
Computer
Arithmetics for
Nanoelectronics

Vlad P. Shmerko
Svetlana N. Yanushkevich
Sergey Edward Lyshevski

Computer
Arithmetics for
Nanoelectronics

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Computer
Arithmetics for
Nanoelectronics

Vlad P. Shmerko
Svetlana N. Yanushkevich
Sergey Edward Lyshevski

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131125

International Standard Book Number-13: 978-1-4200-6623-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This book is dedicated to the memory of
Claude Shannon

CONTENTS

Preface xxi

1 Introduction 1
1.1 Computational paradigms for nanocomputing structures . . . 1
1.2 Biological inspiration for computing 8

1.2.1 Artificial neural networks 8
1.2.2 Evolutionary algorithms and evolvable hardware . . . 10
1.2.3 Self-assembly . 11

1.3 Molecular computing devices 14
1.4 Fault tolerance . 20
1.5 Computing in 3D . 22
1.6 Multivalued processing . 23
1.7 Further study . 24

2 Computational Nanostructures 29
2.1 Introduction . 29
2.2 Theoretical background . 30
2.3 Analysis and synthesis . 31

2.3.1 Design hierarchy . 32
2.3.2 Top-down design methodology 33
2.3.3 Bottom-up design methodology 34
2.3.4 Design styles . 35
2.3.5 Modeling and simulation 35

2.4 Implementation technologies 36
2.5 Predictable technologies . 40
2.6 Nanoelectronic networks . 42

2.6.1 CMOS-molecular electronics 42
2.6.2 Neuromorphic computing paradigm 42
2.6.3 Interconnect . 43
2.6.4 Carbon-nanotube-based logic devices 44
2.6.5 Crossbar-based computing structures 44
2.6.6 Noise . 45

2.7 Switch-based computing structures 46
2.7.1 Switches . 46

vii

viii Contents

2.7.2 Switch-based networks represented by decision
diagrams . 48

2.8 Spatial computational nanostructures 51
2.8.1 Graph embedding problem 52
2.8.2 Embedding decision tree into spatial dimensions . . . 53

2.9 Further study . 54

3 Binary Arithmetic 59
3.1 Introduction . 59
3.2 Positional numbers . 60

3.2.1 The decimal system 60
3.2.2 Number radix . 61
3.2.3 Fractional binary numbers 64
3.2.4 Word size . 65

3.3 Counting in a positional number system 65
3.4 Basic arithmetic operations in various number systems 66
3.5 Binary arithmetic . 66
3.6 Radix-complement representations 69

3.6.1 10’s and 9’s Complement systems 70
3.6.2 1’s Complement system 71
3.6.3 2’s Complement . 72

3.7 Conversion of numbers in various radices 73
3.8 Overflow . 76
3.9 Implementation of binary arithmetic 80
3.10 Other binary codes . 80

3.10.1 Gray code . 81
3.10.2 Weighted codes . 83
3.10.3 Binary-coded decimal 84

3.11 Further study . 85

4 Residue Arithmetic 87
4.1 Introduction . 87
4.2 The basics of residue arithmetic 87
4.3 Addition in residue arithmetic 89
4.4 Multiplication in residue arithmetic 89
4.5 Computing powers in residue arithmetic 91
4.6 Solving modular equations . 92
4.7 Complete residue systems . 92
4.8 Further study . 93

5 Graph-Based Data Structures 97
5.1 Introduction . 97
5.2 Graphs in discrete device and system design 97

5.2.1 Graphs at the logical level 97
5.2.2 Graphs at the physical design level 99

Contents ix

5.3 Basic definitions . 99
5.3.1 Directed graphs . 100
5.3.2 Flow graphs . 101
5.3.3 Undirected graphs . 102
5.3.4 A path in a graph . 103
5.3.5 Isomorphism . 103
5.3.6 A subgraph and spanning tree 104
5.3.7 Cartesian product . 106
5.3.8 Planarity . 106
5.3.9 Operations on graphs 107
5.3.10 Embedding . 108

5.4 Tree-like graphs and decision trees 108
5.4.1 Basic definitions . 109
5.4.2 Lattice topology of graphs 110
5.4.3 H-trees . 111
5.4.4 Binary decision trees and functions 112
5.4.5 The relationship between decision trees and cube-like

graphs . 113
5.4.6 The simplification of graphs 113

5.5 Voronoi diagrams . 115
5.5.1 Direct and inverse Voronoi transform 118
5.5.2 Distance mapping of feature points 120
5.5.3 Distance map . 121

5.6 Further study . 124

6 Foundation of Boolean Data Structures 131
6.1 Introduction . 131
6.2 Definition of algebra over the set {0, 1} 132

6.2.1 Boolean algebra over the set {0, 1} 132
6.2.2 Postulates . 132
6.2.3 The principle of duality 133
6.2.4 Switch-based interpretation 136
6.2.5 Boolean algebra over Boolean vectors 136
6.2.6 DeMorgan’s law . 138

6.3 Boolean functions . 138
6.3.1 Boolean formulas . 138
6.3.2 Boolean functions . 139

6.4 Fundamentals of computing Boolean functions 140
6.4.1 Literals and terms . 141
6.4.2 Minterms and maxterms 141
6.4.3 Canonical SOP and POS expressions 142
6.4.4 Algebraic construction of standard SOP and POS

forms . 145
6.5 Proving the validity of Boolean equations 145
6.6 Gates . 147

x Contents

6.6.1 Elementary Boolean functions 147
6.6.2 Switch models for logic gates 147
6.6.3 Timing diagrams . 150
6.6.4 Performance parameters 153

6.7 Local transformations . 153
6.8 Properties of Boolean functions 154

6.8.1 Self-dual Boolean functions 155
6.8.2 Monotonic Boolean functions 156
6.8.3 Linear functions . 162
6.8.4 Universal set of functions 163

6.9 Further study . 166

7 Boolean Data Structures 169
7.1 Introduction . 169
7.2 Data structure types . 170
7.3 Relationships between data structures 170
7.4 The truth table . 171

7.4.1 Construction of the truth table 171
7.4.2 Truth tables for incompletely specified functions . . . 172
7.4.3 Truth vector . 173
7.4.4 Minterm and maxterm representations 174
7.4.5 Reduction of truth tables 174
7.4.6 Properties of the truth table 175
7.4.7 Deriving standard SOP and POS expressions from a

truth table . 176
7.5 K-map . 176

7.5.1 Representation of standard SOP and POS expressions
using K-maps . 178

7.5.2 A K-map for a Boolean function of two variables . . . 178
7.5.3 A K-map for a Boolean function of three variables . . 178
7.5.4 A K-map for a Boolean function of four variables . . . 179
7.5.5 A K-map for an incompletely specified Boolean

function . 180
7.6 Cube data structure . 182
7.7 Graphical data structure for cube representation 184
7.8 Logic networks . 190

7.8.1 Design goals . 190
7.8.2 Basic components of a logic network 191
7.8.3 Specification . 193
7.8.4 Network verification 193

7.9 Networks of threshold gates 195
7.9.1 Threshold functions 195
7.9.2 McCulloch–Pitts models of Boolean functions 196
7.9.3 Threshold networks . 197

7.10 Binary decision trees . 198

Contents xi

7.10.1 Representation of elementary Boolean functions using
decision trees . 199

7.10.2 Minterm and maxterm expression representations
using decision trees . 199

7.10.3 Representation of elementary Boolean functions by
incomplete decision trees 202

7.11 Decision diagrams . 204
7.12 Further study . 205

8 Fundamental Expansions 209
8.1 Introduction . 209
8.2 Shannon expansion . 211

8.2.1 Expansion with respect to a single variable 211
8.2.2 Expansion with respect to a group of variables 214
8.2.3 Expansion with respect to all variables 216
8.2.4 Various forms of Shannon expansions 218

8.3 Shannon expansion for symmetric Boolean functions 219
8.3.1 Symmetric functions 220
8.3.2 Partially symmetric Boolean functions 221
8.3.3 Totally symmetric Boolean functions 221
8.3.4 Detection of symmetric Boolean functions 223
8.3.5 Characteristic set . 223
8.3.6 Elementary symmetric functions 224
8.3.7 Operations on elementary symmetric functions 225
8.3.8 Shannon expansion with respect to a group of

symmetric variables 227
8.4 Techniques for computing symmetric functions 227

8.4.1 Computing partially symmetric functions 227
8.4.2 Computing totally symmetric functions 228
8.4.3 Carrier vector . 232

8.5 The logic Taylor expansion 233
8.5.1 Change in a digital system 234
8.5.2 Boolean difference . 234
8.5.3 Boolean difference and Shannon expansion 236
8.5.4 Properties of Boolean difference 237
8.5.5 The logic Taylor expansion 238

8.6 Graphical representation of fundamental expansions 244
8.6.1 Shannon expansion as a decision tree node function . . 244
8.6.2 Matrix notation of the node function 245
8.6.3 Using Shannon expansion in decision trees 245

8.7 Further study . 248

9 Arithmetic of the Polynomials 255
9.1 Introduction . 255
9.2 Algebra of the polynomial forms 263

xii Contents

9.2.1 Theoretical background 263
9.2.2 Polynomials for Boolean functions 265

9.3 GF(2) algebra . 266
9.3.1 Operational and functional domains 269
9.3.2 The functional table 270
9.3.3 The functional map 271
9.3.4 Polarized minterms . 271

9.4 Relationship between standard SOP and polynomial forms . . 277
9.5 Local transformations for EXOR expressions 278
9.6 Factorization of polynomials 279
9.7 Validity check for EXOR networks 281
9.8 Fixed- and mixed-polarity polynomial forms 282

9.8.1 Fixed-polarity polynomial forms 283
9.8.2 Deriving polynomial expressions from SOP forms . . . 286
9.8.3 Conversion between polarities 286
9.8.4 Deriving polynomial expressions from K-maps 286
9.8.5 Simplification of polynomial expressions 287

9.9 Computing the coefficients of polynomial forms 288
9.9.1 Matrix operations over GF(2) 289
9.9.2 Polarized literals and minterms in matrix form 290
9.9.3 Computing the coefficients in fixed-polarity forms . . . 293

9.10 Decision diagrams . 298
9.10.1 Function of the nodes 298
9.10.2 Algebraic form of the positive Davio expansions 299
9.10.3 Algebraic form of the negative Davio expansion 300
9.10.4 Matrix forms of positive and negative Davio

expansions . 303
9.10.5 Gate-level implementation of Shannon and Davio

expansions . 303
9.11 Techniques for functional decision tree construction 305

9.11.1 The structure of functional decision trees 305
9.11.2 Design example: manipulation of pD and nD nodes . 306
9.11.3 Design example: application of matrix transforms . . . 306
9.11.4 Design example: minterm computing 310

9.12 Functional decision tree reduction 311
9.12.1 Elimination rule . 311
9.12.2 Merging rule . 312

9.13 Further study . 315

10 Optimization of Computational Structures 321
10.1 Introduction . 321
10.2 Minterm and maxterm expansions 322
10.3 Optimization of Boolean functions in algebraic form 325

10.3.1 The consensus theorem 326
10.3.2 Combining terms . 327

Contents xiii

10.3.3 Eliminating terms . 327
10.3.4 Eliminating literals . 327
10.3.5 Adding redundant terms 329

10.4 Implementing SOP expressions using logic gates 330
10.4.1 Two-level logic networks 330
10.4.2 Multilevel logic networks 332
10.4.3 Conversion of factored expressions into logic networks 334

10.5 Minimization of Boolean functions using K-maps 335
10.6 Optimization of Boolean functions using decision trees and

decision diagrams . 341
10.6.1 The formal basis for the reduction of decision trees

and diagrams . 342
10.6.2 Decision tree reduction rules 342

10.7 Decision diagrams for symmetric Boolean functions 351
10.8 Measurement of the efficiency of decision diagrams 356
10.9 Embedding decision diagrams into lattice structures 356
10.10 Further study . 358

11 Multivalued Data Structures 363
11.1 Introduction . 363
11.2 Representation of multivalued functions 365
11.3 Multivalued logic . 368

11.3.1 Operations of multivalued logic 368
11.3.2 Multivalued algebras 372

11.4 Galois fields GF (m) . 375
11.4.1 Algebraic structure for Galois field representations . . 378
11.4.2 Galois field expansions 378

11.5 Fault models based on the concept of change 379
11.6 Polynomial representations of multivalued logic functions . . 381
11.7 Polynomial representations using arithmetic operations 388

11.7.1 Direct and inverse arithmetic transforms 391
11.7.2 Polarity . 391
11.7.3 Word-level representation 393

11.8 Fundamental expansions . 396
11.8.1 Logic difference . 396
11.8.2 Logic Taylor expansion of a multivalued function . . . 403
11.8.3 Computing polynomial expressions 403
11.8.4 Computing polynomial expressions in matrix form . . 405
11.8.5 N -hypercube representation 406

11.9 Further study . 406

12 Computational Networks 413
12.1 Introduction . 413
12.2 Data transfer logic . 414

12.2.1 Shared data path . 414

xiv Contents

12.2.2 Multiplexer . 416
12.2.3 Multiplexers and the Shannon expansion theorem . . . 418
12.2.4 Single-bit (2-to-1) multiplexer 419
12.2.5 Word-level multiplexer 419

12.3 Implementation of Boolean functions using multiplexers . . . 421
12.3.1 Multiplexer tree . 423
12.3.2 Combination of design approaches using multiplexers . 424

12.4 Demultiplexers . 429
12.5 Decoders . 432
12.6 Implementation of Boolean functions using decoders 436
12.7 Encoders . 439

12.7.1 Comparators . 441
12.7.2 Code detectors . 442

12.8 Design examples: adders and multipliers 443
12.9 Design example: magnitude comparator 452
12.10 Design example: BCD adder 457
12.11 The verification problem . 459

