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Series Preface

The aim of the Mathematics and Physics for Science and Technology series is to describe
the mathematical methods as they are applied to model natural physical phenomena and
solve scientific and technological problems. The primary emphasis is on the application,
including formulation of the problem, detailed solution, and interpretation of results. The
mathematical methods are presented in sufficient detail to justify every step of solution,
and avoid superfluous assumptions.

The main areas of physics are covered, namely:

• Mechanics of particles, rigid bodies, deformable solids and fluids

• Electromagnetism, thermodynamics, and statistical physics as well as their classical,
relativistic, and quantum formulations

• Interactions and combined effects (e.g., thermal stresses, magnetohydrodynamics,
plasmas, piezoelectricity, and chemically reacting and radiating flows)

The examples and problems chosen include natural phenomena in our environment, geo-
physics, and astrophysics; the technological implications in various branches of engineering;
and other mathematical models, in biological, economic, and social sciences.

The coverage of areas of mathematics and branches of physics is sufficient to lay the
foundations of all branches of engineering, namely:

• Mechanical—including machines, engines, structures, and vehicles

• Civil—including structures and hydraulics

• Electrical—including circuits, waves, and quantum effects

• Chemical—including transport phenomena and multiphase media

• Computer—including analytical and numerical methods and associated algorithms

Particular emphasis is given to interdisciplinary areas, such as electromechanics and
aerospace engineering. These require combined knowledge of several areas and have an
increasing importance in modern technology.

Analogies are applied in an efficient and concise way, across distinct disciplines, but also
stressing the differences and aspects specific to each area, for example:

• Potential flow, electrostatics, magnetostatics, gravity field, steady heat conduction,
and plane elasticity and viscous flow

• Acoustic, elastic, electromagnetic, internal, and surface waves

• Diffusion of mass, electricity and momentum.

xxi
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xxii Series Preface

In each case the analogies are exploited by common mathematical methods with distinct
interpretations in each context.

The series is organized as a sequence of mathematical methods, each with a variety
of applications. As the mathematical methods progress, the range of applications widens.
For example, complex functions are used to study potential flows and electrostatics in the
plane. The three-dimensional extension uses generalized functions. The latter are used with
differential equations to describe vibrations and waves. The series and integral transforms
are applied to initial and boundary-value problems. Tensor calculus is used for elasticity,
viscous fluids, and relativity. Thus each method is consolidated with diverse applications
before proceeding to the next.

The presentation of the material is intended to remain accessible to the university stu-
dent. The subjects are introduced at a basic undergraduate level. The deductions and inter-
mediate steps are detailed. Extensive illustrations and detailed legends promote visual and
intuitive memory and understanding. The material is presented like a sequence of lectures
and can be used to construct the subjects or disciplines of a university curriculum. It is
possible to adjust the level of the curriculum by retaining the basic theory and simpler
examples, and using the rest as background material for further reading.

The adaptation of the material for specific lecture courses can be made by selecting the
basic theory and examples used as applications. Some topics chosen for greater insight may
be included according to the motivation. The bibliography gives a choice of approaches to
the subject and the possibility to focus more in specific subareas. The presentation follows
a logical rather than historical sequence; some references to the original sources are used to
give a historical perspective. The notes at the ends of chapters hint at the broader scope of
the subject. The contents of each chapter are previewed in an introduction.

The present series embodies a concept of “interdisciplinary education in science and tech-
nology”. The traditional approach is to study each area of mathematics separately (analysis,
geometry, differential equations, etc.) as well as each branch of physics (classical mechan-
ics, heat and thermodynamics, electromagnetism, etc.). The student is then expected to
“merge” all these sources of information, for example, know all that is needed about partial
differential equations for the Maxwell equations of electromagnetism, calculus of variations
for the minimum energy methods of elasticity, thermodynamics for the dynamics of com-
pressible fluids, and so on. The time gaps and disjoint nature of this teaching implies a
careful sequence of subjects to ensure each subject starts with the required background.
Also there is considerable duplication in that similar methods and analogous problem recur
in different contexts. Furthermore, the student discovers the utility of most of the mathe-
matics much later, when it is applied to physical and engineering problems. The combined
interdisciplinary study aims to resolve these issues.

Although the course starts at undergraduate level it gradually proceeds to research
level and to the frontiers of current knowledge. The presentation of each subject takes into
account from the very beginning not only the fundamentals but also the major topics of
subsequent use. For example, the treatment of complex functions lays the basis for differen-
tial equations, integral transforms, asymptotics, and special functions. Linear algebra and
analytic geometry lead to tensor analysis, differential geometry, variational calculus, and
relativity. An introduction to fluid mechanics via the potential flow is followed by vortical,
compressible, viscous, and multiphase flows. Electrostatics and magnetostatics are followed
by unsteady electromagnetic fields and waves, magnetohydrodynamics, and plasmas. These
apparently disparate subjects are treated at an early stage, analogies are presented, and at
subsequent stages they are combined into multidisciplinary applications.

For example, a fluid may be subject to four restoring forces associated with pressure,
gravity, rotation, and magnetic fields. The corresponding wave motions are respectively
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acoustic, internal, inertial, and magnetic waves. They appear combined as magneto–
acoustic–gravity–inertial (MAGI) waves in a compressible, ionized, stratified rotating fluid.
The simplest exact solutions of the MAGI wave equation require special functions. Thus the
topic of MAGI waves combines six subjects: gravity field, fluid mechanics, and electromag-
netism and uses a complex analysis, differential equations, and special functions. This is not
such a remote subject, since many astrophysical phenomena do involve this combination of
several of these effects, as does the technology of controlled nuclear fusion. The latter is the
main source of energy in stars and in the universe; if harnessed, it would provide a clean and
inexhaustible source of energy on earth. Closer to our everyday experience there is a variety
of electromechanical and control systems that use modern interdisciplinary technology. The
ultimate aim of the present series is to build up knowledge seamlessly from undergraduate to
research level, across a range of subjects, to cover contemporary or likely interdisciplinary
needs. This requires a consistent treatment of all subjects so that their combination fits
together as a whole.

The approach followed in the present series is a combined study of mathematics, physics,
and engineering, so that the practical motivation develops side by side with the theoreti-
cal concepts: the mathematical methods are applied without delay to “real” problems, not
just to exercises. The electromechanical and other analogies simulate the ability to combine
different disciplines, which is the basis of much of modern interdisciplinary science and tech-
nology. Starting with the simpler mathematical methods, and consolidating them with the
detailed solutions of physical and engineering problems, gradually widens the range of topics
that can be covered. The traditional method of separate monodisciplinary study remains
possible, selecting mathematical disciplines (e.g., complex functions) or sets of applications
(e.g., fluid mechanics). The combined multidisciplinary study has the advantage of con-
necting mathematics, physics, and technology at an earlier stage. Moreover, preserving that
link provides a broader view of the subject and the ability to innovate. Innovation requires
an understanding of technological aims, the physical phenomena that can implement them,
and the mathematical methods that quantify the expected results. The combined interdis-
ciplinary approach to the study of mathematics, physics, and engineering is thus a direct
introduction to a professional experience in scientific discovery and technological innovation.
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Preface

The present volume, Complex Analysis with Applications to Flows and Fields, consists of
four parts; they present the theory of functions of a complex variable, starting with the com-
plex plane (Part 1) and proceeding through the calculus of residues (Part 2) and power series
(Part 3) to the conformal mapping (Part 4). The detailed applications cover twice as much
space as the mathematical theory and concern potential flows, gravity field, electro- and
magnetostatics, steady heat conduction, and other problems. The physical and engineering
problems that cover about two-thirds of the text are main motivation; the mathematical
results that occupy the remaining about one-third of the material are sufficient to fully
justify the solution of problems without additional external references. The self-contained
nature of the book concerns both the mathematical background and physical principles
needed to formulate problems, justify the solutions, and interpret the results. It is backed
by bibliography and other indices.

Organization of the Book

In each part the mathematical theory (physical and engineering applications) appear in
alternating odd (even) numbered chapters, for example, Chapters 11, 13, 15, and 17 (12,
14, 16, and 18) in Part 2. The penultimate chapter, for example, Chapter 29 in Part 3,
deals with some fundamental mathematical concepts. The last chapter of each part is a
collection of 20 detailed examples, for example, Chapter 10 at the end of Part 1 consists of
20 worked out Examples 10.1 to 10.20. The chapters are numbered sequentially (Chapters
1 to 40). The formulae are numbered sequentially in a chapter between curved brackets,
for example, (15.20) means formula 20 of Chapter 15. A chapter (e.g., 24) is divided into
nine sections (e.g., 24.1 to 24.9); the section may be divided into subsections (e.g., 24.5.1 to
24.5.3). The figures are numbered by chapter (e.g., Figures 12.1 to 12.7 in Chapter 12). The
conclusion of each chapter includes references to: (i) the figures as a kind of visual summary;
(ii) the note(s), list(s), table(s), diagram(s) and classification(s) as additional support. The
latter (ii) apply at the end of each chapter, and are numbered within the chapter (e.g.,
Note 24.1, List 29.1, Table 24.1, Classification 24.1, Diagram 21.1); if there is more than
one they are numbered sequentially (e.g., Notes 24.1 to 24.3). The chapter starts with an
introductory preview, and related topics may be mentioned in the notes at the end. The
lists of mathematical symbols and physical quantities appear before the main text, and the
index of subjects and bibliography at the end of the book.

xxv
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Mathematical Symbols

The mathematical symbols are those of more common use in the context of (i) sets,
quantifiers, and logic; (ii) numbers, ordering, and vectors; (iii) functions, limits, and conver-
gence; (iv) derivatives, integrals and operators. It concludes with a list of functional spaces,
most but not all of which appear in the present volume. The section where the symbol first
appears may be indicated after a semicolon, for example, “10.2” means Section 10.2.

Sets, Quantifiers, and Logic

Sets

A≡ {x : . . .} – set A whose elements x have the property.
A∪B – union of sets A and B.
A∩B – intersection of sets A and B.
A⊃B – set A contains set B.
A⊂B – set A is contained in set B.

Quantifiers

∀xεA – for all x belonging to A holds . . .

∃xεA – there exists at least one x belonging to A such that . . .

∃1
xεA – there exists one and only one x belonging to A such that . . .

∃∞
xεA – there exist infinitely many x belonging to A such that . . .

Logic

a∧ b – a and b.
a∨ b – or (inclusive): a or b or both.
a ∨̇b – or (exclusive): a or b but not both.
a⇒ b – implication: a implies b.
a⇔ b – equivalence: a implies b and b implies a.

Constants

e = 2.7182 81828 45904 52353 60287.
π = 3.1415 92653 58979 32384 62643.
γ = 0.5772 15664 90153 28606 06512.
log 10 = 2.3025 85092 99404 56840 179915.
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Numbers, Ordering, and Vectors

Types of numbers

|C – complex numbers: 1.2.
|Cn – ordered sets of n complex numbers.
|F – transfinite numbers.
|H – hypercomplex numbers.
|I – irrational numbers: real nonrational numbers: 1.2.
|L – rational numbers: ratios of integers: 1.1.
|N – natural numbers: positive integers: 1.1.
|N0 – nonnegative integers: zero plus natural numbers: 1.1.
|P – prime numbers: natural numbers without divisors.
|Q – quaternions: 1.9.
|R – real numbers: 1.2.
|Rn – ordered sets of n real numbers.
|Z – integers: 1.1.

Complex numbers

| . . . | – modulus of complex number. . . : 1.4.
arg (. . . ) – argument of complex number. . . : 1.4.
Re (. . . ) – real part of complex number. . . : 1.3.
Im (. . . ) – imaginary part of complex number. . . : 1.3.
. . . ∗ – conjugate of complex number. . . : 1.6.

Ordering of numbers

sup (. . . ) – supremum: smallest number larger or equal than all numbers in the set.
max (. . . ) – maximum: largest number in set.
min (. . . ) – minimum: smallest number in set.
inf (. . . ) – infimum: largest number smaller or equal than all numbers in set.

Vectors

�A · �B – inner product.
�A∧ �B – outer product.
�A ·

(
�B∧ �C

)
– mixed product.

�A∧
(
�B∧ �C

)
– double outer product.∣∣∣�A∣∣∣ – modulus.

ang
(
�A, �B

)
– angle of vector �B with vector �A.
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Functions, Limits, and Convergence

Values of functions

f(a) – value of function f at point a.
f(a + 0) – right-hand limit at a.
f(a – 0) – left-hand limit at a.
f(n)(a) – residue at pole of order n at a: 15.8.
B – upper bound: |f (z)| ≤ B̄ for z in . . . .
B – lower bound: |f (z)| ≥B for z in . . . .

Iterated sums and products∑
a

– sum over a set.

b∑
n=a

– sum from n = a to n = b.

b∑
n,m=a

– double sum over n,m = a, . . . , b.∏
a

– product over a set.

b∏
n=a

– product from n = a to n = b.

Limits

lim – limit when x tends to a: x→ a: 11.2.
l.i.m. – limit in the mean.
a∼O(b) – a is of order b: lim b/a �= 0,∞: 19.7.
a∼ o(b) – b is of lower order than a: lim b/a = 0: 19.7.

Convergence

A.C. – absolutely convergent: 21.2.
A.D. – absolutely divergent: 21.2.
C. – convergent: 21.2
C.C. – conditionally convergent: 21.2.
Cn – converges to class n: C0 ≡C.
D. – divergent: 21.1.
N.C. – nonconvergent: divergent or oscillatory: 21.1.
O. – oscillatory: 21.1.
T.C. – totally convergent: 21.7.
U.C. – uniformly convergent: 21.5.
applies to:

– power series: 21.1.
– series of fractions: 27.9.
– infinite products: 27.9.
– continued fractions.
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Derivatives, Integrals, and Operators

Differentials and Derivatives

dΦ – differential of Φ.
dΦ/dt – derivative of Φ with regard to t.
∂Φ/∂t≡ ∂tΦ̇≡ Φ̇ – partial derivative of Φ with regard to t.
∂Φ/∂xi ≡ ∂iΦ≡Φ,i – partial derivative of Φ with regard to xi.
∂nΦ/∂xi1 . . .∂xin ≡ ∂i1 . . .∂inΦ≡Φ,i1,...in −nth-order partial derivative of Φ with regard to
xi1 , . . . , xin

.

Directed Derivatives

∂ Φ/∂ �≡⇀

� .∇Φ≡ �i∂iΦ≡ �iΦ,i – derivative of Φ in the direction of the unit vector
⇀

� : 18.1

∂Φ/∂ n≡ ⇀
n ·∇Φ – derivative in the direction normal to a curve: 18.1.

∂Φ/∂ N ≡ ⇀

N ·∇Φ – derivative in the direction normal to a surface: 28.1.
∂Φ/∂s≡ ⇀

s ·∇Φ – derivative in the direction of the unit tangent to a curve: 18.1

Invariant Operator

∇Φ – gradient of a scalar Φ: 11.7.

∇. �A – divergence of a vector
⇀

A: 11.7.
∇∧ �A – curl of a vector �A: 11.7.
∇2Φ≡∆Φ – Laplacian of a of scalar Φ: 11.7.

Integrals∫
. . .dx – primitive of . . . with regard to x: 13.1.

y∫
. . .dx – indefinite integral of . . . at y: 13.2.

b∫
a

dx – definite integral of . . . between a and b: 13.2.

−∫ b

a
· · ·dx – principal value of integral: 17.8.

(z+)∫
– integral along a loop around z in the positive (counterclockwise) direction: 13.5.

(z−)∫
– idem in the negative (clockwise) direction: 13.5.∫

L

– integral along a path L: 13.2.

(+)∫
C

– integral along a closed path or loop C in the positive direction: 13.5.

(−)∫
C

– integral along a closed path or loop C in the negative direction: 13.5.
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Functional Spaces

The sets of numbers and spaces of functions are denoted by calligraphic letters, in alpha-
betical order:
(a, b) – set of functions over interval from a to b.
omission of interval: set of function over real line )−∞,+∞(.
A(. . . ) – analytic functions in . . . : 27.1.
Ā(. . . ) – monogenic functions in . . . : 31.1.
B(. . . ) – bounded functions in . . . : B ≡ B0: 13.3.
Bn(. . . ) – functions with bounded n-th derivative in . . . .
C(. . . ) – continuous functions in . . . : C≡ C0 : 11.2.
Cn (. . . ) – functions with continuous n-th derivative in . . . .
C̄(. . . ) – piecewise continuous functions in . . . : C̄ ≡ C̄0.
C̄n(. . . ) – functions with piecewise continuous n-th derivative in . . . .
C̃(. . . ) – uniformly continuous function in. . . : 13.4.
C̃

n
(. . . ) – function with uniformly continuous n-th derivative in. . . .

D (. . . ) – differentiable functions in . . . :D ≡ D0: 11.2.
Dn (. . . ) – n-times differentiable functions in . . . .
D∞ (. . . ) – infinitely differentiable functions or smooth in . . . 27.1.
D̄(. . . ) – piecewise differentiable functions in . . . :D̄≡ D̄0.
D̄n(. . . ) – functions with piecewise n-th derivative in . . . .
E(. . . ) – Riemann integrable functions in . . . : 13.2.
Ē(. . . ) – Lebesgue integrable functions in . . .
F(. . . ) – functions of bounded fluctuation (or bounded variation) in . . . ; F ≡ E ≡ F0.
Fn(. . . ) – functions with n-th derivative of bounded fluctuation (variation) in . . . .
G(. . . ) – generalized functions (or distributions) in . . . .
H(. . . ) – harmonic functions in . . . : 11.6.
I(. . . ) – integral functions in . . . : 27.9.
Im(. . . ) – rational-integral functions of degree m in . . . I ≡ I0: 27.9.
J(. . . ) – square integrable functions with a complete orthogonal set of functions – Hilbert
space.
K̄(. . . ) – Lipshitz functions in . . . .
Kn(. . . ) – homogeneous functions of degree n in . . . .
L1(. . . ) – absolutely integrable functions in . . . .
L2(. . . ) – square integrable functions in . . . .
Lp(. . . ) – functions with power p of modulus integrable in . . . - normed space: Lp ≡ W p

0.
M+(. . . ) – monotonic increasing functions in . . . .
M+

0 (. . . ) – monotonic nondecreasing functions in . . . .
M−

0 (. . . ) – monotonic nonincreasing functions in. . . .
M−(. . . ) – monotonic decreasing functions in . . . .
N (. . . ) – null functions in . . . .
O(. . . ) – orthogonal systems of functions in . . . .
Õ(. . . ) – complete orthogonal systems of functions in . . . .
P (. . . ) – polynomials in . . . : 27.7.
Pn(. . . ) – polynomials of degree n in . . . : 27.7.
Q(. . . ) – rational functions in. . . : 27.7.
Qm

n (. . . ) – rational functions of degrees n, m in. . . : 27.7.
R (. . . ) – real functions, that is, with the real line as range.
S(. . . ) – complex functions, that is, with the complex plane as range.
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T (. . . ) – functions with compact support, that is, which vanish outside a finite interval.
T n (. . . ) – temperate functions of order n: n-times differentiable functions with first (n−1)
derivatives with compact support.
T ∞(. . . ) – temperate functions: smooth or infinitely differentiable functions with compact
support.
U(. . . ) – single-valued functions in. . . : 9.1.
Ũ(. . . ) – injective functions in. . . : 9.1.
U(. . . ) – surjective functions: 9.1.

