticle distance. 
Unfortunately, already the three-body terms are becoming 
quickly too expensive and, for Hg, the expansion is known to be 
not converging [35,73]. As a result, recent molecular dynamics 
simulations on liquid metallic mercury using a Lennard-Jones 
potential cannot reproduce the observed structure factor [120].

Th erefore, at the present stage, theoretical studies rely on the 
construction of eff ective two-body potentials [121–126] or, most 
recently, eff ective three-body potentials [96,97,127–129] based on 
the accurate ab initio Hg2 potential curve by Schwerdtfeger et al. 
[18] (see also a recent parameterization of Tang and Toennies 
[130]). Th e eff ective potentials include the many-body eff ects 
in an approximate way and are dependent on the temperature. 
Eff ective pair potentials have been constructed in a number of diff er-
ent ways and applied with good success to a variety of the structure 

and properties of liquid mercury in wide ranges of temperatures 
and pressures. Th ese works used the link between pair poten-
tials and the pair distribution function, which itself is related 
by Fourier transform to the experimentally determined static 
structure factor. Either one starts with guesses for the potential 
that is refi ned using experimental data [124,125] or a guessed 
initial confi guration is refi ned using the experimental structure 
data like in the reverse Monte Carlo method [121,122,126,131]. 
Th e eff ective two-body potentials are characterized by a steeply 
rising repulsive branch at short interatomic distances and a rela-
tively weak oscillating branch at larger distances. Eff ective three-
body potentials were constructed by introducing a semiempirical 
C9(T)/r9 term fi tted to experimental data [127,128] or through 
quantum-chemical calculations of cohesive energies for selected 
geometries of clusters and bulk crystals yielding eff ective many-
body potentials that depend on the coordination number and 
the nearest-neighbor distance [96,97].

In Figure 3.2, the gas–liquid coexistence curve close to the 
critical region is depicted, showing the onset of the M–NM 
transition in the liquid region at densities around 9 g cm−3 cor-
responding to a temperature of about 1670 K at the gas–liquid 
coexistence line. First indications for the M–NM transition 
were found by Franck and Hensel [132]. Diff erent mechanisms 
for the transition have been proposed, which can be roughly 
divided into a homogeneous expansion mechanism (dating back 
to the pseudogap model proposed by Mott [133–135]), where 
the nearest-neighbor distance is gradually increasing while the 
coordination number is constant, and a heterogeneous expan-
sion mechanism [88,136] making a decrease in the average coor-
dination of the Hg atoms in the liquid with an (almost) constant 
next-nearest-neighbor distance responsible for the transition. 
Aft er extensive experimental and theoretical investigations, 
the heterogeneous mechanism fi rst proposed by Mattheis and 
Warren [136] and in the Franz model [88] is now the accepted 
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one and was refi ned in the last years due to experimental (see 
work of Hensel [86,87,137] and references therein as well as 
newer experimental work in Refs. [91,92,138]) and theoretical 
[32,96,97,121–123,126,129] progress. Exact measurements of the 
static structure factor and calculations of its Fourier transform, 
the pair distribution function g(r) (which gives the relative prob-
ability of an atom having a neighbor at distance r) proved a clear 
decrease in the average coordination number while the fi rst peak 
of g(r) and thus the nearest-neighbor distance remains almost 
constant. In more detail: Below the M–NM transition, the local 
structure of liquid Hg is assumed to be similar to the crystal 
structure of α-Hg (going back to the early experimental work by 
Kaplow et al. [139]): Th ere are six hexagonally arranged atoms at 
3.5 Å (close to the van der Waals dimer distance) around a cen-
tral atom and six atoms at 3.0 Å (corresponding to the metallic 
distance in the solid) in an upper as well as lower plane three by 
three (see Figure 3.3). Around the M-NM transition, atoms at the 
shorter distances were shown to be selectively taken away caus-
ing the transition to the nonmetallic phase [91,96,97,126,129].

New experiments of the dynamic structure factor that allow 
the study of dynamical properties of expanded fluid Hg by 
using inelastic x-ray scattering have shed new light on the 
M–NM transition [93,94], and suggest that the transition is 
not a gradual one but a first-order transition at which a new 
style of fluctuations between metallic and nonmetallic domains 
appears [94]. Thermodynamically, and thus in all experiments 
measuring static properties, the discontinuous density jumps 
in the first-order transition are obscured by strong thermal 
agitation and structural disorder and feign a gradual transi-
tion. Earlier indications for a first-order transition was given 
in a theoretical investigation of the volume dependence of 
the free energy by Kitamura [95], who suggested an irregu-
lar mixing of high-density metallic domains and low-density 
nonmetallic domains in the M–NM transition range. Local 
transformation between the metallic and nonmetallic domains 
on a slow timescale is caused by thermal fluctuations, sup-
porting experimental evidence of a slow structural relaxation 
process [89] and an anomalous sound adsorption [90] at the 
M–NM transition.

High-resolution inelastic neutron scattering measurements 
of the dynamic structure factor were also performed at room 
temperature in order to investigate the microscopic dynamics of 
liquid mercury [140–142]. It was shown that the so-called cage 
diff usion plays a dominant role in the collective dynamics of liq-
uid mercury: While moving diff usively, particles fi nd themselves 
locked up in a cave formed by their nearest neighbors [142]. Th is 
behavior was confi rmed by recent molecular dynamics simula-
tion by González et al. [143].

Experimental progress also allowed to study the crystal struc-
ture and properties of liquid Hg under geometrical confi nement 
by embedding Hg into nanoporous matrices like porous glass, 
synthetic opals, or zeolites [104–108]. Even a 1D confi nement 
can be realized by fi lling carbon nanotubes with Hg, which is 
achieved as a result of electrowetting [109]. Large interest in these 
nanostructured composites stems from the fact that fundamental 
questions of condensed matter physics related to fi nite-size eff ects 
can be addressed as well as applications in nanoengineering and 
nano-fl uidics are to be expected. Experiments on Hg in porous 
glasses and other nanoporous materials have shown that the 
crystal structure of bulk Hg (α-Hg) is identical to that of confi ned 
Hg [104], whereas the melting/freezing temperatures are shift ed 
toward lower temperatures and the transitions are broadened in 
comparison to bulk Hg [105,106]. Th ese trends are enhanced 
with decreasing pore size [107]. Th ese eff ects caused by the fi nite 
size are in analogy to the observed behavior in clusters where one 
also fi nds decreasing melting temperatures and line broadening 
with decreasing cluster size (see, e.g., Ref. [117]). Also the Knight 
shift  and thus the electronic susceptibility was shown to decrease 
with decreasing pore size [108]. For the carbon nanotubes similar 
eff ects are predicted by a molecular dynamics simulations [110]. 
In this study, an ordering of the Hg atoms near the walls of the 
nanotubes and density oscillations, which extend several atomic 
diameters into the bulk, are suggested, even resulting in a close-
packed cylindrical shell structure for the smallest nanotubes.

Metallic liquids exhibit a complex surface structure in which 
the atoms are stratifi ed parallel to the liquid–vapor interface per-
sisting into the bulk for a few atomic diameters and leading to 
density oscillations along the surface normal. Th is phenomenon 
of surface layering has been predicted theoretically [144], but 
could not be proven unambiguously in experiments [145] until 
experimental improvement due to access to third-generation 
x-ray sources fi nally allowed to resolve these oscillations, fi rst in 
Hg [98,146] and Ga [147]. In Hg, the layering was found to have 
a spacing of 2.72 Å and a decay length of less than 5 Å. Surface 
layering seems to be a more universal property of liquid surfaces 
in general [148–152] but the reasons behind are not yet clearly 
identifi ed; possibilities include surface tension, geometrical con-
fi nement eff ects due to the necessarily rapid decay of the density 
at the liquid–vapor interface [152] and a low ratio of melting and 
critical temperature Tm/Tc [148–151].

Another interface of great interest due to its importance in 
electrochemical cells is the one between liquid Hg and water. 
Th is interface was studied by molecular dynamics simulations 
with pure water [111] as well as in the presence of alkali cations 

α

FIGURE 3.3 Rhombohedral lattice of Hg showing the 12 next-near-
est neighbors: 6 mercury atoms are arranged in a hexagon around the 
central atom with a distance of 3.5 Å while the other 6 atoms are located 
closer to the central atom with a distance of 3.0 Å above and below the 
plane three by three.
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(see Refs. [112,113] and references therein). In analogy with the 
just discussed surface layering at the liquid mercury–vapor inter-
face, one fi nds comparable far-ranging density oscillations in the 
mercury phase as well as a change in the water density profi le up 
to distances of about 10 Å. Th e mobility of the adsorbed water is 
equally restricted parallel and perpendicular to the interface. Th e 
bulk densities are, however, almost identical to the pure liquids 
[111]. When alkali cations are present, it was shown, that the ions 
are adsorbed within the fi rst layer of mercury losing part of their 
hydration shell and becoming less mobile. Otherwise, the struc-
ture of the hydration shell as well as of the mercury surface are not 
much changed in its main features [112,113].

Yet another example for the importance of liquid mercury 
interfaces is the use of liquid Hg as a novel substrate for the depo-
sition of Langmuir monolayers of organic molecules like alkylthi-
ols, fatty acids, and alkanes [100,103]. Langmuir monolayers are 
studied as models of 2D matter and as a route to nanoengineering 
and molecular electronics [153]. In contrast to the use of solid 
metals or of water as substrates, liquid mercury shows no steps 
or structural defects at the surface and the surface is atomically 
smooth due to the high surface tension and lack a long-range 
order of its own, but strong chemical bonds to the functional 
groups exist. Th us, new structures for the organic monolayers on 
liquid Hg have been found in synchrotron x-ray scattering experi-
ments, especially until then unknown layers of surface-parallel 
molecules [101–103]. When the coverage is increased, one fi nds 
phase transitions to ordered phases of molecules with surface-
normal orientation [101,103].

As already mentioned in the introduction, huge amounts of 
Hg are released into the atmosphere by combustion of fossil fuels. 
Th e removal of Hg in power plants is therefore an important issue. 
Since oxidized Hg can be removed quite effi  ciently, the search for 
oxidation catalysts is of great interest with the noble metals being 
regarded as hopeful candidates. Th us, a fundamental understand-
ing of the adsorption of Hg to these metal surfaces is important. 
It was shown in experimental studies [154,155] as well as in theo-
retical studies [114,156] that Hg atoms adsorb quite strongly to 
the metal surfaces. In a recent DFT study [114], Steckel calcu-
lated binding energies for adsorption of mercury at Ag, Au, Cu, 
Ni, Pt, and Pd surfaces (on the 001 and the 111 face) for diff erent 
amounts of coverage fi nding binding energies of up to about 1 eV 
per atom for Pt and Pd. Th e calculated values should provide a 
lower estimate to the actual values due to the used (GGA) den-
sity functionals, which is also confi rmed by comparison with 
available experimental data (see Refs. [154,155] and references 
therein). Th e adsorbed Hg atoms are found in the fourfold or 
threefold follow positions of the 001 or 111 faces, respectively. 
Th is is in contrast to recent fi ndings of Sarpe-Tudoran et al. [156] 
who found the bridge position as the most stable one.

3.5 Solid Mercury

Mercury freezes at Tm = −38.83°C adopting a rhombohedral 
 crystal structure with lattice constants of a = 3.005 Å and an angle 
of α = 70.53° [1]. Th e lattice has three equal crystallographic axes 

inclined to each other at the angle α (an angle of α = 60° corre-
sponds to a face-centered cubic [fcc] lattice). Th us, Hg deviates 
from the hexagonal close-packed (hcp) structure found for the 
lighter group IIB metals zinc and cadmium. Th e unusual struc-
ture is another anomality of Hg caused by relativistic eff ects. 
Th is was recently shown unambiguously by Gaston et al. [38]. 
Until recently, not only the lattice constants, but also the cohe-
sive energy Ecoh and the bulk modulus could be calculated with 
increasing accuracy of up to about 1.5% of the experimental data 
[36,38,73,157,158]. On exerting pressure, one fi nds a multitude 
of high-pressure phases for Hg. Besides the rhombohedral α-Hg, 
a tetragonal β-phase, an orthorhombic γ-phase, and fi nally a hcp 
lattice structure for δ-Hg have been discovered [159,160].

Already in the 1960s the general features of the density 
of states (DOS) and the band structure of Hg were known by 
experiment giving detailed information on the Fermi surface 
by measuring the de Haas–van Alphen eff ect [161] as well as by 
calculations [162,163]: At the Fermi energy EF, one fi nds a broad 
sp band (width about 10 eV), which mixes at its low-energy part 
with the narrow d band. Th is mixing is possible due to indirect 
relativistic eff ects. Th e strong relativistic contraction of the s 
bands [24,136,162,164] causes the interatomic Hg–Hg spacing 
in the solid [38], which in turn leads to an energy increase of 
the d bands. Just above EF, a structure-induced minimum in 
the DOS separates the sp band from empty states of predomi-
nantly p character. Th e band structure was also calculated by 
Deng et al., emphasizing the existence of fl at and steep bands at 
the Fermi level, what they used as a possible explanation for the 
superconductivity of Hg observed below 4 K [165]: Th e pairing of 
electrons occurs in the fl at bands, whose position relative to EF 
is periodically changed by lattice distortions (phonons). When 
the top of the band lies above EF, the electron pairs are scattered 
into the steeper bands, whereas when the band maximum lies 
beyond EF, the bands are fi lled up out of the electron reservoir 
of the steep bands. At the critical temperature, the pairs become 
stable and a superconducting state results [165].

Th e rhombohedral lattice structure of α-Hg in contrast to the 
hcp structures found for zinc and cadmium was studied intensely 
over the last decades. It was shown early on that the fcc struc-
ture is unstable with respect to a rhombohedral distortion and 
metastable with respect to a tetragonal distortion of the body-
centered cubic (bcc) lattice [163], which was confi rmed in later 
studies by Singh within a DFT framework including the ener-
getically relatively high-lying d-electrons explicitly as valence 
electrons [24,164] and by Kresse and Hafner, who calculated the 
total energy of Hg as function of a rhombohedral or tetragonal 
distortion of an fcc or bcc lattice, respectively [32].

