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Substantial progress has been made toward developing effective techniques for spatial information
processing in recent years. This science deals with models of reality, however, and not with reality
itself. Therefore, spatial information processes are often imprecise, allowing for much interpretation
of abstract figures and data. Quality Aspects in Spatial Data Mining introduces practical and
theoretical solutions for making sense of the often chaotic and overwhelming amount of concrete
data available to researchers.

The compilation advises the use of granular computing as a means of circumventing spatial
complexities. This counter-application to traditional computing allows for the calculation of
imprecise probabilities —the kind of information that the spatial information systems community
wrestles with much of the time.

With chapters evolving from error propagation and spatial statistics to address relevant applications,
this indispensable volume:

• Provides well-rounded coverage, including geoinformation theory and acquisition, spatial
statistics, and dissemination and application

• Addresses fuzzy and probabilistic methods and applications from four different continents

• Includes peer-reviewed contributions from internationally renowned researchers

Under the editorial guidance of internationally respected geoinformatics experts, this book
addresses quality aspects in the entire spatial data mining process, from data acquisition to end
user. It also alleviates what is often field researchers’ most daunting task by organizing the wealth
of concrete spatial data available into one convenient source, thereby advancing the frontiers of
spatial information systems.
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Qualitas est nobilior quantitate. Qualitas, non quantitas.

Sêneca, Epistulae Morales 17.4

Quality in a product or service is not what the supplier puts in. It is what the 
customer gets out and is willing to pay for. A product is not quality because it 
is hard to make and costs a lot of money, as manufacturers typically believe. 
This is incompetence. Customers pay only for what is of use to them and gives 
them value. Nothing else constitutes quality.

Peter Drucker

It is not a question of how well each process works, the question is how well 
they all work together.

Lloyd Dobyns and Clare Crawford-Mason, Thinking About Quality
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Foreword
Quality Aspects in Spatial Data Mining, edited by Alfred Stein, Wenzhong Shi, 
and Wietske Bijker, and published by CRC Press is a highly impressive collection 
of chapters that address many of the problems that lie on the frontiers of spatial data 
mining, classification, and signal processing. The sections are authoritative and up 
to date. The coverage is broad, with subjects ranging from systems approaches to 
spatial data quality; quality of descriptions of socially constructed facts, especially 
legal data, in a GIS; and a multicriteria fusion approach for geographical data match-
ing, to quality-aware and metadata-based decision-making support for environmen-
tal health, geostatistical texture classification of tropical rainforests in Indonesia, and 
formal languages for expressing data consistency rules and implications for report-
ing of quality metadata.

The wealth of concrete information in Quality Aspects of Spatial Data Mining 
makes it clear that in recent years substantial progress has been made toward the 
development of effective techniques for spatial information processing. However, 
there is an important point that has to be made.

Science deals not with reality but with models of reality. As we move further 
into the age of machine intelligence and automated reasoning, models of information 
systems, including spatial information systems, become more complex and harder to 
analyze. An issue that moves from the periphery to the center is that of dealing with 
information that is imprecise, uncertain, incomplete, and/or partially true. What is 
not widely recognized is that existing techniques, based as they are on classical, 
bivalent logic, are incapable of meeting the challenge. The problem is that bivalent 
logic is intrinsically unsuited for meeting the challenge because it is intolerant of 
imprecision and partiality of truth.

So what approach can be used to come to grips with information, including spa-
tial information, that is contaminated with imprecision, uncertainty, incompleteness, 
and/or partiality of truth? A suggestion that I should like to offer is to explore the use 
of granular computing. Since granular computing is not a well-known mode of com-
putation, I will take the liberty of sketching in the following its underlying ideas.

In conventional modes of computation, the objects of computation are values 
of variables. In granular computing, the objects of computation are not values of 
variables but the information about values of variables, with the information about 
values of variables referred to as granular values. When the information is described 
in a natural language (NL), granular computing reduces to NL computation. An 
example of granular values of age is young, middle-aged, and old. An example of a 
granular value of imprecisely known probability is not very low and not very high.

How can a granular probability described as “not very low and not very high” be 
computed? This is what granular computing is designed to do. In granular computing, 
the key to computation with granular values is the concept of a generalized constraint. 
The concept of a generalized constraint is the centerpiece of granular computing.
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The concept of a constraint is a familiar one in science. But, in science, models 
of constraints tend to be oversimplified in relation to the complexity of real-world 
constraints. In particular, constraints are generally assumed to be hard, with no elas-
ticity allowed. A case in point is the familiar sign “Checkout time is l p.m.” This 
constraint appears to be hard and simple but in reality it has elasticity that is hard to 
define.

A fundamental thesis of granular computing is that information is, in effect, a 
generalized constraint. In this nontraditional view of information, the traditional 
statistical view of information is a special case.

The concept of a generalized constraint serves two basic functions: (a) represen-
tation of information and, in particular, representation of information that is impre-
cise, uncertain, incomplete, and/or partially true; and (b) computation/deduction 
with information represented as a system of generalized constraints. In granular 
computing, computation/deduction involves propagation and counterpropagation 
of generalized constraints. The principal rule of deduction is the so-called exten-
sion principle. A particularly important application area for granular computing is 
computation with imprecise probabilities. Standard probability theory does not offer 
effective techniques for this purpose.

What I said above about granular computing in no way detracts from the impor-
tance of the contributions in Quality Aspects of Spatial Data Mining. I have taken 
the liberty of digressing into a brief discussion of granular computing because of my 
perception that granular computing is a nascent methodology that has high poten-
tial relevance to spatial information processing — and especially to processing of 
information that is imprecise, uncertain, incomplete, and/or partially true — a kind 
of information that the spatial information systems community has to wrestle with 
much of the time.

In conclusion, Quality Aspects of Spatial Data Mining is an important work that 
advances the frontiers of spatial information systems. The contributors, the editors, 
and the publisher deserve our thanks and loud applause.

Lotfi Zadeh
 Berkeley, California



xi

Tamiru H. Alemseged
Department of Water Resources
ITC
Enschede, The Netherlands

Karl-Heinrich Anders
Institute of Cartography and 

Geoinformatics
Leibniz Universität Hannover
Hannover, Germany

Mohamed Bakillah
Département des Sciences Géomatiques
Centre de Recherche en Géomatique
Université Laval
Québec City, Québec, Canada

Yvan Bédard
Département des Sciences Géomatiques
Centre de Recherche en Géomatique
Université Laval
Québec City, Québec, Canada

Sarah A. Bekessy
School of Global Studies, Social 

Science and Planning
RMIT University
Melbourne, Australia

Wietske Bijker
Department of Earth Observation 

Science
ITC
Enschede, The Netherlands

Anna T. Boin
Department of Geomatics
Cooperative Research Centre for Spatial 

Information
University of Melbourne
Coburg, Australia

Jean Brodeur
Centre d’Information Topographique 

de Sherbrooke
Sherbrooke, Québec, Canada

Alan Brown
Countryside Council for Wales
Bangor, United Kingdom

James Brown
National Weather Service
NOAA
Silver Spring, Maryland, U.S.A.