Ũ(. . . ) – bijective functions: 9.1.
Un(. . . ) – multivalued functions with n branches in. . . : 6.1.
U∞(. . . ) – many-valued functions in. . . :6.2.
U1(. . . ) – univalent functions, in . . . : 37.4.
Um (. . . ) – multivalent functions taking m values in . . . : 37.4.
U∞(. . . ) – manyvalent functions in . . . : note 37.4.
Um

n (. . . ) – multivalued multivalent functions with n branches and m values in . . . : note 37.4.
V (. . . ) – good functions, that is, with decay at infinity faster than some power.
VN (. . . ) – good functions of degree N , that is, with decay at infinity faster than the inverse
of a polynomial of degree N .
Ṽ(. . . ) – fairly good functions, that is, with growth at infinity slower than some power.

Ṽ
N

(. . . ) – fairly good functions of degree N , that is, with growth at infinity slower than a
polynomial of degree N .
V (. . . ) – very good or fast decay functions, that is, with faster decay at infinity than any
power.
W p

q(. . . ) – functions with generalized derivatives of orders up to q such that for all the
powers p of the modulus is integrable . . . —Sobolev space.
X0(. . . ) – self-inverse linear functions in . . . : 37.5.
X1(. . . ) – linear functions in . . . : 35.2.
X2(. . . ) – bilinear, homographic, or Mobius functions in . . . : 35.4.
X3(. . . ) – self-inverse bilinear functions in . . . : 37.5.
Xa(. . . ) – automorphic functions in . . . : 37.6.
Xm(. . . ) – isometric mappings in . . . : 35.1.
Xr(. . . ) – rotation mappings in . . . : 35.1.
Xt(. . . ) – translation mappings in . . . : 35.1.
Y(. . . ) – meromorphic functions in . . . : 37.9.
Z(. . . ) – polymorphic functions in . . . : 37.9.
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Physical Quantities

The physical quantities are denoted by lower- or uppercase arabic or greek letters. Some are
also represented by mathematical symbols. Calligraphic (Gothic or Old English) uppercase
letters are reserved for functional spaces (geometries and associated coordinate transforma-
tion groups). The subscripts may be omitted to simplify and lighten the text and equations
when there is no ambiguity or risk of confusion; they are introduced again when a distinc-
tion is necessary. For example the complex potential for the electrostatic field fe is denoted
by f , except when in comparison with others, e.g., the complex potential for the velocity
of a potential flow fv. The latter is also denoted by f when there is no risk of ambiguity.

Lowercase Arabic Letters

a – radius of cylinder: 24.6.
�a – acceleration: 2.1.
b – distance of point multipole from cylinder axis: 24.6.
c – phase speed of waves: 22.1.
c∗ – speed of light: 26.1.
c0 – speed of sound: 22.4.
e – electric charge: 6.1.
f – complex potential: 12.3, for example, for the velocity of a potential flow fv.
fe – complex potential of an electrostatic field: 24.3.
fg – complex potential of a gravity field: 18.4.
fm – complex potential of a magnetostatic field: 26.3.
fv – complex potential for the velocity of a potential flow: 12.3.
⇀

f – force density per unit volume, area or length: 14.2.
⇀

f b – dilatation force density: 28.3.
⇀

f e – electrical force density: 28.3.
⇀

f em – electromagnetic force density: 28.3.
⇀

f g – gravity force density: 28.3.
⇀

f l – vortical force density or Lamb vector: 28.3.
⇀

f m – magnetic force density: 28.3.
⇀

f n – stagnation force density: 28.3.
⇀

f p – hydrodynamic force density: 28.3.
⇀g – acceleration of gravity: 18.3.
g∗ – complex conjugate gravity field: 18.4.
hi – scale factors: 11.9.
i – imaginary unit i≡√−1: 1.2.
⇀

j – electric current per unit area: 26.5.

xxxvii



T&F Cat#71181, FM, Page xxxviii, 2010/8/5

xxxviii Physical Quantities

k – wavenumber: 22.1.
– factor in the induced drag coefficient: 34.9.

⇀

k – wavevector: 12.1.
m – mass: 2.9.
m0 – added mass: mass of fluid extrained by a body in motion: 28.6.
m – total mass: mass of a body plus added mass: 28.6.
n – coordinate normal to a curve: 18.1.
�n – unit normal vector to a curve: 12.1.
p – pressure: 14.2.
p0 – stagnation pressure: 14.5.
pn – multipole strength per unit area: 26.4.
q – flow rate of source/sink per unit area or length: 18.1.

– electric charge density per unit area: 24.1.
qn – multipole strength per unit length: 26.4.
r – polar coordinate: 1.4.
s – arc length: 11.9.

– coordinate tangent to a curve: 18.1.
⇀s – unit tangent vector to a curve: 12.1.
t – time: 2.1.
v – complex velocity: 6.3.
v∗ – complex conjugate velocity: 12.3.
⇀v – velocity vector: 6.1.
w – density per unit area of heat source/sink: 32.1.

– downwash velocity behind wing: 34.7.
x – Cartesian coordinate: 1.2.
⇀x – position vector of observer: 6.5.
y – Cartesian coordinate: 1.2.
z – complex number: 1.2

– Cartesian coordinate: 6.5.

Capital Arabic Letters

A – admittance: 4.4.
– amplitude of a wave: 22.1.

⇀

B – magnetic induction vector: 26.1.
CD – drag coefficient: 28.4, 34.6.
CL – lift coefficient: 28.5, 34.6.
CM – pitching moment coefficient: 28.7, 34.6.
D – drag force: 28.2.
⇀

D – electric displacement vector: 24.1.
E – energy: 8.5.
Ee – electrical energy: 24.2.
Ek – kinetic energy: 8.5.
Em – magnetic energy: 26.2.
⇀

E – electric field vector: 24.1.
E∗ – complex conjugate electric field: 24.3
F – force vector: inertia force: 2.9.
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Fb – dilatation force: 28.3.
Fe – electric force: 24.3, 28.3.
Fem – electromagnetic or Laplace–Lorentz force: 6.1, 28.3.
Fg – gravity force: 18.5, 28.3.
Fl – vortical force: 28.3.
Fm – magnetic force: 26.3, 28.3.
Fn – stagnation force: 28.3.
Fp – hydrodynamic force: 28.2.
Fs – suction force: 34.1.
G – gravitational constant: 18.3.
�G – heat flux: 32.1.
H – enthalpy: 14.3.
�H – magnetic field vector: 26.1.
�Je – electric current: 26.1.
�Jv – mass flux: 24.1.
L – lift: 28.2.
M – pitching moment: 28.2.
⇀

M – moment of forces: 28.2.
N – coordinate normal to a surface: 28.1.
⇀

N – unit vector normal to a surface: 18.1.
Pn – moment of 2n-multipole: 12.9 (e.g., monopole P0, dipole P1, quadrupole P2).
Qv – volume flow rate: 12.2.
⇀

Qe – electric polarization vector: 24.1.
�Qm – magnetic polarization vector: 26.1.
RN – remainder of a series after N terms: 21.1.
S – area element of a surface: 28.1.

– entropy density: 14.3.
S – total entropy in a domain: 32.1.
SN – sum of the first N terms of a series: 21.1.
T – temperature: 32.1.
X – resistance: 4.4.
Y – reactance: 4.4.
Z – impedance: Z = X + iY : 4.4.

Lowercase Greek Letters

α – angle-of-attack of a flow: 14.8.
β – internal angle in a corner: 24.9.
χe – electric susceptibility: 24.1.
χm – magnetic susceptibility: 26.1.
ε – dielectric permittivity: 24.1.
φ – phase of a wave: 22.9.
γ – circulation density per unit length: 18.2.

– external angle in a corner: 33.5.
– adiabatic exponent: 14.6.

ϕ – polar angle: 1.4.
κ – thermal conductivity scalar in isotropic medium: 22.1.
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λ – damping: 2.3.
– wavelength: λ = 2π/k: 12.1.

µ – mass density per length: 18.4.
– magnetic permeability: 26.1.

ω – angular frequency: 2.2, 22.1.
ρ – mass density per unit area: 14.1.
σ – electric charge density per unit length: 24.2.
τ – period τ = 2π/ω: 2.2.
⇀
� – vorticity: 14.3.

Capital Greek Letters and Others

Φ – scalar potential: 12.1.
Φe – electric potential: 24.2.
Φg – gravity potential: 18.3.
Φm – magnetic potential: 26.7.
Φv – velocity potential: 12.1.
Γ – circulation: 12.1.
ϑ – electric current per unit length: 26.2.
Λ – dilatation: 12.2.
�Ω – angular velocity: 6.1.
Ψe – field function of electric field: 24.6.
Ψg – field function of gravity field: 18.3.
Ψm – field function of magnetic field: 26.2.
Ψv – stream function: 22.2.
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Part 1
Complex Domain: Circuits
and Stability

The complex numbers are the simplest for which all direct (sum, product, power) and
inverse (subtraction, division, root) operations are closed (Chapter 1), that is, when applied
to complex numbers these operations always lead to complex numbers (Chapters 3 and 5).
Since a complex number is an ordered pair of real numbers, it can be represented on the
plane (Chapter 1), and the corresponding geometry has a number of features: (i) the com-
plex plane maps one-to-one to a sphere (Chapter 9), and has only one point-at-infinity;
(ii) a multivalued function (Chapter 7) can be represented with each branch on a sheet of a
Riemann surface, with the sheets connected at branch-points, and separated by branch-cuts.
Since a complex number involves two real numbers, it allows some two-dimensional motions
to be represented by one variable, for example, an electron moving transversely to a mag-
netic field (Chapter 6); it also allows the combination of several properties of mechanical or
electrical circuits into a single complex impedance (Chapter 4). Likewise a complex function
involves two real functions, and thus can represent in a single expression several kinds of
motion (Chapter 2), for example, oscillatory, damped, or unstable regimes (Chapter 8).
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1
Complex Numbers and Quaternions

The complex numbers appear at the end of a hierarchy (Sections 1.1 and 1.2) formed by the
positive integers, integers, rationals, irrationals, and real numbers; the complex numbers
are the simplest for which all three direct (sum, product, power) and inverse (subtraction,
division, root) operations are closed, that is, when applied to a complex number the result
is also a complex number. A complex number is an ordered pair of real numbers, which
can be represented as a point on the plane (Sections 1.3–1.6); this provides a graphical
illustration of some properties of elementary real and complex functions (Sections 1.7 and
1.8). A quaternion (Section 1.9) is a generalization of complex number in four dimensions
for which the product is noncommutative. Further generalizations of the concept of number
(transfinite, hypercomplex) may have less properties. The operations like sum, subtraction,
product, division, power, and root may be applied not only to numbers but also to other
entities (functions, multiplicities, sets, rings) as long as they retain similar properties.

1.1 Peano (1889, 1891) Postulates for Natural Numbers

An operation ⊗ is closed with regard to a set of numbers iff (if and only if) when applied
to any two elements x, y of the set, the result is an element of the set:

⊗ closed in A: ∀x,y∈A ⇒ x⊗ y ∈ A. (1.1)

Next, consider the three direct operations (sum, product, and power) and three inverse
operations (subtraction, division, and root) to ascertain whether they are closed with
regard to sets of numbers (natural, integer, rational, real, complex, and quaternions) in
Table 1.1.

The natural numbers correspond to the usual counting of objects:

|N ≡ {1, 2, 3, . . . ,∞} . (1.2)

The natural numbers |N can be introduced by the five Peano postulates (1889, 1891),
via a successor function, S, as follows: (i) the number “1” is an integer 1 ∈ |N ; (ii)
the successor of an integer is an integer n ∈ |N ⇒ Sn ∈ |N ; (iii) the successor is not unity:
n ∈ |N ⇒ Sn �= 1; (iv) identical successors correspond to the same number: n, m ∈ |N∧Sn =
Sm ⇒ n = m; and (v) if a property is true for “one” and every successor it is true for all
integers: 1 ∈M ∀n(n ∈M ⇒ Sn ∈M) ⇒ |N ⊆ M . The last property (v) is the axiom of
induction, viz. if a property holds (i) for n = 1, and if (ii) holding for n implies holding for
n + 1, then it holds for all n natural numbers. The five axioms are independent, because
it is possible to define a system which satisfies all but one, viz. (a) the set {2,3,. . . } satisfies
all properties (ii–v) except (i); (b) the set |N ∪ (1/2) with S1 = 1/2 and S1/2 = 2 only fails
(ii); (c) the set {1} fails only (iii); (d) the set {1,2} with S1 = S2 = 1 fails only (iv); and
(e) the set |N ∪ (−1) fails only (v).

3
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4 Complex Analysis with Applications to Flows and Fields

TABLE 1.1
Sets of Numbers and Algebraic Operations
Set Natural Integers Rational Real Complex Quaternions

Symbol |N |Z |L |R ≡ |L ∪ |I |C |Q
Sum × × × × × ×
Subtraction – × × × × ×
Product × × × × × × (1)
Division – – × × × ×
Power × × – × × ×
Root – – – – × –

Note: Successively larger sets of numbers: positive integers or natural |N , integers |Z, rational |L, irrational
|I, real |R, complex |C, and quaternions |Q. The operations closed (not closed) with regard to a set are
marked with a cross x (slash – ). The direct operations (sum, product, power) are always closed. The inverse
operations (subtraction, division, root) become closed enlarging the set of numbers. The complex numbers
are the simplest for which all operations indicated are closed. Beyond the complex numbers, for example,
for quaternions, some properties are lost. x: operation is closed with regard to the set; –: operation is not
closed with regard to the set; (1): product is noncommutative.

The idea of the Peano postulates is to start with a number and define the remaining
through the successor function. The natural numbers are closed with regard to the direct
operations: sum, product, power. The number zero (one) is the neutral element of the
sum (product), viz. n + 0 = n = 0 + n (1× n = n = n× 1) for all n ∈ |N . Starting the
Peano postulate (i) with one (zero) leads to the positive (nonnegative) integers |N in
(1.2) [|N0 in (1.3)]:

|N0 ≡ {0, 1, 2, 3, . . . ,∞} ≡ {0}U |N. (1.3)

Although the natural numbers are closed with regard to the sum, they are not closed with
regard to the subtraction. The difference of two positive integers n−m is a positive integer
if n is larger (n > m) than m, but has no solution in the set of positive integers if n
is smaller (n < m) than m. This difficulty is overcome by extending the set of natural
numbers to the set of integers:

|Z ≡ {0,±1,±2, . . . ,±∞} , (1.4)

consisting of positive n ∈ |N and negative –n ∈ |N integers that have same modulus
|n| = − |n| and opposite signs, plus zero.

The integers are closed with respect to the sum, subtraction, and product, but not
with regard to the division: the ratio n/m of two integers, apart from sign |n| / |m|, is an
integer iff |n| is a multiple of |m| or |m| is a submultiple of |n|, viz.: |n| = |m| p with
p ∈ |N; otherwise, the ratio does not exist as an integer number. This difficulty is resolved
by extending further the set of integers to the set of rational numbers:

|L ≡ {x, y ∈ |N : x/y ∈ |L}, (1.5)

which are ordered pairs of integers, specified by their ratio. The rational numbers are closed
with regard to the three direct operations (sum, product, and power) and also with regard
to two of the three inverse operations (subtraction and division). However, the rational
numbers are not closed with regard to the third inverse operation, viz. the root, for which
three cases arise: (i) the Nth root of a rational number is a rational number q = N

√
p iff

the Nth power of q is p = qN ; (ii) there are positive rational numbers p > 0 whose roots
are not rational numbers, for example,

√
2 is not rational as will be proved in the sequel
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(Section 1.2); and (iii) a negative rational number never has a square root as a rational
number. The lifting of the limitation (ii) leads to irrational and real numbers (Section 1.2)
and (iii) is resolved by the introduction of complex numbers (Sections 1.3–1.8, Chapter 3).

1.2 Irrational Numbers (Pythagoras, VI b.c.) and Dedekind (1858)
Section

In the rational numbers can be introduced a strict order relation: of two distinct numbers
one must be larger than the other:

∀p, q ∈ |L : p �= q ⇒ p > q ∨̇ q > p; (1.6)

the condition (1.6) is (i) exclusive, if p > q excludes the possibility q > p; and (ii) exhaus-
tive, if p �= q there are no possibilities other than p > q or q < p. The proof that

√
2 is

irrational (Pythagoras VI b.c.) can be made by “reduction ad absurdum”: (i) suppose that√
2 is rational and specified by the irreducible fraction (1.7a), that is, in its lowest terms:

√
2 =

p

q
;
√

2 =
2q − p

p− q
; (1.7a,b)

(ii) then it is also given by (1.7b) for any p, q, since

0 = (2q − p)2 − 2 (p− q)2 = 2q2 − p2; (1.7c)

(iii) choosing q such that 0 < p−q < q it follows from (1.7b) that the denominator in (1.7a)
is not in its lowest terms. This contradiction proves that

√
2 cannot be a rational number.

This leads to the introduction of the irrational numbers, in order to make the square root
a closed operation for positive arguments.

One way to introduce irrational numbers is through the Dedekind section (1858):
given a number p, the upper (lower) class are sets such that (i) each class has at least
one number; and (ii) all numbers of the upper class y ∈ p+ exceed all numbers of the
lower class x ∈ p−, viz. y > x. A rational number p specifies a Dedekind section: it is the
largest (or smallest) member, that is, supremum (infimum), of the lower (upper) class;
if a section is not specified by a rational number, then it defines an irrational number, for
example,

√
2. The operations on rational numbers may be extended to irrational numbers,

as in the example of the sum: (i) let p, q be two numbers, and (p+, p−) and (q+, q−) their
respective (upper, lower) classes; (ii) their sums form a lower class p− + q− whose elements
are all less than those of the upper class p+ + q+; and (iii) the resulting Dedekind section
is the sum p + q of the two numbers.

Thus, the set of real numbers |R can be defined as the union of sets of rational |L and
irrational |I numbers:

|R ≡ |L ∪ |I = {x : −∞ < x < +∞} . (1.8)

The set of real numbers establishes a one-to-one correspondence with the points on a real
line: some of these points correspond to rational numbers, others to irrational numbers.
There are in a given finite interval a ≤ x ≤ b: (i) a finite number M − N + 1 integers
a ≤ N ≤ x ≤ M ≤ b, where N − 1 = f (a) and M = f (b) is the integer part of a
real number, obtained by omitting the decimals; (ii) there is denumerable infinity of
rational numbers x/p, actually less than the number of ordered pairs of integers (x, p),
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because some may not be irreducible fractions, for example, 2x/2p = x/p; and (iii) there is
a nondenumerable infinity of irrational numbers.