Nevertheless, theoretical predictions of the Hg structure 
that give accurate values for the lattice parameters or the cohe-
sion energy remain a challenge. Whereas a pure mean-fi eld 
(Hartree–Fock) treatment yields no binding at all [35,36], den-
sity functional approaches fail badly when attempting to opti-
mize the lattice structure of Hg or getting sensible values for the 
cohesive energy. Depending on the underlying functionals, one 
gets anything from strong overbinding to severe underbinding 
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[35,38,73]. An alternative approach was developed in the last 
years in the form of a wavefunction-based correlation treat-
ment [36,38,157,158] using the incremental scheme dating back 
to Stoll [166]. In this approach, the cohesive energy is split into 
the mean-fi eld (Hartree–Fock) part, calculated for the infi nite 
solid system, and the correlation energy Ecorr computed with the 
following many-body expansion using the wavefunction-based 
coupled-cluster approach:

 
corr i ij ijk

i i j i j k

E
< < <

= ε + ε + ε +∑ ∑ ∑ �

 
(3.2)

Ecorr is expanded in one-body increments εi, two-body incre-
ments εij, and so on and the sums extend over groups of localized 
orbitals. Th e energy increments are calculated for fi nite embed-
ded clusters, which mimic the environment found in the solid. 
Details of this embedding are crucial and have been discussed 
in detail in Ref. [158]. While Hartree–Fock and the one-body 
increments of the correlation energy lead to no binding at all, the 
main contributions to the binding were shown to come from the 
two-body increments, half of that originating from core–valence 
correlation of the d-shell. Th ree-body increments are required 
and account for about 10% of the correlation energy [36,38]. 
Very high accuracy could be achieved by that treatment yielding 
lattice constants of a = 2.96 Å and α = 69.5°, a cohesive energy 
of Ecoh = −0.649 eV, and a bulk modulus B = 0.360 Mbar [38], 
compared to the experimental values a = 3.005 Å, α = 70.53°, 
Ecoh = −0.67 eV [1], and B = 0.382 Mbar [164].

Solid mercury exists in at least four diff erent phases if subjected 
to pressure. At ambient pressure, Hg is liquid at room tempera-
ture, showing a local structure of α-Hg [139] with six hexagonally 
arranged atoms at 3.5 Å around a central atom and six atoms at 
3.0 Å in an upper as well as lower plane three by three (See Figure 
3.3). At Tm = 234 K, Hg solidifi es in this rhombohedral α-Hg struc-
ture and may exhibit a tetragonal phase at lower temperatures 
(below T = 77 K), but only if this phase is formed at high pressures. 
Th is transition to the β-phase was already discovered very early by 
Bridgman [167] and a high potential barrier for the transforma-
tion from α to β-Hg was made responsible for the fact that α-Hg 
remains metastable at temperatures below 77 K [168]. Interestingly, 
also the β-phase becomes a superconductor at slightly lower tem-
peratures, at Tc = 3.94 K compared to 4.15 K for α-Hg [169]. At 
room temperature, mercury becomes solid at a pressure of p = 12 
kbar crystallizing in the α-form. Further increase of the pressure 
leads to the body-centered tetragonal β-phase at p = 37 kbar, the 
orthorhombic γ-phase at p = 120 kbar [170], and fi nally, at 370 
kbar, Hg transforms into a hcp structure named δ-Hg [159,160]. 
In contrast to this observed polymorphism, Zn and Cd stay in the 
hcp structure over the whole pressure range [159].

3.6 Conclusions

Th e electronic confi guration of Hg is [Xe] 4f145d106s2 with closed 
5d and 6s shells. Due to large relativistic 6s contraction, the energy 
of the 6s orbitals/bands is lowered signifi cantly leading to large 

changes in almost all properties observed, from the Hg atom over 
the clusters to the liquid or solid bulk phase. Th is sets Hg apart 
from its lighter homologues zinc and cadmium, with mercury 
behaving sometimes more like a rare gas. Th is causes anomalies in 
almost all atomic properties, like the small electric dipole polariz-
ability or the high ionization potential, in the weak van der Waals 
binding of the Hg dimer, over to the complicated binding behav-
ior in the clusters, to fi nally the rhombohedral crystal structure 
of the solid and low melting and gas–liquid critical temperatures. 
Th e unusual high superconducting transition temperature, which 
led Kamerlingh Onnes to the discovery of this phenomenon, is, 
most likely, also a manifestation of relativistic eff ects. Th e theo-
retical description of the interaction between Hg atoms is compli-
cated by the necessity of a proper relativistic treatment, and by the 
need to explicitly consider the 5d electrons as valence electrons, 
as the corresponding orbitals/bands are energetically elevated 
by indirect relativistic eff ects mixing into the 6s orbitals/bands. 
Furthermore, the many-body decomposition of the interaction 
potential between Hg atoms is not converging smoothly, i.e., a 
simple treatment in terms of two-body and perhaps three-body 
potential terms is not adequate in contrast to the rare gas elements. 
Nevertheless, progress was made in the last years, giving detailed 
explanations for the M–NM transition in liquid Hg, and allow-
ing the calculation of lattice parameters and the cohesion energy 
of solid Hg with high accuracy. Still, a number of fundamental 
problems remain unsolved, the most prominent are certainly the 
questions, why Hg is liquid at room temperature, or what causes 
the high superconducting transition temperature of 4 K.

Beside these fundamental questions, experimental as well 
as theoretical progress has opened up new exciting fi elds of 
research with possible application in diff erent areas of nanosci-
ence. Examples are the use of liquid mercury as a novel substrate 
for Langmuir monolayers of organic molecules and the investi-
gations of liquid/solid Hg embedded in porous nano-matrices or 
carbon nanotubes. Th ese fi elds are still at their initial stages and 
need a detailed understanding of the fundamental properties of 
Hg from the dimer over the clusters to the bulk.
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4.1 Introduction

In scientifi c literature, various terms are used to denote small 
metal particles. Th ere are no universally accepted defi nitions, 
but the various terms usually imply particles with diff erent num-
bers of atoms N: clusters (N ≤ 100), nanoclusters or nanoparticles 
(diameter in the 1–100 nm range, log10 N ≈ 2–7), small particles 
(log10 N ≈ 7–11). Th is chapter concerns primarily clusters (N ≤ 100), 
that is, particles at the lower size limit of nanophysics. A further 
classifi cation can be made according to the nature of the surface 
of clusters: free, supported, or passivated clusters. A free bimetal-
lic cluster AmBn contains nothing else than atoms of the two met-
als. Th ese clusters are inherently unstable because of their high 
surface energy, which makes them coalesce into larger particles 
or react with other species. Supported clusters are strongly bound 
to a solid normally chosen to be a high surface area material like 
alumina (Al2O3). In this kind of cluster, some of the metal atoms 
are bound to the support, usually through strong covalent bonds 
to oxygen atoms, and the other metal atoms are at the surface. 
Th ese clusters are marginally stable: Th e surface metal atoms 
have a strong tendency to oxidize but can be kept in the metallic 
(zero oxidation) state by maintaining a high H2 pressure or high 
temperature in a fl ow reactor. Supported metal clusters, whether 
elemental or bimetallic, are mainly used as heterogeneous cata-
lysts in large-scale industrial reactors, for cracking and ammonia 
synthesis for instance. Passivated clusters have a central metal-
lic core, which is oft en icosahedral or crystalline and roughly 
spherical in shape and entirely covered by ligands. A common 
small ligand for passivating metal clusters is carbon monox-
ide; 4

24 14 44Ni Pt (CO) −  is one of many examples of CO-passivated 

bimetallic clusters [1]. Bigger ligands are more oft en used. Th iols, 
CH3–(CH2)n–SH, make good passivating ligands for elemental or 
bimetallic clusters that have a group 11 metal (Cu, Ag, Au) at the 
surface because of their high binding affi  nity to these metals. Th e 
“metal end” of the ligand (the S atom for a thiol) strongly binds 
to surface metal atoms. Th e “solvent end” is normally designed to 
assure solubility, e.g., a simple hydrocarbon chain for solubility 
in nonpolar solvents. But all sorts of designs are possible at the 
solvent end of a ligand: It can be tailored for purposes like self-
assembly, covalent binding to surfaces, molecular recognition of 
DNA or other biomolecules, or for certain chemical reactions by 
inclusion of functional groups. As a group, passivated clusters are 
stable and highly versatile—they make logical building blocks for 
cluster-assembled materials [2].

Practical applications of clusters depend on their stability, 
and this increases on going from free to supported and passivated 
clusters. On the other hand, the number of low-lying excited 
electronic states, which are responsible for the properties unique 
to metals (conductivity, magnetism, versatile chemistry and 
catalytic activity, etc.) decreases in the order free, supported, pas-
sivated. Th erefore, applications that depend specifi cally on metal-
lic properties of small clusters (e.g., bimetallic catalysts) present 
special challenges. In molecular orbital (MO) theory, metallic 
properties are associated with a zero (or very small) highest 
occupied MO–lowest unoccupied MO (HOMO–LUMO) gap in 
orbital energies. In suffi  ciently large passivated metal clusters, 
interior atoms do not “see” the passivating ligands, they have 
bulk-like electronic states with a nearly zero HOMO–LUMO 
gap, and have metallic properties. But the atoms at the metal–
ligand interface have a local density of electronic states that 
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resembles a semiconductor. In small passivated metal clusters, 
the HOMO–LUMO gap is large not only for surface atoms, but 
also interior atoms [3,4]. In that sense, small passivated metal 
clusters are not metallic.

Th is chapter gives a brief description of the three kinds of 
bimetallic clusters and the way they are made (Section 4.2), 
and their current and potential applications (Section 4.3). Here, 
the emphasis is on free clusters (Section 4.4, and for bimetal-
lics, Sections 4.5 through 4.8) because this is where the metallic 
character is most pronounced, and because the other types of 
clusters can be made into cluster-assembled materials, which are 
discussed in other chapters.

4.2  Types of Bimetallic Clusters 
and How They Are Made

Free clusters contain no atom other than the two metals. Th ey 
can be made in the gas phase by laser ablation of the metals (an 
alloy rod, or two rods, or a powder mixture), or by evaporating 
the two metals with an intense electrical discharge or otherwise. 
Th e vaporized atoms condense into growing clusters as they are 
carried away from the source by an inert gas. Supersonic expan-
sion rapidly cools the clusters and produces a narrow distribution 
of cluster velocities. Th is eff ectively stops the growth and gives a 
cluster beam [5]. Free metal clusters are inherently unstable vis-
à-vis coalescence and various chemical reactions: Th ey survive 
only in the low-pressure environments of molecular beams, or get 
deposited on surfaces [5–7], or in a matrix [8,9], or in a cryogenic 
matrix by co-condensation with an inert gas (e.g., Ar) [10]. In ultra-
high-vacuum (UHV) experiments, clusters are oft en formed with 
kinetic energies on the order of a few eV/cluster. But mass selec-
tion imparts much larger kinetic energies as the cluster ions get 
accelerated in an electrical fi eld. In order to avoid fragmentation 
upon cluster deposition on a substrate, two complementary tech-
niques can be used. First, one can apply a retardation potential in 
the region between mass selection and substrate and bring kinetic 
energies down to roughly 1 eV/atom. Second, one can condense 
multiple layers of a rare gas on the substrate prior to deposition. 
Th en, upon deposition, the clusters’ kinetic energy is gradually 
dissipated by heat transfer to desorbing rare gas atoms and to the 
substrate. Th is so-called soft -landing method can yield cluster 
fragmentation rates lower than 15%–20% [11].
Supported clusters are formed or deposited on a surface. 
One method is to take metal complexes with small and rela-
tively weakly bound ligands, bind them to silica, and heat 
for a few hours at ∼200°C in vacuum. One can get very small 
(∼10–20 atoms) bare metal clusters bound to the silica [12]. 
Electrochemical synthesis has also been used [13]. Th e PdPt 
clusters of Ref. [13] are both supported and passivated, so these 
two categories are not mutually exclusive. Supported bimetal-
lic catalysts oft en combine an oxophilic transition metal and a 
noble metal in a particle that is bound to a high surface area 
material such as alumina, silica, zeolite, or a carbon powder, in 

order to achieve high dispersion (see Section 4.4.1) and maxi-
mize activity. Th e oxophilic metal binds strongly to the oxygen 
atoms of the support, which helps achieve both high dispersion 
and stability. If A is oxophilic and the free AmBn cluster is mixed 
(alloyed), interaction with the support will promote segrega-
tion of A toward the oxygen atoms of the support. Th e support 
itself oft en plays a nontrivial role for the chemistry. Th e exposed 
surface of the cluster is normally kept in the metallic state by 
maintaining a H2 atmosphere and high temperature, which help 
reduce any metal oxide that may form. Keeping a cluster catalyst 
active (keeping the metallic surface intact) is always a concern. 
Th e turnover number is defi ned as the mean number of reaction 
events catalyzed per unit surface area of catalyst before it gets 
chemically modifi ed and becomes inactive. Ideally, a catalyst 
would have an infi nite turnover number, but in reality, catalysts 
become deactivated aft er some time. Some catalysts are simply 
discarded and replaced aft er they are deactivated. Others can 
be regenerated by chemical means: sometimes deactivation is so 
rapid that a reactor must alternate between two modes of opera-
tion—running the catalytic reaction and regenerating [14]. Th e 
methods of preparations of supported bimetallic clusters and 
their applications in catalysis have been described by Alexeev 
and Gates [15].
Passivated bimetallic clusters are normally made in solution, 
oft en at high temperature, by reduction or decomposition of 
organometallic precursors in the presence of surfactants. Th e 
size and composition of bimetallic clusters made this way can be 
controlled by adjusting the concentrations and molar ratios of 
the organometallic precursors. For example, passivated FePt col-
loids with tunable size in the 3–10 nm range, and with Fe molar 
fractions of 0.48, 0.52, and 0.72, have been made by simultane-
ous reduction of Pt(acac)2 (acac = acetylacetonate) by a diol and 
 thermal decomposition of Fe(CO)5 in the presence of oleic acid 
and oleyl amine [16]. Co-reduction of a mixture of metal salts 
generally gives core-shell clusters Am@Bn where A, the metal 
with highest redox potential, makes a central core surrounded by 
a shell of B atoms. But some choices of surfactants can produce 
the reverse core-shell (Bn@Am) structure [17]. Bimetallic clusters 
have been made by irradiating aqueous solutions of metal ions 
with γ rays (radiolysis). Th e γ rays ionize water molecules pro-
ducing solvated electrons, which go on to reduce metal ions to 
neutral metal atoms. Atoms then coalesce and get capped by a 
polymer like polyvinyl alcohol. Doudna et al. used this method 
to make AgPt nanoparticles [18]. Th ey got very high aspect ratio 
wirelike structures with lengths up to 3500 nm and diameters 
between 3 and 20 nm, but were also able to get spherical clusters 
with some choices of counterions, mole ratio of the two metals, 
and capping polymer. Intense ultrasounds also produce solvated 
electrons that can reduce metal ions in aqueous solutions. Th is 
is the basis for sonochemical synthesis, which has been used, for 
instance, in the preparation of core-shell Au@Pd clusters with an 
average diameter of 8 nm. Radiolysis and sonochemical synthe-
sis generally produce clusters with diff erent size and morphol-
ogy [19]. In smaller clusters, the passivating layer, which imparts 
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stability, opens up a gap in the density of electronic states [3,4] 
and this aff ects metallic properties. Th e control aff orded by the 
choice of ligands and possible subsequent chemistry with these 
ligands is a big advantage for this type of clusters. Passivated 
clusters can sometimes be assembled into 3-dimensional materi-
als (crystals of nanocrystals) [2,20]. Th is can be done, for exam-
ple, by the “tri-layer technique of controlled oversaturation” [21]. 
In this technique, three immiscible liquids are put on top of each 
other, in decreasing order of nanoclusters solubility: high solu-
bility (a solution of nanoclusters) at the bottom, slight solubil-
ity (buff er layer), and no solubility (nonsolvent) on top. As the 
nonsolvent and nanoclusters slowly diff use into the buff er layer, 
single crystals of nanoclusters nucleate and grow.