Gilberto Câmara
Image Processing Division
National Institute for Spatial Research
São José dos Campos, Brazil

René R. Colditz
German Aerospace Center
German Remote Sensing Data Center
Wessling, Germany
and
Department of Geography
Remote Sensing Unit
University of Wuerzburg
Wuerzburg, Germany

Alexis J. Comber
Department of Geography
University of Leicester
Leicester, United Kingdom

Christopher Conrad
Department of Geography
Remote Sensing Unit
University of Wuerzburg
Wuerzburg, Germany

Contributing Authors



xii	 Contributing Authors

Robert Corner
Department of Spatial Sciences
Curtin University
Bentley, Western Australia

Sytze de Bruin
Centre for Geo-Information
Wageningen University
Wageningen, The Netherlands

Stefan Dech
German Aerospace Center
German Remote Sensing Data Center
Wessling, Germany
and
Department of Geography
Remote Sensing Unit
University of Wuerzburg
Wuerzburg, Germany

Eduardo S. Dias
SPINlab
Vrije Universiteit
Amsterdam, The Netherlands

Alistair J. Edwardes
Department of Geography
University of Zurich
Zurich, Switzerland

Pete F. Fisher
Department of Information Science
City giCentre
City University
London, United Kingdom

Andrew Frank
Institute of Geoinformation and 

Cartography
Technical University of Vienna
Vienna, Austria

Richard Gloaguen
Remote Sensing Group
Institute for Geology
TU-Bergakademie
Freiberg, Germany

Michael F. Goodchild
Department of Geography
National Center for Geographic 

Information and Analysis
University of California, Santa Barbara
Santa Barbara, California, U.S.A.

Abdelbasset Guemeida
Laboratoire Sciences et Ingénierie 

de l’Information et de l’Intelligence 
Stratégique

Université de Marne-la-Vallée
Marne-la-Vallée, France

Jan-Henrik Haunert
Institute of Cartography and 

Geoinformatics
Leibniz Universität Hannover
Hannover, Germany

Felix Hebeler
Department of Geography
University of Zurich
Zurich, Switzerland

Gerard Heuvelink
Wageningen University and Research 

Centre
Wageningen, The Netherlands
and
Alterra – Soil Science Centre
Wageningen, The Netherlands

Gary J. Hunter
Department of Geomatics
Cooperative Research Centre for Spatial 

Information
University of Melbourne
Parkville, Australia

Kerstin Huth
Faculty of Geomatics
Karlsruhe University of Applied 

Sciences
Karlsruhe, Germany



Contributing Authors	 xiii

Robert Jeansoulin
Laboratoire d’Informatique de l’Institut 

Gaspard Monge
Université Paris-EST Marne-la-Vallée
Champs-sur-Marne, France

Simon D. Jones
School of Mathematical and Geospatial 

Sciences
RMIT University
Melbourne, Australia

Martin Knotters
Alterra – Soil Science Centre
Wageningen, The Netherlands

Karin Kollo
Department of Geodesy
Estonian Land Board
Tallinn, Estonia

Alex M. Lechner
School of Mathematical and Geospatial 

Sciences
RMIT University
Melbourne, Australia

Rodrigo Lilla Manzione
National Institute for Spatial Research
Image Processing Division
São José dos Campos, Brazil

Haixia Mao
Department of Land Surveying and 

Geo-Informatics
Advanced Research Centre for Spatial 

Information Technology
The Hong Kong Polytechnic University
Hong Kong SAR, China

Marco Marinelli
Department of Spatial Sciences
Curtin University
Bentley, Western Australia

Prashanth R. Marpu
Remote Sensing Group
Institute for Geology
Freiberg, Germany

Nick Mitchell
Faculty of Geomatics
Karlsruhe University of Applied 

Sciences
Karlsruhe, Germany

Mir Abolfazl Mostafavi
Département des Sciences Géomatiques
Centre de Recherche en Géomatique
Université Laval
Québec City, Québec, Canada

Gerhard Navratil
Institute for Geoinformation and 

Cartography
Vienna University of Technology
Vienna, Austria

Ana-Maria Olteanu
COGIT Laboratory
IGN/France
Paris, France

Alejandro Pauly
Sage Software
Alachua, Florida, U.S.A.

Ekaterina S. Podolskaya
Cartographic Faculty
Moscow State University of Geodesy 

and Cartography
Moscow, Russia

Ross S. Purves
Department of Geography
University of Zurich
Zurich, Switzerland

Tom H.M. Rientjes
Department of Water Resources
ITC
Enschede, The Netherlands



xiv	 Contributing Authors

Gabriella Salzano
Laboratoire Sciences et Ingénierie 

de l’Information et de l’Intelligence 
Stratégique (S3IS)

Université de Marne-la-Vallée
Paris, France

Gertrud Schaab
Faculty of Geomatics
Karlsruhe University of Applied 

Sciences
Karlsruhe, Germany

Sven Schade
Institute for Geoinformatics
University of Münster
Münster, Germany

Michael Schmidt
German Aerospace Center 
German Remote Sensing Data Center
Wessling, Germany
and
Remote Sensing Unit
Department of Geography
University of Wuerzburg
Wuerzburg, Germany

Markus Schneider
Department of Computer & Information 

Science & Engineering
University of Florida
Gainesville, Florida, U.S.A.