1.3 Cartesian Parts: Real and Imaginary (Argand, 1806;
Descartes, 1637a; Gauss, 1797)

The extension from the rational to the real numbers makes the square roots
√

p of a positive
number p > 0 closed, but there remains another problem: a negative number p = − |p| < 0
has no real square root

√− |p|. For operation square root to be closed, the real numbers
have to be extended to the complex numbers, defined (1.9a) as an ordered pair of real
numbers:

|C ≡ {x, y ∈ |R : z = x + iy}, i2 = −1, (1.9a,b)

where the symbol “i” satisfies (1.9b) as justified subsequently in Section 3.4. Note that (i) the
direct operations (sum, product, power) are closed for all sets of numbers, viz. natural |N ,
integer |Z, rational |L, and real |R; (ii) the inverse operations (subtraction, division, root)
may not be closed, and their closure may require the extension of the concept of number.
Three examples of the process (ii) were given: (i) the subtraction becomes closed (1.1) by
extending the natural numbers (1.2, 1.3) to the integers (1.4); (ii) the division becomes
closed extending the integers (1.4) to the rational numbers (1.5); and (iii) the square root
becomes closed extending the rational (1.5) to the real (1.8) and complex numbers (1.9a,b).
Thus, the complex numbers are the simplest for which all direct (sum, product, power) and
inverse (subtraction, division, roots) operations are closed, as shown in Table 1.1. This
justifies the emphasis on the properties of (Sections 1.3–1.8) and operations on (Chapter 3)
complex numbers.

A complex number is defined as an ordered pair (x,y) of real numbers, for which the
notation usually adopted is (1.10a):

z = x + iy : x ≡ Re (z), y ≡ Im (z), (1.10a–c)

where Re (Im) denote the real (imaginary) parts (1.10b) [(1.10c)]. The real and imagi-
nary parts can be taken as coordinates, respectively, x,y in a Cartesian frame of reference
(Descartes, 1637a), so that complex number z is represented by a point in Argand’s plane
(1806, used before by Gauss in 1797). There exists a one-to-one correspondence between
the set |C of complex numbers z, the set |R × |R of ordered pairs (x,y) of real numbers,
and the points P on the complex plane.

1.4 Polar Coordinates: Modulus and Argument

The distance from the point P in Figure 1.1, which represents the complex number z, from
the origin defines the modulus:

z = x + iy : r = |z| ≡ ∣∣x2 + y2
∣∣1/2

, (1.11)

where |. . .|1/2 means the square root taken with plus sign before the radical, that is, the
positive square root. The angle between the straight line OP and the real axis OX, measured
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FIGURE 1.1
A complex z is transformed by symmetry relative to the (i) real axis to its conjugate
z*; (ii) the origin to the symmetric −z; and (iii) to the imaginary axis to the conjugate
symmetric −z∗.

from the latter, in the positive direction, that is, counterclockwise, defines the argument
of the complex number z:

ϕ ≡ arg (z) =

{
arc tan (y/x) for x ≥ 0, (1.12a)

π + arc tan (y/x) for x ≤ 0; (1.12b)

in (1.12a,b) it has been taken into account that the inverse circular tangent arc tan is one-
to-one in the right-hand half circle −π/2 < ϕ ≤ + π/2, corresponding to the upper line
(1.12a); the lower line (1.12b) adds left-hand half circle π/2 < ϕ ≤ 3π/2 to build-up the
full circle −π/2 < ϕ ≤ 3π/2, or, equivalently, −π < ϕ ≤ + π or 0 ≤ ϕ < 2π. The latter
range is denoted by (0, 2π(, and it will henceforth be assumed that the function arc tan
will be extended to this range in the form (1.12a,b) whenever necessary. Thus a complex
number can be uniquely represented by (1.11) its modulus r ≥ 0 and (1.12a,b) argument
0 ≤ ϕ < 2π, except at the origin and infinity r �= 0,∞, because (i) at origin r = 0 the
argument ϕ is undetermined; (ii) at infinity r = ∞ there is only one point (as shown in
Section 9.2), and the argument ϕ is again undetermined, because the “point at infinity”
can be reached in any direction. The modulus, argument, and real and imaginary parts of
complex numbers can be used to represent regions of the plane (Example 10.1).

1.5 Moivre’s Formula, Origin and Infinity

The failure of the polar representation (r, ϕ) at the origin and infinity can be justified
analytically by starting from the Cartesian representation (x,y), which is valid everywhere.
They are related (Figure 1.1) by

x = r cos ϕ, y = r sin ϕ; (1.13a,b)

this leads to Moivre’s formula,

z = x + iy = r (cos ϕ + i sin ϕ) = reiϕ, (1.14)
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for the complex number z, where the notation used was

eiϕ ≡ cos ϕ + i sin ϕ; (1.15)

this can be justified in the context of the theory of elementary transcendental functions.
The polar (r, ϕ) and Cartesian (x,y) representations of a complex number (1.14) are related
by (1.13a,b) and its inverse (1.11;1.12a,b) for r �= 0,∞. The inversion fails if the Jacobian
is zero or infinity: ∣∣∣∣ ∂x/∂r ∂x/∂ϕ

∂y/∂r ∂x/∂ϕ

∣∣∣∣ =
∣∣∣∣ cos ϕ −r sin ϕ

sin ϕ r cos ϕ

∣∣∣∣ = r �= 0,∞, (1.16)

that is, at the origin r = 0 and point at infinity r = ∞, where the argument ϕ is unde-
termined. The complex numbers gain relative to the real numbers by the property that
the root, or inverse of power, is a closed operation; they loose the strict ordering property
(1.6), which (i) holds for rational numbers; (ii) extends to real numbers, by the Dedekind
section; and (iii) does not extend to complex numbers. For example, (a) complex numbers
can be partially ordered by their modulus, argument, real, or imaginary part; (b) they are
not strictly ordered, for example, two complex numbers may have the same modulus or
argument or real or imaginary part and still not coincide.

1.6 Conjugate and Reflection on the Origin and Axis

The point obtained (Figure 1.1) by reflection of P upon the real axis defines the complex
conjugate:

z = x + iy: z∗ = x− iy = re−iϕ. (1.17)

The reflection on the origin defines the symmetric complex

−z = −x− iy = rei(π+ϕ), (1.18)

and the symmetric conjugate,

−z∗ = −x + iy = rei(π−ϕ), (1.19)

specifies the reflection in the imaginary axis. Making the convention that the quadrants fol-
low each other cyclically in the positive direction 1,2,3,4,1,2,. . . , then the complex numbers
z in (1.14), −z∗ in (1.19), −z in (1.18), and z∗ in (1.17) lie on successive quadrants of
the complex plane (Table 1.2 and Figure 1.1).

TABLE 1.2
Reflection on the Axis and at the Origin
Transformation Conjugate Symmetric Symmetric

conjugate
Name

Reflection upon Real axis Origin Imaginary
axis

Representation

(x, y) → (x,− y) (−x,− y) (−x, y) Cartesian
z → z∗ −z −z∗ Complex
(r, ϕ) → (r,− ϕ) (r,π + ϕ) (r,π − ϕ) Polar

Note: Reflections of a complex number on the origin and coordinate axis, using Cartesian and
polar representations, as shown in Figure 1.1.
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1.7 Power with Integral Exponent and Logarithm

The modulus and argument of the polar representation of a complex number, z, can also be
applied to any complex function, for example, the integral power (1.20b) whose exponent
(1.20a) is a positive or negative integer:

n ∈ |Z: zn =
(
reiϕ

)n
= rneinϕ; (1.20a,b)

from (1.20b) follow the formulas:

n ∈ |Z; z ∈ |C : |zn| = |z|n, arg (zn) = n arg (z) (1.21a,b)

for the modulus (1.21a) and argument (1.21b) of an integral power. The power can be
extended to nonintegral exponent (Sections 5.7 and 5.8).

Similarly, the real and imaginary parts of a complex number z can be applied to a
function f(z), for example, the Neperian logarithm or logarithm of base e:

log z = log
(
reiϕ

)
= log r + log eiϕ = log r + iϕ, (1.22)

where the polar representation was used; it leads to the formulas:

Re (log z) = log |z| , Im (log z) = arg (z), (1.23a,b)

for the real (1.23a) and imaginary (1.23b) parts of the natural logarithm.

1.8 Real, Imaginary, and Complex Exponential

The real and imaginary parts, and modulus and argument are four functions that can be
applied to any complex expression. For example, in the case of the real x �= 0 = y, imaginary
x = 0 �= y or complex x �= 0 �= y exponentia1:

ez = ex+iy = exeiy = ex cos y + iex sin y, (1.24)

the modulus (1.25a), argument (1.25b), and the real (1.25c) and imaginary (1.25d) parts
are, respectively,

|ez| = ex, arg (ez) = y, Re, Im (ez) = ex (cos y, sin y) ; (1.25a–d)

alternatively

|ez| = exp {Re (z)} , arg (ez) = Im (z) , (1.26a,b)

Re, Im (ez) = exp {Re (z)} (cos {Im (z)} , sin {Im (z)}) , (1.26c,d)

hold for the modulus (1.25a) ≡ (1.26a), argument (1.25b) ≡ (1.26b), real and imaginary
(1.25c) ≡ (1.26c) and imaginary (1.25d) ≡ (1.26d) parts of the complex exponential. Two
more cases are considered in Example 10.2.
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1.9 Noncommutative Product of Quaternions (Hamilton, 1843)

A generalization of the complex number from 2 to 4 dimensions is the quaternion (Hamil-
ton, 1843) defined by

x̃ ≡ x0 + x1i + x2j + x3k, (1.27)

where i, j, k satisfy the following multiplication rules:

ii = jj = kk = −1, ij = k = −ji, ki = j = −ik, jk = i = −kj, (1.28a–d)

which fall into three groups: (i) squares of i, j, or k equal −1 as in (1.9b); (ii) products
are skew-symmetric, for example, ij = −ji; and (iii) products follow in cyclic permuta-
tions (i,j,k), for example, jk = i. The latter two symbolic rules (ii, iii) are similar to the
outer product (1.28c,d) of orthogonal base vectors (i, j, k) in three dimensions. The sum of
quaternions is commutative:

x̃ + ỹ = (x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k)
= (x0 + y0) + i (x1 + y1) + j (x2 + y2) + k (x3 + y3) = ỹ + x̃;

(1.29)

the product of quaternions is not commutative:

x̃× ỹ ≡ (x0 + x1i + x2j + x3k)× (y0 + y1i + y2j + y3k)
= (x0y0 − x1y1 − x2y2 − x3y3) + i (x0y1 + x1y0 + x2y3 − x3y2)

+ j (x0y2 − x1y3 + x2y0 + x3y1) + k (x0y3 + x1y2 − x2y1 + x3y0)
�= ỹ × x̃,

(1.30)

as follows interchanging (xi, yi) with i = 0, 1, 2, 3. A quaternion represents a point
(x1, x2, x3, x4) in a four-dimensional space.

Subtracting the scalar part x0 from the quaternion, ⇀
x specifies the vector part in

(1.31a), which represents a point in three-dimensional space:

�x ≡ x̃− x0 = x1 i + x2 j + x3 k : x̃ = x0 + ⇀
x, x̃∗ ≡ x0 − ⇀

x, (1.31a–c)

and the conjugate (1.31c) of a quaternion (1.31b) is defined by the same (opposite) scalar
(vector) part. This is similar to the conjugate (1.17) of a complex number taking the real x
(imaginary y) part as the scalar x0 (vector �x). The product of a quaternion by its conjugate
is commutative, real, and positive and specifies the norm ‖. . . .‖ and the modulus |. . . .|:

‖x̃‖ ≡ |x̃|2 ≡ x̃× x̃∗ =
(
x0 − ⇀

x
)
×

(
x0 + ⇀

x
)

= (x0)
2 + (x1)

2 + (x2)
2 + (x3)

2

= x̃∗ × x̃, (1.32)

and the inverse x̃−1:

x̃−1 ≡ x̃∗ |x̃|−2
, x̃−1 × x̃ = |x̃|−2

x̃∗ × x̃ = 1 = x̃× x̃−1. (1.33a,b)

This is similar to the modulus (1.11) and inverse (3.19) of a complex number.

Note 1.1. Types of Numbers: The extension from complex numbers (1.9a,b) in two dimen-
sions N = 2 to quaternions (1.27, 1.28a–d) in four dimensions N = 4 “loses” the commuta-
tivity of the product, and there is no square root (Table 1.1). Additional properties would
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be “lost” extending complex numbers to hypercomplex numbers, other than quaternions
N = 4, viz. in higher dimensions N = 3, 5, 6, . . .. Quaternions were used historically to
develop vector algebra in three dimensions, until it became clear that it is simpler to do
without them. The N -dimensional geometry with N ≥ 3 is based on N -tuples, or ordered
sets of N real numbers, viz. xn with n = 1, . . . , N, rather than any extension of complex
numbers. Complex coordinates zn = xn + iyn are used in spinors in quantum mechan-
ics, both nonrelativistic and relativistic. Although quaternions can be used as coordinates
in a four-dimensional space, they are not suitable for the space-time of general relativity
because (i) the norm (1.33) of a quaternion corresponds to a Cartesian metric which is
positive-definite, that is, has signature + + + + viz. all signs + in (1.32); (ii) the interval
in space-time corresponds to an indefinite metric with signature −−−+ or + + + −, that
is, one reversed sign in (1.32). Quaternions were invented (Hamilton, 1843) before relativity
(Einstein, 1904) and were conceived in connexion with the representation of rotations and
rigid displacements in three-dimensional space, which remains their main application. The
complex number eiϕ [quaternion (1.27) ≡ (1.31a)] can be used to represent a rotation in
the plane (in space). The rotations in the plane (space) are (are not) commutative, that is,
the final position does not (does) depend on the order, that is, it is not (is) changed if the
two rotations are interchanged. Two successive rotations in the plane (space) correspond
to the product of complex numbers (quaternions), implying that the product is (is not)
commutative. Properties of spinors relate to quaternions. The theory of numbers concerns
many other topics, for example, transfinite (prime) numbers that lie beyond natural
numbers (have no natural numbers as divisors). The preceding account suggests that com-
plex numbers are not only the simplest (Section 1.2) but also the most general, which satisfy
all the usual properties of sum and product (Chapter 3) as a continuous set.

Conclusion 1: The polar and Cartesian representations (Figure 1.1) on the plane, of a
complex number z, its conjugate z∗, symmetric −z, and symmetric conjugate −z∗, also
represented in Table 1.2. Table 1.1 lists types of numbers and operations between them.
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2
Stability of an Equilibrium Position

When a body (or system) is in a position (or state) of equilibrium, and is subjected to
a perturbation, three cases can arise: (i) if it remains in the new, disturbed position, the
equilibrium is said to be indifferent (Section 2.1); (ii) if it always returns to the old, initial
position, the equilibrium is stable; and (iii) if it can get farther from the equilibrium position,
that is, the perturbation increases, the equilibrium is unstable. The return to equilibrium in
the case of stability, or deviation from equilibrium in the unstable case, can be monotonic
or oscillatory. The words stable, indifferent, and unstable are sometimes reserved for the
monotonic case (Section 2.3); the oscillatory case (Sections 2.2 and 2.4) is called damped,
oscillatory, or overstable, depending on whether the amplitude of the oscillation decays, stays
constant, or grows. All these six cases of motion are included in a single complex expression
(Sections 2.5–2.7), which is discussed (Sections 2.8 and 2.9) for a system of arbitrary order.
The existence of an equilibrium is not sufficient to ensure that it actually occurs; usually
only stable equilibria are found in nature or assure the correct functioning of an engineering
device, bearing in mind that perturbations are almost inevitably present. The question of
existence of equilibria, and their stability, applies to various kinds of systems, for example,
mechanical, electrical, chemical, and so on, both in static and in dynamic conditions.

2.1 Trajectory Following a Perturbation of Equilibrium

A body is in an equilibrium position x = 0. At a time t = 0 it is displaced to a position
x0, and its subsequent motion for t > 0 is specified by the position as a function of time by
(2.1b):

ζ ≡ ω + iλ: x (t) = Re
(
x0 eiζt

)
, (2.1a,b)

where (2.1a) is generally complex. Since x must be real, the real part of the complex expres-
sion in parentheses in (2.1b) is taken. The first and second derivatives of the displacement
(2.1b) with regard to time specify, respectively, the velocity v and acceleration a:

v (t) ≡ dx

dt
= Re

(
iζx0eiζt

)
, a (t) ≡ dv

dt
=

d2x

dt2
= Re

(−ζ2x0eiζt
)
; (2.2a,b)

here was used i2 = −1 in (1.9b), because i = eiπ/2 and i2 = eiπ = −1. The expressions (2.1,
2.2a,b) are examples of the complex representation of a real quantity, and sometimes
the function real part of Re is omitted.

The motion (2.1, 2.2a,b) is analyzed next for all possible values of ζ to assess the nature
of the equilibrium position x = 0. The trivial case of (2.1a,b) is (2.3a):

ζ = 0 : x (t) = x0, v (t) = 0 = a (t) , (2.3a,b)

that is, the equilibrium is indifferent at x = 0, since the body, after being displaced to x0,
remains at rest in the new position (Figure 2.1a).

13



T&F Cat#71181, CHAP02, Page 14, 2010/8/5

14 Complex Analysis with Applications to Flows and Fields

(a) (b)

(c) (d)

(e) (f)

x /x0x /x0

x /x0x /x0

x /x0x /x0

1

1

1

t

lt

lt

�1

�1

�1

�1

�1

�1

3p

3p

3p

2p

2p

2p

p

p

p

vt

vt

vt

FIGURE 2.1
The six types of motion specified by (2.1a,b) fall in three cases. The first set is (i) indif-
ferent equilibrium, with rest at displaced position (a). The second set is (ii) stability with
(ii-1) oscillation around equilibrium position (b) with frequency ω; (ii-2) monotonic decay
(c) toward equilibrium position with damping λ; (ii-3) the combination (d) of damped
amplitude (ii-2) and harmonic oscillation (ii-1). The third set is (iii) instability with (iii-a)
monotonic (e) [(iii-b) oscillatory (f)] growth. The latter (f) is called overstability.

2.2 Oscillatory Motion with Constant Amplitude

The case (II) of real (2.4a), the motion

ζ = ω : x (t) = Re
(
x0eiωt

)
= x0 cos (ωt) , (2.4a,b)

v (t) = Re
(
ix0ωeiωt

)
= −x0ω sin (ωt) , (2.4c)

a (t) = Re
(−x0ω

2eiωt
)

= −x0ω
2 cos (ωt) , (2.4d)

is oscillatory, with frequency ω, and period τ = 2π/ω, with constant amplitudes
x0, x0ω, x0ω

2, respectively, for the displacement (2.4b), velocity (2.4c), and acceleration
(2.4d) that are out-of-phase by π/2, π, that is, a quarter- and a half-period τ/4, τ/2. The
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latter statement corresponds to

v (t) = ωx
(
t +

π

2ω

)
= ωx

(
t +

τ

4

)
, a (t) = ω2x

(
t +

π

ω

)
= ω2x

(
t +

τ

2

)
, (2.5a,b)

which follows from (2.4b–d) using

cos
(
ωt +

π

2

)
= − sin (ωt) , cos (ωt + π) = − cos (ωt) . (2.6a,b)

The displacement from the equilibrium position x = 0 never exceeds the initial displace-
ment |x (t)| ≤ x0 and the body passes through the equilibrium position every half-period
x ((n + 1/2) τ) = 0 as shown in Figure 2.1b.