4.3 Applications

Bimetallic clusters have current or potential applications in 
catalysis, biodiagnostics, electronics, and ultra-high-density 
magnetic recording media [22]. Th e properties of bulk alloys 
can be tuned by changing the composition. In bimetallic clus-
ters, more variables can be controlled. As mentioned earlier, it is 
sometimes possible to control the size, shape, or morphology of 
the clusters, in addition to their overall composition. Sometimes, 
one can control the surface composition by making a reverse 
core-shell cluster Bn@Am and doing a partial transformation to 
the thermodynamically favored form (Am@Bn, or mixed alloy) by 
a short, controlled annealing. For example, Com@Ptn core-shell 
clusters (m/(m + n) = 0.45, size 6.4 nm) have been synthesized 
by redox metallation [23]. Upon annealing for 12 h at 600°–700°, 
the diff usion of Co and Pt atoms led to a mixed alloy with very 
diff erent magnetic properties from the initial ConPtm clusters. 
Heating by laser irradiation off ers better controlled annealing 
[24]. Pairs of elements that are not miscible in the bulk oft en mix 
and form alloy-like structures in very small clusters like RuCu.

Small bimetallic clusters are qualitatively diff erent from mix-
tures of the clusters of the two pure metals. Th is opens up pos-
sibilities, especially for catalysis. A catalytic reaction normally 
involves a sequence of events at the molecular scale, or, steps. 
Diff erent metal catalysts have diff erent eff ects on the rate of the 
individual steps. So, one can in principle speed up two or more 
rate-limiting steps and achieve superior catalytic activity by 
using a catalyst having two (or more) metals in close proxim-
ity of each other [25]. Combining two metals can have a more 
profound eff ect: the electronic structure of each metal is altered 
by the presence of the other. For instance, Pt, a good catalyst 
in itself, can be modifi ed and have its catalytic activity toward 
some reaction optimized by adding the right amount of a cho-
sen metal partner [26]. In the case of highly structured bime-
tallic particles (e.g., alloyed or core-shell), completely diff erent 
electronic or geometric structures could emerge. Supported 
bimetallic cluster catalysts have been studied by Sinfelt and 
coworkers since the 1960s. It has been observed that the activity 
of a catalytically active metal can be drastically reduced by the 
presence of a group 11 metal for some reactions, but not others, 

which then makes these bimetallic catalysts highly selective 
[27]. Th e MPt (M = Re, Sn, Ir) catalysts are very important and 
have replaced pure Pt catalysts for large-scale naphtha reform-
ing [27]. Bimetallics like RhPt are used for conversion of auto-
mobile exhaust [15]. Very small (∼10–20 atoms) supported RuX 
bimetallic clusters (X = Cu, Pd, Ag, Sn, Pt) exhibit high activity 
and high selectivity for hydrogenation reactions [12]. Supported 
bimetallic clusters are comparatively costly, but the possibility of 
varying composition, size, and support makes them interesting 
for applications where high selectivity is needed, for example, in 
the pharmaceutical industry or for fi ne chemicals. Several PtX 
clusters (X = Cr, Mn, Fe, Co, Ni, Mo, Ru, Sn) in the 1–10 nm size 
range supported on high surface area carbon powders have been 
used as catalysts in fuel cells [28].

Some bimetallic clusters have potential applications associ-
ated with their unusual magnetic properties. Vapor-deposited 
granular fi lms of ferromagnetic–noble metal combinations, 
like FenAgm, display giant magnetoresistance eff ects, i.e., large 
changes in resistance upon application of a magnetic fi eld [29]. 
It has been seen, in a variety of systems, that the orbital mag-
netic moment and magnetic anisotropy energy (MAE) increase 
for atoms with a low coordination [30], and such atoms make 
up a signifi cant fraction of nanostructures. On the other hand, 
the addition of Pt to Co nanoparticles was shown to increase the 
volume contribution to the MAE [30]. Th ree-dimensional lat-
tices of FePt clusters (3–10 nm) also display large MAE and other 
interesting properties [16]. It has been estimated that magnetic 
nanoclusters as small as 4 nm could maintain their magnetic 
moment orientation at room temperature, so they could form 
the basis for ultra-high-density recording with densities on the 
order of terabits per square inch [31]. For this reason, there are 
ongoing eff orts to improve synthetic control over the size and 
structure of CoPt and FePt nanoparticles [32].

Passivated bimetallic clusters can be used as probes in biomed-
ical applications. Th e ligands on the outer shell of the clusters can 
be tailored to optimize their binding affi  nities to specifi c biomo-
lecular targets. In one example, it was shown that oligonucle-
otide-modifi ed 13 nm gold clusters interact with a specifi c DNA 
sequence and aggregate under its infl uence. Upon aggregation of 
the clusters, the color of the solution changed from red to blue, 
giving a simple colorimetric detection test for this specifi c DNA 
[33]. But the small number and small size of the Au nanocluster 
colorimetric probes gives this method a low sensitivity. Th e sensi-
tivity can be increased by several orders of magnitude by catalytic 
reduction of Ag onto the Au nanoclusters that are attached to the 
target DNA because the Au@Ag clusters are much easier to detect 
[34]. In principle, one can detect and analyze several diff erent 
DNA strands simultaneously by a variation of this method: use 
bimetallic clusters of various size, shape, and composition, each 
having its own optical properties (its own “signature”), and each 
being attached to one specifi c type of oligonucleotide. Th e ability 
to make in a controlled way many diff erent clusters, each with its 
own intense and unique signal (optical, mass spectrometric, …), 
is the key in these kinds of applications.
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4.4 Free Metal Clusters

4.4.1 Dispersion, Surface Energy

We now turn our attention to free clusters. We will fi rst look at 
ideas that apply to elemental as well as bimetallic clusters. Th e 
dispersion D of a particle is the fraction of its atoms that are at 
the surface. In metal clusters, as in metallic solids, atoms have 
a tendency to arrange in a compact way. If a metal particle is 
quasi-spherical with diameter d = 2R, the interatomic nearest-
neighbor distance is RNN = 2r, and the packing is compact and 
similar to fcc, then the number of atoms N and dispersion D can 
be estimated as follows:

 ≈ / ; ≈ − /3 3
2 1( ) 1 ( )N f R r D R R  (4.1)

 /= / − / = −1 3
1 2 1where [( ) 2 2] and 2R N f r R R r  (4.2)

and f ≈ 0.7 is an eff ective packing fraction. Th ese formulas 
assume a spacing between concentric layers of atoms close to 
that in close-packed crystals ( 2r≈ ). Taking a nearest-neighbor 
distance of 2r = 2.7 Å (a typical value for metals) gives diam-
eters of roughly 0–1.4 nm for clusters (N ≤ 100), 1.4–70 nm for 
nanoparticles, and 70–1400 nm for small particles (N ≥ 107). 
A rough calculation of surface energy shows a strong ther-
modynamic force to destroy free clusters via coalescence, 
oxidation, or passivation with ligands. Empirically, the sur-
face energy per metal atom is roughly 0.16 times the cohesive 
energy [14]. We will assume a surface dominated by a square 
lattice (e.g., fcc(100) facets) and typical transition metal values 
for the nearest-neighbor distance (RNN ≈ 2.7 Å) and cohesive 
energy (Ec ≈ 4.5 eV). Th en, the surface contribution to the total 
energy of a quasi-spherical N-atom metal particle is roughly 
(0.16EcDN). Using Equations 4.1 and 4.2, one can calculate 
particle diameters d = 2R1 in nm, the dispersion D, and the 
surface energy on a per atom basis in eV/atom, (0.16EcD). Th is 
is shown below

log10 N 1 2 3 4 5 6 7 8 9

d (nm) 0.7 1.4 3.0 6.5  14  30  65   140   300
D 0.99 0.68 0.35 0.17 0.08 0.037 0.017 0.008 0.004
(0.16EcD) 0.72 0.49 0.25 0.12 0.058 0.027 0.013 0.006 0.003

Typical surface energies are 1–3 J/m2 for metals but only 0.02–
0.08 J/m2 for organic liquids, with 0.03 J/m2 being a typical value 
for long alkanes [35]. Th is is because organic molecules inter-
act through van der Waals interactions and these are much 
weaker than metal–metal bonds. It is clear that passivating 
a cluster brings about a large drop in surface energy in abso-
lute terms (in eV). But the relative energy change (in eV/atom) 
is rather small (compared to kBT) for log10 N > 7. Th e energy 
decrease associated with coalescence of two N-atom clusters 
into one 2N-atom cluster is also very large in absolute term, but 
it gets smaller, on a per atom basis, as N increases. Th is energy 

is roughly (2 – 22/3) = 0.41 times the surface energy (0.16EcD) 
in the above table. Other contributions to cluster energies scale 
in diff erent ways. In particular, the energy associated with spin 
pairing, electronic shell closings, and details in geometry (e.g., 
small displacement of one or few atoms) are on the order of 1 eV 
and do not scale up with N. Th ere are no clear demarcations, 
but roughly speaking, the energy terms that do not scale up 
with N (those caused by the molecular aspects of geometric and 
electronic structure) become negligible compared to the surface 
energy at around N ≈ 100, and the surface energy itself becomes 
small (relative to kBT) at around N ≈ 107. Th ese general consid-
erations explain why at small N every atom counts, why small 
metal clusters can survive only under special conditions or sta-
bilized by a support or ligands, and why only larger particles 
can be in the form of a pure metal (and without special care 
even these usually develop an oxide skin).

4.4.2 Size Evolution of Properties

Th e atomization energy (AE) of a cluster Xn is the energy of 
the reaction Xn → nX, with the cluster Xn and atoms X in their 
ground states. Consider the AE in a family of metal clusters. 
Th e size dependence of AEs can be fi tted rather well by the 
formula

 / /≈ = + +2 3 1 3
fit i s eAE( ) ( )AEN N E N E N E N  (4.3)

In this formula, the coeffi  cients Ei, Es, and Ee represent energy 
contributions from interior (or “bulk”) atoms, surface atoms, 
and edge atoms respectively. It is diffi  cult to determine Ee accu-
rately by fi tting the AEs of very small clusters ( 30N � ), but the 
(EeN1/3) term is surely a lot smaller than the other two. Setting 
Ee = 0, one fi nds that the ratio of the coeffi  cients Ei/Es varies 
between −0.8 and −1.1 among 11 series of elemental metal clus-
ters (Li, Be, Mg, Al, V, Fe, Co, Ni, Nb, Ag, Au) with data that 
includes a mix of experimental [36] and theoretical results from 
various sources. So, in a typical case, Ei/Es ≈ −1 and the cohesive 
energy of a small N-atom metal cluster is roughly Ec(N) ≈ (1 − 
N−1/3)Ec,bulk. Th e diff erence between the actual and fi tted AEs, or 
residual Eres, is of interest because it shows the eff ect on energy of 
many nontrivial things such as the precise geometrical structure 
of clusters, electron spin pairing, and the symmetry and fi lling 
of orbitals (electronic shell closings). For the 11 elemental clus-
ters above, the range over which Eres varies is roughly 0.5 eV (i.e., 
±0.25 eV) for Li clusters, 1 eV for Al, Ag, and Au, and 1.5 eV for 
transition metals and group 2 metals. Figure 4.1 shows Ec and 
Eres (calculated relative to a fi t using Equation 4.3 with Ee = 0) as a 
function of N for two very diff erent metals, Ni and Mg. Th e data 
used for Ni is from collision-induced dissociation experiments 
[37], and data for Mg comes from density functional theory 
(B3PW91 method) calculations [38].

It is apparent from these and other examples that the shape of 
the Eres(N) curve depends a lot on the position of the element in 
the periodic table. For example, the Eres(N) curve of Co resem-
bles Ni; Ag and Au are similar and have much bigger even–odd 
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oscillations than other elements; alkali metals have local minima 
in Eres(N) at N = 8, 20, instead of N = 4, 10, 20 for Mg and Be; etc. 
But in any case, the magnitude of Eres is rarely larger than 1 eV. 
So, as a fraction of the total, Eres is appreciable only for clusters 
with N ≤ 100.

Variations on the order of 1 eV are common for ionization 
energies (IE) and lowest excitation energies (Eg) among isomers, 
and among clusters that diff er only by one or two atoms. Th ose 
kinds of energy diff erences can have dramatic consequences for 
a number of other properties, most notably for chemical reactiv-
ity [39]. For this reason, it is oft en said that in small clusters every 
atom counts. Properties other than the AE can also be fi tted 
with a formula like Equation 4.3, and one observes that diff er-
ent properties converge toward the bulk value in diff erent ways. 
Calculations on clusters with up to 225 atoms confi rmed the 
N−1/3 scaling of cohesive energies but also showed a very diff erent 
scaling for the mean nearest-neighbor interatomic distance, RNN, 
as a function of N: RNN varies linearly with the mean coordination 
number [40]. Assuming a coordination of roughly 6 or 7 for sur-
face atoms and 12 for interior atoms, and using the formula given 
earlier for dispersion D, one can estimate the mean coordination 
number c as a function of N. For N < 1000, c increases by roughly 
0.55 every time N doubles, so it is roughly 6.5 for N = 10, 7.4 for 
N = 40, 8.7 for N = 160, and 9.8 for N = 640. For any property P, 
there is a certain value of N beyond which P changes monotoni-
cally with N. Th is is called the scalable regime for that cluster and 
property. It has been shown that the key features of the density 
of electronic states reaches the scalable regime near N = 80 [40]; 
adsorption energies on Pd clusters also get in the scalable regime 
at around N = 80 [41]. All of the above also holds for bimetallic 
clusters AmBn, but in addition, qualitative changes in geomet-
ric structure can occur at relatively large values of (m + n). For 
example, holding (m/n) constant, there could be a transition from 
alloy structures to core-shell Am@Bn segregated structures at some 
critical value of N = (m + n). In such a case, one would normally 
require two separate curves and fi t parameters to describe the size 
variations for each structure type.

4.4.3 Magic Clusters

In elemental clusters, some cluster sizes show special stability 
as evidenced by a higher abundance in mass spectra [42] or by 
cohesive energies that lie above polynomial fi ts, as shown in the 
previous section. Th ese have been called “magic clusters.” Much 
eff ort has gone into identifying and explaining magic numbers 
in elemental clusters. Two simple models that have been used a 
lot are electronic shells [42,43] and atomic shells [44,45]. Th ese 
models have limited reliability and scope but remain useful con-
ceptually because no simpler model can explain so much about 
metal clusters.