Monika Sester
Institute of Cartography and 

Geoinformatics
Leibniz Universität Hannover
Hannover, Germany

Wenzhong Shi
Department of Land Surveying and 

Geo-Informatics
Advanced Research Centre for Spatial 

Information Technology
The Hong Kong Polytechnic University
Hong Kong SAR, China

Alfred Stein
Department of Earth Observation 

Science
ITC
Enschede, The Netherlands

Rangsima Sunila
Department of Surveying
Laboratory of Geoinformation and 

Positioning Technology
Helsinki University of Technology
Espoo, Finland

Yan Tian
Department of Land Surveying and 

Geo-Informatics
Advanced Research Centre for Spatial 

Information Technology
The Hong Kong Polytechnic University
Hong Kong SAR, China
and
Department of Electronic and 

Information Engineering
Huazhong University of Science and 

Technology
Wuhan, China

Martin Vermeer
Department of Surveying
Helsinki University of Technology
Helsinki, Finland

Jos von Asmuth
Kiwa Water Research
Nieuwegein, The Netherlands

Paul Watson
1Spatial
Cambridge, United Kingdom

Thilo Wehrmann
German Aerospace Center
German Remote Sensing Data Center
Wessling, Germany



Contributing Authors	 xv

Arief Wijaya
Remote Sensing Group
Institute for Geology
TU-Bergakademie
Freiberg, Germany
and
Faculty of Agricultural Technology
Gadjah Mada University
Yogyakarta, Indonesia

Graeme Wright
Department of Spatial Sciences
Curtin University
Bentley, Western Australia

Lotfi A. Zadeh
University of California
Berkeley, California, U.S.A.





xvii

Introduction

About This Book

Spatial data mining, sometimes called image mining, is a rapidly emerging field in 
Earth observation studies. It aims at identification, modeling, tracking, prediction, 
and communication of objects on a single image, or on a series of images. All these 
steps have to deal with aspects of quality. For example, identification may concern 
uncertain (vague) objects, and modeling of objects relies, among other issues, on the 
quality of the identification. In turn, tracking and prediction depend on the quality 
of the model. Finally, communication of uncertain objects to stakeholders requires a 
careful selection of tools.

Quality of spatial data is both a source of concern for the users of spatial data 
and a source of inspiration for scientists. In fact, spatial data quality and uncertainty 
are two of the fundamental theoretical issues in geographic information science. In 
both groups, there is a keen interest to quantify, model, and visualize the accuracy 
of spatial data in more and more sophisticated ways. This interest was at the origin 
of the 1st International Symposium on Spatial Data Quality, which was held in Hong 
Kong in 1999, and still is the very reason for the 5th symposium, ISSDQ 2007, 
in Enschede, The Netherlands. The organizers of this symposium selected the best 
papers presented at the conference to be published in this book after peer-review and 
adaptation.

Data Quality—A Perspective

The quality of spatial data depends on “internal” quality, the producer’s percep-
tion, and “external quality,” or the perspective of the user. From the producer’s point 
of view, quality of spatial data is determined by currency, geometric and semantic 
accuracy, genealogy, logical consistency, and the completeness of the data. The user’s 
concern, on the other hand, is “fitness for use,” or the level of fitness between the data 
and the needs of the users, defined in terms of accessibility, relevancy, completeness, 
timeliness, interpretability, ease of understanding, and costs (Mostafavi, Edwards, 
and Jeansoulin, 2004).

The field of spatial data quality has come a long way. Five hundred years ago, 
early mapmakers like Mercator worried already about adequate representation of 
sizes and shapes of seas and continents to allow vessel routing. Mercator’s projection 
allowed representing vessel routes as straight lines, which made plotting of routes 
easier and with greater positional accuracy. Ever since, surveyors, cartographers, 
users, and producers of topographic data have struggled to quantify, model, and 
increase the quality of data, where accuracy went hand in hand with fitness for use. 
Next to navigation, description of property, from demarcation of countries to cadas-
tre of individual property, became an important driving force behind the quality of 
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spatial data in general, with emphasis on positional accuracy and correct labeling of 
objects (e.g., ownership).

In the environmental sciences, the focus on aspects of quality of spatial data dif-
fered from the topographic sciences. Of course soils, forests, savannahs, ecosystems, 
and climate zones needed to be delineated accurately, but acceptable error margins 
were larger than in the topographic field. Attention was focused on the adequate and 
accurate description of the content. Well-structured, well-described legends became 
important, and statistical clustering techniques such as canonical analysis were used 
to group observations into classes. With a trend toward larger scales (higher spatial 
resolution), the positional accuracy became more important for the environmental 
sciences for adequate linking and analyzing of data of different sources, while the 
need for thematic accuracy and thematic detail increased in the topographic sci-
ences. Thematic and positional accuracy became increasingly correlated.

For a long time scientists have realized that, in reality, objects weren’t always 
defined by sharp boundaries and one class of soils or vegetation will change gradu-
ally into another in space as well as in time. Nevertheless, because of a lack of appro-
priate theory and appropriate tools, everything had to be made crisp for analysis and 
visualization. In the last decade or so, theories for dealing with vague objects and 
their relations have been developed (Dilo et al., 2005), such as fuzzy sets, the egg-
yolk model (Cohn and Gotts, 1996), the cloud model (Cheng et al., 2005 citing Li 
et al., 1998) and uncertainty based on fuzzy topology (Shi and Liu, 2004).

The way we look at our world, and the way we define objects from observations, 
depend on the person, background, and purpose. One remotely sensed image, one set 
of spatial data, can be a source for many different interpretations. Of course there are 
a number of common perceptions in society that enable us to communicate spatial 
information. These common perceptions change with time as the challenges society 
faces change. A look at a series of land cover maps from the same area but from dif-
ferent decades clearly shows how thinking went from “exploration” and “conserva-
tion” to “multiple-use” and the legend and the spatial units changed accordingly, even 
where no changes happened on the ground. This is where ontology plays a role.

During times when spatial data were scarce, a limited number of producers pro-
duced data for a limited well-known market of knowledgeable users with whom they 
had contact. Now there are many producers of spatial data; some are experts, others 
are not. Users have easy access to spatial data. Maps and remote sensing images are 
available in hard copy and via the Internet in ever-growing quantities. Producers 
have no contact with all users of their data. Spatial data are also easily available to 
users for whom the data were not intended (fitness for use!) and to nonexpert users, 
who do not know all the ins and outs of the type of data. Not all producers of spatial 
data are experts either; yet, their products are freely available. A good example is 
Google Earth and Google Maps, where everyone with access to the Internet can add 
information to a specific location and share this with others. The increasing distance 
between producer and user of spatial data calls for adequate metadata, including 
adequate descriptions of data accuracy in terms that are relevant to both the user and 
producer of the data.

