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All models are wrong, some are useful. (Box 1976)
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Preface

The analysis of lifetime data (or more exactly, time-to-event, event-history,
or duration data) plays an important role in medicine, epidemiology, biology,
demography, economics, engineering, actuarial science, and other fields. It has
expanded rapidly in the last three decades, with works having been published
in various disciplines in addition to statistics. But what distinguishes survival
analysis from other fields of statistics? Why does survival data need a special
statistical theory? The main problem is censoring, which means that, for some
individuals in the study population, the researcher only has the information
that the event of interest did not occur before a particular time point. To
put it plainly, a censored observation contains only partial information about
the random variable of interest. This kind of incomplete observation needs
special methods. As a consequence of censoring, survival times are usually
a mixture of discrete (censoring indicator) and continuous (event/censoring
time) data that lend themselves to a different type of analysis from that used
in the traditional discrete or continuous case. The mixture is the result of
censoring and has an important effect on data analysis. The Kaplan—Meier
estimator (Kaplan and Meier 1958) of the survival function is a major step
in the development of suitable models for such kind of data. Furthermore,
most evaluations are made conditionally on what is known at the time of the
analysis, and this changes over time. Usually, as the population under study
is changing, we only consider the individual risk to die for those who are still
alive, but this means that many standard statistical approaches cannot be
applied.

Models based on the hazard function have dominated survival analysis since
the construction of the proportional hazards model by Cox (1972). One of the
reasons this model is so popular is the ease with which technical difficulties
such as censoring and truncation are handled. This is due to the appealing
interpretation of the hazard as a risk that changes over time. Naturally, the
concept allows for the entering of covariates in order to describe their influence
and to model different levels of risk for different subgroups.

This book focuses on frailty models, a specific area in survival analysis.
The concept of frailty provides a convenient way of introducing unobserved
heterogeneity and associations into models for survival data. In its simplest
form, frailty is an unobserved random proportionality factor that modifies
the hazard function of an individual or related individuals. In essence, the
concept goes back to the work of Greenwood and Yule (1920) on ”accident
proneness” with binary data. The first univariate frailty model was suggested
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by Beard (1959), considering different mortality models. The term frailty
itself was introduced by Vaupel et al. (1979) in the univariate context. Its
first applications to problems in multivariate survival analysis date from a
seminal paper by Clayton (1978).

Ordinary methods in survival analysis implicitly assume that populations
are homogenous, meaning that all individuals have the same risk of death.
However, in general, it is impossible to include all relevant risk factors, perhaps
because we have no information on individual values, which is often the case
in demography. Furthermore, we may not know all relevant risk factors, or it
is impossible to measure them without great financial costs, something that
is common in medical and biological studies. The neglect of covariates leads
to unobserved heterogeneity. That is, the population consists of subjects with
different risks. As a consequence, it is important to consider the population
as heterogeneous, i.e., as a mixture of individuals with different hazards. A
frailty model is a random effects model for time-to-event data, where the
random effect (frailty) has a multiplicative effect on the baseline hazard. It can
be used for univariate (independent) lifetimes, i.e., to adjust for unobserved
risk factors in a proportional hazards model (heterogeneity). The variability
of event-time data is split into one part that depends on covariates and is
thus theoretically predictable, and one part that is initially unpredictable,
even knowing all relevant information at that time. There are advantages in
separating these sources of variability: unobserved heterogeneity can explain
some unexpected results or give an alternative interpretation, for example,
crossing-over or leveling-off effects of hazards.

However, considering multivariate (dependent) duration times is especially
interesting. The introduction of a common random effect — frailty — is a
natural way of modeling the dependence of event times. The random effect
explains the dependence in the sense that had we known the frailty, the event
times would have been independent. In other words, because we do not know
the frailty, the lifetimes are independent conditionally on the frailty. This
approach can be used for survival times of related individuals such as twins
or family members, where independence cannot be assumed, or for recurrent
events in the same individual or for times to several events for the same
individual, such as onset of different diseases, relapse, or death (competing
risks). Different extensions of univariate frailty models to multivariate models
are possible and will be considered in this book.

The standard assumption is to use a gamma distribution for frailty, but
other distributions are also possible. The relationships between individual
and observed survival characteristics play a key role in the statistical analysis
of duration data in heterogeneous populations.