Th e electronic shells model is based on the idea that some metal 
clusters are liquid-like, their geometric confi guration is not 
essential, and the number of valence electrons Ne is the critical 
variable. Electronic shells are usually predicted using the ellip-
soidal jellium model (EJM) [43,46]. In the EJM, clusters consist 
of a hypothetical uniform positive charge background bounded 
by an ellipsoid (instead of point charge nuclei) and Ne electrons. 
Calculations show that electrons fi ll cluster orbitals of ns, np, nd, 
nf, … type where n ≥ 1 irrespective of angular momentum. Th e 
usual order of fi lling these orbitals is 1s 1p 1d 2s 1f 2p 1g 2d 1h 3s 
…It is reproduced, except for inversions of (3s, 1h) and (4s, 1i), 
by drawing oblique lines from upper right to lower left  across the 
orbital types arranged in this manner:

1s 1p 1d 1f 1g 1h 1i
2s 2p 2d 2f 2g …

3s 3p 3d 3f …
4s 4p 4d …

… …

Th is produces electronic shell closings at Ne = 2,8,(18),20,(34),
40,58,(68),(90),92, where minor shell closings are indicated by 
parentheses. Electronic shells and the EJM have been success-
ful in accounting for unusually high atomization and ionization 
energies in clusters of group 1, group 2, and group 11, and a few 
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FIGURE 4.1 Cohesive energies (eV/atom) and diff erence between AE data and its fi t (eV) for Ni and Mg clusters as a function of number of atoms N.
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other elements, and also in accounting, in an average sense, for 
the energetically preferred shapes of these clusters [47]. In bime-
tallic clusters, the electronic shell closings generally follow the 
same pattern if the two elements have similar valence electron 
densities, for example, the combinations (K, Na), (Na, Ba), 
or (Na, Li) [48]. But when A and B have very diff erent electron 
densities, such as K and Mg, the basic assumption of the jellium 
model (uniform potential and density) breaks down and other 
electron counts must be used. If A and B separately satisfy the 
EJM assumptions of a free metal, one still has EJM orbitals but 
the order of their fi lling is diff erent: 1s 1p 2s 1d …giving the 
sequence of magic numbers (8), 10, 20, …Also, in AN−1B clus-
ters where A is well described in the jellium model (e.g., a group 
1 or 11 metal) and B is a transition metal, the electron count 
corresponding to shell closing is not trivial. If B is rather well 
described by the jellium model (e.g., Pt) it can be seen as bring-
ing a single s electron to the system and normal rules apply. But 
most transition metals can also be described as a +Z ion with Z 
valence electrons (e.g., Z = 4 for Zr). In that case, B oft en has a 
higher cohesive energy than A and takes a central location in 
the cluster. Th en, the eff ective potential felt by the electrons is a 
lot deeper in the center of the cluster than elsewhere and, over-
all, the potential is intermediate between those of a jellium and 
of a hydrogenoid atom. Evidence for this eff ect comes from the 
observed stability of the 18-electron species Au16Y+ and Au16In+ 
[49], and 16ScCu+  [50], and theoretical predictions [51]. We con-
fi rmed this eff ect with calculations on a series of icosahedra 
doped with multivalent central atoms: Th ey show small HOMO–
LUMO gaps for 20-electron species like Fe@Ag12 (Ne = 20), and 
large HOMO–LUMO gap for 18-electron species like Mo@Ag12 
(Ne = 18). Another complicating factor is that only delocalized 
electrons should be counted. For instance, a Nb atom is prob-
ably best seen as a Nb+ ion plus one loosely bound s-type 

electron that can easily delocalize, not a 5+ ion with 5 electrons. 
Magic numbers in mass abundance spectra of AunX+ clusters 
(X = Sc to Ni) suggest the following rules [52]: (1) Prominent 
shell closings occur at Ne = 18, 34, but not 20; (2) To calculate 
Ne, one considers that Sc and Ti contribute 3 and 4 electrons to 
the delocalized system of electrons, respectively; (3) heavier TM 
elements contribute either one or twos-type  electrons, whichever 
produces an even total number of electrons; (4) as a result of (3) 
the magnitude of even–odd oscillations in cluster stabilities cor-
relate with the magnitude of the dopant’s s − d excitation energy, 
e.g., large for Mn and small for Ni.

Th e atomic shells model supposes that, as clusters grow in size, 
the atoms pack according to a specifi c pattern that minimizes, 
or nearly minimizes, the exposed surface area. From that point 
of view, the optimal packing is triangle, tetrahedron, trigonal 
bipyramid (TBP), a face-capped TBP, and so on, producing poly-
tetrahedral clusters. Th is packing can continue at n = 7 (pentag-
onal bipyramid, PBP) only by admitting small distortions in the 
tetrahedra, and it can only continue at n = 13 (the icosahedron, 
ICO) and beyond by having some strain, i.e., with interatomic 
distances that diff er between intralayer and interlayer bonds. 
Th is growth sequence is illustrated in Figure 4.2 for N = 4–8, 
12, 13, and 55. Note that the lowest energy structure at N = 6 
for pair potentials is normally the octahedron, not the structure 
in Figure 4.2c. In the ICO, the interlayer distance is 5% smaller 
than the intralayer distance. Th e number of atoms of ICO or 
fcc-packed clusters with K layers is

3 2
K

10 115 1
3 3

N K K K= − + − ,

so the fi rst few magic numbers in that model are 1, 13, 55, 147, 
309, 561, 923, 1415, …, and 1 3

K0 7K N /≈ .  when NK is large. Th e mass 

(e) (f ) (g) (h)

(a) (b) (c) (d)

FIGURE 4.2 Polytetrahedral (icosahedral) growth sequence leading to atomic shells in clusters with N atoms, N = 4, 5, 6, 7, 8, 12, 13, and 55 
(a–h).
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spectra of van der Waals clusters, in particular, rare gas atoms do 
show several of these magic numbers [53].

Optimization of bimetallic clusters structures with respect 
to a semiempirical potential energy suggests that polyicosahe-
dral structures are still favored [54]. However, the pattern in 
atomic shells and magic numbers generally depends on compo-
sition and that complicates matters. In particular, a large size 
mismatch between atoms of A and B favors segregation of the 
larger atoms to the surface. Extra stability may ensue when A has 
a higher cohesive energy, and a somewhat smaller size than B. 
In such a case, a perfect Am@Bn core-shell arrangement should 
correspond to enhanced stability as this structure removes the 
strain inherent in pure polyicosahedral clusters. For example, 
results of a computational study suggest that Cu13@Ag27 mini-
mizes the excess energy (see Equation 4.10 below) of 40-atom 
mixed Ag–Cu clusters [55].

4.5  Geometric Structure of 
Bimetallic Clusters

In the bulk, two metals A and B will mix to form a homoge-
neous solid Ax B1−x, or will not mix, depending on A, B, the mole 
fraction x, temperature T, and pressure P. When they do mix, 
diff erent phases are possible, depending on A, B, x, T, P. Some 
phases have defi nite crystal structures while others are mixed 
in a somewhat random way. Alloy phase diagrams summarize 
this kind of information and have been compiled for many AB 
binary solids. But clusters are quite diff erent from the bulk. 
Metals that do not mix in the bulk can form mixed clusters; it 
is oft en thermodynamically favorable for A2m and B2m clusters 
to mix and give two AmBm clusters for elements A and B that do 
not mix in the bulk [56]. Some combinations of elements have 
a strong tendency to form just one kind of mixed or segregated 
structure. Th is is driven by thermodynamics and mostly tied to 
the relative cohesive energy, surface energy, and electronegativ-
ity of the two elements (see Section 4.7). But chemical ordering 
also depends on the method of preparation. For instance, three 
kinds of AgAu bimetallic clusters (mixed, Agn@Aum, Aun@Agm) 
have been made by simply changing the sequence of Ag and Au 
deposition on an alumina substrate [57]. In fact, all free clusters 

are unstable (or metastable) and must be made with some kind 
of kinetic control. So the composition and structure of possible 
AmBn clusters is limited primarily by the degree of control that 
can be achieved.

Th eoretically, the number of possible isomers of a AmBn clus-
ter is much greater than for an elemental cluster Xp. Take an 
arbitrary confi guration of the p atoms of Xp. By substituting m 
of the atoms of X by atoms of A, and the rest by B, one gets one 
AmBn homotop (also called permutational isomer) of the parent 
structure. If there is no symmetry, there are p!/(m!n!) ways to 
make these substitutions, i.e., p!/(m!n!) distinct homotops [58]. 
Classifi cation of AmBn cluster structures is broken in these two 
parts: (1) parent structure (sometimes called “isomer” in the 
literature) and (2) homotop. Th ere is already a rich diversity of 
structures among elemental metal clusters (parent structures) 
[59], but we will discuss only the mixing aspect (homotops). A lot 
of experimental and theoretical work pertains to fairly large 
quasi-spherical clusters. Homotops that have been observed or 
computed usually resemble one of these ideal forms [22]: maxi-
mally mixed (MM), left –right segregated (LRS), core-shell (CS), 
and “onion layers structures” (OLS) [60,61]. Th e MM, LRS, and 
CS types are illustrated in Figure 4.3 using the 55-atom Mackay 
icosahedron as the parent structure.

Diff erent variables have been used to quantify mixing in 
AmBn, such as the number of A–B bonds M, the weighted mean 
distance between pairs of unlike atoms δn, the distance between 
centers of mass D, and diff erence in mean distances of A and B 
atoms to the center of mass, S:

 0

A B

( )ij
i j

M f d d
∈ ∈

= /∑ ∑  (4.4)

where d0 = rA + rB and f(x) = 1 if x < 1.2, f(x) = 0 otherwise
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(a) (b) (c)

FIGURE 4.3 Maximally mixed (MM), left –right segregated (LRS), and core-shell segregated (CS) types of homotop for a 55-atom Mackay 
icosahedron.
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where
dij is the distance between atoms i and j
i ∈ A means the sum is over atoms of element A
R⃗ cm is the cluster center of mass obtained aft er assigning a 

fi ctitious unit mass to every atom

A convenient way to characterize a cluster structure is to 
fi rst calculate M, δn, D, and S for that structure and for all of its 
homotops, and then normalize the variable in one of two possible 
ways. We illustrate this for M:

 
− −= =

σ −
avg min

max min
or

( )
M M M MM M

M M M  (4.8)

where Mavg, Mmin, Mmax, and σ(M) are, respectively, the average, 
minimum, maximum, and standard deviation, of M evaluated 
over the set of all homotops of M.

4.6 Properties of Bimetallic Clusters

Properties of AmBn vary in complex ways with A, B, m, n and 
structure. Few generalizations can be made. Some of the unique 
properties of bimetallic clusters were mentioned in Section 4.3. 
Here, we will make a few more comments about how proper-
ties of AmBn may or may not relate to properties of the elemental 
clusters, and also about optical properties.

A central question in studies of elemental clusters Xp is this: 
How do properties evolve with size p? Th is is also relevant to 
bimetallic clusters, but two other questions come up. Th e fi rst is 
How do the properties of AmBn (m + n = p) compare to those of Ap 
and Bp? Th e second, slightly diff erent, question is For a given p = 
n + m, how do the properties of AmBn vary as a function of (m/p)? 
Answers vary a lot according to property and cluster, but there 
are standard ways to approach these questions. In particular, 
one is oft en interested in the excess property associated with a 
property P, which can be defi ned in at least two ways.

 excess
(A B ) ( ) (A ) ( ) (B )

(A B ) 100%
( ) (A ) ( ) (B )

m n p p
m n

p p

P m p P n p P
P

m p P n p P
− / − /

= ×
/ + /  

(4.9)

 

bulk bulk
2 3

(A B ) ( ) (A ) ( ) (B )
(A B ) m n

m n
P m p P n p P

p /

− / − /
Δ =

 
(4.10)

A comparison of clusters with same size but diff erent composi-
tions can be made with Pexcess, whereas Δ is useful for comparing 
clusters that diff er in both size and composition [56]. Some prop-
erties depend much more on surface atoms than interior atoms, 
e.g., surface energy, chemical reactivity, collective resonance in 
photoabsorbtion spectra [62], and in many clusters one of the ele-
ments, say “A,” segregates to the surface. In such a case, P(AmBn) 

should be closer to P(Ap) than to P(Bp). Th is can be accounted for 
by modifying the above equations so that only surface atoms are 
counted in all of the species involved (clusters and bulk solid). In 
most cases Pexcess is at most a few percent.

It seems natural to classify bimetallic cluster properties into 
three categories: (1) those where Pexcess calculated with all atoms 
is a few percent or less; (2) those where Pexcess calculated using 
only the surface atoms is a few percent or less; (3) others having 
properties that deviate a lot from the weighted average of the 
two pure metals, no matter what kind of atoms (surface, interior, 
both) are counted. It is dangerous to generalize, but it appears 
that energy, surface energy, bond lengths (or density), and polar-
izability normally fall in categories (1) or (2). Some other prop-
erties, for instance, chemical reactivity and magnetization, are 
more complex, more sensitive to composition, and oft en fall in 
category (3).

In theory, the energy can sometimes be decomposed into a 
sum of atomic contributions, in which case it is convenient to 
consider the mixing energy Emix and mixing coeffi  cient ME for a 
AmBn cluster with nuclear confi guration X defi ned like this [58]:

 
mix(A B ) (A B ) (A  in A A )

(B  in B B )
m n m n m m n

n m n

E E E
E

; = ; − ;

− ;

X X X
X  (4.11)

 E mix (A B )m nM E E= /  (4.12)

Th e optical spectra of small clusters have several peaks, like mol-
ecules. But larger clusters are characterized by a single intense 
peak, called plasmon [63]. Th e plasmon can be understood as a 
collective excitation of the electrons: To a fi rst approximation, 
the change in electric dipole is due to a rigid displacement of 
the electronic cloud (valence electrons) relative to the positions 
of the ions. Th e shape and frequency of the plasmon resonance 
depend strongly on the size and shape of the particle [63]. Studies 
of AgnAum have shown that the plasmon resonance also varies a 
lot with composition and morphology [64]. Laser irradiation or 
annealing of core-shell Aun@Agm clusters leads to mixing of the 
two metals, which gives a way to tune optical properties [24]. 
Th e UV-visible absorption of small clusters can be modeled in 
detail by theory. A fairly standard technique for this is time-
dependent density functional theory (TDDFT). A recent appli-
cation of TDDFT showed that there are many absorption peaks 
in the spectra of AgnNip−n (p ≤ 8) clusters, and many nontrivial 
diff erences between those spectra as a function of composition 
and structure [65].

4.7  Structure–Energy Principles 
for Bimetallic Clusters

It has been shown that for a cluster X13 where atoms interact 
via a Lennard-Jones (LJ) potential, ⎡ ⎤

⎢ ⎥> ⎣ ⎦
= ∑ ε σ/ − σ/12 64 ( ) ( )j i ij ijE d d , 

there are more than 1500 distinct geometric isomers (energy 
minima) [66]. If a pair potential can model a system adequately, 



Bimetallic Clusters 4-9

then the number of minima depends on the range of the pair 
interactions, with a shorter range giving more minima [67]. 
Th ere are probably more isomers for clusters described by 
accurate energy methods (ab initio, DFT), compared to a LJ 
potential, considering the diff erent possible atomic hybridiza-
tions and cluster spin states. Neglecting symmetry, the number 
of homotops for a small clusters like A7B6 is (7!6!/13!) = 1716. 
Th is gives an estimated total number of distinct minima on 
the order of 106. Obviously, it is very diffi  cult to fi nd, without 
making a priori assumptions, the experimental or computed 
lowest energy structures of even moderate-size bimetallic clus-
ters. Th erefore, it is desirable to have structure–energy principles 
that would allow quick educated guesses of cluster structures. 
It must be said at the outset that no simple set of rules allows 
reliable detailed predictions of cluster structure. Th e struc-
ture–energy principles that we are about to show summarize 
empirical observations, or correlations, drawn from a variety 
of experimental and computational sources and they are good 
only for qualitative predictions.