This book addresses quality aspects in spatial data mining for the whole flow 
from data acquisition to the user. A systematic approach for handling uncertainty 
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and data quality issues in spatial data and spatial analyses covers understanding the 
sources of uncertainty, and modeling positional, attribute, and temporal uncertain-
ties and their integration in spatial data as well as modeling uncertainty relations and 
completeness errors in spatial data, in both object-based and field-based data sets. 
Such types of approaches can be found as Section I, “Systems Approaches to Spa-
tial Data Quality.” Besides modeling uncertainty for spatial data, modeling uncer-
tainty for spatial models is another essential issue, such as accuracy in DEM. Section 
II, “Geostatistics and Spatial Data Quality for DEMs,” deals specifically with this 
aspect of data quality. Uncertainties may be propagated or even amplified in spa-
tial analysis processes, and, therefore, uncertainty propagation modeling in spatial 
analyses is another essential issue, which is treated in more detail in Section III, 
“Error Propagation.”

Quality control for spatial data and spatial analyses should ensure the infor-
mation can fulfill the needs of the end users. For inspiration to users and produc-
ers alike, practical applications of quality aspects of spatial data can be found in 
Section IV, “Applications.” New concepts and approaches should prove their worth 
in practice. Questions from users trigger new scientific developments. Just like the 
need to represent routes by straight lines on maps inspired Mercator to develop a 
map projection, present-day users inspire scientists to answer their questions with 
innovative solutions, which in turn give rise to more advanced questions, which 
could not be asked previously.

From a known user, one can get specifications of the data quality that are needed. 
But what to do with the (yet) unknown users, who may use the data for unforeseen 
purposes, or the “non-users” or “not-yet users” (Pontikakis and Frank, 2004), from 
whom we would like to know why they are not using spatial information? Section V, 
“Communication,” focuses on ways to communicate with users about their needs 
and the quality of spatial data.
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Section I

Systems Approaches to Spatial  
Data Quality
Introduction

Spatial data quality is a concept that is partly data- and object-driven and partly 
based on fitness for use. In order to integrate, the systems approach is likely to be 
useful. A systems approach is well known in geo-information science (one may think 
of the GEOSS initiative) as well as in several other fields of science, like agriculture, 
economy, and management sciences. Its approach thus serves as a guiding principle 
for spatial data quality aspects. For spatial data, geographical information systems 
found their place in the 1980s, and these systems are still potentially useful to serve 
the required purposes. But here the word “system” largely expresses the possibili-
ties of storing, displaying, handling, and processing spatial data layers. This is not 
sufficient for the emerging field of spatial data quality, requiring in its current devel-
opment a full systems approach. In fact, data can be different as compared to previ-
ously collected and analyzed data, and the objects will be inherently uncertain. As 
compared to the traditional GIS, a systems approach to spatial data quality should be 
able to deal with uncertainties. These uncertainties are usually expressed either by 
statistical measures, by membership functions of fuzzy sets, or they are captured 
by metadata.

A first and foremost challenge is thus to be able to extract, i.e., to query, vague 
spatial objects from databases. Common GIS, still seen as a spatial database with 
some specific functionalities, do not allow one to do so. This field is, at the moment, 
therefore, still very much an area of research rather than an issue of production. As 
concerns the data aspect, socially constructed facts are recognized as being impor-
tant. This refers in part to social objects, but also to legal facts.
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More recently, semantic issues have found their place in spatial research, thus 
acknowledging that the traditional fuzzy and statistical measures may fall short. 
Modern and prospective approaches toward spatial data quality are thus governed 
by semantic aspects of data and maps. In the frame of this section, semantic issues 
are approached along two lines. First, a conceptual framework for quality assess-
ment is presented. Such a framework may be different from the ordinary conceptual 
frameworks, which did not include data quality aspects explicitly. In this sense, one 
chapter considers semantic mapping between ontologies. Next it is recognized that a 
semantic reference system should account for uncertainty. A requirement analysis is 
thus appropriate in that sense.

Section I of the book thus considers modern aspects of a systems approach to 
spatial data quality.
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1 Querying Vague 
Spatial Objects in 
Databases with VASA

Alejandro Pauly and Markus Schneider

1.1 �I ntroduction

Many man-made spatial objects such as buildings, roads, pipelines, and political divi-
sions have a clear boundary and extension. In contrast to these crisp spatial objects, 
most naturally occurring spatial objects have an inherent property of vagueness or 
indeterminacy of their extension or even of their existence. Point locations may not 
be exactly known; paths or trails might fade and become uncertain at intervals. The 
boundary of regions might not be certainly known or simply not be as sharp as that 
of a building or a highway. Examples are lakes (or rivers) whose extensions (or paths) 
depend on pluvial activity, or the locations of oil fields that in many cases can only 
be guessed. This inherent uncertainty brings to light the necessity of more adequate 
models that are able to cope with what we will refer to as vague spatial objects.

Existing implementations of geographic information systems (GIS) and spatial 
databases assume that all objects are crisply bounded. With the exception of a few 
domain-specific solutions, the problem of dealing with spatial vagueness has no 
widely accepted practical solution. Instead, different conceptual approaches exist for 
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which researchers have defined formal models that can deal with a closer approxi-
mation of reality where not all objects are crisp. For the treatment of vague spatial 
objects, our vague spatial algebra (VASA), which can be embedded into databases, 
encompasses data types for vague points, vague lines, and vague regions as well as 
for all operations and predicates required to appropriately handle objects of these 
data types. The central goal of the definition of VASA is to leverage existing models 
for crisp spatial objects, resulting in robust definitions of vague concepts derived 
from proven crisp concepts.

In order to fully exploit the power of VASA in a database context, users must 
be able to pose significant queries that will allow retrieval of data that are useful 
for analysis. In this chapter, we provide an overview of VASA and the capabilities it 
provides for handling vague spatial objects. Based on these capabilities, we describe 
how users can take full advantage of an implementation of VASA by proposing 
meaningful queries on vague spatial objects. We use sample scenarios to explain 
how the queries can be posed with a moderate extension of SQL.

This chapter starts in Section 1.2 by summarizing related work that covers rel-
evant concepts from crisp spatial models as well as other concepts for handling 
spatial vagueness. In Section 1.3 we introduce the VASA concepts for data types, 
operations, and predicates. Section 1.4 shows how a simple extension to SQL will be 
of great benefit when querying vague spatial data. Finally, in Section 1.5 we derive 
conclusions and expose future work.

1.2 �R elated Work

Existing concepts relevant to this work can be divided into two categories: (1) 
concepts that provide the foundation for the work presented in this chapter and 
(2) concepts that are defined with goals similar to those of the work in this chapter.

Related to the former, we are interested in crisp spatial concepts that define the 
crisp spatial data types for points, lines, and regions [25]. We are also interested in 
the relationships that can be identified between instances of these types. Topological 
relationships between spatial objects have been the focus of much research, and we 
concentrate on the concepts defined by the 9-intersection model originally defined in 
[10] for simple regions, and later extended for simple regions with holes in [11]. The 
complete set of topological relationships for all type combinations of complex spatial 
objects is defined in [25] on the basis of the 9-intersection model.