Various frailty models have been developed in the past. However, compared
with standard mixed models, frailty models pose additional difficulties in
developing inferential methods, caused by incomplete data due to censoring
and truncation. Thus, inferential methods have been less developed here than
in other mixed models.



xx1

To keep the book to a reasonable length, some topics are discussed only
briefly, and references are given for further reading. Because the literature
on frailty models is extensive (especially in the last few years), the choice of
subject matter is difficult. The material discussed in detail is to some extent a
reflection of the author’s interest in this research field. However, my attempt
has been to present a relatively comprehensive and complete overview of the
fundamental approaches in the field of frailty models.

The present monograph is primarily aimed at the biostatistical community
with applications from biomedicine, (genetic) epidemiology, and demography.
Some efforts were also undertaken to include literature from other fields like
econometrics if interesting methodological problems are raised. The practical
use of models is a key issue in biostatistics, where the data at hand often
are motivating for the development of new models. The language of this
book is nontechnical and therefore it can be understood by nonspecialists.
Nevertheless, some experience with survival analysis is an advantage.
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Chapter 1

Introduction

1.1 Goals and Outline

Survival analysis is one of the core research methods used in many fields such
as medicine, biology, epidemiology, demography, and engineering. Notion
survival analysis reflects the origin of the methods in medical and demographic
studies of mortality. Especially since the end of the 1970s, the empirical
analysis of event history data has become widespread by the development
of the proportional hazards model in the seminal paper by Cox (1972) and
several extensions during the last three decades. The present monograph
deals with one important direction of extensions in this field, namely frailty
models. A frailty model is a multiplicative hazard model consisting of three
components: a frailty (random effect), a baseline hazard function (parametric
or nonparametric), and a term modeling the influence of observed covariates
(fixed effects).

Only a few books exist on this subject, which contain short chapters devoted
to frailty models. Ibrahim et al. (2001) consider parametric as well as semi-
parametric shared frailty models based on a Bayesian approach. Klein and
Moeschberger (2003) consider the application of the EM algorithm in semi-
parametric shared frailty models. Aalen et al. (2008) take a process point of
view dealing with different frailty models. The present book extends in two
main directions the presentation of frailty models made in the seminal mono-
graphs by Hougaard (2000), Therneau and Grambsch (2000), and Duchateau
and Janssen (2008). First, univariate frailty models with their focus on unob-
served heterogeneity are covered in more detail compared to previous books.
In univariate models all durations describe the time to the same type of event,
and event times are considered as independent. Second, the main emphasis
is placed on correlated frailty models as natural extensions of shared frailty
models. Here, different strengths of association between clustered lifetimes
are of special interest.

One of the main problems in the application of frailty models to real data
is the limited availability of standard software in this area. Consequently,
one aim of this monograph is to show which of the models considered can
be applied to real data by using standard statistical packages such as R,
SAS, and STATA. Here, the link to generalized linear mixed models will be
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exploited. Both parametric as well as semiparametric models are considered.
Furthermore, models are fitted by the frequentist and Bayesian approaches.
Most of the Bayesian analyses are performed with WinBUGS, but the new
PROC MCMC in SAS opens new possibilities for the future.

In this first chapter we will introduce different data sets used throughout
the book to illustrate modeling techniques and practical interpretations of
the results. In Chapter 2 an introduction to basic and general concepts in
survival analysis and a definition of common terminology are given. The
topic is also covered by other books, for example, Miller (1981), Cox and
Oakes (1984), Andersen et al. (1993), Lawless (2002), Kalbfleisch and Prentice
(2002), Klein and Moeschberger (2003), Collett (2003), and Machin, Cheung,
and Parmar (2006). The recent book by Finkelstein (2008) has a special focus
on reliability but also covers a wide range of exiting topics in biostatistics and
demography. Though, it is not necessary for people acquainted with this field
to read it, it does contain notations and key results and lays the basis for
the more advanced frailty models treated in the following chapters. After
this preparatory chapter we deal with univariate frailty models (single spell
data) in Chapter 3, discussing the broad range of possible frailty distributions
with their specific features. Gamma distribution is the most often applied
frailty distribution because frailties appearing in conditional likelihood can be
integrated out, giving simple expressions of unconditional likelihood. Then,
maximization of unconditional likelihood can be used for estimation. Here,
the interpretation of frailty is as unobserved heterogeneity due to nonobserved
covariates. The focus of Chapter 4 is on the shared frailty model, which has
already been discussed in detail by other authors (Hougaard 2000, Therneau
and Grambsch 2000, Duchateau and Janssen 2008). Shared frailty models are
an important tool for analyzing multivariate (clustered) survival data. Hence,
this chapter forms the basis of the correlated frailty model and its extensions
considered in detail in Chapter 5. Advantages and limitations of the proposed
models are discussed, and simulations show the properties of the parameter
estimates for finite sample sizes. Different approaches and applications are
presented to demonstrate the flexibility of the correlated frailty approach in
modeling associations in clustered event times. Chapter 6 deals with copula
models and analyzes similarities and dissimilarities between frailty and copula
models. Chapter 7 gives an overview of different problems related to frailty
models such as tests for homogeneity, identifiability aspects, and available
software. The Appendix provides a series of technical mathematical results
and background about genetic models used throughout the book.