12.11.1 Formal verification . 461
12.11.2 Equivalence-checking problem 461
12.11.3 Design example 1: Functionally equivalent networks . 462
12.11.4 Design example 2: Verification of logic networks using

decision diagrams . 464
12.12 Decomposition . 467

12.12.1 Disjoint and nondisjoint decomposition 468
12.12.2 Decomposition chart 468
12.12.3 Disjoint bi-decomposition 469
12.12.4 Design example: the OR type bi-decomposition 470
12.12.5 Design example: AND type bi-decomposition 470
12.12.6 Functional decomposition using decision diagrams . . 472
12.12.7 Design example: Shannon decomposition of Boolean

function with respect to a subfunction 472
12.13 Further study . 475

13 Sequential Logic Networks 481
13.1 Introduction . 481
13.2 Physical phenomena and data storage 481
13.3 Basic principles . 482

13.3.1 Feedback . 483
13.3.2 Clocking techniques 485

13.4 Data structures for sequential logic networks 485
13.4.1 Characteristic equations 485
13.4.2 State tables and diagrams 486

13.5 Latches . 487
13.5.1 SR latch . 487
13.5.2 Gated SR latch . 489

Contents xv

13.5.3 D latch . 489
13.6 Flip-flops . 492

13.6.1 The master–slave principle in flip-flop design 492
13.6.2 D flip-flop . 494
13.6.3 JK flip-flop . 494
13.6.4 T flip-flop . 496

13.7 Registers . 497
13.7.1 Storing register . 497
13.7.2 Shift register . 500
13.7.3 Other shift registers: FIFO and LIFO 502

13.8 Counters . 502
13.8.1 Binary counters . 504
13.8.2 Countdown chains . 506

13.9 Sequential logic network design 507
13.10 Mealy and Moore models of sequential networks 509
13.11 Data structures for analysis of sequential networks 509

13.11.1 State equations . 510
13.11.2 Excitation and output equations 511
13.11.3 State table . 511
13.11.4 State diagram . 513

13.12 Analysis of sequential networks with various types of flip-flops 514
13.12.1 Analysis of a sequential network with D flip-flops . . . 514
13.12.2 Analysis of a sequential network with JK flip-flops . . 514
13.12.3 Analysis of a sequential network with T flip-flops . . . 516

13.13 Techniques for the synthesis of sequential networks 517
13.13.1 Synthesis of a sequential network using D flip-flops . . 519
13.13.2 Synthesis of sequential networks using JK flip-flops . . 519
13.13.3 Synthesis of sequential networks using T flip-flops . . . 522

13.14 Redesign . 522
13.15 Further study . 524

14 Memory Devices for Binary Data 527
14.1 Introduction . 527
14.2 Programmable devices . 528
14.3 Random-access memory . 531

14.3.1 Memory array . 531
14.3.2 Words . 532
14.3.3 Address . 533
14.3.4 Memory capacity . 533
14.3.5 Write and read operations 534
14.3.6 Address management 535

14.4 Read-only memory . 535
14.4.1 Programming ROM 536
14.4.2 Programming the decoder 537
14.4.3 Combinational logic network implementation 537

xvi Contents

14.5 Memory expansion . 538
14.6 Programmable logic . 540

14.6.1 Programmable logic array (PLA) 541
14.6.2 The PLA’s connection matrices 541
14.6.3 Implementation of Boolean functions using PLAs . . . 543
14.6.4 Programmable array logic 544
14.6.5 Using PLAs and PALs for EXOR polynomial

computing . 545
14.7 Field programmable gate arrays 545
14.8 Further study . 548

15 Spatial Computing Structures 551
15.1 Introduction . 551
15.2 The fundamental principles of a 3D computing 554
15.3 Spatial structures . 555
15.4 Hypercube data structure . 557
15.5 Assembling of hypercubes . 559
15.6 N -hypercube . 560

15.6.1 Extension of a hypercube to N -hypercube 561
15.6.2 Degree of freedom and rotation 561
15.6.3 Coordinate description 562
15.6.4 N -hypercube design for n > 3 dimensions 565

15.7 Embedding a binary decision tree into an N -hypercube . . . 566
15.8 Assembling N -hypercubes . 569

15.8.1 Incomplete N -hypercubes 570
15.8.2 Embedding technique 570

15.9 Representation of N -hypercubes using H-tree 571
15.10 Spatial topological measurements 573
15.11 Further study . 576

16 Linear Cellular Arrays 583
16.1 Introduction . 583
16.2 Linear arrays based on systolic computing paradigm 586

16.2.1 Terminology . 586
16.2.2 Design principles of parallel-pipeline computing

structures . 587
16.2.3 Design phases . 588
16.2.4 Formal description of a linear systolic array 588
16.2.5 Implementation . 590
16.2.6 Computing polynomial forms using logical operations 592
16.2.7 Computing differences using logical operations 594
16.2.8 Computing polynomial forms using arithmetic

operations . 597
16.2.9 Computing differences using arithmetic operations . . 597
16.2.10 Computing Walsh expressions 599

Contents xvii

16.2.11 Compatibility of polynomial data structures 599
16.3 Spatial systolic arrays . 601

16.3.1 3D cellular array design 601
16.3.2 3D systolic array design using embedding techniques . 601
16.3.3 3D hypercube systolic arrays 603

16.4 Linear arrays based on linear decision diagrams 604
16.4.1 Grouping . 606
16.4.2 Computing the coefficients 608
16.4.3 Weight assignment . 609
16.4.4 Masking . 611

16.5 Linear models of elementary functions 611
16.5.1 Boolean functions of two and three variables 611
16.5.2 Fundamental theorems of linearization 611
16.5.3 “Garbage” functions 613
16.5.4 Graphical representation of linear models 614

16.6 Logic networks and linear decision diagrams 615
16.7 Linear models for logic networks 619
16.8 Linear models for multivalued logic networks 620

16.8.1 Approach to linearization 621
16.8.2 Manipulation of the linear model 623
16.8.3 Library of linear models of multivalued gates 625
16.8.4 Representation of multivalued logic networks 626
16.8.5 Linear decision diagrams 628

16.9 Linear word-level representation of multivalued functions
using logic operations . 628
16.9.1 Linear word-level for MAX expressions 628

16.10 3D computing arrays design 632
16.11 Further study . 632

17 Information and Data Structures 637
17.1 Introduction . 637
17.2 Information-theoretic measures 637
17.3 Information-theoretic measures 641

17.3.1 Quantity of information 642
17.3.2 Conditional entropy and relative information 642
17.3.3 Entropy of a variable and a function 644
17.3.4 Mutual information . 646
17.3.5 Interpretation of mutual information 647
17.3.6 Conditional mutual information 648

17.4 Information measures of elementary Boolean function of two
variables . 648

17.5 Information-theoretic measures in decision trees and diagrams 651
17.5.1 Decision tree induction 652
17.5.2 Information-theoretic notation of Shannon and Davio

expansion . 652

xviii Contents

17.5.3 Optimization of variable ordering in a decision tree . . 655
17.6 Information-theoretic measures in multivalued functions . . . 656

17.6.1 Information notation of S expansion 657
17.6.2 Information notations of pD and nD expansion 660
17.6.3 Information criterion for decision tree design 660
17.6.4 Remarks on information-theoretic measures in

decision diagrams . 662
17.7 Ternary and pseudo-ternary decision trees 663
17.8 Further study . 665

18 Design for Testability 673
18.1 Introduction . 673
18.2 Fault models . 675

18.2.1 The single stuck-at model 676
18.2.2 Fault coverage . 677

18.3 Controllability and observability 678
18.3.1 Observability and Boolean differences 681
18.3.2 Enhancing observability and controllability 683
18.3.3 Detection of stuck-at faults 685
18.3.4 Testing decision-tree-based logic networks 689

18.4 Functional decision diagrams for computing Boolean
differences . 690

18.5 Random testing . 691
18.6 Design for testability techniques 693

18.6.1 Self-checking logic networks 693
18.6.2 Built-in self-test (BIST) 693
18.6.3 Easily testable EXOR logic networks 694
18.6.4 Improving testability using local transformations . . . 695

18.7 Further study . 696

19 Error Detection and Error Correction 699
19.1 Introduction . 699
19.2 Channel models . 702
19.3 The simplest error-detecting network 704

19.3.1 Error correction . 707
19.4 Discrete memoryless channel 710
19.5 Linear block codes . 715

19.5.1 Vector spaces . 715
19.5.2 Generator matrix, parity check matrix, syndrome . . 716
19.5.3 Standard array and error correction 718
19.5.4 Distance and error-control capability 719
19.5.5 Optimal decoder . 721

19.6 Cyclic codes . 722
19.6.1 Systematic encoding 724
19.6.2 Implementation of modulo g(x) division 725

Contents xix

19.7 Block codes . 727
19.7.1 Hamming codes . 727
19.7.2 BCH codes . 729
19.7.3 Reed–Solomon codes 730

19.8 Arithmetic codes . 735
19.8.1 AN codes . 736
19.8.2 Separate codes . 738
19.8.3 Residue codes . 739

19.9 Further study . 740

20 Natural Computing 745
20.1 Introduction . 745
20.2 Intermediate data structures 749
20.3 Quantum dot phenomena encoding 754
20.4 Complementary biomolecular phenomena encoding 757
20.5 Fractal-based models for self-assembly 767

20.5.1 Sierpinski triangle for Boolean functions 768
20.5.2 Transeunt triangles for Boolean functions 770
20.5.3 Forward and inverse procedures 772
20.5.4 The number of self-similar triangles 775
20.5.5 Transeunt triangles and decision trees 777
20.5.6 Using transeunt triangles for representation

of mixed-polarity polynomials 780
20.5.7 Transeunt triangles for the representation

of multivalued logic functions 780
20.5.8 Sierpinski triangle generation using cellular automata 782

20.6 Evolutionary logic network design 784
20.6.1 Terminology of evolutionary algorithms 784
20.6.2 Design style . 786
20.6.3 Coding of a target design style 788
20.6.4 Design example . 790
20.6.5 Information estimations as fitness function 791
20.6.6 Partitioning of logic network search space 794
20.6.7 2-digit ternary adder 795
20.6.8 2-Digit ternary multiplier 796

20.7 Neural-based computing . 797
20.7.1 Computing paradigm 797
20.7.2 Neuron cells . 799
20.7.3 Relaxation . 799
20.7.4 Improved Hopfield network 801
20.7.5 Design example . 802

20.8 Further study . 805

Index 815

Preface

THE MOTIVATION:
TOWARD PREDICTABLE TECHNOLOGIES

This book is motivated by the emerging device- and system-level solutions to
implement various computing and processing platforms created with nano-
and molecular technologies. This ultimately leads not only to the deployment
of unique phenomena that which never have been utilized in conventional
solid-state microelectronics devices but also to advanced system organizations
and architectures. The three-dimensional (3D) device and system topologies,
multiterminal multiple-valued devices, and other features are subproducts of
those emerging solutions. For these new generations of computing devices and
systems, the conventional design and analysis concepts and techniques are the
valuable source of further developments.

There are many examples of the use of the fundamentals of computer
structure design and computing in nanocomputing, including particular
results, that have not been adopted in contemporary design. For example,
the principle of programable logic arrays (PLA) has been adopted for the
crossbar-based array design and classical fault-tolerant techniques modified
for manufacturing of computing nanodevices and nanomemory. Computing
paradigms based on cellular arrays are the focus of massive parallel
nanoarrays. Hence, the computing paradigms of contemporary discrete
devices play an essential role in the development of novel computing structures
based on the technological advances in molecular electronics. This book
addresses these problems.

These developments integrate theoretical computer science, computer
engineering, electrical engineering, microelectronics engineering, and other
areas. Researchers and students from computer and electrical engineering,
chemistry, biology, mechanics, and physics departments were involved in this
interdisciplinary study.

It should be noted that usage of the uniform terminology is another problem
since the terms used in the area of nanocomputing are acquired from different
disciplines. In particular, the term molecular electronics covers a broad range
of topics, in particular, molecular computing devices, device physics, and

xxi

xxii Computer Arithmetics for Nanoelectronics

biophysics of biomolecular devices. With a major emphasis on theoretical and
applied computer science and engineering, in this book we focus on computing
structure design based on computing primitives; the basic components such
as switches, logic gates, 1-bit adders, and cells for computing arrays; and
memory structures.

A wide variety of physical, biological and chemical phenomena, considered
to be the candidates employed in processing, transforming, and storing
the information at nano scale. These principles and phenomena are
completely different compared to conventional solid-state devices. Various
physical, biological, and chemical effects; phenomena; and transitions can be
interpreted as computing events that are associated with the simplest logic
operations, such as switching, OR, AND, and others. These logic operations
correspond to the logic elements, which can be integrated and aggregated to
perform complex functions.

This book provides the computing concepts, techniques, and tools in the
form acceptable to specialists from various fields for the coherent and synergic
design of computing structures utilizing the conventional and emerging (nano
and molecular) processing devices. We also approach the problems of
biomolecular processing typifying the biosystems’ topologies, organizations,
and potential principles of computing, such as multiple-valued, stochastic,
parallel, reconfigurable, neuromorphical, etc. To this end, we elaborate the
following two major aspects:
(a) The ability to interpret chemical, biological, and physical phenomena at

the system level in terms of computing from the viewpoint of theoretical
computer science and engineering, and

(b) The ability to utilize various chemical, biological, and physical phenomena
to guarantee computing and processing at the device level.

This book integrates those developments by means of developing the
fundamentals and theory of the information processing, computer structure
and logic designs, stochastic computing, etc. Correspondingly, to reflect the
aforementioned tasks and prospects, we title this book Computer Arithmetics
for Nanoelectronics. In addition to conventional computing, fundamentals
of biomolecular processing are introduced, in particular, new paradigms for
delegation of computing properties into spatial nanostructures.

HOW THIS BOOK SATISFIES THE ESSENTIAL NEEDS
OF INTERDISCIPLINARY COLLABORATION

With the advent of new technologies, a major shift has occurred in
interdisciplinary studies. As a result, many engineers and scientists have
found it necessary to understand the basic operation of digital systems, and
how these systems can be designed if they carry out particular data-processing

Preface xxiii

tasks. This trend has produced a need for basic knowledge in computing
structure design to provide a unified overview of the interrelationship between
fundamentals of digital system design, computer organization, architectures,
and micro- and nanoelectronics.

To comprehend this book, no specialized knowledge of computer science,
electrical circuits, electronics, physics, or chemistry is assumed. This book
is written from interdisciplinary prospects for the development of a new
generation of computer devices and systems.