We categorize available concepts for handling spatial vagueness by their math-
ematical foundation. Approaches that utilize existing exact (crisp) models for spatial 
objects include the broad boundaries approach [6, 7], the egg-yolk approach [8], 
and the vague regions concept [12]. These models extend the common assumption 
that boundaries of regions divide the plane into two sets (the set that belongs to the 
region, and the set that does not) with the notion of an intermediate set that is not 
known to certainly belong or not to the region. Thus we say that these models extend 
crisp models that operate on the Boolean logic (true, false) into models that handle 
uncertainty with a three-valued logic (true, false, maybe). VASA, our concept for 
handling spatial vagueness (Section 1.3), is based on exact models for crisp spatial 
objects. Although fundamentally different from the exact-based approaches, rough 
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set theory [22] provides tools for deriving concepts with a close relation to what can 
be achieved with exact models. Rough set theory–based approaches include early 
work by Worboys in [26], the concepts for deriving quality measures presented in 
[4], and the concept of rough classification in [1].

One of the advantages of fuzzy set theory is the ability to handle blend-in type 
boundaries (such as that between a mountain and a valley). Approaches in this cat-
egory include earlier fuzzy regions [3]; the formal definition of fuzzy points, fuzzy 
lines, and fuzzy regions in [23]; and an extension of the rough classification from [1] 
to account for fuzzy regions [2]. A recent effort for the definition of a spatial algebra 
based on fuzzy sets is presented in [9]. Finally, probabilistic approaches [13] focus on 
an expected membership to an object that can be contrasted to the membership val-
ues of fuzzy sets that are objective in the sense that they can be computed formally 
or determined empirically.

Concepts even closer to that dealt with in this chapter, namely, querying with 
vagueness, are discussed in [17] where it is proposed that vagueness does not 
necessarily appear only in the data being queried but can also be part of the query 
itself. The work in [24] proposes classifications of membership values in order to 
group sets of values together (near fuzzy concepts). For example, a classification 
could assign the term “mostly” to high membership values (e.g., 0.95–0.98). In the 
context of databases in general, the approaches in [15, 16, 18, 19] all propose exten
sions to query languages on the basis of an operator that enables vague results under 
different circumstances. For example, in [15] the operator similar-to for QBE (Query-
by-Example) is proposed alongside relational extensions so that related results can 
be provided in the event that no exact results match a query. In [18] the operator ~ 
is used in a similar way to the similar-to operator. All these approaches require 
additional information to be stored as extra relations and functions about distance 
that allow the query processor to compute close enough results. Although some of 
these approaches are extended to deal with fuzzy data, the general idea promotes the 
execution of vague queries over crisp data.

1.3 �V ASA

In this section we describe the concepts that compose our vague spatial algebra. The 
foundation of VASA is its data types, which we specify in Section 1.3.1. Spatial set 
operations and metric operations are introduced in Section 1.3.2. Finally, the concept 
of vague topological predicates is briefly introduced in Section 1.3.3.

1.3.1 � Vague Spatial Data Types

An important goal of VASA (and of all approaches to handling spatial uncertainty 
that are based on exact models) is to leverage existing definitions of crisp spatial 
concepts. In VASA, we enable a generic vague spatial type constructor v that, when 
applied to any crisp spatial data type (i.e., point, line, region), renders a formal syn-
tactic definition of its corresponding vague spatial data type. For any crisp spatial 
object x, we define its composition from three disjoint point sets, namely the interior 
(x°), the boundary (∂x) that surrounds the interior, and the exterior (x−) [25]. We 
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also assume a definition of the geometric set operations union (⊕), intersection (⊗), 
difference (), and complement () between crisp spatial objects such as that from 
[14].

Definition 1  Let α ∈ {point, line, region}. A vague spatial data type is given 
by a type constructor v as a pair of equal crisp spatial data types α, i.e.,

	 v(α) = α × α

such that, for w = (wk,wc) ∈ v(α), 

	 wk° ∩ wc° = ∅

holds. 

We call w ∈ v(α) a (two-dimensional) vague spatial object with kernel part wk and 
conjecture part wc. Further, we call wo := (wk,wc) the outside part of w. For α = 
point, v(point) is called a vague point object and denoted as vpoint. Correspond-
ingly, for line and region we define v(line) resulting in vline and v(region) resulting 
in vregion.

Syntactically, a vague spatial object is represented by a pair of crisp spatial 
objects of the same type. Semantically, the first object denotes the kernel part that 
represents what certainly belongs to the object. The second object denotes the con-
jecture part that represents what is not certain to belong to the object. We require 
both underlying crisp objects to be disjoint from each other. More specifically, the 
constraint described above requires the interiors of the kernel part and the conjecture 
part to not intersect each other. Figure 1.1 illustrates instances of a vague point, a 
vague line, and a vague region as objects of the data types defined above.

1.3.2 � Vague Spatial Operations

For the definition of the vague spatial set operations that compute the union, inter-
section, and difference between two vague spatial objects, we leverage crisp spatial 
set operations to reach a generic definition of vague spatial set operations.

(a) (b) (c)

Figure 1.1  A vague point object (a), a vague line (b), and a vague region (c). Kernel parts 
are symbolized by dark gray points, straight lines, and dark gray areas. Conjecture parts are 
symbolized by light gray point, dashed lines, and light gray areas.
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We define the syntax of function h ∈ [intersection, union, difference] as h: v(α) × 
v(α) → v(α). The complement operation is defined as complement: v(α) → v(α). Seman-
tically, their generic (type-independent) definition is reached by considering the indi-
vidual relationships between kernel parts, conjecture parts, and the outside part (i.e., 
everything that is not a kernel part or conjecture part) of the vague spatial objects 
involved in the operations. The result of each operation is computed using one of the 
tables in Table 1.1. For each operation, the rows denote the parts of one object and 
the columns the parts of another, and we label them k, c, and o to denote the kernel 
part, conjecture part, and outside part, respectively. Each entry of the table denotes 
the intersection of kernel parts, conjecture parts, and outside parts of both objects, 
and the label in each entry specifies whether the corresponding intersection belongs to 
the kernel part, conjecture part, or outside part of the operation’s result object.