One can relate some aspects of cluster structure to certain 
properties of the constituent atoms. On the atom side of the 
problem, we have the ionization energy (IE) and electron affi  nity 
(EA), or, electronegativity χ and hardness η:

 
χ = + −; η =(IE EA) (IE EA)

2 2  (4.13)

Th e atomic radius RA and cohesive energy Ec,A of an element A 
are also critical, and so is the ratio 2

c, A A( )E R�  (it correlates with 
the surface energy of that element). Another important thing is 
whether the atom’s d orbitals are partially fi lled (sometimes the 
precise d electronic confi guration matters). On the cluster side, it 
is useful to consider geometry descriptors such as the number of 
nearest-neighbor pairs or the surface area (these two things are 
strongly correlated); the cluster shape (roughly spherical, or oblate, 
or prolate), which may be quantifi ed using the three moments of 
inertia; the distribution function g(d) of interatomic distances; and 
the distribution function h(θ) of ijk angles, where atom j is a neigh-
bor to both atoms i and k. Note that the fi rst two peaks in g(d), 
at d1 and d2, quickly characterizes familiar structures: the ratio 
(d2/d1) is 1.414 for fcc, 1.155 for bcc, and 1.050 for an ideal 13-atom 
icosahedron. Th e width of the fi rst peak w1 (and to a lesser extent, 
widths of other peaks) is also informative: a small w1 indicates 
little or no strain, or, high “crystallinity.” Relative peak intensities 
in h(θ) (especially at 60°, 90°, and 108°) also show very clear diff er-
ences between the diff erent structure types like fcc, bcc, ICO, etc. 
Finally, note that in a pair-potential model, the range of interaction 
is correlated to the IE of the atom because the long-range form of 
an atom’s electronic density depends essentially on IE [68]) (a small 
IE correlates with a long-range and “soft ” pair potential).

Th ere are some rules that seem to govern parent structures of 
elemental [59] (and also bimetallic) clusters. (1) Th ere is a gen-
eral tendency to minimize the exposed surface area, or, maxi-
mize the number of bonds. (2) Structures where the fi rst peak in 
g(d) is narrow (i.e., the strain is small) are favored, especially for 

elements with a large IE. (3) Elements with a large atomic hard-
ness η, or a large IE, tend to favor structures where all atoms 
have nearly the same number of neighbors: in extreme cases, this 
gives cage structures, as in several gold clusters, for example. (4) 
Atoms that have a ground state electronic confi guration with a 
number of valence d electrons that diff ers from 0, 5, or 10 oft en 
exhibit 90° bond angles. (5) Clusters of elements of groups 1, 2, 
and 11, and other elements that are well described in the jellium 
model (e.g., Al) tend to adopt shapes that conform to the EJM 
[42,43]. (6) Th ere is sometimes a competition between high-spin, 
high-symmetry structures, and low-spin, EJM-distorted struc-
tures, Li13 being one example of that.

Th ere are some rules about homotops. Elements A and B have a 
tendency to (1) mix if they have very diff erent electronegativities 
χ; (2) segregate if they have very diff erent cohesive energies Ec, 
or very diff erent ratio ( / 2

c, X XE R ), with the element with small-
est Ec (or smallest / 2

c, X X( )E R ) going to the surface; (3) segregate 
into a core-shell structure with B outside if RB is much larger 
than RA [54] since that decreases the strain; (4) segregate if one 
element (A or B) has a stronger interaction to the environment 
(support, ligand, or ambient gas); (5) when the surface is com-
posed of A and B atoms, the atom with the lowest Ec tends to 
occupy the sites with lowest coordination; and (6) when the dif-
ference (Ec,A − Ec,B) is large and positive, the structure of AmBn 
has a compact Am core with a structure that maximizes the num-
ber of A–A bonds, whereas the total number of bonds is much 
less important.

4.8 Special Bimetallic Clusters

Some clusters should be relatively stable in theory because they 
satisfy two or more stability criteria simultaneously. We refer 
to them as doubly magic clusters (DMC) even if they satisfy 
more than two criteria. Th e interest in free DMCs is largely 
theoretical because, for metals, even the most stable-free 
DMCs of size N ≤ 100 are probably not stable enough to be 
used for materials. But there is also a practical side to DMCs. Th e 
metal core part of stable passivated clusters are probably DMC 
cations in many cases. For example, the stable thiolate-protected 
cluster Au25(RS)18 has a metallic icosahedral core 5

13Au + with 
closed atomic and electronic shells [4] (the 12 other Au atoms 
have nonzero oxidation numbers). Conversely, passivation of 
neutral DMCs or of their charged isovalent analogs could yield 
truly stable clusters. Also, the polyanions of known stable Zintl 
phases, like 4

9Ge ( 40)eN− = , may be viewed as magic clusters. Th is 
suggests the possibility of stable core-shell bimetallic clusters 
Am@Bn where A and B have a large diff erence of electronegativ-
ity, though maybe not as large as in the true Zintl phases [69,70]. 
What follows is a short and partial list of free clusters having 
unusual stability. Each of these has many isovalent (neutral or 
charged) bimetallic analogs, which may also be stable.

Th e unusual stability of 4MAl−  clusters (M = Li, Na, Cu) was 
explained by proposing the concept of metal aromaticity that 
would apply to the square planar 2

4Al −  unit [71]. Th e Na6Pb clus-
ter is an octahedron with the Pb atom at the center and with 
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the Ne = 10 shell closing characteristic of inverted EJM orbital 
order (1s22p62s2) [72,73]. Th e 13Al−  icosahedral cluster satisfi es 
the EJM closing at Ne = 40, whereas neutral Al13 can be seen as 
a kind of “halogen superatom” [74]. Relatively stable bimetallic 
species can be derived by reaching Ne = 40 in diff erent ways, e.g., 
Al13Ag [75], Sn@Al12, etc. Generally, many doped (bimetallic) 
icosahedra A@B12 have been predicted to have large HOMO–
LUMO gaps on the order of 2–3 eV: 12Al@Pb+  [76], WAu12 [77], 
MoCu12 [78], etc. Th e Au20 cluster is a pyramidal fragment of 
the fcc crystal with a large HOMO–LUMO gap (1.8 eV) that was 
identifi ed by the combined use of photoelectron spectroscopy 
and computations [79]. Many tetrahedral clusters with Ne = 18 
or 20 and special stability can be derived from it. Removal of the 
four apex atoms gives Au16 which is interesting in its own right 
because, in the anion, the four symmetry equivalent atoms move 
outward giving a cage structure [80]. Substitution of these four 
atoms by a divalent metal gives a series A4B12 of clusters. In par-
ticular, Mg4Ag12 has the tetrahedral structure as its global mini-
mum and a HOMO–LUMO gap of approximately 2.5 eV [81]. 
In addition to its compact strain-free geometric structure and 
closed-shell electron count, the electrons and nuclei in Mg4Ag12 
make coincident electrically neutral shells (CENS): the Mg2+ and 
Ag+ ions’ spatial distribution has high symmetry (Td) and yields 
cumulative ionic charges that match two successive EJM shell 
closings (8 and 12 + 8 = 20), which gives extra stability to the Td 
homotop. Th e CENS property might be useful as an additional 
shell closing criterion. Th e basic Td M16 structure can be either 
fcc-like (compact) or cage-like and, in the latter case, it can eas-
ily accommodate a central atom impurity. If the impurity brings 
the electron count to 18 (not 20), special stability ensues as in, for 
example, 16Sc@Cu+  [50].

4.9 Summary and Conclusion

Th e properties of clusters are oft en very diff erent from the bulk, 
which leads to various applications, particularly in catalysis, 
bioanalysis (as probes), and for magnetic materials. Compared 
to elemental clusters, bimetallic clusters obviously off er more 
possibilities for design and applications. Small clusters are 
characterized by a high surface area. Generally speaking, this 
makes them unstable. However, there exist several methods for 
synthesizing small bimetallic clusters either in the gas phase 
(sometimes followed by deposition in or on a substrate), or in 
solution, or by using precursor metal complexes on a support, or 
by solid-state chemistry. Synthetic methods, and the tools and 
instruments for characterization of clusters, are improving rap-
idly and give increasingly better control and understanding of 
the shape and composition of bimetallic clusters. It is possible, 
in some cases, to make core-shell structures Am@Bn or Bm@An, 
or mixed AmBn structures, for a given A–B combination by using 
diff erent synthetic approaches. Some principles help rationalize 
the geometric structure and relative stability of bimetallic clus-
ters, in particular: special stability is associated with electronic 
shell closings (e.g., electron counts of 8, 20, 40, …in the jellium 
model); clusters tend to minimize surface energy, therefore the 

element with smaller surface tension tends to segregate to the 
surface; clusters tend to minimize strain, so bigger atoms tend 
to segregate to the surface; A and B tend to mix if they have very 
diff erent electronegativities; and there is extra stability asso-
ciated with the simultaneous closing of electronic and atomic 
shells. Improvements to synthetic methods, characterization 
tools, theory and modeling, and multidisciplinary approaches to 
design and prototyping for specifi c applications have been, and 
will continue to be, essential for progress in the fi eld of bimetal-
lic clusters.
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5.1 Introduction

Th e ongoing trend toward miniaturization in microelectronics 
has triggered interest in small particles made of silicon, the most 
used element in the semiconductor industry. An important dis-
covery of the unique nanoscale properties of silicon has been the 
observation of bright luminescence from porous silicon nano-
structures (Canham 1990), whereas bulk silicon is a bad emit-
ter of light due to its indirect band gap. Th is phenomenon has 
attracted much attention toward its quantum mechanical ori-
gin. By downsizing bulk silicon to the nanoscale, there is hope 
to induce a more effi  cient luminescence and to shift  the emission 
wavelength from 1.1 eV into the visible region (Canham 1990, 
Iyer and Xie 1993, Ledoux et al. 2000). Possible visible-light 
emitters made out of silicon are of great relevance because of 
their potential for new functional silicon-based optoelectronic 
devices. Moreover, the tunability of the emission wavelength by 
changing only their particle size is still one of the open demands 
associated with a large variety of applications.

Elemental silicon clusters, however, are unsuitable as building 
blocks for future nanomaterials, since their dangling bonds make 
them chemically reactive (Röthlisberger et al. 1994). Contrary to 
carbon, the formation of silicon fullerenes and nanotubes is dis-
favored due to the tendency of silicon to prefer sp3-rather than 
sp2-like hybridization. A possible approach to stabilize a silicon 
cage is to locate a guest atom in the center of the cluster.

In 1987, Beck succeeded in preparing mixed metal-silicon 
cluster ions by laser vaporization and found strikingly high abun-
dances of Si15M+ and Si16M+ for three diff erent transition-metal 
dopants M, namely chromium, molybdenum, and tungsten, 
and low abundances for other sizes (Beck 1987, 1989). However, 
despite a valuable attempt based on a topological model (King 
1991), the magic behavior of these structures remained unex-
plained for a long time, presumably due to the fact that under-
standing the structures and properties of bare silicon clusters 
was itself evolving as an active fi eld of research and that the 
investigation of clusters doped with transition-metal atoms was 
a diffi  cult and challenging experimental task.
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Almost a decade past by before the fi rst quantum mechani-
cal study on doped silicon cages appeared. Inspired by small 
C28 fullerenes that were stabilized by a central guest atom, as for 
example in C28U, Jackson and coworkers calculated a strikingly 
large binding energy of 15.2 eV for a Zr atom located inside an 
icosahedral fullerene-like Si20 cage, which is not a stable isomer 
for the bare silicon cluster (Jackson and Nellermoe 1996).

Another 5 years later, Hiura and coworkers showed experi-
mentally that many types of transition-metal ions can be intro-
duced into silicon cages and that the smallest possible cage 
size crucially depends on the dopant atom. In addition to the 
experiments, ab initio calculations were performed to iden-
tify the precise structure of Si12W, which resulted in a regular 
hexagonal Si12 cage with a tungsten atom in the center (Hiura 
et al. 2001). Th e fi nding of this dopant-encapsulating clus-
ter in combination with the progress made in understanding 
the structures and properties of bare silicon clusters attracted 
renewed interest in the very stable Si15M+ and Si16M+ (M = Cr, 
Mo, W) species, detected by Beck 15 years earlier. Kumar and 
Kawazoe (2002) computationally attributed the strong stability 
of these species to highly symmetric cages with exceptionally 
pronounced highest occupied–lowest unoccupied molecular 
orbital (HOMO-LUMO) gaps and large embedding energies of 
the dopant atom.

Today, the interest in doped silicon clusters is so high that 
theoretical studies have investigated SinM structures for dopants 
from almost every group of the periodic table. Recent investiga-
tions on metal-encapsulated silicon cages have proposed novel 
functional silicon devices (Hiura et al. 2001, Khanna et al. 2002, 
Kumar and Kawazoe 2003b, Kumar 2006). As compared to 
elemental silicon clusters, doped clusters are predicted to bear 
higher stabilities and more symmetric structures, making them 
attractive for cluster-assembled materials. Th e novel interest by 
theoreticians has been quickly followed by experimentalists’ 
eff orts. Today, a variety of methods, which go beyond simple 
mass spectrometry, are applied to study doped silicon clusters.

Th e focus of this chapter lies on the developments of the 
experimental approaches. Section 5.2 provides a brief summary 
of the diff erent models that explain the enhanced stabilities of 
certain cluster sizes and stoichiometries, stressing that it is gen-
erally the interplay between geometric and electronic factors 
that results in “magic” clusters. Section 5.3 reviews the history 
of the investigation of doped silicon clusters by diff erent means. 
In Section 5.3.1, mass spectrometric studies are covered starting 
with the pioneering work of Beck and arriving at more recent 
contributions that found some general trends for especially sta-
ble species. Several reactivity probes have been developed, espe-
cially for investigating the transition from exo- to endohedrally 
doped silicon clusters. Th ese approaches are presented in Section 
5.3.2. Due to these experiments, doped silicon clusters came into 
the focus of quantum mechanical studies, which are reviewed 
in Section 5.3.3. Exemplifying the successful interplay between 
theory and experiment, nowadays innovative instrumental 
techniques are used to probe the theoretical predictions. Section 
5.3.4 shows how the electronic structure of doped silicon clusters 

can be analyzed in detail by means of photoelectron spectros-
copy (PES). For the investigation of the geometric structure, 
infrared (IR) spectroscopy is a powerful method. Section 5.3.5 
demonstrates how the vibrational fi ngerprint of doped silicon 
clusters is obtained upon infrared multiple photon dissociation 
(IR-MPD) spectroscopy of their complexes with rare-gas atoms.