There are 20 chapters in the book. Each chapter targets a specific
tasks and covers particular problems. The key topic is computational data
structures. We emphasize on choosing an appropriate data structure under the
phenomenological criteria of technology. Computational properties of various
data structures are examined and characterized. Our goal is to achieve balance
in introducing the computational properties provided by data structures and
the phenomenological properties of current and expected technologies. For
example, logic networks and decision diagrams are different data structures,
and each of them is characterized by a set of specific requirements in
implementation. At the device level, processing and computational properties
of various physical and chemical phenomena vary, and can be systemized
with respect to the computational characteristics of data structures. The
balancing of these characteristics and requirements can provide an appropriate
implementation, and it can be illustrated as shown in Figure 0.1.

The main goal of this book is to elaborate a consensus between
computational properties provided by data structures and phenomenological
properties of the technology-driven nano and molecular devices. For example,
for a given biomolecular phenomenon, its representation in terms of processing
must be understood by specialists from related fields and efficiently applied in
computing structure design. This book has been written with these objectives
in mind.

This book contributes to design of computing structures with a focus on
sound contemporary technologies and devices. It is up to date, comprehensive,
and pragmatic in its approach. The book aims to provide balanced coverage of
concepts, techniques, and practices. We found that five topics were essentially
useful in our interdisciplinary studies:
Topic 1: Switch-based computing devices and molecular switches;

Topic 2: Multivalued data structures;

Topic 3: 3D computing structures and 3D molecular topologies;

Topic 4: Design for testability and imperfection of molecular structures; and

Topic 5: Natural computing (Figure 0.2).

The design cycle from task formulation to molecular-based implementation
includes several phases, which are covered in the book’s chapters. We start
from a brief overview of the known computing devices reported in Chapter

xxiv Computer Arithmetics for Nanoelectronics

Computational
properties

of data
structures

Computational
properties of

chemical,
biomolecular,
biological, and

physical phenomena

Nanoscale
Implementation

This book

Multidisciplinary collaboration

FIGURE 0.1
The main goal of this book is to contribute to the problem of the
consensus between computational properties provided by data structures and
phenomenological properties of nanoscale technology.

Switch-
based

devices

Molecular
switches

Multivalued
data

structures

Multivalued
molecular

phenomena

New generation of computing devices and systems

3D
computing
structures

3D molecular
phenomena

Implementation using biomolecular platform

Topic 1 Topic 2 Topic 3

Design for
testability

Imperfection
of molecular
structures

Topic 4
Natural

computing

Self-
assembling
phenomena

Topic 5

FIGURE 0.2
This book is based on seminars and discussions during the multidisciplinary
project on development a new generation of computing devices.

Preface xxv

2. The number systems, emphasizing binary arithmetic, are documented in
Chapters 3 and 4. The residue number system is introduced as well, as it
plays an essential role in many important applications such as encryption.
Chapter 5 is a brief introduction to graphical data structures, which are useful
computational models. The computational arithmetic must be embedded
into the effects, phenomena, and transitions observed and exhibited by nano
and molecular devices. The simplest computing devices are switches, and
a trivial question is how computations can be mapped using the computing
structures in which the operational nodes are implemented using switches
covered in Chapters 6–10, 12, and 13. We introduced the theoretical base
of various data structures in Chapter 6, their properties in Chapter 7,
and techniques for their manipulation, optimization, and implementation
in Chapters 8–10. This includes the polynomial forms of logic function,
which are of the particular interest due to design tractability, simplicity and
soundness as reported in Chapter 9. Polynomial forms are useful in many
computational tasks and can be considered as appropriate candidates at the
device-level implementation. Chapters 11–14 address the design techniques for
the simplest logic networks, memory, and programmable devices. Molecular
structures (aggregated devices) provide new opportunities for computing
using multivalued logics. Techniques for representation and manipulation of
multivalued signals and their implementation in discrete devices are reported
in Chapter 11. The molecular devices are inherently 3D. We have proposed
to delegate computational properties of the logic design data structures into
3D structures, as covered in Chapters 15 and 16. The information–theoretic
measures and design aspects are given in Chapter 17. Chapters 18 and
19 report the testability problem. Natural computing based on various
computing paradigms from nature is introduced in Chapter 20.

NEW CONCEPTS IN MULTIDISCIPLINARY STUDY

This book emphasizes the basic principles of computational arithmetic and
computational structure design. Most of these principles are traditional in
discrete devices design. However, the following key features distinguish this
book from other known approaches in design and can be characterized as a
major contribution:
� New design concepts and sound high-performance paradigms for

data/signal processing and computing in 3D

� Extension of classical computing paradigms toward a 3D computing
structures

� Reserving a central role for data structures as a key to applications; the
relationships between various data structures and their manipulation

xxvi Computer Arithmetics for Nanoelectronics

through design represent the most important aspect in the design of a
new generation of computing devices

� Fundamentals of the intermediate data structures; these data structures are
the bridge between physical and chemical phenomena and techniques for
computing structure design

� Techniques for natural computing, such as evolutionary strategy for
arbitrary logic network design, and neural computing for the elementary
switching functions

This book is dedicated to the memory of Claude Shannon. Claude Elwood
Shannon’s inventive genius, probably more than that of any other single
person, has altered humankind’s understanding of communication and digital
systems. He was born in Petoskey, Michigan, in 1916. At age of 20 he
graduated with degrees in mathematics and electrical engineering from the
University of Michigan. During the summer of 1937, Shannon obtained an
internship at Bell Laboratories, and returned to MIT to work on a Master’s
thesis “An Algebra for Theoretical Genetics.” He graduated in 1940 with his
Ph.D. in mathematics and S.M. degree in electrical engineering. Shannon’s
Master’s thesis won him the Nobel Prize, along with fame and renown. His
thesis has often been described as the greatest Master’s thesis of all time.
In his spare time, Shannon developed the chess machine and remote control
mechanical mouse, the first to do so.

Shannon was the first to notice that the work of professor George Boole,
done a century earlier, yielded the necessary mathematical framework for
analyzing switching networks. He demonstrated that any logical statement
could be implemented physically as a network of switches. Shannon’s
revolutionary paper on information theory still dominates the area of
communication theory. It is likely that techniques based on Shannon’s
information theory will become some of the main design tools for nanosystems,
computing systems for the age of nanotechnology.

Vlad P. Shmerko

Svetlana N. Yanushkevich

Sergey Edward Lyshevski

Calgary, Canada
Rochester, New York

1

Introduction

This book is aimed at introducing the reader to emerging computing based
on various chemical, biochemical, and physical phenomena.

The main goal of this book is to elaborate a consensus
between computational properties provided by data structures
and phenomenological properties of the technology-driven nano
devices:

Data

structures︸ ︷︷ ︸
Computational properties

Consensus←→ Chemical and physical

phenomena

︸ ︷︷ ︸
Computational properties︸ ︷︷ ︸

Nanoscale computing device

Though one may envision a departure from matured microelectronics,
this may take a while due to limited compelling needs, infrastructure
expenditure, necessity constraints, and the overall ability of microelectronics
to fulfill the current and near-future needs. There is a compelling need to
comprehend and examine data processing by molecular hardware from the
interdisciplinary point of view in the basic sciences, engineering, technology,
and medicine. Among various immense tasks, the authors focus mainly on
theoretical computer science and engineering, examining how to accomplish
data processing and computing in the envisioned molecular platforms.

1.1 Computational paradigms for nanocomputing
structures

Nanocomputing, or computing by nano and/or molecular structures
(primitives), adheres to the fundamental principles of logic design of discrete
devices and various molecular phenomena. While these principles, being
related to data processing, may be similar to the existing ones, the
computing techniques should be refined, revisited or redefined to fit the

1

2 Computer Arithmetics for Nanoelectronics

technology requirements, device fundamentals, and system solutions. These
problems can be addressed by applying contemporary logic design techniques
to the design of computing structures. The computing paradigms and
implementation principles define the form of computing structures, which
embody the principles in the spatial and time solutions. This book provides a
systematic view of the fundamentals of nano scale computing and introduces
novel computing structures that satisfy the requirements of processing in
three-dimensional (3D) space. Some particular cases of embodiment of
contemporary design paradigms for discrete devices into nanocomputing
structures are listed in Table 1.1.

Switch is the simplest computing device both in microelectronics and
molecular (nano) technology. The simplest switch operates with one
bit of information. For example, a switch can operate in two states,
ON and OFF (connected–disconnected, open–closed, etc.). The other
type of switch can direct a bit to one of two possible outputs (1-input
2-output switch). The switch is the basic element of implementation
models in switching algebra.

Logic networks. These are the fundamental computing structures in logic
design. Computing paradigm and design techniques of logic networks
can be adopted from contemporary logic design of discrete systems, for
example, two-level and multilevel logic network design and optimization.
The elementary Boolean functions, such as AND, NAND, OR, NOR,
and EXOR gate, can be computed using molecular switches. An
arbitrary Boolean function can be computed by a logic network using
the universal set (library) of logic gates.

Threshold networks. Logic networks that are designed using threshold
gates are called threshold networks . An arbitrary Boolean function can
be computed on a network of threshold gates. For example, two-input
AND, OR, NOR, and NAND Boolean functions can be generated by
a single threshold gate. Control over the type of Boolean function is
exercised by the thresholds and weights.

Memory devices. Data storing can be accomplished by utilizing various
phenomena exhibited, such as stable states, bistable states, m-stable
states, and binding/unbinding. The implementation and utilization of
these phenomena should be based on device physics applicable at the
system level (logic networks, molecular aggregates, etc.).

Reprogrammable devices. These have provided significant performance
improvements for many applications. FPGA (field programmable gate
array)–based custom-computing systems can achieve high performance,
providing near application-specific performance in an application-
generic system. The simplest implementation of the field programmable
method is a programmable logic device (PLD). PLDs are used
primary for the two-level (sum-of-products) implementations of Boolean

Introduction 3

TABLE 1.1

Nanocomputing structures adopt the computing paradigms, techniques,
and data structures of contemporary computing

Contemporary Transferring Nano scale
computing computing

Switch =⇒ Molecular switch

Logic networks =⇒
Logic networks over the
library of molecular
primitives

Threshold networks =⇒
Logic networks over the
library of molecular
threshold gates

Memory devices =⇒ Molecular memory devices

Reprogrammable logic arrays =⇒ Crossbar-based computing
arrays

Massive parallel computing =⇒ Self-assembled molecular
arrays

Self-reproducing automata =⇒ Biomolecular self-assembly

Systolic arrays =⇒
Systolic arrays over the
library of molecular
primitives

Stochastic computing =⇒ Stochastic molecular
computing

Fault-tolerant computing =⇒ Molecular fault-tolerant
computing

Neural networks =⇒ Neuromorphic computing

Data structure =⇒ Data structures for molecular
computing

4 Computer Arithmetics for Nanoelectronics

functions. PLDs have simple routing structures with predictable delay.
PLDs and FPGAs are completely prefabricated devices. However,
FPGAs are optimized for multilevel logic networks. This allows them
to handle much more complex logic networks.

Example 1.1 The most noticable feature of multi-FPGA
systems is in the topology chosen to interconnect
the blocks or chips. The most common topologies
are mesh and crossbar topology. In a mesh,
the chips in the system are connected to form a
nearest neighbor pattern. This topology has the
advantages of local interconnections, as well as
expendability including to 3D, since meshes can be
grown by adding resources to the edges of the array.
Techniques of linear arrays, which are essentially
1D meshes, are common in contemporary design.
Crossbar topologies separate the elements in the
system into logic-bearing and routing-only chips.
These crossbar topologies are not expendable.
Another topology, which combines the expendablity
of meshes and the simple routing of crossbars, is
known as hierarchical crossbars.

FPGA-like architectures can take advantage of architectural features
from other computation domains and technology requirements, such
as systolic arrays and digital signal processing, to provide a better
resource structure than standard commercial general-purpose FPGA
architectures.

Reconfiguration. The basic idea of reconfiguration is that the capability
exists within a system to modify functionality after manufacturing.
Reconfiguration is a widely recognized defect-and-fault-management
technique in conventional design.

Example 1.2 Examples of the reconfiguration are as follows:
(a) ability to deactivate computing module within a
module upon error diagnosis, (b) ability to switch
to spare bits for single-cell failures in memory
devices, and (c) bipass a memory device.

Let us assume that a failure has been detected in a computing device.
The failed unit must be bipassed, and a redundant resource must be
activated and wired in. This is the key idea of fault avoidance through
reconfiguration and redundancy.

Introduction 5

Reconfiguration is often considered in conjunction with redundancy and
self-assembling, and has been explored as a defect and fault mitigation
approach for molecular-scale computing. the Reconfiguration can be
obtained using so-called polymorphic principle of the computation.
Polymorphic logic networks are those with multiple superimposed
functionality; the output functions change due to changes in the
operational point of the components.

Example 1.3 Consider the polymorphic logic gates. Given
the controlled supply voltages V1 and V2, the gate
computes an AND and OR function on these
voltages, respectively.

Cellular arrays. The development process of biological organisms exploits
essentially two mechanisms: (a) cellular differentiation (a cell copies its
genetic material and splits into two identical cells), and (b) cellular
division (the function a cell has to realize). In 1948, John Von
Neumann introduced the model of self-reproduction. This model is
known as a cellular automata. Self-reproduction is a prerequisite for
any independent evolutionary process. A cellular automata is a finite or
infinite network of identical deterministic finite state automata such that
each cell has the same (finite) number and order of neighbors. Hence, a
cellular automaton is a spatially distributed model of cells. The state of
a cell at time t+1 depends on its own state and the states of neighboring
cells at time t.

Cellular arrays are intrinsically parallel computing structures consisting
of a regular latticework of identical logic elements (cells) that compute
in lockstep while exchanging data with nearly cells. The properties
of local computability, parallelism, and short-cascade chains make the
performance of specific processing, such as matrix multiplication and
vector operations, much higher. This is because the total length of
interconnections from the inputs to the outputs decreases. Examples of
cellular arrays are crossbar-based and self-assembled computing arrays.