Each table from Table 1.1 can be used to generate an executable specification of 
the given crisp spatial operations. For each table, the specification operates on the 
kernel parts and conjecture parts to result in a definition of its corresponding vague 
spatial operation. Following are such definitions as executable specifications of geo-
metric set operations over crisp spatial objects:

Definition 2  Let u, w ∈ v(α), and let uk and wk denote their kernel parts and uc 
and wc their conjecture parts. We define:

u union w 	 := (uk ⊕ wk, (uc ⊕ wc)  (uk ⊕ wk))
u intersection w	:= (uk ⊗ wk, (uc ⊗ wc) ⊕ (uk ⊗ wc) ⊕ (uc ⊗ wk))
u difference w 	 := �(uk ⊗ ((wk ⊕ wc)), (uc ⊗ wc) ⊕ (uk ⊗ wc) ⊕ uc ⊗ ((wk ⊕ wc))
complement u 	 := ((uk ⊕ uc), uc)

1.3.3 � Vague Topological Predicates

For the definition of topological predicates between vague spatial objects (vague 
topological predicates), it is our goal to continue leveraging existing definitions 
of crisp spatial concepts, in this case topological predicates between crisp spatial 
objects. Topological predicates are used to describe purely qualitative relationships 
such as overlap and disjoint that describe the relative position between two objects 
and are preserved under continuous transformations.

Table 1.1
Components Resulting from Intersecting Kernel Parts, Conjecture Parts,  
and Outside Parts of Two Vague Spatial Objects with Each Other

union k c o

k

c

o

intersection k c o

kk k k

k c c

k c o

k c o
    

cc

o

difference k c o

k

c

o

c

c c o

o o o

o c k

o c c

o o o

         

oomplement k c o

k o c k
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For two vague spatial objects A∈ v(α) and B ∈ v(β), and the set Tαβ of all crisp 
topological predicates between objects of types α and β [25], the topological rela-
tionship between A and B is determined by the 4-tuple of crisp topological relation-
ships (p,q,r,s) such that p,q,r,s ∈ Tαβ and

	 p(Ak,Bk) ∧ q(Ak ⊕ Ac,Bk) ∧ r(Ak,Bk ⊕ Bc) ∧ s(Ak ⊕ Ac,Bk ⊕ Bc)

We define the set Vαβ of all vague topological predicates between objects of 
types v(α) and v(β). Due to inconsistencies that can exist between elements within 
each tuple, not all possible combinations result in 4-tuples that represent valid vague 
topological predicates in the set Vαβ. An example is the 4-tuple

	 (overlap(Ak, Bk),disjoint(Ak, Bk ⊕ Bc),disjoint(Ak ⊕ Ac, Bk),  
	 disjoint(Ak ⊕ Ac, Bk ⊕ Bc))

In this example, the implications of overlap(Ak, Bk) ⇒ Ak° ∩ Bk° ≠ ∅ and 
disjoint(Ak, Bk ⊕ Bc) ⇒ Ak° ∩ (Bk ⊕ Bc)° = ∅ clearly show a contradiction.

In [21], we present a method for identifying the complete set of vague topological 
predicates. At the heart of the method, each 4-tuple is modeled as a binary spatial 
constraint network (BSCN). Each BSCN is tested for path-consistency, which is 
used to check, via constraint propagation, that all original constraints are consistent; 
otherwise, the inconsistency indicates an invalid 4-tuple.

For each type combination of vpoint, vline, and vregion, possibly thousands of 
predicates are recognized. Sets of 4-tuples are created into clustered vague topologi-
cal predicates. Clusters can be defined by the user who specifies three rules for each 
cluster: One rule is used to determine whether the clustered predicate certainly holds 
between the objects, the second to determine whether the cluster certainly does not 
hold, and the third to determine when the cluster maybe holds, but it is not possible 
to give a definite answer. This effectively symbolizes the three-valued logic that is 
central to our definition of vague spatial data types.

1.4 � Querying with VASA

We propose two ways of enabling VASA within a database query language: The first, 
as presented in Section 1.4.1, works by adapting VASA to partially work with SQL, 
currently the most popular database query language. The second, presented in Sec-
tion 1.4.2, extends SQL to enable handling of vague queries.

1.4.1 � Crisp Queries of Vague Spatial Data

One of the advantages of being able to use VASA in conjunction with popular DBMSs 
is the availability of a database query language such as SQL. We focus on querying 
with SQL as it represents the most popular and widely available database query lan-
guage. SQL queries can be used to retrieve data based on the evaluation of Boolean 
expressions. This obviously represents a problem when dealing with vague spatial 
objects because their vague topological predicates are based on a three-valued logic. 
On the other hand, the current definitions of numeric vague spatial operations do 
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not suffer from this issue because the operations return crisp values that are later 
interpreted by the user (e.g., the user posing a query must know that min-length 
returns the length associated with the kernel part of a vague line object). Thus, these 
concepts are already adapted to provide crisp results of vague data.

In the case of vague topological predicates, the first step in order to allow query
ing of vague spatial objects through SQL is to adapt the results of the predicates to 
a form understandable by the query language. The adaptation of the three-valued 
vague topological predicates to Boolean predicates can be done with the following 
six transformation predicates that are defined for each vague topological predicate P 
that can operate over vague spatial objects A and B (see Figure 1.2):

	

True P A B true P A B true

True P A B fal

_ ( , ) ( , )

_ ( , )

= ⇒ =
= sse P A B maybe P A B false

Maybe P A B t

⇒ = ∨ =
=

( , ) ( , )

_ ( , ) rrue P A B maybe

Maybe P A B false P A B

⇒ =
= ⇒ =

( , )

_ ( , ) ( , ) ttrue P A B false

False P A B true P A B

∨ =
= ⇒ =

( , )

_ ( , ) ( , ) ffalse

False P A B false P A B true P A B_ ( , ) ( , ) ( , )= ⇒ = ∨ == maybe

With this transformation in place, queries operating on vague spatial objects can 
include references to vague topological predicates and vague spatial operations. For 
example, for the purpose of storing scenarios such as that in Figure 1.2a, assume 
that we have a table spills(id : INT , name : STRING, area : VREGION) where the 
column representing oil spills is denoted by a vague region where the conjecture part 
represents the area where the spill may extend to. We also have a table reefs(id : INT, 
name : STRING, area : VREGION) with a column representing coral reefs as vague 
regions. We can pose an SQL query to retrieve all coral reefs that are in any dan-
ger of contamination from an oil spill. We must find all reefs that are not certainly 
Disjoint from the Exxon-Valdez oil spill:

SELECT r.name FROM reefs r, spills s 
WHERE s.name = “Exxon-Valdez” and NOT True_Disjoint 
(r.area,s.area);