5.2 Stabilization of Clusters

In the mass spectrometric detection of clusters, their size dis-
tribution is not necessarily smooth. Oft en certain clusters are 
much more pronounced in intensity than their adjacent sizes. 
Such modulations oft en refl ect the thermodynamic stability 
of the clusters under investigation. Th e origin of an enhanced 
stability can either be due to geometric or to electronic reasons. 
Both are briefl y discussed in the following section.

5.2.1 Geometric Stabilization

When in 1981 Echt and coworkers recorded the mass spectrum 
of an eff usive beam of xenon clusters, they observed enhanced 
intensities for clusters containing 13, 55, 147, etc., atoms (Echt 
et al. 1981). Th ese “magic” sizes refl ect the tendency of the clus-
ter’s atoms to maximize their number of nearest neighbors and 
their average coordination, while minimizing their surface area. 
Th e numbers can be rationalized by geometric shell closings of 
icosahedral clusters, known as Mackay icosahedra. Icosahedra 
are not closed-packed structures and, e.g., in a 13-atom icosa-
hedron, the surface bonds are approximately 6% longer than the 
radial bonds from the center to the surface atoms. Th is frustration 
increases for larger clusters and eventually favors closed-packed 
geometries. A way to stabilize an icosahedron is the substitu-
tion of the central atom by a smaller dopant. One example is the 
magic AlPb12

+ cage (Neukermans et al. 2004). It is remarkably 
pronounced in the mass spectrum of cationic aluminum-doped 
lead clusters (see Figure 5.1), and its closed-packed Ih geometry 
is calculated to be the most stable isomer by not less than 1.96 eV 
to the next stable isomer.

Another example of a particularly stable high symmetric geom-
etry is neutral Au20 (Li et al. 2003, Gruene et al. 2008a). Here the 
cluster is a pyramid of perfect tetrahedral symmetry and repre-
sents a fragment of the bulk fcc structure with four 111 surfaces.

Clusters not necessarily need to be closed-packed in order to 
gain from a geometric stabilization. Th e Buckminster fullerene is 
a hollow cage but is drastically stabilized because it is the smallest 
cluster size in which all fi ve-membered carbon rings are sepa-
rated from each other by six-membered rings (Kroto et al. 1985).

5.2.2 Electronic Stabilization

Similar to the mass spectrum of xenon clusters, the spectrum 
of sodium clusters is highly structured with pronounced peaks 
for clusters containing 8, 20, 40, 58, and 92 atoms (Knight et al. 
1984). Th ese fi ndings were immediately rationalized by assum-
ing a one-electron shell model. In this phenomenological shell 
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model, which bears a lot of resemblance with the shell model as 
it is well known in nuclear physics, the 3s electrons of the sodium 
atoms are independently delocalized and move in a spherical 
potential. Obviously this model can describe only clusters with a 
spherical geometry, while for species with lower symmetries, the 
model must be modifi ed accordingly (Clemenger 1985, de Heer 
1993). Meanwhile, various implementations of shell models for 
electrons exist, including the so-called jellium model where the 
electron problem is solved quantum mechanically, assuming a 
smeared-out homogeneous positively charged ion distribution.

For binary clusters, a two-step spherical jellium model has 
been developed (Baladron and Alonso 1988, Janssens et al. 2004) 
to explain the occurrence of the magic electron number 10 in 
case of electronegative dopants and 18 for electropositive dop-
ants. For an electronegative dopant in the center of the cluster, 
the eff ective potential is more attractive in the vicinity of the 
dopant. Th is stabilizes the orbitals that have a high electron den-
sity in the center of the cluster, like s and p orbitals, while d and 
f orbitals are destabilized. Accordingly, the 2s orbital is more 
favorable than the 1d orbital in case of electronegative dopants, 
resulting in a shell closing at 10 valence electrons. Th e opposite 
is true for electropositive dopants, giving rise to the magic num-
ber 18 (Figure 5.2). Th is model works nicely for spherical main 
group elements. A good example is the CuAu16

− anion with a 
compact structure and a very high adiabatic detachment energy 
of 4.12 eV (Wang et al. 2007).

For transition-metal dopants, it is not always clear how many 
d electrons are donated to the quasi-free electron gas. While 
radially extended d-orbitals bear a high propensity to hybrid-
ize strongly with s and d electrons from the host, this behavior 
decreases along a row. Transition-metal-doped clusters are oft en 
better described by concepts originating from organometallic 
chemistry. Th e 18-electron rule takes into account that a total of 
18 electrons is needed to fi ll the s, p, and d orbitals of the valence 

shell of a transition-metal atom. WAu12 obeys the 18-electron 
rule and was calculated to be a very stable cluster (Pyykkö and 
Runeberg 2002). Shortly aft erward, the anion WAu12

− was syn-
thesized in the gas phase and studied by means of PES (Li et al. 
2002). Th e large HOMO-LUMO gap of 1.68 eV measured with 
PES support the electronic stability of this species. Other exam-
ples are 16-atom gold cluster cations endrohedrally doped with 
a trivalent metal, that all exhibit extraordinary stability with 
respect to neighboring sizes, as demonstrated with photofrag-
mentation mass spectrometry (Bouwen et al. 1999, Neukermans 
et al. 2003, Veldeman et al. 2008).

More recently, the concept of aromaticity has been intro-
duced for explaining the stability of metal clusters (Li et al. 2001, 
Boldyrev and Wang 2005). Also for doped clusters, aromaticity 
has been used to account for certain especially stable stoichiom-
etries, with Au5Zn+ being a prominent example (Tanaka et al. 
2003). Th is planar cluster has 6 valence electrons (4n + 2 with n = 1, 
according to a Hückel-aromatic molecule) and a strong magnetic 
shielding inside and above the structure caused by a diamagnetic 
ring-current, an eff ect ascribed to its aromaticity. Aromaticity is 
not limited to planar species but can also account for enhanced 
stabilities of spherical clusters (Chen and King 2005).

5.2.3 Combined Effects

It has been realized early on that enhanced stability is achieved 
best when both geometric and electronic stabilization condi-
tions are fulfi lled (Khanna and Jena 1992, Chen et al. 2006). 
For example, Al13

− is a compact icosahedral structure and its 
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40 valence electrons result in an electronic shell closing within 
the jellium model (Bergeron et al. 2004). Similarly, the stability 
of Au20 lies in its tetrahedral geometry, as well as 20 valence elec-
trons satisfying the shell model. Th e WAu12 cluster is stabilized 
by three factors: the above-mentioned 18-electron rule, a relativ-
istic contraction with strengthening of the W–Au and Au–Au 
bond, and aurophilic interactions in the gold shell. AlPb12

+ is 
stable due to its compact geometric structure but also due to the 
spherical aromaticity of the Pb12

2− cage, which surrounds the 
formal Al3+ dopant.

5.3 Investigation of Doped Silicon Cages

In this section, it is shown how the concepts from Section 5.2 
have been used to explain the enhanced intensity of certain doped 
silicon clusters in mass spectra (Section 5.3.1). Th e fi rst simple 
mass spectrometric investigations have been followed by reac-
tivity studies and a wealth of quantum mechanical calculations 
(Sections 5.3.2 and 5.3.3). In the last years, innovative experimen-
tal methods have been applied to doped silicon clusters in order to 
probe those theoretical predictions (Sections 5.3.4 and 5.3.5).

5.3.1 Mass Spectrometry

Contrary to carbon fullerenes and nanotubes, the formation of 
a silicon hollow cage or tube is very unlikely. Since the dangling 
bonds in sp3-hybridized silicon clusters make them chemically 
reactive and thus unstable, it is very important to quench these 
bonds for allowing the formation of cluster-assembled materials. 
One of the strategies for doing so is the doping of a suitable metal 
atom into a pure Si cluster, as was fi rst experimentally revealed 
in 1987 (Beck 1987).

Beck fi rst reported mass spectra for cationic transition-metal-
doped silicon clusters SinM+ (M = Cr, Mo, W). Silicon clusters 
were formed by laser ablation from a silicon wafer. When the 
carrier gas was seeded with the corresponding transition-metal 
carbonyl, doped clusters were formed with identical stoichiome-
tries, irrespective of the dopant element. Th is is shown in Figure 
5.3, where high-fl uence (1 mJ/cm2) 193 nm ionization mass spec-
tra of bare and doped silicon clusters are compared. Spectrum 
3a was obtained using pure helium as carrier gas and shows bare 
silicon clusters. Th e spectrum is dominated by clusters contain-
ing 6–11 atoms. Th ese cluster cations are particularly stable and 
result from fragmentation of larger silicon clusters upon absorp-
tion of multiple UV photons. Figure 5.3b through d presents the 
spectra obtained when the helium carrier gas was seeded with 
metal carbonyls. Th ese latter spectra exhibit additional peaks, 
darkened in the fi gure, which were assigned to clusters contain-
ing one transition-metal atom and varying amounts of silicon 
atoms. It is striking how the most prominent new peaks are 
always due to Si15M+ and Si16M+ clusters (M = Cr, Mo, and W) 
and that the observed abundances of other sizes of metal-doped 
silicon clusters are very low. Th e spectra clearly reveal that incor-
porating a single metal atom in the Si15 and Si16 clusters stabi-
lizes these sizes with respect to photofragmentation. In order to 

understand this behavior, Beck postulated a possible scenario 
where the metal atom acts as a seed and silicon atoms form a 
shell structure with a specifi c number of atoms around the metal 
dopants (Beck 1989). While the observed mass spectra for the 
three group 6 metals Cr, Mo, and W with silicon are very simi-
lar, doping with copper provided diff erent results (Beck 1989). 
First, no copper-silicon reaction products containing less than 
six silicon atoms were observed. Further, the most intense prod-
uct peak in the spectrum was due to Si10Cu+.

Since Beck described the remarkable formation of Si15M+ 
and Si16M+, more mass spectrometric investigations have been 
presented. Th e enhanced stability of Si15,16Cr+ and Si10Cu+ was 
confi rmed by Neukermans and coworkers who presented a 
mass spectrometric stability investigation of Cr, Mn, Cu, and 
Zn-doped Sin, Gen, Snn, and Pbn clusters (Neukermans et al. 
2006). Moreover, signifi cantly enhanced abundances for Si15Mn+ 
and Si16Mn+ were found.

Ohara and coworkers studied mass spectrometrically anionic 
silicon clusters doped with the group 4 transition metals titanium 
and hafnium and the group 6 transition metals molybdenum and 
tungsten (Ohara et al. 2003). Typical time-of-fl ight mass spectra 
were dominated by pure silicon cluster anions with n = 4–11. In 
addition to the pure Sin clusters, Sin anions doped with a single 
transition-metal atom were observed in the mass spectra again 
with a predominant formation of clusters containing 15 and 16 sil-
icon atoms. Th ey thus revealed that the striking stability of certain 
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FIGURE 5.3 193 nm (6.4 eV) ArF laser photoionization time-of-fl ight 
mass spectra showing: (a) bare silicon clusters formed by laser vaporiza-
tion of a silicon wafer followed by supersonic expansion, (b) reaction 
products formed in a supersonic nozzle between chromium atoms and 
silicon to form SinCr clusters, (c) SinMo, and (d) SinW clusters. Th e metal-
atom-silicon cluster peaks in each spectrum are darkened for emphasis. 
Undarkened peaks represent bare silicon clusters. ArF laser fl uence in 
each case was about 1 mJ/cm2. At this fl uence, very little intensity is seen 
for elemental silicon clusters with more than 11 atoms. (Reproduced 
from Beck, S.M., J. Chem. Phys., 90, 6306, 1989. With permission.)
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cationic silicon clusters doped with group 6 metals, as observed by 
Beck (1987), also persists in the case of anionic clusters and in the 
case of dopants of other groups. Th is behavior rather pointed to 
a geometric stabilization and a special role of the Si16 cage, as the 
number of electrons seemed to be of minor importance.

However, in 2005 Koyasu and coworkers presented an experi-
mental investigation of scandium-, titanium-, and vanadium-
doped silicon clusters (Koyasu et al. 2005). Th is study revealed 
very clearly that the electronic structure also plays an impor-
tant role. Neutral Si16Ti species could selectively be produced 
by fi ne-tuning the cluster source, as shown in Figure 5.4b. Th e 
mass spectra of neutral scandium- and vanadium-doped sili-
con clusters, however, hardly showed any preference for the size 
containing 16 silicon atoms. Only when isoelectronic species 
were formed, magic clusters could be detected; thus, a change 
of the charge state was required. Th e three magic sizes ScSi16

−, 
TiSi16, and VSi16

+ (see Figure 5.4a through c) point toward a 
closed electron confi guration. Koyasu and coworkers proposed 
that the transition-metal dopants each contribute their 4 valence 

electrons in order to yield, together with the 16 3pz electrons of 
the sp2 hybridized Si atoms, a closed electronic shell of 20 elec-
trons according to the jellium model.

Koyasu and coworkers continued their investigations by sys-
tematically changing the dopant atoms among the group 3, 4, and 
5 elements (Koyasu et al. 2007). Figure 5.4 shows the typical mass 
spectra of the transition-metal atom-doped clusters SinM−/0/+ 
(M = Sc, Y, Lu, Ti, Zr, Hf, V, Nb, and Ta). Th e neutral clusters 
of SinTi, SinZr, and SinHf were photoionized by a pulsed F2 laser 
(7.90 eV) for mass spectrometric detection, while the charged 
metal-silicon clusters were directly accelerated in a pulsed elec-
tric fi eld. In all of the mass spectra of SinM−/0/+, bimodal size dis-
tributions were observed. Th e two distributions are indicated in 
Figure 5.4 by solid squares (distribution I, n = 6–11) and open 
circles (distribution II, n = 12–20), respectively. As confi rmed by 
a chemical-probe method (described in detail in Section 5.3.2), 
the bimodal distributions correspond to the structural transition 
from exohedral to endohedral geometries, i.e., a transition from 
structures where the dopant is located on the cluster’s surface to 
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FIGURE 5.4 Mass spectra of metal-atom-doped silicon clusters (SinM): (a) SinSc−, (b) SinTi, (c) SinV+, (d) SinY−, (e) SinZr, (f) SinNb+, (g) SinLu−, 
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structures in which the dopant is fully surrounded by the silicon 
atoms (Koyasu et al. 2007). Indeed, the abundance of smaller Sin 
clusters (n = 6–11) is relatively rich, while larger-sized Sin clus-
ters (n ≥ 12) are formed to a much smaller extent; a fi nding very 
similar to the one in Beck’s early work. Th e similarity of the size 
distribution for small (n = 6–11) bare and doped silicon clusters 
was presumed to be due to the stability of the bare Si clusters 
and indicated that clusters of distribution I exhibit an exohedral 
dopant. Distribution II, on the other hand, was completely dif-
ferent from that of pure Si clusters. It exhibited a prominent peak 
at Si16M−/0/+, whereas Si16 was hardly formed at all. In particular, 
doping with the transition-metal atoms Sc, Ti, V, Zr, Nb, Hf, and 
Ta resulted in the magic behavior of Si16M, while the intensities 
of Si16Y− and Si16Lu− were hardly more intense than their neigh-
boring sizes with n = 15 and 17.