2.3 Attenuation or Amplification and Stability or Instability

In the case (III) of pure imaginary (2.7a)

ζ = iλ : x (t) = Re
(
x0ei2λt

)
= x0e−λt, (2.7a,b)

there are two possibilities:

v(t) = Re
(
x0i

2λ2ei2λt
)

= −x0λe−λt, a(t) = Re
(
x0i

4λ2ei2λt
)

= x0λ
2e−λt, (2.7c,d)

(IIIA) if λ > 0 there is attenuation, and the displacement (2.7b), velocity (2.7c), and
acceleration (2.7d) decay monotonically from their initial values, respectively, x0,−λx0, and
λ2x0, to zero, as the body returns to the position of equilibrium x (∞) = 0, which is stable
(Figure 2.1c); (IIIB) if λ < 0 there is amplification, and the displacement, velocity, and
acceleration increase monotonically as the body gets progressively farther from the position
of equilibrium that is unstable (Figure 2.1e). The evolution is monotonic, and,

x (t) = −λ−1v (t) = λ−2a (t) , (2.8)

in both cases the acceleration has the same sign as the displacement, whereas the velocity
has the same (opposite) sign in the case λ < 0 (λ > 0) of amplification (attenuation), that
is, the deviation (approach) to equilibrium involves continuing (reversing) the initial motion
from x (0) = x0 to x (∞) = ∞ [x (∞) = 0].

2.4 Damped Oscillation or Overstable Growth

The general case (IV) of complex (2.9a) corresponds to

ζ = ω + iλ : x (t) = Re
(
x0eiωtei2λt

)
= x0e−λt cos (ωt), (2.9a,b)

a motion which is oscillatory with frequency ω and period τ = 2π/ω, and has

v (t) = Re (x0i (ω + iλ)) eiωtei2λt = −x0e−λt {ω sin (ωt) + λ cos (ωt)}, (2.9c)

a (t) = Re
(
x0i

2 (ω + iλ)
2
)

eiωtei2λt = x0e−λt
{(

λ2 − ω2) cos (ωt)

+2ωλ sin (ωt)}, (2.9d)
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nonconstant amplitude: (IVA) if λ > 0 there is an exponential decay (Figure 2.1d) cor-
responding to a damped oscillation that takes the body back to the equilibrium position
x (∞) = 0, with progressively smaller overshoots on either side; (IVB) if λ < 0 there is
exponential growth (Figure 2.1f), corresponding to an amplified oscillation designated over-
stability, because although the body goes through the equilibrium position every half-period,
it overshoots progressively more on either side. The sequence of maxima and minima can
be used to define a logarithmic decrement (Example 10.3).

2.5 General Relations for Amplitudes and Phases

The frequency ω and attenuation/amplification factor λ have the same dimensions, namely,
the inverse of time, and when they are comparable λ ∼ ω there is no simplification of
the general formulas (2.9a–d), which specify the following relations between the amplitudes
(2.10a,b) and phases (2.11a,b) of the displacement (2.9b), velocity (2.9c), and acceleration
(2.9d):

|v| = |x| |ζ| = |x|
√

ω2 + λ2, |a| = |x| ∣∣ζ2
∣∣ = |x| (ω2 + λ2), (2.10a,b)

arg (v) = arg (x) + arg (iζ) = arg (x) +
π

2
+ arc tan

(
λ

ω

)
, (2.11a)

arg (a) = arg (x) + arg
(−ζ2) = arg (x)− π + 2 arc tan

(
λ

ω

)
. (2.11b)

The formulas (2.9c,d) have been deduced from (2.9a,b), and (2.7c,d) from (2.7a,b), and
(2.4c,d) from (2.4a,b), using the complex representations; they can be checked by direct
derivation of the real expressions, for example, to derive (2.9d) from (2.9b):

d2 {x0e−λt cos (ωt)
}

dt2
=

d
{−x0e−λt {λ cos (ωt) + ω sin (ωt)

}
dt

= x0e−λt
{(

λ2 − ω2) cos (ωt) + 2λω sin (ωt)
}

.

(2.12)

The deduction of the algebraic relations (2.10a,b and 2.11a,b) from the real representation
would require determination of the amplitudes from the maxima of x, v, a(t), and of the
phases as the time lags at these maxima; the use of the complex representation is much
simpler.

2.6 Predominantly or Weakly Oscillatory Motion

If the frequency ω and attenuation/amplification factor λ are of dissimilar magnitudes, the
general results in Sections 2.5 and 2.6 simplify, in the two extremes of (i) motion that is
predominantly oscillatory (2.13a):

ω � |λ| : x (t) , v (t) , a (t) = x0e−λt
{
cos (ωt) ,−ω sin (ωt) ,−ω2 cos (ωt)

}
, (2.13a–d)

the amplitude and phase relations are the same as for the oscillatory motion (2.4b–d)
but the amplitude grows (decays) for λ < 0 (λ > 0) slowly on the time scale of a period
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1/|λ| � 1/ω = τ/2π; (ii) motion that is predominantly attenuated/amplified (2.14a):

|λ| � ω : x (t) , v (t) , a (t) = x0 cos (ωt) e−λt
{
1,−λ, λ2} , (2.14a–d)

the relations between amplitudes are the same as for the purely attenuated/amplified
motion, (2.7a–d), but there is a long-period τ = 2π/ω� 2π/|λ| of oscillation in phase, which
implies small overshoots in the damping, and a large-scale inversion of motion at long inter-
vals of time in the case of overstability.

2.7 Frequency and Attenuation/Amplification Factor

It is clear from the preceding account that the type of motion specified by (2.1b) and
the nature of the equilibrium position x= 0 are determined solely by the position of
(2.1a) in the complex ζ-plane, which acts as a diagnostic diagram in Figure 2.2 and
Table 2.1. All six cases are determined by the combination of (i) zero ω = 0 or nonzero
ω �= 0 frequency, for monotonic or oscillatory motion [the sign of the frequency does not
matter since Re

(
eiωt

)
= cos (ωt) = Re

(
e−iωt

)
, that is, it can be taken always posi-

tive]; (ii) constant λ = 0, increasing λ > 0 or decreasing λ < 0 amplitude, since the sign
of the imaginary part of ζ is important to distinguish attenuation from amplification
Re(ei2λt) = e−λt �= eλt = Re(e−i2λt). The position (Figure 2.2) of the ζ-plane specifies (i) rest
at the origin (Figure 2.1a); (ii) oscillation with constant amplitude (Figure 2.1b) on the
real axis; (iii/iv) monotonic decay (growth) on [Figure 2.1c (2.1e)] the positive (negative)

unstable

stable

(a) rest

decaying (c)

(d) decaying

(b) oscillatory

(f) amplified

oscillations

oscillation

amplified (e)

v

l

FIGURE 2.2
The position in the (ω, λ)-plane of frequency ω and damping/amplification (λ > / < 0)
indicates the six types of motion and three cases of stability in Table 2.1 and Figure 2.1a–f.
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TABLE 2.1
Amplification/Attenuation Factor
Parameters
Meaning

λ > 0
Attenuation

λ = 0
Constant
amplitude

λ < 0
Amplification

ω = 0 stable indifferent unstable
Monotonic Figure 2.1c Figure 2.1a Figure 2.1e
ω �= 0 damped oscillatory overstable
Nonzero

Frequency
Figure 2.1d Figure 2.1b Figure 2.1f

Note: The equation of motion (2.1b) as the real representation of a complex quantity
(2.1a) leads to the six cases illustrated in Figure 2.1a–f. The parameters are initial
amplitude x0, oscillation frequency ω, and damping λ. The six cases are indicated in
the diagnostic plane ω + iλ in Figure 2.2.

imaginary axis; and (v/vi) oscillatory decay or stability (oscillatory growth or overstability)
in [Figure 2.1d (2.1f)], the upper (lower) half-plane.

2.8 Differential Equation and Stability Criteria

The nature of the equilibrium, and the motion in its neighborhood, depends only on the
value of (2.1a) in (2.1b), and it is indicated next how it can be determined in the case
of a system described by a linear ordinary differential equation of order N with constant
coefficients:

N∑
n=0

Bn
dnx

dtn
= 0, (2.15)

without forcing, that is, homogeneous in the sense the r.h.s. is zero. Bearing in mind that
(2.1b) satisfies

dnx

dtn
=

dn
(
x0eiζt

)
dtn

= (iζ)n
x0eiζt = (iζ)n

x (t) , (2.16)

it follows that (2.15) is met by

x (t) QN (ζ) = 0, QN (ζ) ≡
N∑

n=0

Bn (iζ)n = (i)N
BN

N∏
n=0

(ζ − ζn) , (2.17a,b)

for all t in (2.17a), provided that ζ be a root ζn of the complex polynomial (2.17b) of
degree N .

To each distinct ζn root of the characteristic polynomial (2.17b) corresponds to a
particular solution (2.18a):

xn (t) = exp (iζnt) ; x (t) =
N∑

n=1

Anxn (t) , (2.18a,b)
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their linear combination (2.18b) involving N arbitrary constants A1, . . . , AN specifies the
general solution. If a root ζ0 is of multiplicity q, then the q “identical solutions” (2.18a) are
replaced by (2.18d):

k = 0, . . . , q − 1 : xk (t) = tk exp (iζ0t) , (2.18c,d)

which are q distinct solutions (2.18c).
From the receding results follow the stability criteria: the equilibrium x = 0 of the

system described by the differential equation (2.15) with characteristic polynomial (2.17b)
is specified by the nature of the roots (2.18a–d) as follows (Figure 2.2): (i) if all roots have
positive imaginary parts the equilibrium is stable, and the motion monotonic attenuated if
all real parts are zero, or damped oscillatory if at least one real part is nonzero; (ii) if
at least one root has negative imaginary part the equilibrium is unstable, and the motion
monotonic amplified if all such roots have zero real part, and oscillatory overstable if at
least one such root has nonzero real part; and (iii) in the remaining case of some roots with
zero imaginary part and none with negative imaginary part, there are three subcases: (a)
indifferent equilibrium if the only root is zero (both real and imaginary parts); (b) oscillation
with constant amplitude if at least one of the roots with zero imaginary part has nonzero
real part; and (c) if there are multiple roots there is instability if their real parts are all zero,
and overstability if at least one real part is nonzero. The arbitrary constants in the general
solution (2.18b) are determined from initial conditions, as shown next in the particular case
of the harmonic oscillator.

2.9 Initial Conditions for Harmonic Oscillator

The application of initial conditions to render unique the solution of a differential equation
describing the stability of a system is illustrated next in the simplest case of a harmonic
oscillator (Subsection 2.9.1) leading to three interchangeable pairs of arbitrary constants
(Subsection 2.9.2).

2.9.1 Equation of Motion of a Harmonic Oscillator

As a simple example suppose that the displacement satisfies the differential equation

m > 0, k > 0 : mẍ = −kx, (2.19)

which states a balance between (i) the inertia force, equal to mass m times acceleration;
and (ii) the force of a linear spring that is proportional to the displacement, through the
resilience k, and pulls the particle back to the origin x = 0; a large (small) resilience means
(i) for same displacement x, a strong (weak) pulling force; and (ii) for the same mass m, a
higher (lower) acceleration. The mechanical system (2.19) consisting of a mass and a spring
omits the damper (included in Section 4.1, Figure 4.1a, and Example 10.4). For the present
purpose of application of initial conditions, this case is sufficient. The subsequent solutions
of (2.19) assume that there is a spring k �= 0. In the absence of the spring (2.20a), the
acceleration is zero (2.20b):

k = 0 : ẍ = 0, ẋ (t) = v0, x (t) = x0 + v0t, (2.20a–d)

and hence the motion is uniform (2.20c,d). The two arbitrary constants in (2.20d) are
the initial velocity (2.20c) and initial position x0 = x (0). The equation of motion (2.19)



T&F Cat#71181, CHAP02, Page 20, 2010/8/5

20 Complex Analysis with Applications to Flows and Fields

applies to the harmonic oscillator that involves six assumptions: (i) one-dimensional since
there is a single displacement x; (ii) vibration since it depends only on time t; (iii) linear
since it involves the displacement x and time derivatives in (2.15), but no powers or cross-
products; (iv) second-order since the highest order of derivation is two, corresponding to the
acceleration; (v) without damping or amplification, which is considered in Examples 10.4
and 10.5; and (vi) it is a free oscillation due to initial conditions, that is, without applied
external forces. The relaxation of these assumptions is considered in Note 2.1.

The equation of motion (2.19) can be written in the form (2.21a):

ẍ + ω2x = 0, ω ≡
√

k

m
, (2.21a,b)

where (2.21b) is the natural frequency, because it will be shown next (2.23b) that the
motion is an oscillation with this frequency. To prove this, the equation of motion (2.21a)
is put into the form

0 =
{

d2

dt2
+ ω2

}
x (t) =

{
Q2

(
d
dt

)}
x (t) , (2.22a)

showing (2.1b) that characteristic polynomial (2.17b) in the case is

Q2 (ζ) = (iζ)2 + ω2 = −ζ2 + ω2 = − (ζ − ω) (ζ + ω) ; (2.22b)

it has real symmetric roots (2.23a):

ζ± = ±ω : x± (t) = exp (iζ±t) = exp (±iωt) , (2.23a,b)

corresponding to solutions (2.23b) that are indeed oscillations with frequency (2.21b).

2.9.2 Three Interchangeable Pairs of Arbitrary Constants

A linear combination (2.18b) of (2.23b), viz.:

x (t) = A+x+ (t) + A−x− (t) = A+eiωt + A−e−iωt, (2.24)

where A± are arbitrary constants, is also a solution of the equation of motion (2.19) ≡
(2.22a), viz. it is the general solution. Using the identity (1.15) in the form

exp (±iωt) = cos (ωt)± i sin (ωt) , (2.25)

the law of motion (2.24) becomes

x (t) = A1 cos (ωt) + A2 sin (ωt) , (2.26)

where A1, A2 are given by

A1 ≡ A+ + A−, A2 ≡ i (A+ −A−) . (2.27a,b)

That is, a second pair of arbitrary constants related to the first pair.
The velocity is specified from (2.26) by

v (t) =
dx

dt
= ω {−A1 sin (ωt) + A2 cos (ωt)} . (2.28)
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The arbitrary constants may be determined from initial conditions, for example, of
single-point type, specifying initial displacement (2.29b) and velocity (2.29c) at time
(2.29a):

t = 0 : x0 = x (0) = A1, v0 = v (0) = ωA2. (2.29a–c)

Thus, the displacement (2.26) [velocity (2.28)] are given by (2.30a) [(2.30b)]:

x (t) = x0 cos (ωt) +
v0

ω
sin (ωt) , v (t) = −x0ω sin (ωt) + v0 cos (ωt) , (2.30a,b)

confirming the initial values (2.29b) [(2.29c)] for (2.29a).
A third pair (A, α) of arbitrary constants is

Aeiα ≡ A1 + iA2 = 2A−, (2.31)

where (2.27a,b) was used. Real A and α imply

A1 = A cos α, A2 = A sin α; (2.32a,b)

thus, the displacement (2.26) is given by

x (t) = A [cos (ωt) cos α + sin (ωt) sin α] = A cos (ωt− α) = Re
{

Aei(ωt−α)
}

. (2.33)

This shows that the amplitude (2.34a) and phase (2.34b) of the oscillation are given by

A = |A1 + iA2| =
∣∣∣(A1)

2 + (A2)
∣∣∣1/2

=
∣∣∣∣x0

2 +
(v0

ω

)2
∣∣∣∣1/2

, (2.34a)

tanα =
A2

A1
=

v0

x0 ω
, (2.34b)

in terms of the initial conditions (2.29a–c). If at time t = 0 the velocity (displacement) is
zero v0 = 0 (x0 = 0), the phase is α = 0 (α = π/2), and the amplitude is x0 (v0/ω). If at
time t = 0 neither the displacement nor the velocity is zero, then (2.34a,b) do not simplify.
It is possible to eliminate the phase in (2.33) by a suitable choice of origin of time:

t̄ ≡ t− α

ω
= t− ατ

2π
: x (t) = A cos (ωt̄) ≡ x̄ (t̄) , (2.35a,b)

where the period τ was used.

Note 2.1. Analysis of the Stability of Systems: An example of harmonic oscillator appears
in the rolling oscillations of a ship (Chapter 8). The six assumptions (i) to (vi) stated in
Subsection 2.9.1 can be relaxed as indicated next. Forced oscillations (vi) are considered
(Chapter 4) for a second-order system with damping (v), and the corresponding initial
conditions appear in Example 10.5; this problem is an application of the solution ordinary
differential equations; the multidimensional (i) case involves the solution of coupled sys-
tems of ordinary differential equations. Both linear and nonlinear (ii) oscillations can be
considered for mechanical systems with one or several degrees of freedom; the nonlinear
oscillations (iii) lead to elliptic functions. If the displacement were to depend on position
and time, this would (iv) lead to waves described by partial differential equations.

Note 2.2. Alternate Forms of the Stability Theorem: The solution of the linear homogeneous
ordinary differential equation with constant coefficients (2.15) can be written in several
alternate forms:

x (t)
x0

= eiζt = e−st = eϑt, (2.36a–c)
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for example, (i) the kernel of the Fourier transform uses (2.36a) ≡ (2.1b); (ii) the kernel of
the Laplace transform uses (2.36b); and (iii) the characteristic polynomial of the differential
equation is usually (2.36c) put in the form

Pn (ϑ) ≡
N∑

n=0

Bnϑn =
N∑

n=0

Bn (−s)n =
N∑

n=0

Bn (iζ)n ≡ QN (ζ) . (2.37a–c)

The stability theorem (Section 2.8) was stated in terms of ζ, viz.:

ϑ = −s = iζ = i (ω + iλ) = −λ + iω, (2.38)

and can be restated in terms of ϑ or s, with ω (λ) having the same meaning of frequency
(decay rate).

Conclusion 2: The stability conditions for the motion (2.1a,b) about an equilibrium
position x = 0, are indicated in Table 2.1, viz. the position in the complex ζ-plane indi-
cates (Figure 2.2) the cases (Figure 2.1) of: (a) indifferent equilibrium and body at rest in
the perturbed position; (b) oscillation with constant amplitude about the equilibrium posi-
tion; (c) monotonic attenuation towards the position of stable equilibrium; (e) monotonic
amplification away from the position of unstable equilibrium; (d) oscillation with decreas-
ing amplitude, i.e., damping towards the equilibrium position; (f) oscillation with increasing
amplitude, i.e., overstable oscillation, which is an oscillatory form of instability.
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3
Addition, Product, and Inverses

An operation upon complex numbers is a relation between two ordered pairs of real numbers
and a third ordered pair, and it can be represented graphically on the complex plane. The
sum (Sections 3.1 and 3.2) is most conveniently performed in the Cartesian representation,
and the product (Sections 3.3 and 3.4) in the polar representation. The operations sum
and product, and their inverses subtraction and division, can be used (Sections 3.5 and 3.6)
together with the conjugate operator to determine the real and imaginary parts, and the
modulus and argument, of complex expressions. The algebra of complex numbers is related
to the geometry of the Cartesian plane (Sections 3.8 and 3.9), and implies a number of
trigonometrical relations (Section 3.7). The algebra of complex numbers extends to functions
of one or more variables, and thus to complex spaces whose real dimension is twice the
number of complex variables.