The present monograph does not attempt to give a complete overview of
the fast growing literature on frailty models; this would not be possible. The
treatment of the topics covered are restricted to explaining the basic ideas in
frailty modeling and statistical techniques, with focus on real data application
and interpretation of the results. In many cases different models are applied
to the same data to compare and discuss their advantages and limitations
under varying model assumptions.
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1.2 Examples

Different survival models are considered in this book. Most of them will
be applied to real data, mainly using examples from research fields such as
medicine, epidemiology, and demography. Survival analysis deals with the
analysis of times until the occurrence of a well defined event. The occurrence
of this event describes the transition from one state to another, for example,
occurrence of a disease is the transition from the state of being healthy to the
state of being sick. Sometimes the transition is of special interest (incidence
of the disease), and in other cases the state (prevalence of the disease) is the
target of the analysis. For such kind of analysis it is necessary to define the
time scale and a starting time point zero. In many cases the time scale is the
age of the individual. In clinical trials the starting point is often beginning
of treatment. If the focus is on the development of a disease, the time of
diagnosis is usually the starting point. In occupational cohort studies the
starting point is often the beginning of employment or unemployment.

We first consider the univariate event times, which means data with no
clustering. Such data set is given in Example 1.1, based on a prognostic study
analyzing the value of electron-beam computed tomography (EBCT) derived
calcium scores for risk stratification in symptomatic patients. Example 1.2
presents the malignant melanoma data. The models fitted to these data sets
are parametric and semiparametric proportional hazard models. The most
important goal of Chapter 3 is to analyze the effect of including unobserved
heterogeneity on regression parameter estimates.

However, the main focus of this book is on multivariate frailty models, where
event times are clustered. Example 1.3 will serve as an example of univariate
as well as multivariate data. In the last situation the cancer-diagnosing units
were considered as clusters. The cluster size differs from cluster to cluster,
which is common in multicenter clinical trials. Here, frailty can describe
center-to-center variations not explained by observed covariates. In addition
to the problem of analyzing the effect of observed covariates, an important
research problem is evaluating the dependence between event times in clusters.
In genetic studies, correlations between family members are the basis of the
analysis of heritability of specific traits, for example, the times of onset of
breast cancer or cause of death specific lifetimes. We use Danish and Swedish
twin data provided by the Danish Twin Registry at the University of Southern
Denmark in Odense and the Swedish Twin Registry at the Karolinska Institute
in Stockholm to emphasize the practical purpose of the frailty models with
fixed and small cluster sizes. In Example 1.4, cause-specific lifetimes of Danish
twins are considered. A subsample with additional covariate information is
presented in Example 1.5. Example 1.6 provides data on the age of onset
of breast cancer in Swedish twins, whereas Example 1.7 deals with current
status data. The next section provides a brief description of these data.
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Example 1.1 Prognostic Study of the EBCT Calcium Score

EBCT-derived calcium score is a measure of coronary arteriosclerotic plaque
that can be used for more precise risk stratification in symptomatic patients
(Schmermund et al. 2004). In the study presented here, it was investigated
whether EBCT-derived calcium score can add prognostic information com-
pared with clinical information derived from risk-factor assessment, exercise
stress testing, and coronary angiography. Patients with recent (<3 months)
onset of symptoms were retrospectively identified and examined for possible
coronary artery disease (CAD) and underwent EBCT. Complete follow-up
after 42 months was available for 255 patients with mean age at baseline of
58 years, who were finally included into the study.