(a) Crossbar-based computing arrays are based on the computing
paradigm that a grid of the connected and addressable switches,
sandwiched between the wires, have the property of storing and
manipulation of data. Crossbar computing arrays are the computing
paradigms that utilize a grid of the connected and addressable switches.
These interfaced switches must ensure the specified functionality and
capabilities from both device and circuitry prospectives.

Example 1.4 OR, AND, and other elementary Boolean
functions can be computed by the grid structure.

6 Computer Arithmetics for Nanoelectronics

This paradigm is attractive in realizing logic networks that implement
memory and logic functions. The addressable molecular switches are set
or reset by on–off switching, electrochemomechanical transitions, etc.

(b) Self-assembled computing arrays utilize and typify self-assembly,
recognition, and other phenomena and mechanisms exhibited by
biomolecules in living systems. There are no analog of this concept
in microelectronics.

Biologically inspired computing is defined as a paradigm that typifies
comprehended biological analogous of computing. Examples of
biologically inspired computing are artificial neural networks and
evolutionary computing.

(a) Artificial neural networks are an attempt to utilize natural-
centric computing (with just moderate success to date) by implementing
parallel processing capabilities and networked structures. The methods
of contemporary logic design such as data structures design, their
optimization, computer array structures, and others typify, to some
extent, natural processing.

(b) Evolutionary computing centers on search and optimization, which
are observed in living systems. Evolutionary algorithms have been
used extensively in evolvable hardware [44]. Evolutionary algorithms
have been shown to perform well in exploring large and complex design
spaces, including logic network design.

Systolic arrays are special class of cellular arrays, that are based on the
parallel-pipelined paradigm of computing. They are suitable for efficient
computing if the parallel input/output is compatible with other devices
in the system. Linear systolic arrays are a particular class of systolic
arrays [47]. They do not require specific input/output interfaces when
implemented as modules in computing systems. An arbitrary Boolean
function can be computed on a linear systolic array.

Stochastic (probabilistic) computing is a fundamental concept in both
contemporary design and nanocomputing. Envisioned nanotechnology-
and molecular-based devices are expected to exhibit deterministic and
stochastic electrochemomechanical phenomena that should be utilized to
implement logic and memory functions. Stochastic computing promises
to achieve fault tolerance by employing statistical principles in which
deterministic logic signals are replaced with random variables.

Fault-tolerant computing can be based on various classical approaches.
These developments can be applied for nanocomputing since the failure
rate of nanodevices is expected to be high. For example, molecular
devices are expected to have a high probability of failure due to
synthesis (technological) complexity, uncertainties, nonideal processing
functionality, varying characteristics, etc. There are many techniques in
discrete devices design that can be useful in nanocomputing, including
masking logic, and noise-tolerant and failure-immune concepts. Error

Introduction 7

correction codes and alternative number systems can be also used in the
networked logic gates.

Neuromorphic networks are artificial neural networks that could be
viewed to be biologically inspired or natural-centric ensure computing
and memory storage. Neuromorphic networks utilize the principles of
distributed computing, and the familiar examples of these models are
the Hopfield network and the Boltzmann machine. At the gate level, this
approach addresses artificial neural networks and is known as recursive
stochastic models. They are based on the property of relaxation, that
is, the ability to relax into a stable state in the absence of external
excitations. Relaxation is referred to as the embedding of a correct
solution into a network of logic nanocells called artificial neurons. There
are no defined inputs and outputs in neuromorphic networks because
they are distributed within the computing structure. Neuromorphic
networks satisfy the criterion of fault-tolerant computing structures.
One common model of neural networks is the feedforward network in
which the processing unit is a linear threshold gate. A linear threshold
gate computes an elementary Boolean function. It is wellknown that
threshold gates are more computationally powerful than AND, OR, and
NOT logic gates. Such a feedforward network can compute an arbitrary
Boolean function.

Example 1.5 The Hopfield networks can be used for modeling
logic gates [9, 28]. Such a network is characterized
by an energy function that has global minima only
at the neuron states consistent with the truth table
of the modeling gate. All other neuron states have
higher energy. The energy function is uniquely
specified by the weights and the thresholds of the
neurons.

Data structures provide various forms of representation of Boolean
functions (algebraic, tabulated, and graphical forms). The theoretical
base of data structures is Boolean and multivalued algebras. The special
type of data structure, being used for the interpretation of molecular and
physical phenomena, is called intermediate data. It is defined as logic
primitives, which exhibit specified features of the molecular phenomenon
and computing paradigm applying an appropriate encoding. Using
specific assembling/interfacing/aggregating rules, logic primitives can be
assembled into logic gates. The set of these gates (elementary Boolean
functions) must be universal, that is, an arbitrary Boolean function
can be computed using these specified library of gates. The role of
intermediate data structures can be illustrated by the following scheme:

8 Computer Arithmetics for Nanoelectronics

Phenomenon
Encoding−→ Logic

primitives

︸ ︷︷ ︸
Intermediate data structure

Encoding−→ Logic

gates

︸ ︷︷ ︸
Logic design︸ ︷︷ ︸

Techniques of data structure manipulation

In this scheme, the encoding procedure plays a key role: all data must
be specified via the assignments of the input and output variables, in
particular, logical values 0s or 1s.

Example 1.6 Using the symbolic quaternary alphabet A =
{A, B, C, D}, the intermediate data structure
can be encoded (a) by the elements of this
alphabet, (b) by specific orders of these elements
in strings, and (c) by the operations with elements
and strings, such as insertion, concatenation,
deletion, and appending. These encoding schemes
specify the set (library) of logic primitives and
interactions between them. Such intermediate data
structures are used in DNA computing (data are
encoded by A, C, G, and T) and in quantum dot
computing (data are encoding by dots).

The analysis of Table 1.1 shows that the computing paradigms of
contemporary discrete devices play an essential role in the development
of novel computing structures based on technological advances of
nanotechnology, molecular processing, and molecular (nano) electronics. This
book addresses some major problems listed in Table 1.1.

1.2 Biological inspiration for computing

Processing principles of natural information are partially comprehended. The
studies of natural data processing demonstrate that it is entirely different from
the von Neumann computing paradigm.

1.2.1 Artificial neural networks

The human nervous system consists of small units called neurons. These
neurons, when connected in tandem, form a nerve fiber. A biological neural
net is a distributed collection of these nerve fibers. A neuron receives electrical
signals from its neighboring neurons, processes those signals, and generates

Introduction 9

signals for other neighboring neurons attached to it. The operation of a
biological neuron, which decides the nature of its output signal as a function
of its input signals, is not clearly known to date. However, most biologists are
of the opinion that a neuron, after receiving signals, estimates the weighted
average of the input signals and limits the resulting amplitude of the processed
signal by a nonlinear function.

Artificial neural networks, to some extent, can be considered to be a
biology-inspired computational concept, that implements natural-centric data
processing. The cell body in an artificial neural net is modeled by a linear
activation function.

Example 1.7 The number of neurons in the human brain is
estimated to be 100 billions; mice and rats have 100
millions neurons, while honeybees and ants have 1
million neurons.

Artificial neural networks can be designed and modeled to implement
massively parallel architectures. A neural network is a network of nodes and
links. The nodes are elementary computing units that could typify to some
extent neurons assuming a conventional action potential premise. Each node
has an activation level that corresponds to a neuron’s rate of firing, while each
link has a numeric weight that corresponds to the strength of a synapse. Such
networks can be trained to recognize patterns and compute functions.

Neural networks seem to be attractive for nanoelectronics due to intrinsic
fault tolerance. The degree of fault tolerance of neural network can be
evaluated using the degree of its redundancy.

Example 1.8 The human retina has 125 million rod cells and 6
million cone cells. An enormous data, among other
tasks, is processed by the visual system and the brain in
real-time. Real-time 3D image processing, ordinarily
accomplished even by primitive vertebrates and insects
that consume less than 1 μW energy to perform
information processing, cannot be performed even
by envisioned processors with trillions of transistors,
device switching speed 1 THz, circuit speed 10 GHz,
device switching energy 1 × 10−16 J , writing energy
1 × 10−16 J/bit, and read time 10 nsec.

10 Computer Arithmetics for Nanoelectronics

Example 1.9 The information from the visual system, sensors
and actuators is transmitted and processed within
the nanoseconds range requiring μW of power.
Performing enormous information processing tasks
with immense performance, which are far beyond
foreseen capabilities of envisioned parallel processors
(which perform signal/data processing), the human
brain consumes only 20 W. Only some of this power
is required to accomplish information and signal/data
processing.

1.2.2 Evolutionary algorithms and evolvable hardware

Biological development is an example of a stunning mechanism that allows
robust generation of complex organisms from a linear building plan, the DNA.
Evolutionary algorithms are population-based stochastic search algorithms.

The evolution paradigm includes genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming. As an example of
evolution paradigm, in this book, genetic algorithms are used for logic network
design.

A genetic algorithm is an iterative procedure that consists of a finite-size
population of individuals; each individual is represented by a string of symbols
called the genome; a possible solution in a given problem space or search space
is encoded in the genome. The algorithm sets out with an initial population
of individuals that is generated at random. The individuals in the current
population are decoded and evaluated according to an appropriate quality
criterion called the fitness function. A new population is generated in the
next generation. In this population, the individuals are selected according to
their fitness and are transformed via genetically inspired operators, such as
crossover and mutation. After some iterations, the genetic algorithm may
find an acceptable solution.

Evolvable hardware is the application of evolutionary algorithms to the
creation of electronic circuits. In evolutionary logic design, gate-level primitive
components (gates, flip-flops, etc.) or graph-based abstraction are used to
generate logic networks.

Example 1.10 It was shown in many studies that various logic
networks using FPGA of the configuration 10×10 cells
can be created by a genetic algorithm with a population
of size 50 and each string of size 2000 bits.

Introduction 11

1.2.3 Self-assembly

Molecular recognition, complementarity, and aggregation are well-established
and sound principles. Molecular recognition implies the specific interaction
between two or more molecules by means noncovalent (hydrogen bonding,
metal coordination, hydrophobic forces, van der Waals forces, pi-pi
interactions, electrostatic forces, etc.), and covalent bonds. For example,
molecular recognition and molecular complementarity, exhibited by DNA,
amino acids, and other biomolecules, can be significantly expanded utilizing
organic and inorganic molecules. Stereochemistry studies the spatial
arrangement of atoms, molecules, and molecular aggregates.

Most solid substances are crystalline in nature. Sometimes the particles
of a sample of solid substance are themselves single crystals. Every crystal
consists of atoms arranged in a 3D pattern that repeats itself regularly. The
unit of this structure is the unit cell. For example, the unit cell of a cubic
crystal is a cube. Crystals of many substances contain discrete groups of
atoms, which are called molecules. The forces acting between atoms within
a molecule are much stronger than those acting between molecules. At a low
temperature, the molecules in a crystal lie rather quietly in their places. As
the temperature increases, the molecules become more and more agitated. A
molecule on the surface of the crystal is held to the crystal by the forces of
attraction that its neighboring molecules exert on it. Forces of this kind are
called van der Waals attractive forces.

Grouping means that larger objects are assembled out of smaller ones
serving as their parts. It includes various procedures, such as clustering,
class formation, and construction of strings. Typical example of grouping in
biology is given below.

Example 1.11 Cells form functional aggregated assemblies, which
exhibit superior performance and capabilities.
Living systems can be studied applying bottom-
up hierarchies and top-down taxonomies.

Specifically, many structural features of molecules and crystals that can
be used in their interpretation in terms of computation are governed by
symmetry and grouping. Symmetry operations, which leave one point in the
space fixed, are called point symmetry operations. Point symmetry operations
are rotations around an axis, reflection across a plane, and inversion through
a point. The stacking of atoms or molecules side by side to build a crystal
results in translation or lattice symmetry. The crystal lattice is the array of
points at the corners of all of the unit cells in the crystal. The 3D array of
symmetry elements itself is known as a space group.

12 Computer Arithmetics for Nanoelectronics

Example 1.12 Crystal growing is characterized by the grouping of
molecules during solidification. A single crystal
is the result of clusters gathered around a local
center of crystallization. Crystals form their group
hierarchies during crystal growth.

An aggregation or assembly is formed an entity out of its parts. Each of the
parts can also be obtained as a part of aggregation. Self-assembly is defined as
the process by which an organized structure can be formed spontaneously from
simple parts (molecules or various nanosize objects). It describes the assembly
of natural structures such as crystals, DNA helices, and microtubules. The
organization process is made into a desired structure via physical, chemical,
or biochemical interactive processes involving, for example, electrostatic and
surface forces. All these processes are very selective and reject defects so that
the resulting structure is characterized by a high degree of perfection. Self-
organization techniques are similar to the process of development of biological
organisms.

Repeated duplication of a group of atoms by a screw axis produces a pattern
called a helix. If the atoms are joined by chemical bonds in a continuous
chain from one group to the next, the result is a helical molecule that
extends the length of the crystal. It is possible to construct helical molecules
by a symmetry operation similar to a screw axis, except that the angle of
rotation from one group to the next is not an integral fraction of 360◦. Some
molecules of great biological importance have helical symmetry of this type,
in particular, the α-helix of proteins and the helical backbone of the DNA
molecule. Properties of helical symmetry can be encoded and interpreted in
terms of computing Boolean functions.

The second law of thermodynamic states that in an isolated system, entropy
can only decrease, not increase. Such system evolve to their state of maximum
entropy, or thermodynamic equilibrium. The thermodynamic concept of
entropy as the dissipation of heat is not very useful for computing systems.
Shannon entropy is applicable to any system for which a state space can be
defined. It expresses the degree of uncertainty about the state s of the system
in terms of the probability distribution P (s). In terms of Shannon entropy,
the second law of thermodynamic can be expressed as “every system tends to
its most probable state” [6]. At a molecular level, molecules are distributed
homogeneously, and the most probable state of an isolated system is that of
maximum entropy or thermodynamic equilibrium.

In molecular (nano) electronics, self-assembly is defined as a method of
fabrication of the molecular computing structures that relies on chemicals,
forming larger structures without centralized or external control. This is
the spontaneous organization of molecules under thermodynamic equilibrium
conditions into a structurally well-defined and rather stable arrangement. Self-

Introduction 13

assembly in this system is associated with bottom-up design.
The key engineering principle for molecular self-assembly is to design

molecular building blocks that are able to undergo spontaneous stepwise
interactions. In this design, the instructions are incorporated into the
structural framework of each molecular component. The running of these
instructions is based on the specific interaction patterns, environment, and
the intermediate stages of the assembly.