3.1 Complex Addition and Rule of the Parallelogram

Starting with two complex numbers in the Cartesian representation:

u = a + ib, v = c + id, (3.1a,b)

the operator addition is defined by the sum of each element of the pair,

u + v ≡ (a + c) + i (b + d), (3.2)

and corresponds (Figure 3.1) to the addition of u and v as vectors, according to the rule
of the parallelogram. Hence, the real (imaginary) part is the sum of the real (imaginary)
parts:

Re (u + v) = Re (u) + Re (v) , Im (u + v) = Im (u) + Im (v) . (3.3a,b)

The addition of complex numbers has the following properties: (i) it is closed because the
sum of complex numbers is a complex number, that is, (1.1) holds for the operation + in
|C; (ii) it is commutative (3.4a) and associative (3.4b):

u + v = v + u, (u + v) + w = u + (v + w) ; (3.4a,b)

(iii) it has a neutral element, namely, zero 0 + 0i; (iv) each complex number u = a + ib
has a symmetric −u = −a− ib, given by (1.18). Hence, the ordered pair (|C, +), where |C
is the set of complex numbers and + the operation addition defined by (3.1a,b; 3.2), is a
commutative group.

23
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v�u

v�u

v �u

v�u

v
u

�u

b�a

ab

v u

u

FIGURE 3.1
Taking two complex numbers u, v as the sides of a rectangle their sum is the diagonal. Their
difference u – v is the diagonal of the rectangle obtained by reflection on the v-direction.

3.2 Modulus, Argument, and Triangular Equalities
(Pythagoras, VI b.c.)

The modulus (1.11) of the sum (3.2) is given by

|u + v|2 = (a + c)2 + (b + d)2 =
(
a2 + d2) + 2 (ac + bd)

= |u|2 + |v|2 + 2 |u| |v| (cos α cos β + sinα sin β) ,
(3.5)

where α, β are the arguments of u,v. The expression (3.5) simplifies

α ≡ arg (u) , β ≡ arg (v) : |u + v| =
∣∣∣|u|2 + |v|2 + 2 |u| |v| cos (α− β)

∣∣∣1/2 , (3.6)

which specifies the length |u + v| of one side of a triangle, from the lengths |u|, |v| of the
other two sides, and the angle α−β between them (Figure 3.2a). In the case α−β = ±π/2,
the two perpendicular sides lead to Pythagoras theorem (VI b.c.) for the rectangular
triangle (Figure 3.2b):

arg (u)− arg (v) = ±π

2
: |u + v|2 = |u|2 + |v|2 . (3.7)

From (1.12a) and (3.2) follows the expression:

arg (u + v) = arc tan
(

b + d

a + c

)
= arc tan

( |u| sin α + |v| sin β

|u| cos α + |v| cos β

)
,

(3.8)

for the argument of the sum of complex numbers (3.8); other alternative expressions are
given in Example 10.6.
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u�v u 2 � v 2

u

v

u � v u � v

a � b

u v u

v

u

v

(a) (b)

(c) (d)

FIGURE 3.2
The sum of complex numbers by the rule of the diagonal of the rectangle (Figure 3.1) is
equivalent to summing complex numbers as the sides of a triangle (a). A particular case is
a rectangular triangle (b) with orthogonal sides for which holds the Pythagoras theorem.
The degenerate cases are collapsed triangles with parallel (c) or antiparallel (d) sides.

3.3 Complex Product, Homothety, and Rotation

Starting with complex numbers in the polar representation:

u = |u| eiα, v = |v| eiβ , (3.9a,b)

the operation product is defined by

uv ≡ |u| |v| ei(α+β), (3.10)

and corresponds (Figure 3.3) to (i) multiplying the moduli, that is, multiplying |u| by
|v| ,which yields an extension if |v| > 1, a contraction if |v| < 1, and leaves the length
unchanged if |v| = 1; (ii) adding the arguments, that is, adding α to β, which yields a
counterclockwise (clockwise) rotation if β > 0 (β < 0). Thus, the product of complex numbers
corresponds algebraically to the product (sum) of moduli (arguments):

|uv| = |u| |v| , arg (u + v) = arg (u) + arg |v| , (3.11a,b)

and geometrically to a homothety (i) [rotation (ii)]; these are discussed in more detail
subsequently (Section 35.1). Bearing in mind that |uv| / |v| = |u| /1 and arg (u) = arg (uv)−
arg (v), the triangles with vertices at (0, 1, u) and at (0, v, uv) are similar, that is, have
equal angles between the sides, and the lengths of the sides are in the same ratio; the triangles
(0, 1, v) and (0, u, uv) are also similar, and both pairs are illustrated in Figure 3.4. The
product of complex numbers is closed, has neutral element (viz. unity 1), and each element
u has an inverse 1/u (as shown in Section 3.5). It is commutative (3.12a) and associative
(3.12b), and distributive (3.12c) with regard to the sum:

uv = vu, (uv) w = u (vw) , (u + v) w = uw + vw. (3.12a–c)

It follows that the ordered pair (|C,×) [triad (|C,+,×)], where |C is the set of complex
numbers, and +,× are the operations addition and product, is a commutative group (ring).
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FIGURE 3.3
The inverse 1/u of a complex number has the inverse modulus and argument with opposite
sign. The product u, v of complex numbers multiplies the moduli and adds the arguments. It
follows that the ratio of complex numbers divides the moduli and subtracts the arguments.
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FIGURE 3.4
The triangles (0, 1, v) and (0,u, uv) are similar because the latter is obtained from the former
by (i) rotating through β = arg (u) and (ii) multiplying all sides by |u|.

3.4 Meaning of the Imaginary Symbol “i”

The real (1.13a) [imaginary (1.13b)] parts of the product of complex numbers in polar form
(3.10) are given, respectively, by

Re (uv) = |u| |v| cos (α + β) = |u| cos α |v| cos β − |u| sin α |v| sin β = ac− bd; (3.13a)
Im (uv) = |u| |v| sin (α + β) = |u| sin α |v| cos β + |u| cos α |v| sin β = bc + ad; (3.13b)

hence, the product of complex numbers in the Cartesian representation is specified by

(a + ib) (c + id) =
(
ac + i2bd

)
+ i (ad + bc) = (ac− bd) + i (ad + bc) ; (3.14)

this corresponds to the ordinary rules of multiplication, and agrees with (3.13a,b) ≡ (3.14),
provided that

i2 = −1,
√−1 = ±i. (3.15a,b)

The condition (3.15a,b) specifying the imaginary symbol “i” coincides with (1.9b); it can
also be justified by noting that lies on the positive imaginary axis at distance unity from
the origin in the complex plane i = eiπ/2, so that i2 = eiπ = −1.
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3.5 Conjugate of the Sum, Product, and Inversion

From (3.2) [(3.9a,b; 3.10)] and (1.17), it follows that the conjugate of the sum (product) is
the sum (product) of the conjugates:

(u + v)∗ = u∗ + v∗, (uv)∗ = u∗v∗; (3.16a,b)

from the expressions of a complex number and its conjugate (1.17), follow the formulas for
the real and imaginary parts:

x ≡ Re(z) =
z + z∗

2
, y = Im (z) =

z − z∗

2i
, (3.17a,b)

and for the modulus and argument:

r ≡ |z| = (z∗z)1/2
, ϕ ≡ arg (z) =

1
2

arg
( z

z∗
)

. (3.18a,b)

The inverse 1/z of a complex number z has the inverse modulus and symmetric argument:

1
z

= r−1e−iϕ =
z∗

z∗z
= z∗ |z|−2 ; (3.19)

using the conjugate leads to

Re, Im
(

1
z

)
= r−1 {cos ϕ,− sin ϕ} = {x,−y} ∣∣x2 + y2

∣∣−1/2
, (3.20a,b)

for the real and imaginary parts of the inverse.

3.6 Complex Representation of Real Quantities

The formulas (3.17a,b) are examples of the complex representation, using z∗, z of real
quantities x,y. The sum of complex representations is the complex representation of the
sum (3.3a,b), but the product does not commute with the complex representation because
Re (uv) �= Re (u) Re (v) in (3.13a) and Im (uv) �= Im (u) Im (v) in (3.13b). From (3.13a)

Re (uv + uv∗) = (ac− bd) + (ac + bd) = 2ac = 2Re (u) Re (v) , (3.21a)

which can also be proved in the reverse direction from (3.17a):

Re (u) Re (v) =
1
2

(u + u∗)
1
2

(v + v∗) =
1
4
[
(uv + uv∗) + (uv + uv∗)∗]

=
1
2

Re (uv + uv∗). (3.21b)

Thus, the complex representation of real quantities (3.17a,b) satisfies the rules (3.3a,b) for
the sum, and for the product:

Re (uv + uv∗) = 2 Re (u) Re (v) = Re (uv + u∗v), (3.22a)
Im (uv − uv∗) = 2 Re (u) Im (v) = Im (uv + u∗v), (3.22b)
Re (uv∗ − uv) = 2 Im (u) Im (v) = Re (u∗v − uv); (3.22c)

all formulas can be proved as (3.21a,b). The complex representation is used in
Section 4.5.
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As a check on the formulas of complex representation of real quantities, for example,
u,v in (3.22a) are put in polar form:

u ≡ eiα, v ≡ eiβ : Re
(
ei(α+β) + ei(α−β)

)
= 2Re

(
eiα

)
Re

(
eiβ

)
, (3.23)

this leads to the trigonometric multiplication formulas:

2 cos α cos β = cos (α + β) + cos (α− β), (3.24a)
2 cos α sin β = sin (α + β)− sin (α− β), (3.24b)
2 sin α sin β = cos (α− β)− cos (α + β), (3.24c)

where (3.24b,c) can be deduced similarly from (3.22b,c) as (3.24a) was deduced (3.23)
from (3.22a). Adding and subtracting among (3.24a–c) leads the trigonometric addition
formulas:

cos (α± β) = cos α cos β ∓ sin α sin β, (3.25a)
sin (α± β) = sinα cos β ± cos α sin β, (3.25b)

these were used in (3.13a,b). These formulas (3.24a–c; 3.25a,b) are generalized next from
two to any number of arguments.

3.7 Trigonometric Addition and Multiplication Formulas

The starting point is the identity:

exp {i (z1 + · · ·+ zN )} = exp (iz1) · · · exp (izN ) , (3.26a)

in the form

cos (z1 + · · ·+ zN ) + i sin (z1 + · · ·+ zN ) = (cos z1 + i sin z1) · · · (cos zN + i sin zN ).
(3.26b)

The cosine (sine) of the sum on the l.h.s. of (3.26a) [(3.26b)] is the real (imaginary) part of
the r.h.s., which is obtained as

cos (z1 + · · ·+ zN ) =
≤N/2∑
p=0

′(−)p sin z1 . . . sinz2p cos z2p+1 . . . cos zN , (3.27a)

sin (z1 + · · ·+ zN ) =
≤N/2∑
p=1

′(−)p sin z1 . . . sin z2p+1 cos z2p+2 . . . cos zN , (3.27b)

by taking (i) all terms where sin appears an even 2p (odd 2p + 1) number of times, with
factor i2p = (−)p [

i−1i2p+1 = (−)p]; (ii) the remaining N − 2p (N − 2p + 1) factors are the
cosines; and (iii) all permutations of z1, . . . , zN are included in the sum as indicated by

∑′.
This proves (3.27a,b), and setting (3.28a) leads to (3.28b,c):

z1 = · · · = zN ≡ z : cos (Nz) =
≤N/2∑
p=0

(
N
2p

)
(−)p sin2p z cosN−2p z, (3.28a,b)

sin (Nz) =
≤N/2∑
p=0

(
N

2p + 1

)
(−)p sin2p+1 z cosN−2p−1 z, (3.28c)
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where the number of permutations is

(
N
2p

)
≡ N !

(2p)! (N − 2p)!
,

(
N

2p + 1

)
=

N !
[(2p + 1)! (N − 2p− 1)!]

, (3.29a,b)

respectively, in (3.28b, 3.29a) and (3.28c, 3.29b), and thus a normal sum
∑

is used in
(3.28b,c).

The addition (multiplication) formulas for the circular cosine (3.27a) [(3.28b,
3.29a)] and sine (3.27b) [(3.28c, 3.29b)] with any number of arguments are simplest for
N = 2 and N = 3. The former are the double addition formulas:

cos (z1 + z2) = cos z1 cos z2 − sin z1 sin z2, (3.30a)
sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2, (3.30b)

confirming (3.25a,b) ≡ (3.30a,b); these include the duplication formulas (3.31a–c):

z1 = z2 ≡ z : cos (2z) = cos2 z − sin2 z = 2 cos2 z − 1 = 1− 2 sin2 z, (3.31a,b)

sin (2z) = 2 cos z sin z, cos2, sin2 (z) =
1± cos 2z

2
, (3.31c,d)

from which follow (3.31d) ≡ (3.31b).

For N = 3, the following triple addition formulas are obtained:

cos (z1 + z2 + z3) = cos z1 cos z2 cos z3 − cos z1 sin z2 sin z3

− cos z2 sin z1 sin z3 − cos z3 sin z1 sin z2,
(3.32a)

sin (z1 + z2 + z3) = − sin z1 sin z2 sin z3 + sin z1 cos z2 cos z3

+ sin z2 cos z1 cos z3 + sin z3 cos z1 cos z2,
(3.32b)

which include the triplication formulas:

z1 = z2 = z3 ≡ z : cos (3z) = cos3 z − 3 cos z sin2 z = cos z
(
4 cos2z − 3

)
, (3.33a,b)

sin (3z) = 3 sin z cos2 z − sin3 z = sin z
(
3− 4 sin2 z

)
. (3.33c)

These formulas can also be deduced by recurrence, for example, applying twice (3.30a,b) to

cos (z1 + z2 + z3) = cos (z1) cos (z2 + z3)− sin (z1) sin (z2 + z3)
= cos (z1) [cos (z2) cos (z3)− sin (z2) sin (z3)]
− sin (z1) [sin (z2) cos (z3) + sin (z3) cos (z2)] ,

(3.34)

which leads to (3.34) ≡ (3.32a). The quadruple addition and quadruplicating formulas are
indicated in Example 10.7.
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3.8 Conjugate Complex and Triangular Inequalities

Squaring (3.17a,b) leads to

(z + z∗)2 ≥ 0 ≥ (z − z∗)2 , (3.35a,b)

the complex conjugate inequalities, where the equality sign in (3.35a) [(3.35b)] holds only
for imaginary (real) z. The conjugate can be used to calculate the modulus of the sum:

|u + v|2 = (u + v) (u∗ + v∗) = u∗u + v∗v + u∗v + v∗u

= |u|2 + |v|2 + u∗v + (u∗v)∗
, (3.36a)

where the real representation (3.22a) may be used:

u∗v + (u∗v)∗ = Re (u∗v) = Re
{
|u| |v| ei(β−α)

}
= |u| |v| cos (α− β) ; (3.36b)

substitution of (3.36b) in (3.36a) yields (3.6).
Bearing in mind that −1 ≤ cos (α− β) ≤ +1, from (3.6) ≡ (3.36a,b)

|u|2 + |v|2 − 2 |u| |v| ≤ |u + v|2 ≤ |u|2 + |v|2 + 2 |u| |v| , (3.37a)

follows the relation:

|u| > |v| : |u| − |v| ≤ |u + v| ≤ |u|+ |v| , (3.37b)

which is designated the triangular inequality, since it shows (Figure 3.2a) that the length
of one side of a triangle cannot exceed the sum of the lengths of the other two sides, and
cannot be less than their difference; the right- (left-) hand side equality holds in the case in
Figure 3.2c (3.2d) of parallel (antiparallel) collinear sides.

3.9 Generalized Schwartz (1890) or Polygonal Inequality

The result (3.37b) can be generalized to finite sum:

|zk| −
N∑

n=1
n �=k

|zn| ≤
∣∣∣∣∣

N∑
n=1

zn

∣∣∣∣∣ ≤
N∑

n=1

|zn|, (3.38)

which is the generalized Schwartz or (1890) polygonal inequality, showing that (Figure
3.5a) the length of a straight line between two points cannot exceed the length of any polyg-
onal line joining the two points, and equality on the r.h.s. can only occur for collinear
parallel segments (Figure 3.5b); the equality on the l.h.s. applies to collinear segments with
zk antiparallel to all others (Figure 3.5c). Also the length of one side of the polygon cannot
be less than the longest side with the lengths of all remaining sides subtracted from it. The
proof of (3.38) is made by induction: (i) since (3.38) applies for N = 2, in which case it
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z1

z1(a)

(b)

(c)

z1+ z2

z3

z1

z1

z1 � z2 � z3 � z4z1�z2�z3�z4

z1� z2� z3 

z1� z2� z3 

z1�z2�z3 

z1� z2� z3� z4

z1� z2� z3� z4

z1�z2�z3�z4

z2

z1 � z2 � z3 � z4z1�z2�z3�z4

z1 � z2 � z3 � z4

z4

z1� z2

z1�z2

z1

z1

z2 z3 z4

z4 z3 z2

FIGURE 3.5
The polygonal inequality (3.38) states that the length of a polygonal line cannot be less
than the length of a straight line joining the ends (a); it is equal only if all sides are parallel
(b); if some segments are antiparallel, they are subtracted from the total length (c).

coincides with (3.37b) for u ≡ z1, v ≡ z2; (ii) besides if (3.38) holds for N , then it also holds
for N + 1. To prove the latter statement: (ii-1) choose (u,v) in (3.39a):

u ≡ zN+1, v ≡
N∑

n=1

zn :

∣∣∣∣∣
N+1∑
n=1

zn

∣∣∣∣∣ = |u + v| ≤ |u|+ |v| = |zN+1|+
∣∣∣∣∣
N+1∑
n=1

zn

∣∣∣∣∣≤
N+1∑
n=1

|zn| ,

(3.39a,b)

where (3.37b) and (3.38) were used to prove the right-hand inequality (3.39b); (ii-2) for the
left-hand inequality choose (u,v) in (3.40a):

u ≡ zk, v ≡
N+1∑
n=1
n �=k

zn : |zk| −
N+1∑
n=1
n �=k

|zn| = |u| − |v| ≤ |u + v| =
∣∣∣∣∣
N+1∑
n=1

zn

∣∣∣∣∣ ≤
N+1∑
n=1

|zn| ,

(3.40a,b)

where (3.37b) and (3.38) were used to prove (3.40b). Note that the left- (3.40b) and right-
hand (3.40a) inequalities operate independently.

Note 3.1. Formal Inequalities and Equalities: The Schwartz inequality applies not only to
numbers (3.38) but also to the integrals of functions. It can also be extended to exponents
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other than 1/2 = p in the modulus, by the Holder and Minkowski inequalities; the latter arise
in the context of functional analysis with application to generalized functions, and Fourier
series and integrals, and other orthogonal expansions and integral representations. The
addition and multiplication formulas in Section 3.7 can be extended from the circular cosine
and sine to the circular tangent and to the corresponding hyperbolic functions. Some higher
transcendental functions also have addition and/or multiplication formulas, for example, (i)
the gamma and polygamma functions; (ii) the elliptic functions of Jacobi and Weierstrass;
and (iii) some special functions, for example, Bessel.