Table 1.1: Five patients in the EBCT study

id time status risk group calcium score age

1 42 0 2 0 70
2 42 0 1 0 59
3 42 0 1 1 74
4 14 1 4 1 70
5 42 0 1 0 50

Four clinical risk groups with increasing evidence of CAD were constructed
based on risk factor assessment, exercise stress testing, coronary angiographic
anatomy, and revascularization at baseline. The main interest was in the
occurrence of a combined event consisting of major adverse cardiac events
such as myocardial infarction, cardiac death, and revascularization. The event
was observed in 40 (16%) patients during the follow-up, the observations of
the other patients are mainly censored after 42 months at the end of the study.
The data for five patients are presented in Table 1.1.

Table 1.2: Description of the EBCT study population

covariate category absolute frequency relative frequency
risk group 1 79 31.0%
2 78 30.6%

3 42 16.5%

4 56 21.9%

calcium score < 100 150 58.8%
> 100 105 42.2%

age (years) 23 — 54 85 33.3%
55 — 62 79 31.0%

63 — 84 91 35.7%
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The first column gives the patient specific identification number, the observed
event or censoring time in the second column is measured in months. The
covariate of main interest in this study is the CAD risk divided into four
prognostic groups (group 1 — no evidence of ischemia, < 1 conventional risk
factor; group 2 — evidence of ischemia and/or > 2 conventional risk factors, no
angiographic stenoses; group 3 — angiographic stenoses, no revascularization
at baseline; group 4 — early revascularization). The dichotomous covariate
calcium indicates an EBCT-derived calcium score larger than 100. There is
no clustering in this data set. One of the research questions was to examine
whether the EBCT-derived calcium score can add prognostic information
compared with the clinical information summarized in the risk groups. Age
(in years) was categorized into three groups with the youngest age group as
the reference. The covariate frequencies are given in Table 1.2.

Example 1.2 Malignant Melanoma Data

The data set contains observations of 205 patients with radical surgery for
malignant carcinoma (skin cancer) at the University Hospital of Odense in
Denmark during 1962-1977. Radical surgery means that the tumor was
completely removed including the skin within a distance of about 2.5 cm
around it. Patients were followed up until 1977 and 57 deaths from malignant
melanoma, and 14 deaths due to other causes (coded as censored event times)
were observed. The data of five patients are given in Table 1.3.

Table 1.3: Data of five patients of the
malignant melanoma study

id time status gender age thickness

1 10 0 1 76 676
2 30 0 1 56 65
3 35 0 1 41 134
4 99 0 0 71 290
5 185 1 1 52 1208

The first column provides the unique patient identification number. Variable
time measures time since surgery in months and variable status indicates
the occurrence of death caused by malignant melanoma. There are several
covariates available in the data set; for ease of presentation we will restrict
them in this application to the following three covariates: gender (0 = female,
1 = male), age at surgery (years), and tumor thickness (in 1/100 mm). This
is a univariate data set without clustering. The data was first analyzed by
Drzewiecki et al. (1980a,b) and later published and reanalyzed in more detail
by Andersen et al. (1993).
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Example 1.3 Halluca Study

The Halle Lung Cancer (Halluca) study was a study investigating provision
of medical care to lung cancer patients in the region of Halle and Dessau in
the eastern part of Germany (Bollmann et al. 2004, Kuf} et al. 2008). The
study region covers about 1.5 million inhabitants and belongs to the State
of Saxony-Anhalt. In cooperation with the regional clinical tumor registries,
all lung cancer patients in the study region were recorded from April 1996
to September 1999, and follow-up was done until September 2000. A total of
1696 lung cancer patients were observed, and survival was defined as time from
clinical, histological or cytological diagnosis to death. 1349 patients (79.5%)
died until the end of follow-up; median survival in the study population was
9.3 months. To validate and complement survival information, the data from
the Clinical Cancer Registry were compared to death certificates collected by
the local health institutions and linked to the data from the Common Cancer
Registry of Eastern Germany. Minimal follow-up time was 12 months, and
the median follow-up time 33 months. To judge the influence of prognostic
and risk factors on overall survival, five fixed-effects covariates, known to be
important in the prognosis of survival regarding lung cancer, were included.
The information for five patients is given in Table 1.4. The first column gives