One of the main issues encountered in logic design based on self-assembling
paradigm is the ability to match the components (logic primitives) into
combinations that result in the correct output of logic network. The
complementary molecular primitives (CMprimitives) are defined as a set of
simplest molecular structures. Each molecular primitive can be interpreted in
terms of switches, the simplest computing operation. Molecular primitive
are used for designing the molecular logic gates. Various subsets of the
molecular primitive can be derived from the CMprimitives. These subsets form
various libraries for design molecular logic gates often called multiterminal
and multifunctional molecular devices utilizing various molecules (aromatic,
cyclic, and other), polypeptides, and side groups.

Example 1.13 Multiterminal solid molecular devices can be
engineered as cyclic molecules arranged from atoms
ensuring functionality. These devices includes
switches (two-terminal device), two-input logic gates
(three-terminal devices), three-input logic gates (four-
terminal devices), and various multiple-input multiple-
output computing networks.

Logic design using the molecular primitives is based on self-assembling and
results in random or partially-ordered computing networks. The controllable
self-assembling and robust binding/pairing can be implemented using, for
example, the templates. Fractal assemblies that can be interpreted in terms of
Boolean functions carry the information about these functions by the labeled
topological structures. These fractals are acceptable as templates.

Example 1.14 An example of a structure that can be constructed using
algorithmic self-assembly is a Sierpinski triangle.
This structure is also known as a Sierpinski gasket,
which is a kind of fractal structure. A Sierpinski gasket
is the Pascal triangle modulo two, i.e., the EXOR
operation is used instead of arithmetic addition while
forming the Pascal triangle. There are (4n + 2n)/2
elements in total in Pascal triangle.

Fractal-like templates are useful for systematic design for molecular systems

14 Computer Arithmetics for Nanoelectronics

with logic processing capabilities. Methods of computer aided design (CAD)
are classified into those for logic design based on logic primitives and those
for designing molecular reactions.

1.3 Molecular computing devices

Synthetic chemistry allows one to synthesize a wide range of complex
molecules from atoms linked by covalent bonds. Utilizing noncovalent and
covalent intermolecular interactions, as well as precisely controlling spatial
(structural) and temporal (dynamic) features, supramolecular chemistry
provides methods to synthesize even more complex atomic aggregates.

Example 1.15 The effective cell size of the envisioned microelectronic
devices is projected to be 500 × 500 nm by the year
2025. Each of these devices will consist of billions of
molecules. In contrast, molecular devices are expected
to be synthesized from a couple of atoms or molecules.

Molecular computing devices are comprised of

� Organic molecules
� Inorganic molecules
� Biomolecules

Molecular (nano) electronics focuses on fundamental/applied/experimental
research and technology developments in the devising and implementation of
novel, high-performance, enhanced-functionality, atomic/molecular devices,
modules, and platforms (systems), as well as high-yield bottom-up fabrication.
Molecular electronics centers on:

� Discovery of novel devices that are based on the new device physics
� Utilization of the exhibited unique phenomena, effects, and capabilities
� Devising of enabling topologies, organizations, and architectures
� Bottom-up, high-yield fabrication technologies

At the device level, the key differences between molecular and
microelectronic devices are as follows:

The key differences between molecular and microelectronic devices

� Device physics and phenomena exhibited and utilized
� Performance, capabilities, and functionality achieved
� Topologies and organizations attained
� Fabrication processes, synthesis methods, and technologies used

Introduction 15

The difference between microelectronic and molecular computing devices
can be specified as follows. In microelectronic computing devices, individual
molecules and atoms do not depict the overall device physics and do not
define the device characteristics. In molecular computing devices, individual
molecules and atoms explicitly define the overall device physics depicting the
device performance, functionality, capabilities, and topologies.

There are fundamental differences at the system level. In particular,
molecular electronics lead to novel organizations, advanced architectures,
and the need for technology-centric, super-large-scale integration, novel
interconnect, and interfacing. However, advanced techniques of logic design
are the basis of the molecular electronics (Table 1.1).

Example 1.16 In [42], a molecular computing structure called
nanocell have been introduced. A nanonocell is
a 2D network of self-assembled molecules that act
as reprogrammable switches. An array of nanocells
implement the concept of the FPGA; the nanocells can
be programmed and reprogrammed after fabrication to
perform a specific functions. Genetic algorithm can
be used for designing the logic network of molecular
switches in nanocells.

Interconnect and interfacing

The characteristics of nano scale devices include, in particular, unreliable
device performance, transfer function, interconnect limitations (the inability
to provide global interconnections), thermal power generation, and regularity
of layout. Nanoscale devices need to be interconnected locally and patterned
into 2D or 3D arrays of cells of various topologies.

Quantum cellular automata architecture (QCA) is a typical example of a
regular and locally interconnected array of cells interacting with its neighbors,
but there are no wires in the signal paths. In contrast to conventional silicon-
based designs, where information is transferred between devices by electrical
current, in QCA information is transferred by Coulomb interaction, which
passes the state of one cell to its neighbors.

Example 1.17 The wire in QCAs is a chain of quantum cells. The
QCA is characterized by the ability to cross wires in the
plane; different wires carrying different binary values
can cross each other at the same level without any
interferance or crosstalk.

In locally connected structures, the range of interaction and the connection
complexity of each cell are independent of the number of cells. Therefore,

16 Computer Arithmetics for Nanoelectronics

these structure are scalable and massively parallel. Acceptable characteristics
of reliability and robustness can be achieved by using special techniques. An
example is a 2D cellular nonlinear network (CNN), which is an array of neuron-
like cells [32, 39]. A cellular network can be mapped into a 3D topology [36].

Nanoscale design demand novel interconnect and interfacing solutions
that ensure aggregation and assembly of molecular processing primitives in
large-scale diverse modular modules. Molecular assemblies are comprised
of functionalized aggregated molecules. In leaving organisms, biomolecules
ultimately establish the biomolecular processing hardware. We focus on
the solid molecular devices. In solid-state microelectronic devices, individual
atoms and molecules have not been, and cannot be, utilized from the device
physics prospective. The scaling down of microelectronic devices results in
significant performance degradation due to quantum effects (interference,
inelastic scattering, vortices, resonance, etc.), discrete impurities, and other
features. In contrast, the molecular devices exhibit phenomena that can
be uniquely utilized, ensuring device functionality and guaranteeing superior
capabilities.

Organic synthesis is the collection of procedures for the preparation of
specific molecules and molecular aggregates. In planning the syntheses of
desired molecules, the precursors must be selected. One carries out the
retrosynthetic analysis as

Target molecule =⇒ Precursor,

where the open arrow =⇒ denotes “is made from.” Usually, more than one
synthetic step is required. For example,

Target molecule =⇒ Precursor 1=⇒ · · · =⇒ Precursor Z =⇒
Starting molecule

A linear synthesis, which is adequate for simple molecules, is a series of
sequential steps to be performed, resulting in synthetic intermediates. For
complex molecules, convergent or divergent synthesis is required. There
are different procedures for synthesis of intermediates. For new synthetic
intermediates, discovery, development, optimization, and implementation
steps are needed.

In multiterminal solid molecular device, distinct quantum phenomena could
be used to ensure the controlled characteristics. For example, quantum
interaction, quantum interference, quantum transition, vibration, Coulomb
effect, etc. The device physics, based on these and other phenomena
and effects (electron spin, photon-electron-associated transitions, etc.), must
be coherently complemented by the bottom-up synthesis of the molecular
aggregates, that exhibit those phenomena.

Introduction 17

Example 1.18 Distinct solid molecular devices have been proposed,
ranging from resistors to multiterminal devices [5,
10, 17, 26, 33, 40, 43]. These molecular devices are
comprised of organic, inorganic, and bio-molecules.
For example, Figure 1.1 shows, in particular, different
molecules that were functionalized in order to perform
acceptable characteristics for switching.

T w o-t e r m i n a l m o l e c u l e s

S S

Au

Au

S

S
Au Au

(a) (b)

S
Au

S
Au

S

A u

S

A u

N H
O

H

N +O -

O

(c) (d)

FIGURE 1.1
Molecules as potential two-terminal molecular devices: (a): 1,4-phenyledithiol
molecule and functionalized 1,4-phenyledithiol molecule; (b): 1,4-pheny-
lenedimethanethiol molecule; (c): 9,10-bis((2′-para-mercaptophenyl)-ethinyl)-
anthracene molecule; (d): 1,4-bis((2′-para-mercaptophenyl)-ethinyl)-2-acetyl-
amino-5-nitro-benzene molecule (Example 1.18).

Various problems associated with the devising, engineering, and analysis
of functional molecular devices are reported in [26]. In order to depart
from the symmetric organic molecular devices, asymmetric multiterminal
carbon-centered molecular devices were proposed. These molecular devices
are comprised from B, N, O, P, S, I and other atoms. To ensure synthesis
feasibility and practicality, these molecular devices are engineered from

18 Computer Arithmetics for Nanoelectronics

cyclic molecules and their derivatives. The reported multiterminal molecules
ensure the desired asymmetry of the voltage-current characteristics, while the
saturation region or peaks-and-deeps should be examined.

By applying the voltage to the control terminal, one varies the potential,
regulates the charge and electromagnetic field, and varies the interactions,
as well as changes the tunneling affecting the electron transport. Hence, the
input-output characteristics can be controlled.

The aggregation and interconnect of input/control/output terminals can
be accomplished within the carbon framework. For example, (a) the electron
transport is predefined or significantly affected by Xi and side groups; (b)
atomic structures of side groups can exhibit transitions or interactions under
the external electromagnetic excitations and thermal gradient; (c) side groups
can be utilized as electron donating and electron withdrawing substituent
groups, as well as interacting or interconnect groups.

The functional molecular switches operate on one bit. This simplest
computing is associated with switching (from an OFF state to an ON state,
and vice versa), using stimuli such as voltage pulses. In multiterminal solid
molecular device, quantum effects could be used to ensure the controlled
voltage-current characteristics. Figure 1.2a shows the two-terminal molecular
devices of various complexity.

Three-terminal cyclic molecules are utilized as molecular devices. The
three-terminal molecular device is based on the quantum interaction and
controlled electron transport. The inputs signals VA and VB are supplied
to the input terminals, while the output signal is Vout. These molecular
AND and NAND gates are designed using cyclic molecules within the carbon
interconnecting framework. By applying the voltage to the control terminal,
one varies the potential, regulates the charge and electromagnetic field, varies
the interactions, as well as changes the tunneling affecting the electron
transport. Hence, the input-output characteristics can be controlled.

Example 1.19 Three-terminal molecular devices can perform Boolean
functions AND, NAND, OR, and NOR of two
variables (two-input) logic primitives (Figure 1.2).

Example 1.20 Molecular and biomolecular devices can operate with
the estimated transition energy 1 × 10−18 J , discrete
energy levels (ensuring multiple-valued logics and
memory) and femtosecond transition dynamics. These
guarantee exceptional device transition (switching)
speed, low losses, unique functionality, and other
features ensuring superior overall performance.

The term molecular electronics covers a broad range of topics, in particular,

Introduction 19

T w o-t e r m i n a l m o l e c u l a r d e v i c e s

T h r e e-t e r m i n a l m o l e c u l a r d e v i c e s
AND NAND OR NOR

Vin

VA

VB

VG

Vout

Vin

VA

VB

VG

Vout

Vin

VA VB

VG

Vout

Vin

VA
VB

VG

Vout

FIGURE 1.2
Molecular gates: AND, NAND, OR and NOR gates (Example 1.19).

molecular computing devices, device physics, and biophysics of biomolecular
devices. Molecular materials for electronics deal with films or crystals that
contain many trillions of molecules per functional unit. Molecular-scale
electronics deal with one to few thousand molecules per device.

Molecular electronics involves the search for single molecules or small groups
of molecules that can be used as the fundamental units for computing. The
goal is to use these molecules to have specific properties and behaviors.
Molecular devices for computing Boolean functions consist of (a) molecular
terminals, and (b) molecular wires, which are materialized by means of
interconnection phenomena.

Cross-talking

The computing units in molecular devices use different input signals; to
assemble them into computing devices and systems of higher complexity, the
standardization of the input/output signals are required. Most of the chemical
reactions are of low specificity. That is, different reactions in one system may
cause interference. This problem is called cross-talking. Cross-talking between
the different reactions hinders assembling of chemical computing devices and
systems.

20 Computer Arithmetics for Nanoelectronics

Mixed silicon-based and molecular electronics

A hybrid between present silicon-based technology and technology based
purely on molecular switches and molecular wires is a more viable path toward
nano scale computing systems. A mixed paradigm presents opportunities for
more tightly integrated mixed systems that utilize the advantage of the strong
points of each technology.

Traditional digital logic design techniques can be used, and assemblies of
switches and logic gates can be constructed. The resulting logic networks
will operate in exactly the same manner as traditional silicon electronic-based
circuits.

1.4 Fault tolerance

The stochastic nature of biomolecular systems can lead to random variation
in the concentration of molecular species. Mutation or imperfect replication
can alter the inserted gene sequences, possibly disabling them or causing
them to operate in unforeseen ways. This type of computing is called
stochastic computing. Stochastic computing achieves fault tolerance by
employing statistical models in which deterministic logic signals are replaced
with random variables. In this model, correct output signals are calculated
with some probability. When a noise is accommodated, the Boolean function
is replaced with a random function. The applications of various models
for increasing the reliability of computing require small circuits or simple
logic elements. Hence, efficient assembly and interconnects are critical for
the implementation of stochastic models of computing. Conceptually, in
stochastic computing, the problem of suppressing unwanted random effects
is reformulated into the problem of efficient utilization of uncertainty.

The increase in complexity of the logic networks increases the probability of
faults. Any architecture built from large numbers of these devices will contain
a large number of defects, which fluctuate on time scale. The problem is to
develop a computing structure, that is dynamically defect tolerant. That is,
the problem is not only to test the correctness of logic networks but also
to design networks resistant to faulty components. Biological systems are
examples of complex fault-tolerant systems; these biological mechanisms can
be used in the development of novel self-test, self-repair, and self-replication
approaches. Self-replication means the capability of a machine to produce a
copy of itself.