Conclusion 3: Graphical representation of operations and relations between complex
numbers: (Figure 3.1) sum, difference, and symmetry; (Figure 3.3) product, division, and
inverse. The product of complex numbers specifies (Figure 3.4) two pairs of similar trian-
gles, with corresponding angles γ and δ. The (Figure 3.2) triangular inequality (a), has the
orthogonal (b), parallel (c), and antiparallel (d) subcases; it is generalized by (Figure 3.5)
the polygonal inequality (a), which also has a parallel (b) and antiparallel (c) subcases.
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4
Impedance of Associations of Circuits

A mechanical circuit consists (Section 4.1) of masses, dampers, and springs, and is analogous
to an electrical circuit consisting (Section 4.3) of inductors, resistors, and capacitors. A
mechanical (electrical) circuit is characterized by the impedance (Section 4.2), which is
the ratio of the mechanical (electromotive) force to the velocity (electric current). The
impedance is generally complex (Section 4.4), since it appears as a coefficient of proportion-
ality between two quantities that may have different amplitudes and phases (Section 4.5).
Several circuits, electrical or mechanical, may be associated in series, in parallel (Section
4.6) or in hybrid arrangements (Section 4.9), and the total impedance is specified by
the partial impedances of each separate element. The calculation of impedances of com-
plex circuits (Section 4.7) is an application of the algebra of complex numbers, and the
laws of association are different (Section 4.8) for mechanical and electrical circuits. The
mechanical circuits are used in the suspensions of vehicles (e.g., cars, trains, etc.) and
in the “soft” or “shock absorbing” mountings of machinery; the electrical circuits are
used in a variety of electrical devices, for example, radios, computers, appliances, and so
on. The electromechanical circuits also have applications like control systems, actuators,
and so on.

4.1 Inertia, Friction, and Elastic Forces

Consider a basic mechanical circuit, represented in Figure 4.1a and consisting of a mass,
damper, and spring. When the mass is displaced from its equilibrium position, three forces
arise: (i) the inertia force, equal to the product of mass m and acceleration; (ii) the fric-
tion force, which, for weak damping, is proportional to the velocity through the damping
coefficient b; (iii) the elastic force, which, for small displacement, is proportional to the
latter through the resilience k of the spring. Adding all forces leads to the mechanical
force, which is specified by

m > 0, b > 0, k > 0 : F = mẍ + bẋ + kx, (4.1)

where dot denotes derivative with regard to time, viz., x, ẋ, ẍ are, respectively, the dis-
placement, velocity, and acceleration. The friction force was not considered in the har-
monic oscillator (Section 2.9), that is, (2.19) corresponds to (4.1) with b = 0. There
may be two causes for the motion: free motion if there is no mechanical force F = 0,
and the initial conditions are a nonequilibrium position (as in Section 2.9); (ii) forced
motion, which is independent of initial conditions, and specified by the mechanical force
(Section 4.2).

33
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K

C

R

LE

(a)

(b)

m

b

v � F/Z

J � E/Z

FIGURE 4.1
The analogy between mechanical (a) [electrical (b)] circuits replaces the (i) mass m (induc-
tion L) of body (self); (ii) damping b (resistance R) of a damper (resistor); and (iii) resilience
k (inverse capacity 1/C) of a spring (capacitor). These specify the mechanical Zm (electrical
Ze) impedance of the circuit relating the mechanical force F (electromotive force E) to the
velocity v (electric current J).

4.2 Free and Forced Motion of Circuit

In the free motion of a circuit, for which the mass is released from a disturbed position,
in the absence of mechanical force F = 0, the relation (4.1) becomes a homogeneous or
unforced differential equation:

m
d2x

dt2
+ b

dx

dt
+ kx = 0; (4.2)

it is linear with constant coefficients (2.15) and specifies the nature of the equilibrium
(Section 2.8) and the type of motion in its vicinity (2.1a,b). Given this type of displace-
ment x, it is related to the velocity v and acceleration a by (2.2a,b), so that

v ≡ ẋ, x = −i
v

ζ
, a = iζv. (4.3a–c)

Given a velocity v (t), imposed upon the circuit by an external influence, the associated
mechanical force (4.1) is specified as a function of time by (4.4a):

F (t) = Zmv (t) , Zm ≡ b + i

(
ζm− k

ζ

)
, (4.4a,b)

as a linear function of velocity v(t), through a complex constant (4.4b), designated mechan-
ical impedance. For example, the wheel of a car travels over an undulating ground, by
measuring its velocity v, and knowing the impedance Zm of the suspension, the mechanical
force F being exerted can be determined. In the forced motion, the frequency ω and decay
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or amplification λ in (4.5a) ≡ (2.1a) are imposed by the mechanical force (4.1) and lead to
the mechanical impedance (4.4b) ≡ (4.5b):

ζ ≡ ω + iλ : Zm = b + m (iω − λ)− k
λ + iω

ω2 + λ2 . (4.5a,b)

Using (4.3a–c) the mechanical force (4.1) can also be expressed in terms of the acceleration
(4.6a) or displacement (4.6b):

F (t) =
(

m− i
b

ζ
− k

ζ2

)
a (t) =

(−mζ2 + ibζ + k
)
x (t). (4.6a,b)

In all cases the coefficient is independent of time, and is specified by (i) the mass m of the
body, the coefficient b of friction, and the resilience k of the spring; and (ii) the frequency
ω and decay/growth λ of the forcing.

4.3 Electrical Induction, Resistance, and Capacity

The electromechanical analogy (Table 4.1) replaces a mechanical (Figure 4.1a) by an
electrical circuit, represented in Figure 4.1b, with the displacement x replaced by the electric
charge q, and the velocity v ≡ ẋ by the electric current j = q̇. The devices forming the basic
electrical (mechanical) circuit are a capacitor (spring), resistance (damper), and induction
(mass), and the circuit is driven by the electromotive (mechanical) force E (F ), applied
externally, for example, through a battery (engine). The total electromotive force is the sum
of the contribution of the capacitor 1/C, resistance R, and self L, multiplying, respectively,
the charge, current, and its time derivative:

E = Lë + Rė +
e

C
. (4.7)

The expression (4.7) is analogous to the relation (4.1), exchanging mechanical F for elec-
tromotive E force, and velocity v ≡ q̇ for current, so that

J ≡ ė : E (t) = Ze J (t) , Ze ≡ R + i

(
ζL− 1

ζC

)
, (4.8a,b)

TABLE 4.1
Analogy of Mechanical and Electrical Circuits∗

Circuit Mechanical Electrical

Force Mechanical: F Electromotive: E
Variable Velocity: v Current: j
Zero phase Damper: b Resistor: R
Phase +π/2 Mass: m Induction: L
Phase −π/2 spring: k Capacitor: 1/C
Impedance Zm: (4.4b) Ze: (4.8b)

∗ Corresponds to Figure 4.1.
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the electrical impedance, relating electromotive force to current (4.8a), is specified by
(4.8b) ≡ (4.8c):

Ze = R + L (iω − λ)− λ + iω

C (ω2 + λ2)
. (4.8c)

For example, measuring the current J along an electrical circuit, and knowing the impedance
Ze, the electromotive force E being used to drive the circuit is specified.

4.4 Decomposition of Impedance into Inductance and Reactance

The mechanical (electrical) impedance, denoted by Zm in (4.4b) [Ze in (4.8b)], consists for
real ζ, that is, an imposed frequency without decay or amplification,

ζ = ω, λ = 0 : Zm = b + i

(
mω − k

ω

)
, Ze = R + i

(
Lω − 1

ωC

)
, (4.9a,b)

of the damping coefficient b (resistance R) for the real part, plus an imaginary part involving
the mass m (induction L of a self) and resilience k of a spring (inverse capacity 1/C of a
capacitor). A circuit is said to be reactive if the impedance is real, that is, it consists only of
a damper (resistance), and the mechanical (electromotive) force is in phase with the velocity
(current). The opposite case is the inductive circuit, for which the impedance is imaginary,
and which can include a mass m (induction L) and spring of resilience k (capacitor of
capacity C), implying that the mechanical (electromotive) force is out-of-phase by ±π/2
relative to the velocity (current). Table 4.1 summarizes the electromechanical analogy, in
the general case, when the impedance can be decomposed into a reactance and inductance
that are, respectively, its real and imaginary parts. If the mechanical force has a frequency
and a decay/amplification (4.5a), the real (imaginary) part of the impedance (4.10a), called
reactance X (inductance Y ) is (i) for a mechanical circuit (4.5b):

Zm ≡ Xm + iYm : Xm = b−mλ− kλ

ω2 + λ2 , Ym = mω − kω

ω2 + λ2 , (4.10a–c)

(ii) for an electrical circuit (4.8c):

Ze ≡ Xe + iYe : Xe = R− λL− λ/C

ω2 + λ2 , Ye = ωL− ω/C

ω2 + λ2 , (4.11a–c)

The inverse of the impedance:

1
A

= Z = X + iY : (admittance)−1 ≡ impedence≡(resistance) + i(reactance), (4.12)

is called admittance.

4.5 Activity in Terms of the Velocity, Force, and Impedance

The product of the force (4.13a) by the velocity (4.13b),

f (t)
f0

= cos (ωt) = Re
(
eiωt

)
=

v (t)
v0

, (4.13a,b)
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is the activity or work per unit time, which is specified (i) in the real representation by

A (t) ≡ f (t) v (t) = f0v0 cos2 (ωt) ; (4.14a)

(ii) in the complex representation (3.22a) by

A (t) = Re {f (t)}Re {v (t)} =
1
2

Re (fv + fv∗) =
1
2
f0v0 Re

(
ei2ωt + 1

)
=

1
2
f0v0 [1 + cos (2ωt)]. (4.14b)

These are equivalent (4.14a) = (4.14b) on account of (3.31d). The activity may be expressed
in terms of the velocity alone using the impedance (4.4a), which is complex. Thus, the real
representation is applied in two stages: (i) calculation of the force:

Z = X + iY : f (t) = Re {Zv (t)} = v0Re
{
(X + iY) eiωt

}
= v0 [X (cos (ωt)−Y sin (ωt))], (4.15a)

which shows that the resistance is in phase and the reactance out-of-phase by π/2, viz.
(2.6a); (ii) the activity follows from

A (t) = f (t) v (t) = v2
0

[
X cos2 (ωt)− Y

2
sin (2ωt)

]
. (4.15b)

The activity can also be calculated in terms of the velocity and impedance in the complex
representation:

A (t) = Re {f (t)}Re {v (t)} = Re {Zv (t)}Re {v (t)}
=

1
2
Re

(
Zv2 + Zvv∗) =

1
2
|v|2 Re (Z) +

1
2

Re
(
Zv2); (4.16a)

the r.h.s. of (4.16a)≡ (4.16c) is evaluated in terms of the real and imaginary components of
the velocity (4.16b):

{vx, vy} ≡ v0 cos, sin (ωt) :

A (t) =
X

2
|v|2 +

1
2
Re

[
(X + iY)

(
v2

x − v2
y + 2ivxvy

)]
=

X

2
(
v2

x + v2
y

)
+

X

2
(
v2

x − v2
y

)−Yvxvy

= Xv2
x −Yvxvy = v2

0

[
X cos2 (ωt)− Y

2
sin (2ωt)

]
, (4.16b,c)

in agreement with (4.16c) ≡ (4.15b).
The averages over a period,

τ =
2π

ω
, θ = ωt : ω

∫ 2π/ω

0
sin (2ωt)dt =

∫ 2π

0
sin 2θ dθ =

[− cos (2θ)
2

]2π

0
= 0, (4.17a)

ω

∫ 2π/ω

0
cos2 (ωt) dt =

∫ 2π

0
cos2θ dθ =

∫ 2π

0

1 + cos (2θ)
2

dθ =
[
θ

2
+

sin (2θ)
4

]2π

0
= π,

(4.17b)
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applied to (4.15b) ≡ (4.16c) lead the conclusion that

A (t) ≡ 1
τ

∫ τ

0
A (t) dt =

π

ωτ
Xv2

0 =
1
2
Xv2

0 =
1
2
A (0) =

f0v0

2
, (4.18)

the average activity over a period is one-half of the square of the amplitude of the velocity
multiplied by the resistance, that is, one-half of the initial value, which is the peak value
(4.14a) ≡ (4.14b) for the resistive term in (4.17b); the contribution (4.17a) of the reactance
to the activity cancels over a period, and thus has zero average. Similar reasonings apply to
the energy (activity) associated with the electric current J(t) [velocity v(t)] and electromo-
tive force E(t) [mechanical force F (t)] with the electrical (mechanical) impedance playing
the same role.

4.6 Mechanical Circuits in Parallel or Series

When N mechanical circuits are associated in parallel, for example, N = 2 in Figure 4.2a,
the velocity v is the same for all of them (4.19a) and if the impedances zn are generally
distinct, so will be the mechanical forces Fn:

Fn = znv, Fmp =
N∑

n=1

Fn = v

n∑
n=1

zn, (4.19a,b)

which add up to the total force (4.19b). The latter specifies the total impedance (4.20a):

Zmp =
Fmp

v
, Zmp =

N∑
n=1

zn, (4.20a,b)

so that the total impedance of mechanical circuits associated in parallel is the sum of the
impedances (4.20b). For example, if a wheel is suspended from two parallel springs, the
force required to move it at a given velocity increases, and so the inductance (imaginary
part of the impedance, apart from sign) is greater.

In contrast, if the N mechanical circuits are associated in series, for example, N = 2 in
Figure 4.2b, the forces exerted by each of them must be equal, in order that there may be
equilibrium at the junctions. The same force F with generally different impedances zn leads
to distinct velocities vn in (4.21a):

vn =
F

zn
, v =

N∑
n=1

vn = F

N∑
n=1

1
zn

, (4.21a,b)

(a) (b)Z1

Z2

Z1 Z2

FIGURE 4.2
Two circuits can be associated in parallel (a) or in series (b). The laws of association of
impedances are opposite for mechanical and electrical circuits: (i) the impedances add for
mechanical (electrical) circuits in parallel (a) [series (b)]; and (ii) the inverse impedances
add for mechanical (electrical) circuits in series (b) [parallel (a)].
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which add up to the total velocity (4.21b). The latter specifies the total impedance (4.14a):

v =
F

Zms
,

1
Zms

=
N∑

n=1

1
zn

, (4.22a,b)

and it follows that for mechanical circuits associated in series, the inverses of the impedances
add up to the inverse of the total impedance (4.22b).

4.7 Electromechanical Analogy and Contrasting Laws

In the case of N electrical, instead of mechanical, circuits associated in parallel (series),
for example, N = 2 in Figure 4.2a (4.2b), the currents add up (are the same) and the
electromotive forces are the same (add up):

E

Zep
= J =

N∑
n=1

Jn = E

N∑
n=1

1
zn

, Zes =
E

J
=

∑N
n=1 En

J
=

N∑
n=1

zn. (4.23a,b)

It follows that

1
Zep

=
N∑

n=1

1
zn

, Zes =
N∑

n=1

zn (4.24a,b)

for electrical circuits associated in parallel (series) the inverse impedances (impedances) are
added (4.24a) [(4.24b)].

The laws of association of electrical circuits (4.24a,b) are the inverse of those (4.19b,
4.20b) applying to mechanical circuits; the electromechanical analogy (Table 4.1) is followed
by a contrast: the association of mechanical circuits in parallel is equivalent to the associa-
tion of electrical circuits in series, and vice versa viz: (i) the impedances add for mechanical
(electrical) circuits in parallel (series) in (4.25a):

Zmp =
N∑

n=1

zn = Zes; Zms =

{
N∑

n=1

z−1
n

}−1

= Zep, (4.25a,b)

(ii) the inverse impedances add for mechanical (electrical) circuits in series (parallel) in
(4.25b). The latter law (4.25b) can be rewritten:

Zms =
∏N

n=1 zn∑N
n=1

∏N
m=1
m�=n

zm

= Zep, (4.26)

where (i) the numerator is the product of all impedances; (ii) the denominator is a sum of
N terms that are all the distinct products of N − 1 impedances. The simplest cases are

N = 2 : Z−1
ms = z−1

1 + z−2
2 ≡ Z−1

ep , Zms =
z1z2

z1 + z2
≡ Zep, (4.27a,b)

or for two impedances and

N = 3 : Z−1
ms = z−1

1 + z−2
2 + z−2

3 ≡ Z−1
ep , Zms =

z1z2z3

z1z2 + z2z3 + z1z3
≡ Zep, (4.28a,b)

for three impedances.
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4.8 Comparison of Two Circuits in Parallel and in Series

Considering two circuits, of impedances z1, z2 that can be associated either in parallel
Zmp (Zep) or in series Zms (Zes) in a mechanical (electrical) circuit:

Zmp = z1 + z2 = Zes, Zmp =
(
z−1
1 + z−1

2

)−1
=

z1z2

z1 + z2
= Zep. (4.29a,b)

In the case of identical impedances (4.30a) the total impedance is (4.30b,c)

z1 = z2 ≡ z0 : Zmp = 2z0 = Zes, Zms =
z0

2
= Zep. (4.30a–c)

Generalizing to N identical subcircuits in (4.31a) in (4.25a,b) leads to (4.31b,c):

z1 = z2 = · · · = zN ≡ z0 : Zmp = Nz0 = Zes, Zms =
z0

N
= Zep. (4.31a–c)

Thus association of N identical mechanical (electrical) circuits, multiplies the impedance
by N if they are in parallel (series), and divides it by N if they are in series (parallel). In
the case of two resistances, if they are placed in parallel, there are two paths, so that a
larger total current flows for the same electromotive force, implying a reduced resistance
(real part of the impedance); if the resistances are placed in series, for the same current, a
larger electromotive force is required, and the resistance is greater.

4.9 Hybrid Associations of Three Circuits

Starting with three circuits of impedances z1, z2, z3, there are four distinct types of asso-
ciations illustrated in Figure 4.3, ranging from all in parallel (4.3a) to all in series (4.3d),
through two hybrid cases (4.3b,c). In each case, the total mechanical (electrical) impedances
are distinct: (i) all in parallel (series) in Figure 4.3a (4.3d):

ZmA = z1 + z2 + z3 = ZeD; (4.32)

(ii) two in series (parallel) and one in parallel (series) in Figure 4.3b (4.3c):

ZmC =
(
z−1
1 + z−1

2

)−1
+ z3 = z3 +

z1z2

z1 + z2
= ZeB ; (4.33)

(iii) two in parallel (series) and one series in (parallel) in Figure 4.3c (4.3b):

ZmB =
{

(z1 + z2)
−1 + z−1

3

}−1
=

z3 (z1 + z2)
z1 + z2 + z3

= ZeC ; (4.34)

(iv) all in series (parallel) in Figure 4.3d (4.3a):

ZmD =
(
z−1
1 + z−1

2 + z−1
3

)−1
=

z1z2z3

z1z2 + z1z3 + z2z3
= ZeA. (4.35)

In the case of three identical mechanical (electrical) circuits of impedances (4.36a):

z1 = z2 = z3 ≡ z0 : ZmA, ZmB , ZmC , ZmD =
{

3,
3
2
,
2
3
,
1
3

}
z0 = ZeD, ZeB , ZeC , ZeA,

(4.36a–e)
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Z1

Z2

Z3

Z3

Z1

Z2

Z1

Z3

Z2 Z3

Z1 Z2

A

(a) (c)

(b) (d)

B

C D

FIGURE 4.3
There are four possible associations of three circuits from all in parallel (a) to all in series
(d). The intermediate cases are two in parallel and one in series (c) or two in series and one
in parallel (b). The total impedances differ for mechanical (electrical) circuits, for example,
are added for (a) [(d)].

it follows that for mechanical force (electrical) circuits the impedance increases (decreases)
as more are put in parallel (series), viz. (Figure 4.3) it is (i) maximum (4.36a,b) ≡ (4.32) for
all impedances in parallel (series) in Figure 4.3a (4.3d); (ii) minimum (4.36e) ≡ (4.35) for
all impedances in series (parallel) in Figure 4.3d (4.3a); and (iii) in the intermediate cases,
it is larger for (4.36c) ≡ (4.33) than for (4.36d) ≡ (4.34) because there is one impedance in
parallel (series) in Figure 4.3b (4.3c) with the other two. There are (i) two distinct associ-
ations of two impedances (Section 4.8); (ii) four distinct associations of three impedances
(Section 4.9); and (iii) ten distinct associations of four impedances (Example 10.8).