Table 1.4: Data of five patients in the Halluca study

id time status wunit gender age type ECOG stage

1 54.74 1 1 1 75.02 1 0 4
2 6.68 1 1 1 63.60 1 0 )
3 033 1 1 1 52.68 2

4 24.28 1 2 1 55.14 . 0 .
5 15.46 0 2 0 79.28 2 0 1

the patient-specific id number, and the second column the survival time (in
months). The third column contains the survival status (1 = death, 0 = alive)
and the fourth column the cluster variable diagnosing unit. Lung cancer was
diagnosed in 56 different diagnosing units with numbers of patients ranging
from 1 to 392 (mean 30.3). The Halluca data is analyzed using univariate
approaches in Chapters 2 and 3. In Chapter 4 the data is treated like from
a multicenter study with the diagnosing unit as cluster variable. A cluster
effect by diagnosing unit is indicated by Figure 1.1. In multicenter studies
(with treatment center as cluster), despite the tight study protocols, often
center-to-center variation occurs, which cannot be explained by covariates.
Frailty models can be used to investigate this variation. The other columns
represent variables gender (0 = female, 1 = male), age (years), histologic type
(1 = small-cell lung cancer, 2 = non-small-cell lung cancer), ECOG status
(range 0 to 4), and UICC stage (1 =1, 2 =11, 3 = IIla, 4 = IIb, 5 = IV).
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Figure 1.1: Median survival (95% CI) of 25 diagnosing units in Halluca

Dots indicate missing covariate values. It was initially decided to model these
as separate categories despite the dangers of this procedure. Throughout the
book, in the tables presenting the results, these missing categories are omitted.

Table 1.5: Description of the Halluca study population

covariate category absolute frequency relative frequency
gender male 1374 81.0%
female 322 19.0%

histologic type NSCLC 1183 69.8%
SCLC 366 21.5%

missing 147 8.7%

ECOG ECOG 0-2 1366 68.7%
ECOG 3-4 123 7.3%

missing 407 24.0%

stage I 185 10.9%
IIa 79 4.7%

IIb 195 11.5%

IIT 280 16.5%

v 621 36.6%

missing 336 19.8%

We further explicitly omitted the primary treatment as a covariate. This
was to prevent unjustified treatment recommendations, which should only be
derived from randomized trials and not from observational studies. The study
population is described in Table 1.5. Mean age at diagnosis was 65 years.
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Example 1.4 Danish Twins Cause-Specific Mortality Data

The Danish Twin Registry was the world’s first nation—wide twin registry,
established in 1954 by Bent Harvald and Mogens Hauge. The older part
of this population based registry includes all twins born in Denmark during
the period 1870-1910 and all like-sex pairs born between 1911 and 1930 in
which both partners survived to the age of six years. Pairs with deaths be-
fore the age of six were excluded because it turns out to be very difficult to
obtain detailed information especially about the zygosity of such twin pairs.
The birth registers from all 2200 parishes of Denmark during the relevant
calendar years were manually scrutinized to identify multiple births. After
such births were identified, a search was then carried out for the twins or,
whenever needed, for their closest relatives in regional population registers
(in operation since 1924) or other public sources, especially the archives of
probate courts and censuses. As soon as a twin was traced, a questionnaire
was sent to the twin (if she or he was alive) or to the closest relatives (if she
or he was not alive). Questions about phenotypic similarities were included
in the questionnaires to assess the zygosity by self-reported similarities. The
reliability of this method was validated by comparison with the results of
laboratory methods based on blood serum enzyme group determination in a
subgroup of twins. The misclassification rate of this method was found to
be less than 5% in the Danish twin data (Holm 1983). Similar results are
known from the Swedish Twin Registry (Cederlof et al. 1961) The follow-up
procedure traced nearly all twins who did not die or emigrate before the age
of six years. For further, more detailed information about the construction
and the composition of the Danish Twin Registry see Hauge (1981).

The data provided by the Danish twin registry contain 8201 monozygotic
(MZ) and dizygotic (DZ) twin pairs who were born between 1 January 1870
and 31 December 1930, and who were both still alive on 1 January 1943.
As a consequence of this restriction, around two-thirds of the twin pairs born
were excluded because of the high infant mortality of this period (1870-1930).
Furthermore, twins have a higher infant mortality than singletons because of
their lower birth weight. It was necessary to exclude early deaths because it
was nearly impossible to obtain zygosity information when one or both twin
partners died at young ages. Zygosity information is crucial to the application
of the methods in twin research.