Fault detection is the analysis of errors to determine which components are
faulty. Once the error is detected, the appropriate action must be taken. A
property, required in all fault-tolerant computing techniques is that of fault
isolation. Fault isolation aims to prevent a faulty unit from causing incorrect

Introduction 21

behavior in a nonfaulty unit.
As devices increase in complexity, defect, and contamination, control

becomes even more important since defect tolerance is very low. Nanoscale
devices will have a high probability of failure, that is, they are characterized
by a high and dynamic failure process. These failures can be occur both
during fabrication and at a steady rate after fabrication.

There are several approaches to deal with nanodevice failure rates: (a)
design for testability; in this approach, the design cycle of logic network is
considered under conditions of the testability in all design phases; (b) design
based on redundant logic; the key assumption of this approach is that the
redundance can be incorporated at various level of logic network over a set
of possible faults; and (c) design based on probabilistic computing paradigm;
the key idea of this approach is the adaptation to errors.

Assuming reliable computing in the presence of faults is called fault
tolerance. For example, approaches to reliable computing in networks with
faulty nodes and/or interconnects can utilize the error correction codes and
residual number systems. These approaches state that it is possible to correct
a class of faults if a library of reliable logic nanocells for implementing the
correction is available. Error-reduction/correction in biocomputing systems
becomes extremely important as the complexity of numerous connected
biochemical reactions increases. This is needed for scalability and fault
tolerance of the computing structures Self-repairing electronics are the areas
of fault-tolerant computing. Traditional approaches to preserve electronics
incorporate radiation shielding, insulation and redundancy at the expense of
power and weight. The self-adaptive system can autonomously recover the
lost functionality of a reconfigurable array.

Example 1.21 NASA uses various approaches to prevent radiation, and
extreme-temperature, hardened electronics, required by
space missions to survive the harsh environments beyond
Earth’s atmosphere [21]. The self-adaptive systems
are operating in extreme temperatures (from 120◦C
down to −180◦C). The reasonable implementation of
a self-adaptive principle is based on FPGAs. Another
approach, called tuning reconfigurable electronics, is
related to an inexpensive, navigation grade, miniaturized
inertial measurement units, which surpass the current
state-of-the art technology in performance, compactness
(both size and mass), and power efficiency. This
approach used by all NASA missions. The self-tuning
techniques for reconfigurable micro-electro-mechanical
systems (MEMS) gyroscopes based on evolutionary
computation.

22 Computer Arithmetics for Nanoelectronics

Example 1.22 Fault tolerant computing array are often based on
the principle of reconfiguration. This principle is
implemented by integration of redundant cells. Fault
cells and their locations are detected, and the computer
structure reconfigures around these faulty cells.

The drawback of this approach is that the reliability of fault detection logic
must be guaranteed.

1.5 Computing in 3D

It has been justified in a number of papers that 3D topologies of computer
elements are optimal, physically realistic models for scalable computers. In the
contemporary logic network design, the use of the third dimension is motivated
by decreasing the interconnect topology. The third dimension is thought of
as layering. For example, in chips, networks are typically assembled from
layers, where logic cells occupy the bottom layers and their interconnections
are routed in upper metal layers.

Example 1.23 A widely accepted 2D placement model for
conventional microelectronics is a square grid with
all logic network elements of unit square size with
their input/output connections in the center. Network
elements are then placed, in checkerboard fasion onto
the grid. The logic network to be put in place is
represented by a hypergraph, where network elemebts
form the set of nodes. The goodness of the placement
is measured by its total wire length. A 3D placement
of FPGA, for instance, provides a significant reduction
of wire-lengths.

In this book, the third dimension is considered not because of layers, but
as a dimension that relates to electrochemomechanical phenomena [46]. It
includes the space orientations and 3D relationship between molecules, as
the key factor for achieving the desired functional logical properties. This
is the motivation to search for adequate spatial computing models. A 3D
directly interconnected molecular electronics concept utilizes a direct device-
to-device aggregation based on molecular recognition, complementarity, and
aggregation.

Introduction 23

1.6 Multivalued processing

Multivalued algebra is a generalization of Boolean algebra, based upon a set
of m elements M = {0, 1, 2, . . . , m}, corresponding to multilevel signals and
the corresponding operations. Multivalued logic has been proposed as the
means to [7, 18, 19]

� Improve performance
� Increase the packing density of VLSI circuits
� Improve fault tolerance
� Reduce power and power dissipation
� Improve testability

In multivalued logic networks, more than two levels of a signal are
used. There are many motivated examples for considering the processing
of multilevel signals as biologically inspired processing.

Interconnections. One of the most promising approaches to solving the
interconnection problems is the use of multivalued logic. The number of
interconnections can be reduced with multilevel signal representation. The
reduced complexity of interconnections makes the chip area and delay much
smaller.

Packing density. The chip area can be evaluated using the interconnections.
The number of interconnections for the networks that use m-level logic
signals can be estimated as 1/ log2 m, compared with two-level (m = 2)
logic signals, 1/ log2 2. In the case of 2D topology, the reduction becomes
1/(log2 m)2 [18]. The total area of interconnections can be calculated using
the number of interconnections, topology of interconnections, and the length
of interconnections.

Pads. The number of bonding pads in a chip can be reduced by using
multilevel signals.

Testability can be improved because access to internal components of a logic
network is available using extra pads.

Performance can be improved because of the decrease of the total length
of interconnections and interconnections delay (the switching time of gates
is much less than interconnection delay). Special encoding methods, such as
radix-r signed-digit number system and residue symmetrical number system,
as well as parallel hardware algorithms using multivalued logic, enable local
computing. These are additional resources for increasing the performance.

24 Computer Arithmetics for Nanoelectronics

Power dissipation can be decreased because the dynamic power dissipation
is determined mainly by the interconnections.

Fault tolerance. Cross-talk noise is increased because of extremely small
distances between wires. Special encoding methods, using multivalued logic
enable reduction of cross-talk noise.

Sequential logic networks. Multivalued logic is the base for development
of the racing-free asynchronous sequential elements and networks.

Special encoding methods for local computing. In signed-digit
arithmetic, the carry propagation in arithmetic operations such as addition
and substraction is localized by one digit position; that is, massive parallelism
of the computation can be achieved. In the residue number system, addition
and multiplication are inherently carry-free; this number system is suitable
for massively parallel arithmetic operations. A signed-digit arithmetic
and residue number system can be implemented by binary logic networks.
However, multivalued logic provides them more efficiency compared with
binary logic.

In practice, multivalued logic networks are modeled by a multilevel encoding
of information.

1.7 Further study

[1] Adamatzky A. Computing with waves in chemical media: Massively parallel
reaction-diffusion processors, IEICE Trans. Electron., E87-C(11):1748-1756,
2004.

[2] Adleman LM. Molecular computation of solutions to combinatorial problems.
Science, 226, November, pp. 1021–1024, 1994.

[3] Aguirre AH and Coello CAC. Evolutionary synthesis of logic circuits using
information theory. In Yanushkevich SN, Ed., Artificial Intelligence in Logic
Design, pp. 285–311, Kluwer, Dordrecht, 2004.

[4] Aoki T, Homma N, and Higuchi T. Evolutionary synthesis of arithmetic
circuit structures. In Yanushkevich SN, Ed., Artificial Intelligence in Logic
Design, pp. 39–72, Kluwer, Dordrecht, 2004.

[5] Aviram A and Ratner MA. Molecular rectifiers. Chem. Phys. Letters, 29:277–
283, 1974.

[6] Beer S. Decision and Control: The Meaning of Operational Research and
Management Cybernetics. John Wiley & Sons, New York, 1966.

[7] Butler JT. Multiple-valued logic. IEEE Potentials, 14(2):11–14, 1995.

Introduction 25

[8] Carbone A and Seeman NC. Circuits and programmable self-assembling DNA
structures. In Proceedings of National Academy of Sciences, 99(20):12577–
12582, 2002.

[9] Chakradhar ST, Agrawal VD, and Bushnell ML. Neural Models and
Algorithms for Digital Testing. Kluwer, Dordrecht, 1991.

[10] Chen J, Lee T, Su J, Wang W, Reed MA, Rawlett AM, Kozaki M, Yao Y,
Jagessar RC, Dirk SM, Price DW, Tour JM, Grubisha DS, and Bennett DW.
Molecular electronic devices, In Reed MA and Lee L, Eds., Handbook of
Molecular Nanoelectronics, American Science Publishers, New York, 2003.

[11] Collier CP, Wong EW, Belohradsk M. Raymo FM, Stoddart JF, Kuekes PJ,
Williams RS, and Heath JR. Electronically configurable molecular-based logic
gates. Science, 285:391–394, July, 1999.

[12] Crawley D, Nikolić K, and Forshaw M, Eds., 3D Nanoelectronic Computer
Architecture and Implementation. Institute of Physics Publishing, UK, 2005.

[13] Das B and Abe S. Modeling molecular switches: A flexible molecule anchored
to a surface. In Seminario JM, Ed., Molecular and Nano Electronics: Analysis,
Design and Simulation, pp. 141–162, Elsevier, Amsterdam, 2007.

[14] de Castro LN. Fundamentals of Natural Computing: Basic Concepts,
Algorithms, and Applications. Chapman & Hall/CRC Taylor & Francis
Group, Boca Raton, FL, 2006.

[15] DeHon A. Array-based architecture for FET-based, nanoscale electronics.
IEEE Trans. Nanotechnology, 2(1):23–32, 2003.

[16] Fredkin E and Toffoli T. Conservative logic. Int. J. Theor. Phys., pp. 171–182,
2003.

[17] Ellenbogen JC and Love JC. Architectures for molecular electronic computers:
Logic structures and an adder designed from molecular electronic diodes.
Proceedings IEEE, 88(3):386–426, 2000.

[18] Hanyu T, Kameyama M, and Higuchi T. Prospects of multiple-valued VLSI
processors. IEICE Trans. Nanotechnology, E76-C(3):383–392, 1993.

[19] Hanyu T. Challenge of a multiple-valued technology in recent deep-submicron
VLSI. In Proc. 31st IEEE Int. Symp. on Multiple-Valued Logic, pp. 241–247,
2001.

[20] Karpovsky MG, Stanković RS, and Astola JT. Spectral Logic and Its
Applications for the Design of Digital Devices. John Wiley & Sons, Hoboken,
NJ, 2008.

[21] Keymeulen D. Self-repairing and tuning reconfigurable electronics: real world
applications. In Proc. NASA/ESA Conf. on Adaptive Hardware and Systems,
2008.

[22] Kumar VKP and Tsai Y-C. Designing linear systolic arrays. J. Parallel and
Distributed Computing, 7:441–463, 1989.

[23] Kung HT and Leiserson CE. Systolic arrays (for VLSI). In Sparse Matrix
Proceedings. SIAM, Philadelphia, pp. 256–282, 1978.

[24] Kung SY. VLSI Array Processors. Prentice Hall, Englewood Cliffs, New York,
1988.

26 Computer Arithmetics for Nanoelectronics

[25] Lent CS, Tougaw PD, Porod W, Bernstein GH. Quantum cellular automata.
Nanotechnology, 4:49–57, 1993.

[26] Lyshevski SE. Molecular Electronics, Circuits, and Processing Platforms.
CRC Press, Boca Raton, FL, 2007.

[27] Lyshevski SE. 3D multi-valued design in nanoscale integrated circuits. In
Proc. 35st IEEE Int. Symp. on Multiple-Valued Logic, pp. 82–87, 2005.

[28] Macii E and Poncino M. An application of Hopfield networks to worst-case
power analysis of RT-level VLSI systems. Int. J. Sci., 35(8):783–792, 1997.

[29] Ma Y and Seminario JM. Analysis of programmable molecular electronic
systems. In Seminario JM, Ed., Molecular and Nano Electronics: Analysis,
Design and Simulation, pp. 96–140, Elsevier, Amsterdam, 2007.

[30] Negrini R and Sami MG. Fault Tolerance Trough Reconfiguration in VLSI
and WSI Arrays. The MIT Press, Cambridge, MA, 1989.

[31] Peper F, Lee J, Abo F, Isokawa T, Adachi S, Matsui N, and Mashiko S.
Fault-tolerance in nanocomputers: a cellular array approach. IEEE Trans.
Nanotechnology, 3(1):187–201, 2004.

[32] Porod W, Lent CS, Toth G, Csurgay A, Huang Y-F, and Liu RW. IEEE
Abstracts, p. 745, 1997.

[33] Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, and Lohneysen HV.
Driving current through single organic molecules. Physical Review Letters,
88(17), 2002.

[34] Rosenblatt F. Principles of Neurodynamics. Spartan, New York, 1962.

[35] Rothemund PWK, Paradakis N, and Winfree E. Algorithmic self-
assembly of DNA Sierpinski triangles. PloS Biology — www.plosbiology.org,
2(12,e424):2041–2053, 2004.

[36] Shmerko VP and Yanushkevich SN. Three-dimensional feedforward neural
networks and their realization by nano-devices. Artificial Intelligence Review,
An Int. Science and Eng. J. (UK), Special Issue on Artificial Intelligence in
Logic Design, 20(3-4):473–494, 2004.

[37] Shukla SP and Bahar RI, Eds., Nano, Quantum and Molecular Computing.
Kluwer, Dordrecht, 2004.

[38] De Silava AP, McClenaghan ND, and McCoy CP. Molecular logic systems. In
Feringa BL, Ed., Molecular Switches, pp. 339–361, Wiley-VCH, Weinheim,
Germany, 2001.

[39] Toth G, Lent CS, Tougaw PD, Brazhnik Y, Weng WW, Porod W, Liu
RW, and Huang YF. Quantum cellular neural networks. Superlattices and
Microstructures, 20,:473–478, 1996.

[40] Tour JM and James DK. Molecular electronic computing architectures. In
Goddard WA, Brenner DW, Lyshevski SE, and Iafrate GJ, Eds., Handbook
of Nanoscience, Engineering and Technology, pp. 4.1–4.28, CRC Press, Boca
Raton, FL, 2003.