(a) (b)

Reef
Conjecture part

of oil spill Conjecture part
of X

Conjecture part
of Y

Kernel part
of oil spill

Kernel part
of X

Kernel part
of Y

Figure 1.2  (a) A representation of an ecological scenario using vague regions. (b) Sce-
nario illustrating the use of vague lines to represent routes of suspected terrorists X and Y.
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Vague topological predicates can also be used to optimize query performance. 
Assume that, as illustrated in Figure 1.2b, we have data of terrorists’ routes rep-
resented by vague lines in the table terrorists(id : INT , name : STRING, route : 
VLINE). We want to retrieve the minimum length of the intersections of all pairs of 
intersecting routes of terrorists. To do so, we choose to compute the intersection of 
only those pairs that are certainly not Disjoint and neglect the computation of the 
intersection of those pairs that have been determined to not certainly intersect:

SELECT a.name, b.name, min-length(intersection(a.route, 
b.route)) 
FROM terrorists a, terrorists b WHERE False_Disjoint 
(a.route,b.route);

Other queries can include retrieval based not only on spatial data but also based 
on common type data (i.e., numbers, characters) stored alongside the spatial objects. 
Being able to relate both data domains (spatial and nonspatial) in queries is one of the 
main advantages of providing VASA as an algebra that can extend current DBMSs 
that are well-proven to provide the necessary services for dealing with data of com-
mon types. We can provide such queries based on Figure 1.3, where the data can be 
stored in the table animals(id : INT , name : STRING, roam area : VREGION , mig 
route : VLINE , drink spot : VPOINT).

For example, we wish to retrieve all species of animals whose average weight is 
under 40 lbs. Their last count was under 100 and may have roaming areas completely 
contained within the roaming areas of carnivore animals whose average weight is 
above 80 lbs. This information might recognize animal species with low counts that 
could be extinct due to larger predators. The extinction of the smaller species can be 
catastrophic even for the larger species that depend on the smaller for nutrition. This 
retrieval uses data elements that are both spatial and nonspatial:

SELECT s.name FROM animals s, animals l 
WHERE s.avgsize<40 AND l.avgsize>80 AND s.count<100;

Queries can also be posed to test elements from within single tuples in the data-
base. For example, we would like to retrieve all animal species that do not have 

Kernel

Conjecture

×
×

×

×

×

Figure 1.3  The vague spatial object representation of an animal’s roaming areas, migra-
tion routes, and drinking spots.
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drinking spots that are certainly lying inside their roaming areas. For any of these 
species, environmentalists must create artificial drinking spots where the animals 
can hydrate:

SELECT s.name, 
FROM animals s 
WHERE NOT False_Disjoint(s.drink_spot,s.roam_area);

1.4.2 � A Vague Query Language Extension for Vague Queries  
on Vague Spatial Data

We analyze the approaches introduced in Section 1.2 and notice that, in the context 
of VASA, we are not trying to solve the problem of dealing with vague queries, but 
we need to query vague data. Thus, we propose to extend a common query language 
such as SQL with the operator ~. However, our data themselves are vague and thus 
we do not need the extra relations and functions of distance required by previous 
approaches. As a result, the semantics of the operator ~ is not the same as in the 
existing literature, where it allows for vague queries to be executed on crisp data. 
Instead, we will allow for the execution of vague queries over vague data.

Boolean predicates in SQL and in fact in many programming languages implic-
itly assume truth values unless otherwise noted, which is commonly done with the 
negation operators NOT or !. We propose ~ to operate syntactically similar to !, but 
semantically, instead of negating the result, it opens the possibility for uncertain 
results. For example, let us assume we have the table tempzones(id : INT , name : 
STRING, shape : VREGION) that contains information about different temperature 
zones, including their representation as vague regions in the column named shape. 
We pose the following query:

SELECT a.name, b.name 
FROM tempzones a, tempzones b 
WHERE Overlap(a.shape,b.shape);

This query will return only those regions that certainly overlap. But instead we want 
to include in the result all those regions that might overlap as well, so we pose the 
query again as

SELECT a.name, b.name 
FROM tempzones a, tempzones b 
WHERE ~Overlap(a.shape,b.shape);

In this case, the interpretation of ~ should allow the retrieval of all temperatures 
that may or may not overlap in addition to those that definitely overlap. For the use 
of numeric values in queries, the query processor should be able to handle number 
ranges as an atomic data type such that we can combine the minimum and maximum 
area operations on vague regions into one operator and pose the following query:
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SELECT a.name 
FROM tempzones a 
WHERE a.shape.area()~300;

That is, the result of this query will include all temperature zones whose area 
range includes 300. The inclusion of this operator and the management of num-
ber ranges does not preclude the use of exact operators that would allow dealing 
with crisp spatial regions. Because crisp spatial objects represent simply a specific 
instance of vague spatial data types, a query such as the following can still be exe-
cuted with the result set including all those temperature zones that were modeled as 
vague regions with no conjecture, thus representing crisp regions:

SELECT a.name 
FROM tempzones a 
WHERE a.shape.area()=300;

This extension, of course, would require actual re-implementation of the query lan
guage within the DBMS in order to enable the handling of numeric ranges and three-
valued logic operations.

1.5 �C onclusions and Future Work

The conceptual design of VASA that we have presented in this chapter shows the 
clear goal of leveraging existing crisp concepts. There is more than one reason 
behind this goal. The first reason is to take advantage of existing robust concepts for 
handling crisp spatial objects. Second, at the conceptual level, the correctness of the 
definitions for vague concepts largely rests on the correctness of the defined crisp 
concepts; thus, we reduce the chance of errors in our definitions. As an example, see 
Definition 2, where vague spatial operations are defined as an executable specifica-
tion on the basis of crisp spatial operations. Third, the executable specification trans-
lates easily to the implementation level. Having an existing correct implementation 
of crisp spatial data types, their operations, and predicates, we can implement VASA 
by instantiating existing crisp spatial data types and executing operations on them.

In Section 1.2, we mentioned current approaches to handling spatial vagueness 
and imprecision. VASA’s concepts feed from all these and thrive in providing a 
complete type system that includes a systematic approach to vague spatial opera-
tions, and most importantly to vague topological predicates. The main advantages of 
VASA include conceptual simplicity, robustness derived from existing robust crisp 
concepts, and viability of implementation. In contrast, VASA’s main disadvantage 
is its inability to effectively deal with situations that would seem appropriate for 
fuzzy set–based systems. Nonetheless, we believe that future work can be directed 
toward more general definitions based on exact models that would be more near to 
the capabilities of fuzzy set–based systems but that can take advantage of existing 
crisp concepts.