Note 4.1. Impedances of Circuits and Waves: The impedance is defined by the ratio
between the mechanical (electromotive) force and velocity (electric) current assuming both
are complex exponential functions of time, that is, have constant frequency and damp-
ing/amplification. The impedance is defined for waves, for example, sound (Subsection
22.4.1) as the ratio of pressure to velocity,

p(ω) = −Z(ω)v(ω), (4.37)

in the frequency domain with opposite sign. In this case, a Fourier transform (Subsection
17.5.2) leads to a convolution integral in the time domain. The main point of the preceding
analysis, that the impedance is complex, remains valid, as do the laws of association of
circuits.

Note 4.2. Electromechanical Analogies and Controls: The laws of association of impedances
are extensible to the association of control systems; they relate also to the time evolution of
mechanical and electrical circuits. They are an instance of electromechanical analogies that
extend to potential fields and waves. These in turn open the way to interactions between
electromagnetism and matter, for example, fluids and solids; also ionized fluids or plasmas.
These links extend to large-scale relativistic and small-scale quantum phenomena.

Conclusion 4: Analogy between (Figure 4.1) mechanical (a) [electrical (b)] circuits con-
sisting of mass (induction), damper (resistance) and spring (capacitor). The association
of two impedances (Figure 4.2) in parallel (a) and in series (b). With three impedances
(Figure 4.3) there are four possible distinct associations, ranging from all in parallel (a) to
all in series (d), through two hybrid cases, with two circuits in series and one in parallel
(b) or vice-versa (c).
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5
Power, Root, and Logarithm

The power with positive integer order n, is an example (Section 5.1) of a single-valued
function, since to each z corresponds only one zn; the corresponding points for successive
n lie on a logarithmic spiral (Section 5.2). The inverse function (Section 5.3), namely the
root of order n, is n-valued, since for each z there are n distinct possible values of n

√
z;

the corresponding points lie at the vertices of a regular polygon (Section 5.4) with n sides,
leading to a number of trigonometric identities (Section 5.5). There are also many-valued
functions, like the logarithm (Section 5.6), such that to each value of z corresponds an infinite
number of values of log z. The function logarithm appears in the definition (Section 5.7) of
za complex power z with complex exponent a that generalizes both the ordinary nth power
and nth root that correspond respectively to a = n and a = 1/n. It can be shown that the
behavior of the complex power za at the origin z→ 0 and infinity z→∞ depends only on
the modulus of the base and (Section 5.8) on the real part of the exponent, and not on
the imaginary part; this is a particular case of the exponential of a power having different
asymptotic behavior as z →∞ in different angular sectors (Section 5.9). Selecting of the
“correct” branch of a function, and taking into account “jump conditions” between branches,
may be necessary to arrive at correct results; it is also an indication that the problem in
question has several solutions that may or may not be equivalent for a specific purpose.

5.1 n-th Power as the (n − 1)-Times Iterated Product

The n-th power, with n a positive integer, of a complex number z is defined as the
product by itself iterated (n− 1) times, and is most conveniently calculated in the polar
representation:

z = reiϕ : zn ≡ z . . .z [(n− 1)times] = rn einϕ; (5.1a,b)

the modulus and argument of the power are given by (1.21a,b), and the real and imaginary
parts by

Re(zn) = rn cos(nϕ) , Im(zn) = rn sin(nϕ) ; (5.2a,b)

the plane may be divided into n angular sectors, in which the real (imaginary) parts of the
power alternate in sign according to Table 5.1; the sectors where each sign is constant have
an angular width π/n and are rotated by π/2n between the real and imaginary parts of z,
as shown by the null-lines k = 0, . . . ,n− 1:

k = 0, . . . ,2n− 1 : ϕk =
(

k +
1
2

)
π

n
,
kπ

n
, (5.3a,b)

respectively, for the real (5.3a) and imaginary (5.3b) parts of the power.

43
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TABLE 5.1
Signs of Real and Imaginary Parts of Integral Power
zn Re(zn) Im(zn)

Positive
(

k− 1
2

)
π

n
< ϕ <

(
k +

1
2

)
π

n

2kπ

n
< ϕ < (2k +1)

π

n

Zero ϕ =
(

k +
1
2

)
π

n
ϕ =

kπ

n

Negative
(

k +
1
2

)
π

n
< ϕ <

(
k +

3
2

)
π

n
(2k− 1)

π

n
< ϕ <

2kπ

n

k = 0, . . . ,2n− 1.
Note: The signs of the real and imaginary parts of zn depend on the angular sector through
the origin.

5.2 Discrete Set of Points on Logarithmic Spiral

Graphically (Figure 5.1) the power zn of z to the order n (i) raises the modulus to the power
n, that is, yields points progressively farther from (closer to) the origin for |z|> 1 (|z|< 1),
and points on the unit circle for the intermediate case of modulus unity |z|=1; (ii) multiplies
the argument by n, and thus rotates counterclockwise (clockwise) around the origin for
arg(z) > 0(arg(z) < 0), leaving the points on a straight line only in the case of a real base
arg(z) = 0:

log |zn|
log |z| = n =

arg(zn)
arg(z)

; (5.4a,b)

the powers of a complex number z number lie (Figure 5.1) on a logarithmic spiral:

log r = kϕ, k ≡ log |z|
arg(z)

, (5.5a,b)

z2

z5

z6
z7

z8z4

z3

ww
w

w w
w

w

FIGURE 5.1
The successive powers zn of a complex number lie at equal angles ϕ = arg(z) along a
logarithmic spiral log |zn|=n log |z|, and (i/ii) diverge (converge) toward infinity (the origin)
as n→∞ for |z| > 1 (|z|< 1); (iii) in the intermediate case |z| = 1 the spiral degenerates
into a circle and zn divide it in equal angular sectors, for example, three in Figure 5.2.
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that is right- (left-) handed for positive arg( z) > 0 [negative arg(z) < 0] argument, and
unfolds to infinity (curls up to the origin) for modulus |z| > 1(|z|< 1) greater (smaller)
than unity. The degenerate cases arg(z) = 0 and |z|= 1 the successive powers lie, respec-
tively, along the real axis (unit circle) that have zero (unit) curvature.

5.3 Inversion of the Power: Roots of Order n

The n-th root is defined as any inverse of the n-th power:

w≡ n
√

z ⇔ wn ≡ z ≡ reiϕ. (5.6)

Using the polar form (5.7a) of w:

w = σeiψ, σneinψ = reiϕ, (5.7a,b)

it follows that σ,ψ have to be determined satisfying (5.7b) for given r,ϕ. The number of
distinct solutions of (5.7b) specifies the number of roots: (i) there is a single solution for σ:

σ = n
√

r,
∣∣ n
√

z
∣∣ = n

√
|z|, (5.8a,b)

that is, all roots of order n have the same modulus that is the root of order n of the modulus;
(ii) the solution for ψ is

einψ = eiϕ = eiϕ+i2kπ, ψk =
ϕ+2kπ

n
, (5.9a,b)

where k is any integer; so that the phase (5.9b) proceeds in steps of 2π/n = ψk+1−ψk, and
repeats itself, that is, adds 2π, after n steps ψk+n = ψk + 2π. A set of n distinct values is
obtained letting

k = 0,1, . . . ,n− 1 : n
√

z = r1/n exp
{

i

(
ϕ

n
+

2kπ

n

)}
, (5.10)

so that the n roots of order n of a complex number (5.6) are specified by (5.10). Using
(5.10) it follows that:

3
√−8i =

(
23ei3π/2

)1/3
= 2

{
eiπ/2, ei7π/6, ei11π/6

}
= 2i,−i±

√
3, (5.11)

6
√−64 =

(
26eiπ

)1/6
= 2

{
e±iπ/6, e±iπ/2, e±i5π/6

}
=±2i,±i±

√
3, (5.12)

where the six roots of (5.12) coincide with the three roots of (5.11) and their complex
conjugates, because 6

√−64 = 3
√±8i and 3

√
8i =

(
3
√−8i

)∗
. Example 10.9 also uses (5.10).

5.4 Regular Polygon Contained in a Circle

The n roots of order n of a complex number can be represented graphically by the con-
struction, illustrated for n = 3 in Figure 5.2, by noting that: (i) all roots lie on the circle
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z
w

w

3

w + 2p

3

w +4p

3

√z
3

√z
3

√z
3

FIGURE 5.2
The roots of order n (n = 3 in Figure 5.2) lie on the circle of radius |z|1/n and center at
the origin, at equal angular intervals 2π/n, starting in the direction arg (z)/n.

R

L

L
2

a/ 2

a = 2p/n

FIGURE 5.3
The n roots of a complex number lie on the vertices of a regular polygon with n sides and
center at the origin, for example, an equilateral triangle for n = 3 in Figure 5.2. The polygon
is made of n triangles, and the perimeter nL can be calculated relating the length of the
side L to the radius R. The limit n→∞ is the perimeter of the circle.

with (5.9b) center at the origin and radius (5.8a) equal to the n-th root of the modulus; (ii)
the first root has argument equal to 1/n of that of z; (iii) the remaining n− 1 roots divide
the circle into n equal angular sectors measuring 2π/n each. Hence the roots of order n of
z determine a regular polygon with n sides, contained within the circle of radius |z|1/n

and center at the origin, with one vertex lying in the direction arg( z)/n.
Since the polygon has n sides, the angle of two vertices is α = 2π/n, and the length

of one side L = 2R sin(α/2), where (Figure 5.3) the radius is R. Hence, the length of the
perimeter of a regular polygon with n sides, with vertices lying on a circle of radius R, is
given by:

u≡ π

n
: Pn = n2R sin

(π

n

)
= 2πRu−1 sinu. (5.13)

Since the perimeter of the polygon cannot exceed that of the circle, follows (5.14a):

u−1 sinu≤ 1, lim
u→0

u−1 sinu = 1; (5.14a,b)

the equality holds only (5.14b) in the limit u→0, corresponding to a polygon with n→∞
sides that coincides with the circle. The result (5.14a) that u exceeds sin u except at the
origin, where they coincide (5.14b), can be proved analytically (19.39a).
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5.5 Multiple Sums of Sines or Cosines of Equal Angles

As another application consider the set of N -th order roots of exp(iNα), viz.:

n = 0, . . . ,N − 1 : {exp(iNα)}1/N = exp
(

iα+ i
2πn

N

)
; (5.15)

they are the roots of the polynomial of degree N :

zN − eiNα =
N−1∏
n=0

{
z− exp

(
iα+ i

2πn

N

)}
(5.16)

that can be expanded into the N factors indicated. The power zN−1 is missing from the
l.h.s. of (5.16), and so the coefficient of zN−1 on the r.h.s. is zero:

N ≥ 2 : 0 =−zN−1
N−1∑
n=0

exp
{

i

(
α+

2πn

N

)}
; (5.17)

equating real and imaginary parts to zero leads to

N ≥ 2 :
N−1∑
n=0

cos
(

α+
2πn

N

)
= 0 =

N−1∑
n=0

sin
(

α+
2πn

N

)
, (5.18a,b)

showing that: if the sector 2π is divided in N equal parts, the sum of the cosines (sines)
is zero; the result still holds if to all angles is added an arbitrary value α. The geometrical
interpretation is that if a regular polygon is contained in a circle of center at the origin,
the sum of the cosines (sines) at the vertices is zero. This result also has a mechanical
interpretation: (i) consider a star of forces, that is, n forces with the same magnitude,
applied at the same point (e.g., the origin), and making equal angles 2π/n (e.g., for n = 3
with end points on the vertices of the equilateral triangle in Figure 5.2 as shown in Figure
5.4a); (ii) this system of forces is equivalent to zero, that is, the total or resultant force must
be zero (this is most obvious when n = 2p is even, because then there are p pairs of opposite
forces that cancel, for example, n = 4 in Figure 5.4b); (iii) the x- and y-components of the
total force are zero, leading to (5.18a,b). This is generalized next to (15.22a,b).

If N ≥ 3 the same reasoning can be applied to the coefficient of zN−2 that is zero on the
l.h.s. of (5.16), and on the r.h.s. is given by

N ≥ 3 : 0 = zN−2
N−1∑
n=0

exp
{

i

(
α+

2πn

N

)}N−1∑
m=0

exp
{

i

(
α+

2πm

N

)}
; (5.19)

equating real and imaginary parts leads to

N ≥ 3 : 0 =
N−1∑

n,m=0

cos
sin

{
2α+2π

(n+m)
N

}
= 0. (5.20a,b)

This result (5.20a,b) is geometrically less obvious than (15.18a,b), and can be extended to
1≤ p≤N − 1 sets of numbers n1, . . . ,np, by equating in (15.16) the coefficients of zN−p:

1≤ p≤N − 1 : 0 = (−)zN−p

p∏
q=1

N−1∑
nq=0

exp
{

i

[
α+

(
2π

N

)
nq

]}
; (5.21)
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F1

(a) (b)

F2

F2

F3
F1

F4

a

a

FIGURE 5.4
Dividing the circle in equal sectors, for example, via the roots of a complex number, leads
to a system of forces equivalent to zero, for example, three in (a) ≡ (Figure 5.2) and four in
(b). The system of forces is equivalent to zero because (i) all forces pass through the same
point, the center, so there is no torque; (ii) the components of the forces in any direction
cancel, regardless of rotation angle α.

The real and imaginary parts of (5.20) yield:

1≤ p≤N − 1 : 0 =
N−1∑

n1,...,np=0

cos
sin

(
pα+

2π

N

p∑
q=1

nq

)
, (5.22a,b)

showing that: if 0 ≤ α < 2π is any angle, the identities ( 5.22a,b) hold for any natural
number N ≥ 1 + p, and any 1≤ p≤N − 1, for example, the particular cases p = 1 (p = 2)
are (5.18a,b) [(5.20a,b)] that hold for N≥ 2 (N≥ 3). The only remaining results from (5.16)
are two checks: (i) an obvious identity for the power zN ; (ii) for the power z0 ≡ 1, viz.:

e−iNα = (−)N
N−1∏
n=0

exp
[
i

(
α+

2πn

N

)]
= (−)N eiNα exp

(
2π

N

p∑
q=1

nq

)
= (−)N eiNαeiπ(N−1) = (−)N eiNα (−)N−1 =−eiNα,

(5.23)

another identity that proves nothing new.

5.6 Single-, Multi-, and Many-Valued Functions

The power zn is a single-valued function, the square root
√

z a two-valued function, the n-th
root n

√
z an n-valued or multivalued function, and many-valued functions, with infinitely

many values, also exist, for example, the logarithm. Considering:

k = 0,±2, . . . : z = reiϕ = reiϕ+i2πk, (5.24)

where k is any integer; taking logarithms leads to

k ∈ |Z : log z = log r + iϕ+ i2πk; (5.25)



T&F Cat#71181, CHAP05, Page 49, 2010/8/5

Power, Root, and Logarithm 49

to each z there correspond infinitely many values of log z, all having the same real part, and
differing only in the imaginary part, by multiples of 2π. The reason is that the logarithm is
the inverse of the exponential:

exp(z) = exp(i2πk)exp(z) = exp(z + i2πk) , (5.26)

and the latter is periodic with period 2π; when inversion is performed, the phase is unde-
termined to within a multiple of 2π, leading to a many-valued function, viz.:

log(1± i) = log
(√

2e±iπ/4
)

=
1
2

log 2± i
π

4
+ i2kπ, (5.27)

is an example.

5.7 Power with Complex Base and Exponent

The n-th power and root of order n are particular cases, respectively a = n and a = 1/n
with n a positive integer, of the power with base z and exponent a both complex:

k ∈ |Z : za ≡ exp(a logz) = exp(a logz + i2πka) , (5.28)

and generally a many-valued function, because its definition involves the logarithm. The
latter introduces the factor exp(i2πka), with k an arbitrary integer: (i) for a = p an integer,
the factor is unity, and the function reduces to the integral power zp that is single-valued;
(ii) for a = 1/q the inverse of an integer, the factor takes q distinct values, and the function
reduces to the root q

√
z of order q that is q-valued; (iii) for a = p/q a rational number

in its lowest terms, the factor takes q distinct values, and the function q
√

zp is q-valued,
as should be expected from (i) and (ii); (iv) for all other values of a, viz. real irrational,
imaginary, or complex, the factor takes an infinite number of distinct values, and function
za is many-valued. An example is:

k ∈ |Z : ii ≡ exp(i log i) = exp
{

i
(
i
π

2
+ i2πk

)}
= exp

[
−
(

2k +
1
2

)
π

]
, (5.29)

where k is arbitrary integer.

5.8 Limiting Behavior at the Origin and Infinity

As another example, with u,v real and positive, consider:

u,v > 0 : (iu)−iv ≡ exp{iu log(−iv)}= exp
{

iu logv +
πu

2

}
= exp

(πu

2

)
{cos(u logv)+ isin(u logv)} ,

(5.30)

where the principal value was taken, viz. k = 0 in (5.28). The function za, with complex
z(a) in the polar (5.31a) [Cartesian (5.31b)] form, is specified by (5.31c):

a = α+ iβ : za = exp{(α+ iβ)(log r + iϕ)}= exp(α log r−βϕ)exp{i(β log r +αϕ)}
z = reiϕ : = rαe−βϕ [cos(β log r +αϕ)+ i sin(β log r +αϕ)] ;

(5.31a–c)
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TABLE 5.2
Limits of za as z→ 0,∞ for All a

za Re(a) > 0 Re(a) < 0

as z→ 0 : za → 0 za →∞
as z→∞ : za →∞ za → 0

Note: The limits of za at the origin z → 0 and infinity
z → ∞ depend only on the sign of the real part of
the exponent Re(a).

the power with complex base and exponent generally involves [e.g., (5.30) and (5.31a–c)]
the real functions cosine and sine with logarithmic arguments. The second factor in (5.31c)
has modulus unity and βϕ is bounded, so that the behavior at the origin r = 0 and infinity
r =∞ is determined solely by α≡Re(a) viz.:

lim
z→0,∞

|za| ∼ lim
|z|→0,∞

exp{Re(a) log |z|} , (5.32)

where ∼ means that there may be a finite factor. From (5.32) follow the results in Table 5.2,
viz.: the limit of the complex power za as the base z tends to the origin z→ 0 (to infinity
z→∞) is determined solely by the real part of the exponent a, and is 0 (∞) for Re(a) > 0,
and conversely ∞(0) for Re(a)< 0. The limits in Table 5.2 are isotropic, that is, independent
of direction arg(z) for the function za.