[41] Tour JM. Molecular Electronics: Commercial Insights, Chemistry, Devices,
Architecture and Programming. World Scientific, Hackensack, NJ, 2003.

Introduction 27

[42] Tour JM, Zandt WLV, Husband CP, Husband SM, Wilson LS, Franzon PD,
and Nackashi DP. Nanocell logic gates for molecular computing. IEEE Trans.
Nanotechnology, 1(2):100–109, 2002.

[43] Wang W, Lee T, Kretzschmar I, and Reed MA. Inelastic electron tunneling
spectroscopy of an alkanedithiol self-assembled monolayer. Nano Letters,
4(4):643–646, 2004.

[44] Yao X and Higuchi T. Promises and challenges of evolutionary hardware.
IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 29(1):87–97, 1999.

[45] Yanushkevich SN, Shmerko VP, and Lyshevski SE. Logic Design of Nano ICs,
CRC Press, Boca Raton, FL, 2004.

[46] Yanushkevich SN. Logic design of computational nanostructures. J.
Computational and Theoretical Nanoscience, 4(3):384–407, 2007.

[47] Yanushkevich SN. Spatial systolic array design for predictable
nanotechnologies. J. Computational and Theoretical Nanoscience, 4(3):467–
481, 2007.

[48] Yanushkevich SN, Shmerko VP, and Steinbach B. Spatial interconnect
analysis for predictable nanotecnologies. J. Computational and Theoretical
Nanoscience, 5(1):56–69, 2008.

[49] Yanushkevich SN, Miller DM, Shmerko VP, and Stanković RS. Decision
Diagram Techniques for Micro- and Nanoelectronic Design, Taylor &
Francis/CRC Press, Boca Raton, FL, 2006.

[50] Ziegler MM and Stan MR. CMOS/nano co-design for crossbar-based
molecular electronic systems. IEEE Trans. Nanotechnology, 2(4):217–230,
2003.

2

Computational Nanostructures

2.1 Introduction

In this chapter, the basic principles for design of a computational structure are
introduced. These principles, such as analysis and synthesis, assembling, top-
down and bottom-up methodology, design styles, simulation, and modeling,
can be adopted in nanodevices design, except for some particular cases
when underlying physical and chemical phenomena address nontraditional
approaches. This chapter also briefly introduces the computational models
such as switch-based computing and homogeneous structures that are the
focus of further chapters in this book.

The crucial point of computing nanostructure design is an approach that
provides the delegation of computing abilities from initial data structure to
the nanostructure. This approach is based on the specification of the form
of graphical data structures, such as decision trees and diagrams. These
data structures are characterized by computational properties that can be
embodied in various spatial structures specified by nanotechnology. This
chapter provides a brief introduction of this problem. Another aspect is that
hybrid technologies can be used in computing structure design. This aspect
requires using the unified approaches in design methodologies.

A discrete system is a combination of logic networks and discrete devices
that is assembled to accomplish a desired result, such as the computing
and transferring of data. Digital logic networks are used in all devices that
process information in digital form. Information can be defined as recorded
or communicated facts, or data. Information takes a variety of physical forms
when being stored, communicated, or manipulated. Information on the nature
of a physical phenomenon is conveyed by signals that assume a finite number
of discrete values, that is, it is expressed as a finite sequence of symbols. A
signal is defined as a function of one or more variables, and a system is defined
as an entity that manipulates one or more signals to accomplish a function,
thereby yielding new signals.

In this chapter, each signal is assumed to have only one of two values,
denoted by the symbols 0 and 1. If the signals are constrained to only two
values, the system is binary.

29

30 Computer Arithmetics for Nanoelectronics

2.2 Theoretical background

Boolean algebra was introduced by George Boole in 1854 and applied by C.
Shannon in 1938 to relay-contact networks, the first switching circuits. This
theory is called switching theory and has been used ever since in the design of
digital logic networks or logic circuits. Since then the technology has gone from
relay-contacts through diode gates, transistor gates, and integrated circuits,
to future nanotechnologies, and still Boolean algebra is its fundamental and
unchanging basis. Modern logic design includes methods and techniques
from various fields. In particular, digital signal processing is adopted in
logic design for efficient manipulation of data; communication theory solves
communication problems between computing components in logic networks;
artificial intelligence methods and techniques are used for optimization at logic
and physical levels of logic network design.

As far as predictable technologies are concerned, nontraditional computing
paradigms that are based on various physical and chemical phenomena are
studied. The assumed stochastic nature of many processes at nano scale
implies that random signals must be used instead of deterministic signals.
Random signals take on random values at any given moment in time and
must be modeled probabilistically, while deterministic signals can be modeled
as completely specified functions of time. The theoretical base of probabilistic
logic signals is called probabilistic logic.

A unit for computing an elementary Boolean function (such as an AND,
OR, NAND, NOR, EXOR, threshold function, or a special case of it, the
majority function) at nano scale is defined as a logic nanocell. The elementary
logic functions and arbitrary logic networks can be implemented by using
only threshold (neuron) cells. A switch is the simplest logic operation that
operates on a single bit. An arbitrary Boolean function (and, therefore, an
arbitrary logic network) can be implemented using, for example, only NAND
or only NOR nanocells, or only switches. If nanocells are affected by noise
that influences their dynamic and steady-state behavior, they are referred to
as probabilistic nanocells.

The classic computing paradigm implemented in most of today’s computers
is known as von Neumann architecture. In the computing paradigms based
on the principle of distributed processing, information is encoded into the
different components of a computing network. In fault-tolerant computing,
the effects of faults are mitigated, and correct computations are guaranteed
with a certain level of reliability. Redundancy is one of the fault-tolerant
techniques that can be used if additional resources are available. Redundancy
in distributed models cannot be achieved by integration of extra cell copies
over the appropriate permutation and decision profile, but only by sharing of
carriers of information between many components of the network. Assuming
reliable computing in the presence of faults is called fault-tolerance; for

Computational Nanostructures 31

example, approaches to reliable computing in networks with faulty nodes
and/or interconnects, including error correction codes and residual number
systems. These approaches state that it is possible to correct a class of faults if
a library of reliable logic nanocells for implementing the correction is available.

2.3 Analysis and synthesis

The specification of a system is defined as a description of its function. The
implementation of a system refers to the construction of a system. The
analysis of a system has its objective to determine its specification from the
implementation:

Logic network −→ Specification︸ ︷︷ ︸
Analysis

Synthesis, or design, consists of obtaining an implementation that satisfies
the specification of the system:

Specification −→ Logic network︸ ︷︷ ︸
Synthesis

The central task in logic synthesis is to optimize the representation of a
logic function with respect to various criteria.

Complex systems are specified at various levels of detail. At each level,
the units of complexity are specified as components or a subsystem of the
components, and a basic element, or primitive is defined as a component that
has no internal structure.

A system can be examined at various levels of abstraction. Each such
level is called a design level (Figure 2.1a). The following design levels are
distinguished:

� The top design level is called the architectural or system level.
� The intermediate design level is called the logic level; this level is the

subject of the present book.
� The bottom design level is called the physical level; this level is concerned

with the details needed to manufacture or assemble the system.

At the physical level, a system is implemented by a complex interconnection
of simplest elements (primitives). Because of high complexity, it is impractical
to perform design and optimization at this level, motivating a move to the

32 Computer Arithmetics for Nanoelectronics

intermediate level of design. At the intermediate level, a modular structure
provides a reasonable simplification of design. Libraries of standard modules
significantly simplify the design of different systems. Assembling modules of
increasing complexity into higher hierarchical blocks is achieved at the system
level.

Architecture

Logic design

Physical design

Top level

Intermediate
level

Bottom level

Design
 levels

Top-down
design strategy

Bottom-up
design strategy

(a) (b) (c)

FIGURE 2.1
Design hierarchy (a), top-down (b), and bottom-up (c) design strategies.

2.3.1 Design hierarchy

A hierarchical approach to digital system design aims at reducing the cost of
the design of a system, and improving the quality of the obtained solutions.
The hierarchical approach to design makes a large system more manageable
by reducing complexity and introducing a rational partitioning of the design
processes. They can be designed, tested, and manufactured separately. This
is the basis for standardization. The specified components can be mass
produced at relatively low cost. In the design process, these components
can be composed in standard libraries and reused with minor modifications.
This facilitates the reduction of overall design time and cost. The robustness
of the hierarchical approach provides many possibilities for avoiding design
errors, design corrections, and repairs after manufacture.

Any design process includes a design loop that provides the possibility to
carry out a redesign if errors are detected in simulation. This loop is repeated
until the simulation indicates a successful design.

Computational Nanostructures 33

Example 2.1 The use of standard cells is a classical example of how
a restriction in the design space (a limited library of
constrained cells) makes it possible to use intellectual
and computational capabilities to find high-quality
acceptable solutions through synthesis.

2.3.2 Top-down design methodology

Design methodology is a system of ways of obtaining the implementation of
a specified design.

A design that evolves from a generalized or abstract point of view and
proceeds in steps to specific components is referred to as a top-down design
methodology (Figure 2.1b):

System

architecture︸ ︷︷ ︸
Specified

Partitioning−→
Subsystem

design

︸ ︷︷ ︸
Logic level

Design−→
Implemented

technology

︸ ︷︷ ︸
Physical level︸ ︷︷ ︸

T o p-d o w n d e s i g n s t r a t e g y

In this approach, the hierarchy tree is traversed from top to bottom. The
system architecture is specified at the highest level first. The disadvantage
of this approach is that no systematic procedure exists for optimization of
the final implementation; that is, optimization at one particular level does
not guarantee an optimal final solution. The success of the approach depends
mainly on the experience and professional skills of the designer.

Example 2.2 Given the architecture of a system, a designer may
begin to detail subsystems in terms of small black
boxes, each of which consists of an electronic circuit
developed by “circuit designers.” The designer has
to know, in particular, (a) the logical function of
each block, have a means be able of expressing those
functions, and (b) the logic function the interconnected
blocks provide.

The top-down approach is currently used in the silicon industry, wherein
small features such as transistors are etched into silicon using resisters and
light. This hierarchy starts at the highest level of abstraction, the architecture
level. Then it descends to the level of its component circuits, and finally to
the level of the component switch and interconnect devices.

34 Computer Arithmetics for Nanoelectronics

An example of an advanced top-down methodology is so-called platform-
based design. A platform is defined as a family of the designs and not a
single design. In this top-down process, the constraints that accompany the
specification are mapped into constraints on the components of the platform.

Most artificial intelligence techniques based upon the top-down design
paradigm are known as knowledge-based or expert systems.

2.3.3 Bottom-up design methodology

An alternative process to the top-down approach is a bottom-up design
methodology (Figure 2.1c):

Libraries

of primitives

︸ ︷︷ ︸
Specified

Synthesis−→
Subsystem

design

︸ ︷︷ ︸
Logic level

Synthesis−→
System

architecture︸ ︷︷ ︸
Highest level︸ ︷︷ ︸

B o t t o m-u p d e s i g n s t r a t e g y

This is the reverse of the top-down design process. One starts with specific
components in mind and proceeds by interconnecting these components into
a generalized system. In a bottom-up design approach, the components at
or near the lowest design level of the hierarchy tree are designed first. The
architecture of the entire system is not specified until the top of the tree
is reached. Unfortunately, in general, there is no systematic technique that
results in correct system specification.

Bottom-up systems and models are those in which the global behavior
emerges from the aggregative behavior of ensemble of relatively simple
elements acting solely on the basis of local information.

Example 2.3 Natural computing inspired or based on biology is more
rooted in bottom-up approaches. An example of
bottom-up design is artificial neural networks. Their
structure is not defined a priori; they are a result of
the network interactions with the environment. For
example, if the initial neural network has a single
neuron, and more neurons are can be added until
the network is capable of appropriately solving the
problem.

The bottom-up approach implies the construction of functionality into
small features, such as molecules, with the opportunity to have the molecules
further self-assemble into higher-ordered structural units such as transistors.
Bottom-up methodologies are quite natural in that all systems in nature are
constructed bottom-up.

Computational Nanostructures 35

Example 2.4 Molecules with specific features assemble to form
higher-order structures such as lipid bilayers.

Molecular electronics proponents believe purposeful bottom-up design will
be more efficient than the top-down method.

Example 2.5 The device physics, based on quantum interaction,
quantum interference, quantum transition, vibration,
Coulomb effect, and other phenomena and effects
(electron spin, photon-electron-assisted transitions,
etc.), must be coherently complemented by the bottom-
up synthesis of the molecular aggregates that exhibit
those phenomena.

However, in practice, there are many specific-area application devices
and systems where top-down and bottom-up design methodologies can be
efficiently used separately or in various combinations. This provides the
possibility for designing simultaneously in several levels.

2.3.4 Design styles

In a general sense, the following design styles are distinguished:

Full custom design: This style provides freedom to the designer and is
characterized by great flexibility; however, this style is not acceptable
for the design of large systems.

Semi-custom design: Provides more possibilities for automation using, in
particular, standardization; such as a library of standard cells.

Mixed design styles: Often provide an acceptable reduction to the flexibility
of full-custom style, while opening up possibilities for the automation
and optimization of semi-custom style.

Gate-array design meets the requirements of fabrication and simplifies the
optimization problem; this style results in regular structures within the
chip, that is, connected cells that are placed on a chip in a regular way.

These design styles are adopted in various technologies.

2.3.5 Modeling and simulation

A unit for computing elementary logic (Boolean) functions (such as an AND,
OR, NAND, NOR, EXOR, threshold function, or the majority function) at
nano scale is defined as a logic nanocell. The elementary logic functions and
arbitrary logic networks can be implemented by using only threshold (neuron)
cells. A switch is the simplest logic operation that operates on a single bit.

36 Computer Arithmetics for Nanoelectronics

An arbitrary elementary logic function (and, therefore, an arbitrary logic
network) can be implemented using, for example, only NAND or only NOR
nanocells, or only switches. If nanocells are affected by noise that influence
the dynamic and steady-state behavior, they are referred to as probabilistic
nanocells.