5.3.2 Reactivity and Chemical-Probe Studies

Th e work of Hiura and coworkers constitutes another landmark 
in the investigation of doped silicon clusters (Hiura et al. 2001). 
Th ey introduced metal ions into an ion trap by resistive heating 
of a metal wire and subsequent ionization by electron irradia-
tion. As a silicon source, SiH4 gas was introduced into the trap. 
Th e transition-metal cation reacted subsequently with silane, 
resulting in the formation of SinMHx

+ species. It was observed 
that the sequential growth of SinMHx

+ species almost stopped 
when n approached a specifi c number m. Moreover, a clear 
dependence of m on the metal element M was noted, e.g., m = 14 
for Hf, 13 for Ta, 12 for W, 11 for Re, and 9 for Ir. Furthermore, 
for elements of the same group in the periodic table, the same 
termination number m was found. When n = m, the clusters 
tended to lose all of their H atoms, and dehydrogenated clusters, 
SimM+, were highly abundant in the mass spectrum. Th is fi nding 
suggested that the clusters were not chainlike but that the metal 
atom was highly coordinated and saturated all dangling bonds 
of the silicon atoms. Strikingly, the sum of m and the atomic 
number of the transition-metal element was oft en found to keep 
a constant value of 86, which corresponds to the atomic number 
of the rare gas Rn. Th us, the maximum amount of silane mole-
cules that would be added is to a large extent determined by the 
18-electron rule (see Section 5.2.1). In Si12W, each Si atom in the 
cluster donates a single electron to the central tungsten atom, 
which then possesses 18 electrons in total (12 electrons from the 

Si12 cage and 6 valence electrons by the tungsten atom itself), 
resulting in a closed electronic shell. Th ree valence electrons on 
each silicon atom are left  and thus allow for the formation of 
a silicon polyhedron without appreciable dangling bonds. Th e 
same argument accounted for the termination numbers for 
M = Hf, Ta, Re, and Ir as well (Hiura et al. 2001). Hiura and 
coworkers based their discussion of the termination numbers 
mainly on electronic arguments. Th ey mentioned that probably 
geometric factors also add to the enhanced stabilities; however, 
they did not make any claims whether the experimental fi nd-
ings corresponded to the smallest cage possible. Since most 
probably the transition-metal atom constitutes the reactive site 
toward silane, the reduced reactivity from a certain size onward 
could also mark the onset of endohedrally doped silicon cages.

Th is question was explicitly tackled by another method by 
Nakajima and coworkers (Ohara et al. 2002). Th is group pro-
duced doped silicon clusters by ablation from two target rods 
by means of two independent lasers. In the work from 2002, 
anionic terbium-doped silicon clusters were produced and 
allowed to react with H2O vapor downstream of the source in 
a fl ow reactor. Upon exposure to H2O, doped clusters that con-
tained less than 10 silicon atoms were found to react away, while 
larger clusters remained unreactive. Presuming that an exohe-
dral terbium atom was the reactive site for the adsorption reac-
tion with water, the low reactivity of TbSin

− for n ≥ 10 indicated 
cage clusters, in which silicon completely surrounds the terbium 
dopant. Correspondingly, at least 10 silicon atoms were therefore 
needed to fully cover a terbium atom (problems with impurities 
were noted later, which, however, should not have aff ected the 
size range of the basket-to-cage transition [Ohara et al. 2007]). 
For SinTi+ clusters, the decrease upon reaction toward H2O was 
observed at n = 7–11, whereas clusters with n = 13–17 remained 
practically unaff ected (Ohara et al. 2003).

Aft er improvements in their source design that allowed for a 
better mixing of the two plasmas in the cluster formation pro-
cess, the Nakajima group extended their reactivity studies to all 
stable group 3, 4, and 5 transition-metal doped silicon clusters 
in their cationic, neutral, and anionic form (Koyasu et al. 2007). 
Th e results are summarized in Table 5.1. An element and charge-
state dependence can be noted. Obviously, within the same row 
of the periodic system and the same charge state, the threshold 
sizes for dopant encapsulation decreases with increasing atomic 
number. Th is can be understood in terms of atomic radii, which 

TABLE 5.1 Smallest Doped Silicon Cages MSin for Cationic, Neutral, and Anionic Species for Various Transition-Metal Dopants

Cation Neutral Anion Cation Neutral Anion Cation Neutral Anion Cation Cation Cation

M Sc Ti V Cr Co Cu
N 17a 15a 15a 13a,b 13a 11a 12a,b 10a 9a 11b 8b 12b

M Y Zr Nb
N 21a 20a 20a 15a 14a 12a 13a 12a 11a

M Lu Hf Ta
N 21a 16a 18a 14a 14a 12a 13a 10a 11a

Sources: Koyasu, K. et al., J. Phys. Chem. A, 111, 42, 2007; Janssens, E. et al., Phys. Rev. Lett., 99, 063401/1, 2007.
Note: Th e threshold sizes have been determined experimentally upon their reactivity with water vapor (a) or argon (b).
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generally decrease with increasing atomic number in one row. 
A larger dopant obviously requires more silicon atoms to be fully 
surrounded than a smaller one. As for the charge-state depen-
dence, the threshold sizes decrease going from cations to neu-
trals to anions, although the charge-state dependence of anionic 
SinLu− and SinTa− is exceptional. Th e threshold size dependence 
on the charge state was rationalized by metal encapsulation as 
well. According to mobility experiments on pure silicon clus-
ters, the anions have systematically longer drift  times, and 
hence smaller mobilities, than the cations (Hudgins et al. 1999). 
Consequently, the anions are eff ectively larger than the cations. 
Th is systematic shift  was assigned not to a structural change, 
but to the extra charge causing the surface electron density of 
the anions to spill out further than for the cations. Here, how-
ever, it seems that the anionic silicon cages are actually larger as 
compared to the cationic ones and aff ord for transition-metal 
encapsulation already at smaller cluster sizes. Th e species that 
were richly abundant in the mass spectra (e.g., Si16Sc−, Si16Ti, 
Si16V+, Si16Zr, Si16Nb+, Si16Hf, and Si16Ta+, as shown in Figure 5.4) 
all exhibit no adsorption reactivity, pointing toward especially 
stable cages.

To investigate the structure of doped Si clusters, not only 
molecules such as SiH4 and H2O can be used in chemical-probe 
techniques. Th is was recently shown by Janssens and cowork-
ers who reported that the physisorption of argon atoms acts as 
a structural probe for transition-metal-doped silicon clusters 
(Janssens et al. 2007). Ar is an ideal probe as it has a negligible 
infl uence on the cluster and merely serves as a spectator atom. 
Further, it has no internal degrees of freedom and represents a 
good compromise in terms of polarizability. It can be attached 
to the cluster ion without much perturbation of the electronic 
structure. Th e study focused on cationic silicon clusters doped 
with 3d transition metals. Doped clusters were formed in a dual-
target source (Bouwen et al. 2000) using a mixture of 1% of Ar 
in He as a carrier gas. All clusters passed through a thermal-
ization channel that was cooled by a fl ow of liquid nitrogen to 
80 K. In the mass spectra of mixed SinMm

+ (M = Ti, V, Cr, Co, 
Cu) clusters, the highest ion signals were recorded for bare Sin

+ 
and singly doped SinM+ clusters, but also a fraction of SinM2

+ 
clusters was formed. For both singly and doubly doped clusters, 

SinM1,2
+ Ar1,2 complexes were formed, whereas for bare Sin

+ no 
argon complexes were observed at all. Moreover, the abundance 
of the SinM1,2

+ Ar1,2 complexes was strongly size dependent and 
collapsed aft er a certain critical number of Si atoms in the clus-
ter. Th ese eff ects are represented best by plotting the total frac-
tion of Ar complexes as a function of n, as is shown in Figure 
5.5. Both for singly and doubly doped silicon clusters, critical 
sizes for argon attachment, which depend on the dopant ele-
ment, are observed. Figure 5.5 shows how, in agreement with the 
observations of Koyasu et al., for singly doped silicon clusters 
the threshold size (defi ned as the smallest size that does not form 
complexes) changes along the 3d row, i.e., Si13Ti+, Si12V+, Si11Cr+, 
and Si8Co+. Th e threshold number for copper doping increases 
for Si12Cu+ in agreement with the increasing covalent radius, 
when going from cobalt to copper (Cordero et al. 2008). With 
the knowledge that Sin

+ clusters do not form stable complexes 
with Ar at 80 K, it was assumed that Ar must bind to the dop-
ant. As for SiH4 and H2O, binding to the transition-metal atom 
was only feasible if the dopant was located on the surface of the 
host cluster. If the dopant resided in the interior of a Sin cage, the 
Ar atom could only interact with Si surface atoms; thus, no Ar 
complexes were formed. Th e disappearance of the Ar complexes 
marked the formation of endohedral clusters. Additionally, for 
doubly doped silicon clusters, the threshold size also decreases 
along the 3d row: Si20Ti2

+, Si18V2
+, Si17Cr2

+, and Si14Co2
+, as seen in 

Figure 5.5. Th e gradual transition of the Ar sticking probability 
for SinV2

+ and SinCo2
+ was attributed to the possible coexistence 

of endohedral and exohedral isomers.

5.3.3 Quantum Chemical Calculations

In 1996, Jackson and Nellermoe published their observation of a 
remarkably strongly bound endohedral zirconium atom inside a 
Si20 cage. Based on local-density approximation calculations, they 
found a binding energy of 11.2 eV with respect to an isolated Zr 
atom and the most stable Si20 isomer known at the time (Jackson 
and Nellermoe 1996). Interestingly, they were obviously unaware 
of the experimental study by Beck almost 10 years earlier, since 
they encourage experimentalists to start studying doped sili-
con clusters without citing Beck’s work. For 5 years, the call for 
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5-8 Handbook of Nanophysics: Clusters and Fullerenes

experimental verifi cation remained unheard until Hiura et al. 
triggered again the interest in doped silicon clusters. A few months 
later, Kumar and Kawazoe used the Jackson and Nellermoe work 
as a basis for the reinvestigation of Zr-doped silicon clusters 
(Kumar and Kawazoe 2001). Th ey found that the cage proposed 
by Jackson is not stable but that the cage shrinks with one silicon 
atom sticking out (Figure 5.6a and b). Th e removal of this atom 
and reoptimization lead to a ZrSi19 cage with two silicon atoms 
sticking out (Figure 5.6c). Th e further removal of these two atoms 
and reoptimization lead to ZrSi17, a cage from which again one 
atom sticks out (Figure 5.6d). Finally, the removal of this atom 
yielded a compact, fullerene-like ZrSi16 cage (Figure 5.6e). Th e 
embedding energy of the Zr atom was calculated to be almost 
14 eV. For titanium as the dopant element, a Frank-Kasper (FK) 
polyhedron (Figure 5.6f) was found to be the most stable isomer 
with an exceptionally large HOMO-LUMO gap of 2.36 eV (Kumar 
and Kawazoe 2001, 2003a).

Since the Hiura and Kumar work, many theoretical studies 
have addressed the structures of SinM clusters with dopants from 
almost every group of the periodic table. Additional quantum 
chemical investigations have focused on periodic trends when 
doping silicon clusters. A review of all theoretical work on doped 
silicon clusters would go far beyond the scope of this chapter. 
Instead, only some selected studies are chosen, which deal with 
systems that have been presented in the Sections 5.3.1 and 5.3.2.

While it seems that alkaline-doped clusters containing up 
to 20 silicon atoms are always more stable when the dopant 

is situated on the surface of the cluster (Sporea and Rabilloud 
2007), transition-metal doped silicon clusters form cage-like 
geometries from a certain size onward (Guo et al. 2008).

Beck had already assigned the enhanced stability of the 
group-6-doped cluster cations MSi15

+ and MSi16
+ to a highly 

coordinated central transition-metal atom. Th eir structures 
remained unknown until Kumar and Kawazoe confi rmed 
that metal-encapsulated Sin cage structures account for their 
unusual stability, performing ab initio calculations on SinM 
clusters (M = Cr, Mo, and W; n = 14–17) (Kumar and Kawazoe 
2002). For CrSi15, diff erent isomers have been proposed as 
ground-state structures over the years by the same group. 
While initially a structure was proposed that was constructed 
by placing one silicon atom on the face of a body-centered 
cubic structure (Kumar and Kawazoe 2002), in a later study 
three very similar structures based on a decahedral isomer 
were found to be almost degenerate in energy (Kawamura et al. 
2004). In a more recent work, a FK-type polyhedron has been 
proposed to be the ground-state geometry (Kumar 2006). Th e 
calculated global minimum of CrSi16 was constructed by cap-
ping a higher-energy fullerene-like isomer of CrSi15. Kumar 
found competing growth models that gave rise to rather diff er-
ent structures of group-6-encapsulated 15- and 16-atom silicon 
clusters and account for their simultaneous strong abundances 
(Kumar and Kawazoe 2002).

Also, the fi ndings of Koyasu and coworkers can be under-
stood better with the help of theory. As mentioned above, 

(a) (b) (c)

(d) (e) (f )

FIGURE 5.6 Shrinkage of the Si cage. (a) Dodecahedral Zr-encapsulated Zr@Si20, as found by Jackson and Nellermoe (1996), (b)–(e) optimized 
structures of Zr@Si20, Zr@Si19, Zr@Si17, and Zr@Si16, respectively. Th e arrows indicate the atoms that were removed. (f) Th e Frank-Kasper polyhe-
dral structure of M@Si16 (M = Ti and Hf). (Reproduced from Kumar, V. and Kawazoe, Y., Phys. Rev. Lett., 87, 045503/1, 2001. With permission.)
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TiSi16 has been found to adopt an FK polyhedral geometry 
with a remarkable HOMO-LUMO gap of 2.36 eV (Kumar and 
Kawazoe 2001, 2003a). Th is isomer was found to lie 0.18 eV 
lower in energy than the fullerene-like isomer (Figure 5.6e), 
while the zirconium-doped fullerene-like isomer has been cal-
culated to be more than 1 eV more stable than the FK isomer 
(Kumar et al. 2003). Reveles and Khanna (2006) found that 
the compact FK isomer was also the ground-state structure for 
ScSi16

− and VSi16
+. Whenever the number of valence electrons 

was diff erent from 20, the structures distorted. However, the 
stability cannot be explained only by adding together the num-
ber of valence electrons of the dopant and the number of silicon 
atoms, since, e.g., ScSi17 or TiSi17 were not found to be more pro-
nounced in the mass spectra. It was proposed that it was neces-
sary to identify the silicon sites, which contribute an electron 
to the free-electron gas of the cluster. Such sites were identifi ed 
upon the bond critical points in the charge density. Only in the 
compact structures, all silicon atoms were directly coordinated 
to the metal atom and could therefore contribute an electron. 
Th us, both the geometry and the electron counting needed to 
be considered to correctly predict stable clusters (Reveles and 
Khanna 2006). Recently, it was found that the perfectly sym-
metric FK polyhedron might not be the global minimum for 
the 16-atom cage but that slightly distorted geometries lie a bit 
lower in energy (Torres et al. 2007).