Table 1.6: Data of three Danish twin pairs

id time status pair gender zygosity cause birth

1 76.09 1 1 1 1 2 1889
2 76.02 1 1 1 1 2 1889
3 64.73 1 2 0 2 4 1908
4 94.75 1 2 0 2 1 1908
5 85.62 0 3 0 1 0 1881
6 68.61 1 3 0 1 2 1881
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Observed covariates are gender, zygosity and year of birth. A total of 246 twin
pairs with incomplete information about the cause of death were excluded,
leaving a study population of 7955 twin pairs. Individuals were followed up
through 31 December 1993, and those identified as deceased after that date
have been classified here as living. Altogether, we have 1344 male MZ twin
pairs and 2411 DZ twin pairs, and 1470 female MZ twin pairs and 2730 DZ
twin pairs. In addition to the lifetimes, there is information about cause of
death for all noncensored lifetimes, that is, for all individuals in the study
population who died before 31 December 1993. For the present analysis, only
the underlying cause of death was considered.

The data for the first six twins are given in Table 1.6. The first column gives
the identification number of the individual, and the second one the survival or
censoring time (in years). The third column contains the censoring indicator
(1 = death, 0 = alive), the fourth column is the identification number of
the twin pair (cluster), and the four other columns represent the covariates
gender (0 = female, 1 = male), zygosity (1 = monozygotic, 2 = dizygotic),
cause of death (0 = alive, 1 = cancer, 2 = coronary heart disease, 3 = stroke,
4 = respiratory diseases, 5 = other), and year of birth. For more detailed
information about cause of death, gender, and zygosity of the study population
see Table 1.7.

Table 1.7: Causes of death in the Danish twin population (number of
individuals)

males females

cause of death MZ twins DZ twins MZ twins DZ twins
cancer 440 809 423 823
coronary heart disease 666 1180 548 999
stroke 161 278 186 335
respiratory diseases 143 203 89 205
other causes 336 661 330 555

all causes together 1746 3131 1576 2917
alive 942 1691 1364 2543

Information regarding death status, age at death, and cause of death was
obtained from the Central Person Register, the Danish Cancer Register, the
Danish Cause-of-Death Register, and other public registries in Denmark.
The main source for obtaining information on cause of death was the Death
Register at the National Institute of Public Health. Information about cause
of death is available from this register for individuals who died after 1942
(Juel and Helweg-Larsen 1999). Consequently, cause of death is included in
the twin register only for twins who died after this year.
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Table 1.8: Cause of death groups by ICD number

cause of death ICD revision 6 & 7 ICD revision 8
cancer 140 - 205 140 - 209
coronary heart disease 420 410 - 414
stroke 330 - 334 430 — 439
respiratory diseases 470 — 527 460 — 519

The validity of the twin register was checked on the basis of a comparison of
information about year of death with the nationwide Danish Cancer Register.
There was around 99% agreement, although both registries were independent.
Further data corrections increased this level of agreement to almost 100%.
Cause of death was coded following the sixth, seventh, and eighth edition of
the International Classification of Diseases (ICD). Four different groups of
main causes of death are considered in the present example: cancer, coronary
heart disease (CHD), stroke, and diseases of the respiratory system. ICD
codes in three revisions of the ICD for these broad cause-of-death groups are
given in Table 1.8. Causes of death are a common example for competing
risks.

Example 1.5 Danish twins CHD mortality data with covariates

The data in this example is a subset of the cause-specific mortality data in
the foregoing example. Here the main focus is on age at death with death
caused by coronary heart disease and the influence of BMI and smoking on
this outcome.

In 1966, a questionnaire including questions about smoking, height, and
weight was mailed by the Danish Twin Registry to all Danish twins born
in the period 1890-1920 who were alive and traceable on 1 January 1966.
3709 individuals answered the questionnaire (response rate 65%). Excluded
from the study were 813 twins with nonresponding partners, four pairs with
unknown zygosity, and 212 pairs with incomplete or uncertain information on
height and weight. A total of 23 pairs were excluded because of incomplete
information about the cause of death, resulting in a total study population of
1209 complete twin pairs.

Individuals were followed from 1 January 1966 to 31 December 1993. Those
persons identified as deceased after the follow-up period are classified for our
purposes as censored. At the end of follow-up period, approximately 40% of
the twins were still alive, resulting in the right censored data. Altogether,
there were 210 male monozygotic twin pairs and 316 dizygotic twin pairs,
and 273 female monozygotic twin pairs and 410 dizygotic twin pairs. The
data for the first six twins in the study population are given in Table 1.9.
The first column provides the unique identification number of the twin, the
second column the observation time (in years). The third column contains the