5.9 Vanishing and Divergence on Alternate Sectors

For other functions the limit may be anisotropic, for example, depend on direction, such as:

exp
(
z2) = exp

[
(x+ iy)2

]
= exp

(
x2− y2)exp(i2xy) , (5.33)

that as z→∞, is oscillatory with unit modulus along x2 = y2 the diagonals of the quadrants
y =±x, and in the four sectors separated by these (Figure 5.5) alternatively diverges and
vanishes, according to Table 5.3. This is the particular case n = 2 of the exponential of an
integral power (5.34a):

|exp(zn)|= exp{rn cos(nϕ)} , lim
z→0

exp(zn) = 1, (5.34a,b)

that (i) tends to unity (5.34b) as z→ 0 tends to the origin in any direction; (ii) as z→∞
tends to infinity it vanishes or diverges on alternate sectors of width π/n, viz. from (5.2a):

k = 0, . . . ,2n− 1 :

lim
z→∞exp(zn) =


∞ for (k− 1/2)π/n < ϕ < (k +1/2)π/n, (5.35a)
exp{i |z|n (−)n} for ϕ = (k +1/2)π/n, (5.35b)
0 for (k +1/2)π/n < ϕ < (k +3/2)π/n; (5.35c)

(iii) along the separation lines (5.5a) it oscillates in phase with modulus unity. Note that
(i) the first column of Table 5.1 coincides with the conditions (5.35a–c), viz. both specify
the sign of cos(nϕ); (ii) Table 5.3 is the particular case n = 2 of (5.35a–c).

Note 5.1. Balancing of Forces: The results (5.18a,b) hold if the star of forces is rotated by
an angle α, which may vary with time α(t), leading to an angular velocity ω≡ dα/dt. Thus
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FIGURE 5.5
The function exp(z2) in Table 5.3 diverges (vanishes) at infinity in the angular sectors
between the diagonals of quadrants which contain the real (imaginary) axis. The boundary
between these sectors is the diagonals of quadrants, along which the function oscillates with
unit modulus.

TABLE 5.3
Behavior of exp(z2) at Infinity in All Directions
exp(z2) → ∞ exp(±i2x2) 0

(x,y) x2 > y2 y =±x y2 > x2

r→∞ −π

4
< ϕ < +

π

4
ϕ =±π

4
π

4
< ϕ <

3π

4
or or

+
3π

4
< ϕ < +

5π

4
−3π

4
< ϕ <−π

4
Note: The signs of the real part of z2 change (Table 5.1) across the diagonals of quadrants.
This implies that exp(z2) diverges (tends to zero) at infinity in alternate sectors between
the diagonals of quadrants in Figure 5.5. It oscillates with unit modulus along the diagonals
which separate the sectors of decay and divergence.

the result (5.18a,b), and its generalizations (5.20a,b) and (5.22a,b) apply to the balancing
of multicylinder piston engines; these have a single crankshaft, to which are linked at equal
angles the rod and crank mechanisms of each piston, through which the forces are exerted.
This is one of the many practical cases of balancing of forces in classical mechanics.

Conclusion 5: The successive integral powers of a fixed complex number lie on a logarithmic
spiral (Figure 5.1), whereas the n roots of order n of a complex number specify a regular
polygon with the n vertices on a circle of center at the origin (Figure 5.2); one side is
represented (Figure 5.3), to calculate its length, and hence the perimeter of the polygon.
The diagonals of the quadrants divide the complex z-plane into four sectors (Figure 5.5)
containing the directions for which the exp (z2) function diverges (∞) or vanishes (0) as
z →∞ tends to infinity; it oscillates with unit modulus on the diagonals of quadrants,
which are the boundaries of the four sectors. The divisions (Figure 5.4) in three (four)
sectors correspond to a star of three (a) [four (b)] forces.
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6
Electron in an Electromagnetic Field

A charged particle (Section 6.1) placed in an electric field, experiences an acceleration
(Section 6.2) that increases as the electric charge increases and the mass decreases. In the
presence of a magnetic field (Sections 6.3 and 6.4), the charged particle rotates around it,
with an angular velocity that increases with increasing charge and decreasing mass. The
superposition of these two motions (Sections 6.6 and 6.7) specifies the trajectory of the
charged particle in an external electromagnetic field, uniform or not. Electromagnetic fields
may be used to “focus” a beam of charged particles (Section 6.8), distinguish between posi-
tive and negative charges, and separate particles or atoms with different charges and/or
masses (Section 6.9). The motion of charged particles in electromagnetic fields can be
observed in laboratory experiments and occurs in astrophysics, for example, in the iono-
sphere of the earth and interplanetary space; some electrical devices, like cathode ray tubes
and television screens, are based on deflection of the trajectories of charged particles.

6.1 Electromagnetic or Laplace–Lorentz Force

A particle, for example, an electron of charge e placed in an electric field
⇀

E is subject
(Section 24.3) to an electric force (6.1a); if the charged particles moves with velocity ⇀v it
carries an electric current (6.1b):

⇀

Fe = e
⇀

E,
⇀

J = e
⇀v, �Fm =

⇀

J ∧⇀

B
c

, (6.1a–c)

and in the presence of a magnetic field of induction
⇀

B, it is acted upon (Section 26.3) by
a magnetic force

⇀

F given by (6.1c), where c is an universal constant, namely, the speed of
light in vacuo. The sum of the electric and magnetic forces is (Section 28.3) the Laplace–
Lorentz or total electromagnetic force that balances the inertia force, equal to mass
times acceleration:

⇀

Fe +
⇀

Fm =
⇀

Fem = e
⇀

E+
e

c
⇀v ∧⇀

B = m
d⇀v
dt

;
d⇀v
dt

+ �Ω∧⇀v = ⇀a ≡
⇀

F
m

, (6.2a,b)

the equation (6.2a) is similar to the Euler equation (6.2b), describing the combined transla-
tion and rotation of a spherical rigid body with an angular velocity �Ω, under a mechanical
force

⇀

F corresponding per unit mass m to an acceleration ⇀a. Comparison of (6.2a) with
(6.2b) shows that

⇀a =
e

m

⇀

E, �Ω =
e

⇀

B
mc

, (6.3a,b)

the electric field
⇀

E(magnetic induction
⇀

B) causes a translation (rotation) with acceleration
(6.3a) [angular velocity (6.3b)] proportional to the ratio of charge to mass.

53
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6.2 Uniform Fields and Larmor (1897) Frequency

The integration of the equation of motion (6.2a) specifies the velocity and the trajectory,
as shown next in the case of uniform electric and magnetic fields. A Cartesian reference
frame is chosen with OZ-axis aligned with the magnetic induction, and OY-axis such that
the electric field lies on the YOZ-plane:

⇀

B = (0,0,B) ,
⇀

E = (0,E⊥,E//) ; (6.4a,b)

thus E⊥ (E//) is the component of the electric field orthogonal (parallel) to the magnetic
induction. The vector system (6.2a) of three differential equations takes the form:

v̇x = Ωvy, v̇y =−Ωvx +a⊥, v̇z = a//, (6.5a–c)

where (i) dot means derivative with regard to time; (ii) a⊥ (a//) is the acceleration (6.3a)
due to the component of the electric parallel (6.6a) [orthogonal (6.6b)] to the induction:

a// =
eE//

m
, a⊥ =

eE⊥
m

, Ω≡
∣∣∣�Ω∣∣∣ =

eB

mc
; (6.6a–c)

(ii) Ω is associated with the magnetic induction (6.3b) ≡ (6.6c), has the dimensions of
inverse time, and is designated Larmor frequency (1897).

6.3 Longitudinal Translation and Transverse Rotation

The system of three differential equations (6.5a–c) separates into two subsets, viz. (6.5c)
that specifies alone the longitudinal motion, and (6.5a,b) that are coupled and determine
the transversal motion. The motion along the magnetic induction (6.5c) is independent
of the transversal motion, and is determined (6.6a) by:

vz(t) =
eE//

m
t+ v//, z(t) =

eE//

2m
t2 + v//t, (6.7a,b)

where v// is the initial longitudinal velocity and z obtained by integrating vz = ż and is given
by (6.7b), choosing the XOZ-plane so as to pass through the particle at initial time t = 0.
From (6.7a,b) it follows that the longitudinal motion is uniformly accelerated (uniform) in
the presence E// �= 0 (absence E// = 0) of a longitudinal electric field.

To describe the transverse motion that is coupled between the directions OX and OY,
a complex velocity is introduced (6.8a):

v ≡ vx + ivy :
dv

dt
= v̇ = v̇x + iv̇y =−iΩ(vx + ivy)+ ia⊥ =−iΩv + ia⊥, (6.8a,b)

that replaces the pair of coupled real equations (6.5a,b) by a single complex differential
equation (6.8b); the integration of the latter is elementary:

−iΩt =−iΩ
∫ t

0
dt =

∫ v

v0

(
v− a⊥

Ω

)−1
dv = log

(
v−a⊥/Ω
v0−a⊥/Ω

)
, (6.9a)

where v0 denotes the initial complex velocity at time t = 0.
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6.4 Components of the Velocity and Trajectory of the Particle

The initial complex velocity v0 = v0x + iv0y may be taken as real v0 = v0x ≡ v⊥ provided
that initial time t = 0 is chosen when the particle velocity lies in the XOZ-plane:

v (t) =
(
v⊥− a⊥

Ω

)
exp(−iΩt)+

a⊥
Ω

; (6.9b)

separating real and imaginary parts of (6.9b)≡ (6.8a) specifies (6.3b,6.6b) the two transverse
components of the velocity:

vx (t) =
(

v⊥− cE⊥
B

)
cos(Ωt)+

cE⊥
B

, vy (t) =−
(

v⊥− cE⊥
B

)
sin(Ωt) ; (6.10a,b)

integrating with regard to time, leads to the equations of the trajectory:

x(t) =
∫ t

0
vx (t)dt =

(
v⊥
Ω
− cE⊥

BΩ

)
sin(Ωt)+

cE⊥
B

t, (6.11a)

y (t) =
∫ t

0
vy (t)dt =

(
v⊥
Ω
− cE⊥

BΩ

)
cos(Ωt) , (6.11b)

in which the origin of the reference frame was placed at the position of the particle at time
t=0. Thus a particle of charge e and mass m placed in an uniform electromagnetic field,
undergoes a motion specified by the velocity (6.7a; 6.10a,b) and trajectory (6.7b; 6.11a,b).
An alternative derivation of these results using only real instead of complex variables is
presented in Example 10.10. The motion will be analyzed first in the cases of (Section 6.5)
zero electric field E⊥ = 0 = E//, and (Section 6.6) zero initial velocity v⊥ = 0 = v//, before
proceeding to the general case (Section 6.7) when both are nonzero; all cases are included
in the Table 6.1.

6.5 Linear, Circular, and Helical Motion

In the absence of an electric field (6.12a,b), the velocity (6.7a; 6.10a,b)≡ (6.12c–e):

E// = 0 = E⊥ : vx (t) = v⊥ cos(Ωt) , vy (t) =−v⊥ sin(Ωt) , vz (t) = v//, (6.12a–e)

and coordinates (6.7b; 6.11a,b):

x(t) =
v⊥
Ω

sin(Ωt) , y (t) =
v⊥
Ω

cos(Ωt) , z (t) = v//t (6.13a–c)

of the electron show that, in the presence of uniform magnetic induction, the following
trajectories are possible: (I) if it is initially at rest v// = 0 = v⊥ it remains at rest, that is,

the magnetic field alone cannot start a motion since the magnetic force (e/c)⇀v ∧⇀

B = 0 is
zero for zero velocity ⇀v = 0; (II) if the initial velocity is longitudinal v// �= 0 = v⊥ the motion
is uniform along the magnetic induction, and is unaffected by it because the magnetic force
(e/c)⇀v ∧ B̄ = 0 is zero for ⇀v parallel to

⇀

B; (III) if the initial velocity is transverse (6.14a,b)
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x

y

z

v

B

FIGURE 6.1
An electron with initial velocity transverse to an external magnetic field moves in a circle
around the latter with constant velocity.

x

y

z

B

v
//

FIGURE 6.2
An electron with initial velocity oblique to an external magnetic field moves along a cylin-
drical helix with constant azimuthal (axial) velocity, equal to the component of the initial
velocity orthogonal (parallel) to the magnetic field.

the motion takes place in the plane passing through the initial velocity and orthogonal to
the magnetic induction, and the trajectory (6.12a,b; 6.13a,b) is circular (Figure 6.1):

v// = 0 �= v⊥ :
∣∣∣x(t)2 + y (t)2

∣∣∣1/2
= R≡ v⊥

Ω
=

mev⊥
cB

; (6.14a–c)

it is described with constant tangential velocity equal to the initial velocity and constant
angular velocity Ω equal to the Larmor frequency (6.6c) so that the radius (6.14c) increases
for larger electric charge and mass, and smaller magnetic induction; (IV) if the initial velocity
has both longitudinal and transversal components nonzero (6.15a,b), the superposition of
cases (II) and (III) shows that the trajectory is a cylindrical helix (Figure 6.2), of radius
(6.14c), taken at the angular velocity (6.6c), with linear tangential velocity (6.15c):

v// �= 0 �= v⊥ : v0 =
√

v2
⊥ + v2

//, α = arctan
(

v//

v⊥

)
, (6.15a–d)

making a constant angle (6.15d) with the direction of the magnetic induction.

6.6 Linear Acceleration and Cycloid in the Plane

In the case where the particle is initially at rest v// = 0 = v⊥, the motion can only be
started by the electric field, although it is then modified by the magnetic induction. The
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components of the velocity (6.7a; 6.l0a,b):

v⊥ = 0 : vx (t) =
cE⊥
B

[1− cos(Ωt)] , vy (t) =
cE⊥
B

sin(Ωt) , vz (t) =
eE//

m
t, (6.16a–c)

and the coordinates of the particle (6.7b; 6.11a,b):

x(t) =
E⊥c

BΩ
[Ωt− sin(Ωt)] , y (t) =−E⊥c

BΩ
cos(Ωt) , z (t) =

E//e

2m
t2, (6.17a–c)

show that three trajectories (V–VII) are possible. If (V) the electric field and magnetic
induction are parallel E// �= 0 = E⊥, the motion is uniformly accelerated along their common

direction (6.16c; 6.17c) because only the electric force and not the magnetic force acts e
⇀

E �=
0 = (e/c)⇀v ∧⇀

B. If (VI) the electric field and magnetic induction are orthogonal (6.18a,b),
the trajectory lies in the plane (x,y) orthogonal to the magnetic field, on which lies the
electric field (6.16a,b; 6.17a,b); the trajectory corresponds to an uniform circular motion
with angular velocity equal to the Larmor frequency Ω in (6.6c) and linear velocity (6.18c)
and radius (6.18d):

E// = 0 �= E⊥ : U =
E⊥c

B
, S =

U

Ω
=

E⊥c2m

B2e
, (6.18a–d)

upon which is superimposed an uniform motion with velocity U along the OX axis; thus the
trajectory is a cycloid (Figure 6.3) that is also the curve described by a point on a circle
rolling without sliding on a straight line. If (VII) the electric field and magnetic induction
are oblique E// �= 0 �= E⊥, the superposition of cases (V) and (VI) leads to a trajectory that
projects as the cycloid on the XOY-plane, and is elongated by an uniform acceleration along
the OZ axis.

y

z

x

E

B

FIGURE 6.3
If the electron starts at rest it will only move in the presence of an electric field. If the latter
is orthogonal to the magnetic field the trajectory is a cycloid. It corresponds to a fixed point
on a circle rolling without sliding on a plane. It has a cusp where the trajectory touches the
axis and inverts the direction changing the tangent between ±∞.
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6.7 Elongated Helix and Plane Trochoid

In the general case of a charged particle with initial velocity in the presence of uniform
electric and induction fields, three more (VIII–X) trajectories are possible, in addition to the
seven particular cases considered earlier. If (VIII) the electric field and magnetic induction
are parallel E⊥ = 0 �= E//, the superposition of the cases (III) and (V) shows that the motion
is circular and uniform (6.12c,d; 6.13a,b) in the transversal plane and uniformly accelerated
(6.16c; 6.17c) in the direction parallel to the induction; thus the trajectory is a cylindrical
helix progressively elongated (Figure 6.4), with constant radius (6.14c), angular velocity
(6.6c), tangential velocity (6.19a), and inclination (6.19b) increasing with time:

v (t) =

∣∣∣∣∣v2
⊥ +

(
eE//

m
t+ v//

)2
∣∣∣∣∣
1/2

, α(t) = arc tan
(

eE//

mv⊥
t+

v//

v⊥

)
. (6.19a,b)

If (IX) the electric field and magnetic induction are orthogonal E// = 0 �= E⊥, the motion
along OZ is uniform, and the trajectory in the XOY-plane is the superposition (6.10a,b;
6.11a,b) of a circular motion with tangential velocity (6.20a) and radius (6.20b):

V =
E⊥c

B
− v⊥, R =

|V |
Ω

=
∣∣∣∣E⊥c

BΩ
− v⊥

Ω

∣∣∣∣ =
∣∣∣∣E⊥mc2

eB2 − v⊥mc

eB

∣∣∣∣ , (6.20a,b)

and a translation along OX at velocity U in (6.18b); thus the trajectory would be a cycloid
(Figure 6.3) if U = V or v⊥ = 0 in case VI, and in the present case IX is an elongated
(curled) trochoid illustrated in Figure 6.5 (6.6); it corresponds to v⊥ > 0 (v⊥ < 0) trans-
lation velocity larger U > V (smaller U < V ) than the tangential velocity, as for a circle
rolling on a plane and sliding in the direction of (direction opposite to) the translation. In
the most general case (X) of oblique electric field and magnetic induction, the trajectory
projects on the XOY-plane as a trochoid, and is elongated in the OZ direction; thus the
particle rotates around the magnetic induction

⇀

B and is simultaneously accelerated in the
oblique direction of the electric field

⇀

E, changing its initial velocity that is generally oblique
to both

⇀

B and
⇀

E.

x

y

z

E
//

B

FIGURE 6.4
If the electric and magnetic fields are parallel, and the electron starts with arbitrary oblique
initial velocity, the cylindrical helix in Figure 6.2 is deformed by the acceleration along the
electric field, that is, increasingly elongated in the axial direction.
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E

Bv

z

x

FIGURE 6.5
If the electric and magnetic fields are orthogonal, apart from a uniform motion along the
magnetic field, the trajectory is a deformation of the cycloid in Figure 6.3. If the transverse
component of the initial velocity is along the cycloid, the latter becomes an elongated
trochoid without cusps, because a positive horizontal velocity has been added.

E

Bv

x

z

y

FIGURE 6.6
As in Figure 6.5: if the transverse component of the initial velocity is negative it inverts the
motion at the cusps of the cycloid in Figure 6.3, leading to a curled trochoid with double
points, where the electron passes again through the same point.

6.8 Oval and Conical Helices and Magnetic Focusing

In the absence of an electric field, the trajectory of the electron can be deformed if the
magnetic induction is nonuniform: (XI) if the initial velocity of particle is transverse to

⇀

B, the
trajectory is circular (Figure 6.1), provided that

⇀

B be constant or varies only longitudinally;