Based on these concepts, we have proposed ideas for database querying of 
objects from VASA. While these ideas are simple, they are able to fully exploit the 
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capabilities of VASA and allow the user to pose significant queries that can handle 
spatial vagueness. The proposed language extension and transformation mecha-
nisms further reassure the advantages of defining VASA on the basis of existing 
exact spatial models. These advantages include robustness of formal concepts that 
can directly transfer into an implementation that also benefits from simplicity.

Other future work related to VASA stems in at least two directions that are worth 
following: The first involves enabling similar querying ideas to systems that attempt 
to handle vagueness with a higher precision, such as fuzzy set theory–based systems 
or even systems with finite multivalued logics (i.e., more than three values). The 
other direction involves the performance aspect of implementing indexes that can 
operate on vague spatial objects and whether it is possible to extend current indexing 
concepts for crisp spatial objects, thus following the design of VASA.
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2 Assessing the Quality 
of Data with a 
Decision Model

Andrew Frank

2.1 �I ntroduction

Research in data quality is hindered by a lack of understanding of what quality for 
data means. The slogan “data quality is ‘fitness for use’” is not giving an answer 
because it leaves open the question to what use the data should be fit. Data, espe-
cially GIS data, can be used in many ways; remember that a precursor of GIS was 
called a “multi-purpose cadastre” (Arentze et al., 1992; Harvey, 1997)! Data are used 
to improve decisions; decisions can be made without pertinent information (case 
of “null” information, e.g., none, inappropriate), and decisions are not necessarily 
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changed after data are needed—only confidence is increased (Frank, to appear 
2007). GIS data can be used to improve many decisions, from ordinary, everyday 
decisions in wayfinding (left or right here?) to complex decisions about the location 
of a new nuclear power plant or a new factory or the violation of an international 
treaty (Abushady and Frank, 2005).

The quality of the information influences the decision—it must be assessed with 
respect to the decision-making process: Can it be used to make this decision? Does 
the lack of quality influence the outcome?

The diversity of the decisions GIS data are used for makes it difficult to under-
stand how the quality of the data affects the decision. This is further complicated by 
the psychological complexity of how people actually make decisions. A number of 
studies have shown how data quality propagates from the data stored to data derived 
from a GIS to help make decisions (Karssenberg and De Jong, 2005). De Bruin et al. 
(2001, 2003) investigated whether acquiring better data for a particular decision is 
worthwhile.

Schneider (1999) and Frank (2007) have been able to reduce decisions as they 
are made by engineers when designing technical artifacts to a statistical test. Once 
the engineer has selected the model and parameters to include, the decision itself can 
be reduced to a comparison of two desired quantities. This approach is generalized 
here to as broad a range of decisions as possible.

This approach to data quality from the perspective of a user is different from 
describing data quality from the perspective of the data producer working with a 
specification, which typically emphasizes precision of location (Timpf et al., 1996). 
Unfortunately, such quality descriptions from the producer perspective are seldom 
relevant for users of the data (Shyllon and Hunter, 2004).

In this chapter I briefly review in Section 2.2 the model for engineering deci-
sions as proposed before (Frank, 2007). In Section 2.3 different types of decisions 
are analyzed. Twaroch and Achatschitz (2005) investigate how the user’s situation 
can be captured separately in an interactive process; the models their work produces 
can be used to assess the propagation of data quality to decision quality as described 
here. Ignoring the psychological complexity of decision, especially if made in a 
group, a similar reduction to a comparison of values devised from the data stored 
can be achieved. Section 2.4 then generalizes the model for random errors in the 
data, and Section 2.5 discusses the propagation of different data quality aspects from 
stored data to desired quantities.

As a result, the chapter shows a reduced model of decision making, which sepa-
rates the psychological complexities of taking a decision into a first phase in which 
the “problem” is conceptualized into a decision test and a model selected. This pro-
cess is in most decisions not consciously performed or verbalized. In the second 
phase, the decision is computed according to the model selected. It is possible to 
construct the model used “after the facts,” when the decision is made and one can 
reconstruct the process. This reconstructed model can then be used to assess how 
data quality has influenced the decision, which makes the method described not only 
of theoretical interest but also practically applicable.

With this division of a complex decision into two steps the propagation of data 
quality can be computed, because error propagation affects only the second one 



Assessing the Quality of Data with a Decision Model	 17

and can be formalized. This chapter identifies the processing steps for which the 
propagation of imperfections is necessary and points to the research needed to give 
general rules for the ones not currently well understood.

A note on terminology: I prefer to speak of imperfections of the data (Frank, 
2007) and to characterize these. This is focusing on the effects such imperfections 
have on the (imperfect) result, and I avoid statements like “low data quality” or “lack 
of data quality.” All data contain imperfections, and it seems conceptually simpler to 
address these imperfections, rather than talk about data quality, which describes the 
degree of absence of imperfections.

2.2 �E ngineering Design Decisions

Engineering design, for example, for buildings, bridges, sewage systems, etc., is 
based on physical observations that are combined in formulas. The results are used 
to decide if a design satisfies the requirements and is acceptable or not. Error propa-
gation is applicable here, and one can ask how much every value computed is influ-
enced by the error in the data. Schneider has analyzed the influence of assumptions 
about load, strength of materials, or required safety levels (Schneider, 1999).

In engineering design, decisions can be abstracted to a comparison between the 
load on a system S compared with the resistance of the system R as designed. A 
design is acceptable if the resistance is larger than the load: R > S resp. R – S > 0.

For a bridge, this means that the resistance R of the structure (i.e., maximum 
capacity) must be higher than the maximally expected load S (e.g., assumed maximum 
high water event). For a more environmental example, the opening under a bridge is 
sufficient and inundation upstream is avoided when the maximally possible flow R 
under the bridge is more than the maximal amount of water S expected from rainfall 
on the watershed above the bridge. To assess the influence of data quality on the 
decision, one computes the error on (R – S) using the law of error propagation and 
applies test statistics to conclude whether the value is lager than zero with probability 
p (e.g., 95%).

The law of error propagation for a formula

	 r = f (a, b, …)

for random uncorrelated errors ea, eb, ec on values a, b, c, … was given by C. F. 
Gauss as
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where ei is the standard deviation of value i. If the observations are correlated, the 
correlation must be included (Ghilani and Wolf, 2006). The test on R – S > 0 is then
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where C is determined by the desired significance, e.g., for 95%, C = 1.65.