Reactivity studies, as described in Section 5.3.2, mainly 
addressed the question at what size the transition from exo- to 
endohedrally doped silicon clusters occurs. Hiura et al. (2001) 
explained their fi ndings for the 5d transition-metal dopants 
mainly on the basis of an 18-electron rule. However, the reduced 
reactivity from a certain size onward could also be explained 
by endohedral cages, since the sizes for which the reactivity 
dropped are the same as the threshold sizes identifi ed for cationic 
Hf and W-doped silicon clusters by their reactivity with water 
vapor by Koyasu and coworkers (Table 5.1) (Koyasu et al. 2007). 
In the case of Hf-doped clusters, theory does not reproduce the 
experimental transition size precisely but calculates basket-like 
structures up to HfSi12 and cage-like structures for larger species 
(Kawamura et al. 2005). Studies by Guo and coworkers found 
the smallest cages for cationic and neutral tantalum-doped sili-
con clusters at TaSi12 (Guo et al. 2004, 2006), and therefore did 
not reproduce the experimental fi ndings neither for the cations 
nor for the neutrals (see Table 5.1). Th e reduced reactivity of 
WSi12

+ is in agreement with a highly symmetric D6h cage struc-
ture, as  calculated for neutral WSi12 (Miyazaki et al. 2002, Lu 
and Nagase 2003).

Some better agreement has been achieved between theory 
and the experimental studies for 3d transition-metal dopants 
(Janssens et al. 2007, Koyasu et al. 2007). Th e proposed basket-
shaped structures for SinTi (n = 8–12) and endohedral systems 
for larger sizes (Kawamura et al. 2005) agree nicely with the 
experiment, though Guo and coworkers predicted an endohe-
dral structure already for Si12Ti (Guo et al. 2007). Also for Si12V, 
Guo found a cage, which is in agreement with the critical size 
obtained for the cationic cluster but not with the threshold size 

measured for neutral vanadium-doped silicon clusters (Table 
5.1) (Guo et al. 2008). It was predicted by Khanna and coworkers 
that Cr is small enough to occupy the center of Sin (n = 11–14) 
cages (Khanna et al. 2002). Other groups, however, found caged 
structures for SinCr from n ≥ 12 and open basket-like structures 
for n < 12 (Kawamura et al. 2004, Guo et al. 2008). Th e argon-
physisorption experiments identifi ed Si11Cr+ as the smallest 
endohedral SinCr+ cluster (see Figure 5.5) (Janssens et al. 2007). 
In the case of similar structures for cations and neutral clusters, 
these fi ndings would favor the fi ndings of Khanna et al. Th e 
exohedral structure of neutral Si9Co found by diff erent groups 
(Lu and Nagase 2003, Guo et al. 2008) is diff erent from the dis-
appearance of the Ar complexes from Si8Co+ onward. Ma and 
coworkers are one of the very few groups that have applied a 
global-minimum search based on a genetic algorithm (Ma et al. 
2005). Th e genetic algorithm used a tight-binding model and 
resulted mainly in structures in which the cobalt atom prefers 
to sit in the center of the silicon cluster. Th e identifi ed low-lying 
isomers were further optimized with density functional theory 
(DFT) within the generalized gradient approximation. Th ey 
identifi ed Si9Co as the smallest cage, while Si8Co was a clus-
ter in which cobalt is almost fully surrounded by silicon atoms 
(Ma et al. 2005). In that regard, the results are in quite good 
agreement with the critical size found for argon physisorption 
(Figure 5.5).

Hagelberg and coworkers have been interested in copper-
doped silicon clusters since the late 1990s. Th ey have shown that 
Si12Cu is most stable in a cage geometry, while in Si10Cu the Cu 
atom occupies a surface site (Xiao et al. 2002). Again, the argon-
physisorption experiments support the computations.

In general, quantum chemical calculations have helped a lot 
in the understanding of the physical and chemical properties 
of doped silicon clusters. Th e enhanced stabilities of certain 
cluster sizes have been reproduced or, e.g., in the case of TiSi16, 
even predicted. Stabilization has been shown to be mainly due 
to geometric shell closings and especially compact structures, 
like the FK polyhedron and the 20 electron system of TiSi16. 
Also, the onset of cage formation is oft en predicted correctly. 
However, cages are only formed for rather large particles, and 
the potential energy surface of such species is characterized by 
an enormous number of local minima. Th e binary composition 
of doped silicon clusters enhances the complexity of the prob-
lem even further. In general, an eff ective sampling of the poten-
tial energy surface of binary clusters for identifying its global 
minimum requires global-optimization techniques (Johnston 
2003, Ferrando et al. 2008). Probably due to the high computa-
tional costs, only very few studies on doped silicon clusters have 
employed global-minimum search schemes (Ona et al. 2004, 
Ma et al. 2005, Wu and Hagelberg 2006). Still, these studies 
have been limited by the computational method that has been 
used for the global optimization or they have been restricted to 
a rather small size range.

Even if a putative global minimum can be identifi ed, the 
error associated with the theoretical method still makes defi nite 
assignments diffi  cult. Th e situation is somewhat diff erent once 
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detailed experimental data that characterize the species pro-
duced under laboratory conditions are available. In such cases, 
the search can be stopped once an isomer is found whose cal-
culated characteristics fi t the experiment. Mass spectrometry 
and reactivity studies have added a great deal to the knowledge 
of doped silicon clusters. However, they are somewhat limited 
regarding the content of detailed information on the electronic 
and geometric structure of the particle. For such insights, two 
methods have been proven to be of major importance, namely 
photoelectron and vibrational spectroscopy.

5.3.4 Photoelectron Spectroscopy

Th e credit for the fi rst photoelectron spectrum of an anionic 
transition-metal-doped silicon cluster goes again to Nakajima 
and coworkers. Th ey published spectra for mixed terbium-silicon 
clusters containing between 6 and 16 silicon atoms (Ohara et al. 
2002). It was found that the electron affi  nities changed remark-
ably from ∼2.2 eV for TbSi9 to 3.6 eV for TbSi10. In agreement 
with their reactivity studies (see Section 5.3.2), they interpreted 
this result as support for the onset of cage formation. A drastic 
drop in the electron affi  nities for clusters of masses correspond-
ing to species containing 12 and more silicon atoms could not 
be explained and was later shown to be due to Tb3OSin clusters. 
With better mass resolution and cleaner spectra, the electron 
affi  nities of clusters TbSin with n ≥ 12 were determined to be 
around 3 eV (Ohara et al. 2007).

Ohara and coworkers extended their photoelectron studies to 
silicon cluster anions doped with Ti, Hf, Mo, and W (Ohara et al. 

2003). Diff erences between the spectra of bare silicon clusters and 
the doped species immediately pointed to structural rearrange-
ments upon doping. Local minima in the electron affi  nities for 
doped clusters containing 16 silicon atoms were noted. However, 
the authors did not comment on the already visible large HOMO-
LUMO gap of these cluster sizes but supposed a geometric stabili-
zation upon cage formation (Ohara et al. 2003).

A large HOMO-LUMO gap of 1.9 eV was reported explicitly 
by the Nakajima group in 2005 to account for the enhanced 
intensity of TiSi16 in the mass spectrum (Koyasu et al. 2005). Th e 
electron affi  nity of TiSi16 was found to be only 2.03 eV (Figure 
5.7). Th e large gap confi rmed the stability of a closed 20 electron 
shell. Th e experimental fi ndings were in reasonable agreement 
with theoretical predictions of an electron affi  nity of 1.91 eV and 
a HOMO-LUMO gap of 2.35 eV (Kumar and Kawazoe 2001, 
Kumar et al. 2003). For the anions ScSi16

−, VSi16
−, and TiSi16F− 

instead, the HOMO-LUMO gap was too small to be detected, 
further confi rming the unique stability of TiSi16 (Figure 5.7) 
(Koyasu et al. 2005).

Remarkably large HOMO-LUMO gaps were measured also for 
ZrSi16 and HfSi16 with 1.36 and 1.37 eV, respectively. Compared to 
the 1.9 eV in the case of titanium doping, the trend of these val-
ues reproduces the order of the atomic radii, which are 1.45 Å for 
titanium, 1.59 Å for zirconium, and 1.56 Å for hafnium (Koyasu 
et al. 2007). Extending the studied size range, local maxima in 
the electron affi  nity were found for group-3-doped silicon cluster 
anions containing 10 silicon atoms. Th is eff ect was rationalized 
by an especially stable electronic confi guration of the assumed 
Si10

4− frame (Koyasu et al. 2008).
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A second group that has studied doped silicon clusters by 
means of PES is the one of Bowen and coworkers. Th ey produced 
Cr-doped silicon cluster anions upon laser ablation from a chro-
mium-coated silicon rod (Zheng et al. 2005). Th eir photoelectron 
spectrum of CrSi12

− started with a smooth onset and then exhibited 
a very sharp narrow peak. Th is peak has been argued to represent 
the transition from the ground state of the anion to the ground 
state of the neutral and confi rmed that the geometry of the anions 
and the neutral species are similar. Also, their measured vertical 
detachment energy of 3.18  eV nicely reproduced the predicted 
value of 3.11 eV (Zheng et al. 2005). Unfortunately, they were not 
able to confi rm the predicted HOMO-LUMO gap of ∼1 eV.

Using a two-laser vaporization source, Bowen and coworkers 
recently managed to produce suffi  cient amounts of europium-
doped silicon cluster anions to record their photoelectron spec-
tra (Grubisic et al. 2008). Th ey noted a large increase in the 
electron affi  nity from 1.9 to 2.8 eV, when going from EuSi11 to 
EuSi12. Th is fi nding was similar to the one by Ohara and cowork-
ers for terbium-doped silicon clusters and has been consequently 
attributed to a structural rearrangement from exo- to endohe-
drally doped silicon clusters (Grubisic et al. 2008).

5.3.5  Infrared Spectroscopy 
on Doped Silicon Clusters

PES yields valuable information on the electronic structures 
of gas-phase clusters. However, it is not always clear in how far 
structural rearrangements are responsible for measured changes 
in the electronic structures. Vice versa, the similar photoelec-
tron spectra of diff erent clusters do not necessarily mean that 
the geometric structure is similar.

IR spectroscopy is very sensitive to the cluster’s internal struc-
ture as molecular vibrations directly refl ect the arrangements 
of atoms in the cluster and the forces acting between them. 
Unfortunately, achievable cluster densities in the gas phase are 
usually too low for the detection of direct absorption in the IR. 
One way to circumvent this problem is to deposit and accu-
mulate clusters inside a cryogenic matrix. Th is technique has 
been used to assign the structures of small bare silicon clusters 
(Honea et al. 1993) but has not been applied to doped silicon 
clusters yet.

If one wants to study true gas-phase clusters, coupling spectro-
scopic techniques with mass spectrometry allows, in principle, 
for detection effi  ciency close to unity. Th e use of mass spectro-
metric detection requires a reaction of the cluster in response 
to the absorption of IR light, which can, e.g., be fragmentation. 
A similar approach has been used by Duncan and coworkers in 
the visible range, using a 532 and 355 nm laser to dissociate cat-
ionic silicon clusters doped with copper, silver, and chromium 
atoms (Jaeger et al. 2006). Th e clusters that contained seven sili-
con atoms tended to lose primarily the dopant atom, indicating 
exohedral structures. Th e same was true for AgSi10

+ and CuSi10
+. 

For CrSi15
+ and CrSi16

+, however, dissociation occurred mainly 
through the loss of silicon atoms, confi rming endohedral cages, 
as predicted earlier (Jaeger et al. 2006).

Tunable table-top laser systems do not provide suffi  cient fl u-
ence in the IR to excite strongly-bound clusters to a point where 
fragmentation can occur. Only with the access to powerful free-
electron lasers like the Free Electron Laser for Infrared eXperi-
ments (FELIX, see [Oepts et al. 1995]), a variety of innovative 
means of gas-phase spectroscopy became possible (Asmis et al. 
2007).

In IR-MPD spectroscopy, either the depletion of parent ions 
or the formation of the photofragments is monitored to probe 
the absorption process. Probing the fragments relies on an initial 
mass selection and gives rise to almost background-free spectra 
(Asmis and Sauer 2007). Th e measurement of depletion has the 
advantage that all complexes in the molecular beam are probed, 
and since the detection method is mass-selective, the simultane-
ous measurement of IR spectra for diff erent cluster sizes is pos-
sible (Lyon et al. 2009). Further, also neutral molecules can be 
probed with FELIX radiation (Fielicke et al. 2005, Gruene et al. 
2008a). A disadvantage of measuring the depletion is that the 
spectra are not background-free and can suff er from a limited 
signal-to-noise ratio.

Th e vibrational transitions of doped silicon clusters lie in the 
far-infrared (FIR), typically between 150 and 600 cm−1, which 
corresponds to an energy per photon of only ∼20–75 meV. On 
the other hand, the clusters are rather strongly bound with bond 
dissociation energies of around 4 eV for bare silicon clusters 
(Jarrold 1995). Even with the high laser power that is provided 
by FELIX, IR-MPD of such species has not been observed. Th is 
problem can be overcome by using the so-called messenger 
method, in which a loosely bound ligand that is supposed to 
have a minor to negligible infl uence on the structure and vibra-
tional properties, is attached to the species that is to be analyzed 
(Fielicke et al. 2004).

As has been shown in Section 5.3.2, argon binds to exohe-
drally doped silicon clusters at 80 K. Th erefore, the vibrational 
spectra of small exohedral vanadium- and copper-doped sili-
con cluster cations have been obtained upon IR-MPD of their 
complexes with one argon atom (Gruene et al. 2008b). Figure 5.8 
shows the experimental and theoretical vibrational spectra of 
SinCu+ and SinV+ (n = 6–8). Only the theoretical spectrum of the 
particular isomer that reproduced the experimental spectrum 
the best is shown here. In general, the peak positions are in good 
agreement while the peak intensities deviate between theory and 
experiment. In particular, the low-energy absorptions around 
300 cm−1 are less pronounced in the experiment, which could be 
due to the larger number of photons needed for photodissocia-
tion. Furthermore, it has to be kept in mind that the IR-MPD 
spectra do not correspond directly to linear absorption spec-
tra (Oomens et al. 2006). In almost all cases, the experimental 
spectrum was reproduced best by the calculated lowest-energy 
structure. For Si6V+, theory found a Si-capped octahedron as the 
lowest-energy structure, while the experiment was reproduced 
much better by the spectrum of a triplet-state pentagonal bipyr-
amid with vanadium in an equatorial position, which was calcu-
lated to be 0.03 eV higher in energy. Interestingly, the experiment 
did not show any features that would point to the coexistence 