The classic computing paradigm implemented in most of today’s computers
is known as von Neumann architecture. In the computing paradigms based
on the principle of distributed processing, information is encoded into the
different components of a computing network. In fault-tolerant computing
paradigms, the effects of faults are mitigated, and correct computations are
guaranteed with a certain level of reliability. Redundancy is one of the fault-
tolerant techniques that can be used if additional resources are available.
Redundancy in distributed models cannot be achieved by integration of extra
cell copies over the appropriate permutation and decision profile, but only by
sharing of carriers of information between many components of the network.
Assuming reliable computing in the presence of faults is called fault-tolerance,
which includes approaches to reliable computing in networks with faulty nodes
and/or interconnects, error correction codes, and residual number systems,
etc. These approaches state that it is possible to correct a class of faults if a
library of reliable logic nanocells for implementing the correction is available.

Recursive stochastic models are based on the property of relaxation that
is, an ability to relax into a stable state in the absence of external input.
Relaxation is referred to as the embedding of a correct solution into a network
of logic nanocells (neurons). In models based on stochastic pulse stream
encoding, information is encoded in the average pulse rate or primary statistics
of this stream.

The use of software simulation is an important part of any modern design
process. The primary uses of a simulator are to check a design for functional
correctness and to evaluate its performance. Simulators are key tools in
determining whether design goals have been met and whether redesign is
necessary.

2.4 Implementation technologies

The scaling of microelectronics down to nanoelectronics is the inevitable result
of technological evolution (Figure 2.2). The most general classification of the
trends in technology is based on grouping computers into generations. Using
this criterion, five generations of computers are distinguished (Table 2.1).
Each computer generation is 8 to 10 years in length.

The following can be compared against this scale:

Computational Nanostructures 37

1000

0.1 1 10

1

100

10 100

1000 1000100 101

Nanometer

Micrometer

Millimeter

Scaling

Computer generation
1 23 4 5

FIGURE 2.2
Progress from micro- to nanosize in computing devices.

TABLE 2.1

Computer generations are determined by the change in the dominant
technology

Generation Dates Technology

1 1950–1964 Vacuum tubes (zero-scale integration)

2 1965–1969 Transistors (small-scale integration)

3 1970–1979
Integrated circuits (medium-scale
integration)

4 1980–2004
Large, very large, ultra large-scale
integration

5 2005– Nanotechnology (giga-scale integration)

The scaling of microelectronics down to nanoelectronics

� The size of an atom is approximately 10−10 m. Atoms are composed of
subatomic particles; e.g., protons, neutrons and electrons. Protons and
neutrons form the nucleus, with a diameter of approximately 10−15 m.

� 2D molecular assembly (1 nm).

� 3D functional nanoICs topology with doped carbon molecules (2 × 2 × 2 nm).

� 3D nanobioICs (10 nm).

� E.coli bacteria (2 mm) and ants (5 mm) have complex and high-performance
integrated nanobiocircuitry.

� 1.5 × 1.5 cm 478-pin Intel� Pentium� processor with millions of transistors,

and Intel 4004 Microprocessor (made in 1971 with 2,250 transistors).

Binary states are encountered in many different physical forms in various

38 Computer Arithmetics for Nanoelectronics

technologies. The standard approach is to use the digit symbols 0 and 1
to represent the two possible values of binary quantity. These symbols are
referred to as bits.

Binary arithmetic has the following advantages:

(a) It can be implemented using on-off switches, the simplest binary devices.

(b) It provides for the simplest decision-making such as YES (1) and NO (0).

(c) Binary signals are more reliable than those formed by more than two
quantization levels.

Significant evolutionary progress has been achieved in microelectronics.
This progress (miniaturization, optimal design and technology enhancement)
has been achieved by scaling down microdevices, approaching 45 nm sizing
features for structures, while increasing the integration level (Figure 2.3).
Complementary metal-oxide semiconductor (CMOS) technology is being
enhanced, as nanolithography, advanced etching, enhanced deposition, novel
materials, and modified processes are all currently used to fabricate ICs.

Example 2.6 The channel length of metal-oxide-semiconductor field
effect transistors (MOSFETs) has decreased from

� 50 μm in 1960, to

� 1 μm in 1990, and to

� 130 nm in 2004, 65 nm in 2006, and 45 nm in
2007.

Example 2.7 The progress in miniaturization and integration can be
observed, for example, on Intel processors:

1971–1982: From Intel 4004 (1971, 2,250 transistors),
to Intel 286 (1982, 120,000 transistors),

1993–2007: From Pentium (1993, 3,100,000
transistors), to Pentium 4 (2000, 42,000,000
transistors), to ItaniumTM 2 processor (2002),
Pentium� M processor (2003) with hundreds of
millions of transistors, and Pentium Dual-Core
in 2007.

The increases in packing density of the circuitry are achieved by shrinking
the linewidths of the metal interconnects, by decreasing the size of other
features, and by producing thinner layers in the multilevel device structures.

Computational Nanostructures 39

Predictable

First

Past

Today

Previous

102

103

106

101

Technology
evolution

Small

Medium

Large

Very large

1011 Super large

Small-scale integration (SSI):

� 1960s, dozens of gates in a package

Medium-scale integration (MSI):

� 1970s, hundreds of gates in a package

Large-scale integration (LSI):

� 1980s, thousands of gates in a package

Very large-scale integration (VLSI):

� 1980s and 1990s, hundreds of
thousands of gates in a package

Giga-scale integration:

� Today, millions of gates in a package

Tera-scale integration:

� Expected, hundred millions of gates in
a package

FIGURE 2.3
Evolution of technologies: levels of integration of chips.

Example 2.8 Commercial metal interconnect linewidths have
decreased to 0.1 mm.

Typical signal integrity effects include interconnect delay, cross-talk (in
closely coupled lines the phenomenon of cross-talk can be observed), power
supply integrity, and noise-on-delay effects. In the early days of very large-
scale integration (VLSI) design, these effects were negligible because of
relatively slow chip speed and low integration density. However, with the
introduction of technological generations working at about 0.25 μm scale
and below, there have been many significant changes in wiring and electrical
performance.

As the number of computational and functional units on a single
chip increases, the need for communication between those units also
increases. Interconnection has started to become a dominant factor in chip
performance. As chip speed continually increases, the increasing inductance
of interconnections affects the signal parameters. The length of interconnect
lines when measured in units of wire pitch increases dramatically.

Noise is a deviation of a signal from its intended or ideal value. Most noise
in VLSI circuits is created by the system itself. Electromagnetic interference
is an external noise source between subsystems. In deep submicron circuits,
the noise created by parasitic components with digital switching exhibits the
strongest effect on system performance. Noise has two deleterious effects on

40 Computer Arithmetics for Nanoelectronics

circuit performance: (a) when noise acts against a normal static signal, it
can destroy the local information carried by the static node in the circuit and
ultimately result in incorrect machine-state stored in a latch, and (b) when
noise acts simultaneously with a switching node, this is manifest as a change
in the timing of a transient.

2.5 Predictable technologies

The key to the predictable technologies of the future is changing the computing
paradigm, that is, the model of computation and the physical effects for the
realization of this model:

Computing model︸ ︷︷ ︸
Design

Implementation−→ Physical effects︸ ︷︷ ︸
Technology

Silicon loses its original band structure when it is restricted to very small
sizes. The lithography techniques used to create the circuitry on the wafers
also neared its technological limits.

There are fundamental technological differences among

� Nanoelectronic devices versus microelectronic ones (which can even be
nanometers in size)

� Nanoelectronics versus microelectronics, for example, nanointegrated
circuits versus integrated circuits

These enormous differences are due to differences in basic physics and
other phenomena. The dimensions of nanodevices that have been made
and characterized are a hundred times less than even newly designed
microelectronic devices (including nanoFETs with 10 nm gate length).
Nanoelectronics sizing leads to volume reduction by a factor of 1,000,000
in packaging, not to mention revolutionary enhanced functionality due to
multiterminal and spatial features. For example, molecular electronics focuses
on the development of electronic devices using small molecules with feature
sizes on the order of a few nanometers.

Superconductive solid-state and molecular electronics focuses on the
development of electronic devices using small particles and molecules with
feature sizes on the order of a few nanometers. The ultimate goal of
miniaturization is to use the minimum amount of atoms per electronic
function.

Computational Nanostructures 41

Example 2.9 A contemporary computer utilizes ∼ 1010 silicon-
based devices, whereas the scaling factor gained from
molecular-scale technology ∼ 1023 devices in a single
beaker using routine chemical syntheses.

An additional driving factor is the potential to utilize thermodynamically
driven directed self-assembly of components such as chemically synthesized
interconnects, active devices, and circuits.

In order to take advantage of the ultra-small size of molecules, one
ideally needs an interconnect technology that (a) scales from the molecular
dimensions, (b) can be structured to permit the formation of the
molecular equivalent of large-scale diverse modular logic blocks as found
in VLSI interconnect architectures, and (c) can be selectively connected to
mesoscopically (100 nm scale) defined input/output (I/O).

Nanoscale devices must obey the fundamental constraints that the laws
of physics impose on the manipulation of information. Some physical
constraints, such as the fact that the speed at which information can travel
optically through free space is upperbounded by a constant (the speed of
light, 299 792 458 m/s), are still present in nanodimensions. The electrical
transmission of signals along wires is slower than light, so the current
propagation delays along dissipative wires are significant. The time of
transmission is proportional to the square of the distance, unless the signals
are periodically regenerated by additional buffering logic.

A wide variety of factors, such as voltage scaling and thermal noise,
dramatically reduce the reliability of integrated systems. In nanotechnologies,
process variations and quantum fluctuations occur in the operations of very-
deep submicron transistors. Any computer with nano scale components will
contain a significant number of defects, as well as massive numbers of wires
and switches for communication purposes. It therefore makes sense to consider
architectural issues and defect tolerance early in the development of a new
paradigm.

Two main aspects are critical to the design of nanodevices. First is the
probabilistic behavior of nanodevices (electrons, molecules), which means that
a valid Boolean function can be calculated with some probability. Second
is the high defect rates of nanodevices, meaning that because many of the
fabricated devices have defects, their logic correctness is distorted.

There are two types of fault tolerances exhibited by a nanosystem: fault
tolerance with respect to (a) data that are noisy, distorted, or incomplete,
which results from the manner in which data are organized and represented
in the nanosystem, and (b) physical degradation of the nanosystem itself. If
certain nanodevices or parts of a network are destroyed, the network will
continue to function properly. When the damage becomes extensive, the
network will only affect the system’s performance, as opposed to causing a
complete failure. Self-assembling nanosystems are capable of this type of fault

42 Computer Arithmetics for Nanoelectronics

tolerance because they store information in a distributed (redundant) manner,
in contrast to traditional storage of data in a specific memory location in which
data can be lost in the case of a hardware fault.

The methods of stochastic computing provide another approach to
overcoming the problem of the design of reliable computers from unreliable
elements, i.e., nanodevices.

Example 2.10 A signal may be represented by the probability that a
logic level has a value of 1 or 0 at a clock pulse. In this
way, random noise is deliberately introduced into the
data. A quantity is represented by a clocked sequence of
logic levels generated by a random process. Operations
are performed via completely random data.

2.6 Nanoelectronic networks

The specifications of nanoelectronic devices and networks are based on data
structures adopted from classical logic design. This adaptation is done based
on the premises of nano scale implementation structures.

2.6.1 CMOS-molecular electronics

The chemically directed self-assembly of molecular single-electron devices on
prefabricated nanowires is considered as a promising way toward integrated
circuits using, for example, single-electron tunneling.

2.6.2 Neuromorphic computing paradigm

A Hopfield network, also known as neuromorphic computing,∗ is based on
distributed architecture principles, and can be implemented by various models
[25]. Using a Hopfield network, an arbitrary logic function can be computed
via a process similar to the gradual cooling process of metal. A value
of a logic function given an assignment of Boolean variables is computed
through the relaxation of neuron cells. Hopfield networks are capable of
reliable computing, despite imperfect neuron cells and degradation of their
performance. This is because of degraded neuron cells store information
(in weights, thresholds, and topology) in a distributed (or redundant)

∗The term “neuromorphic systems” was used for the first time by C. Mead [32] to define
an interdisciplinary approach to the design of biologically inspired information processing
systems.

Computational Nanostructures 43

manner. A single “portion” of information is not encoded in a single neuron
cell, but is rather spread over many. This contrasts with the traditional
computing paradigm (von Neumann architecture), in which data is stored
in a specific memory location. The Hopfield computing paradigm is based
on the concept of minimization of energy in a stochastic system. This
concept is implemented using McCulloch–Pitts neuron cells for elementary
logic functions, the interconnections between nanocells given a logic function,
the weights assigned to the links between nanocells, and an objective function
given the number of neuron cells, their thresholds, interconnections, and
weights. The carriers of information in the Hopfield network are a particular
topology of connections between neuron cells, the weights of the links, and
the neuron thresholds.

2.6.3 Interconnect

An interconnect is considered with respect to various criteria, for example,
number of switches, signal delays, total length, power dissipation, and cost.
The traditional understanding of the interconnect as a wire in a voltage-
controlled network does not work for certain nanotechnologies, especially for
those where the carrier of charge (for example, single electron) is considered as
a messenger that travels through the network of nanowires via multiplexing,
or a signal propagated by the intractability of cells. In such a network, control
signals (input variables) are separated from the messenger signal (function),
and the problem of interconnection becomes the problem of compatibility of
inputs and outputs. Below we consider switches on multiplexers as the most
suitable candidates for interconnect nodes.

The components of biomolecular networks are not connected by physical
wires that direct a signal to a precise location; molecules that are the inputs
and outputs of these processes share a physical space and can commingle
throughout the cell. It requires the special tools to isolate signals and prevent
cross-talk, in which signals intended for one recipient are received by another.
Unlike electronics, which typically rely on a clock to precisely synchronize
signals, these biomolecular signals are asynchronous.

Nanoscale devices must obey the fundamental constraints that the laws
of physics impose on the manipulation of information. Some physical
constraints, such as the fact that the speed at which information can travel
optically through free space is upperbounded by a constant (the speed of
light, 299 792 458 m/s), are still present in nanodimensions. The electrical
transmission of signals along wires is slower than light, so the current
propagation delays along dissipative wires are significant. The time of
transmission is proportional to the square of the distance, unless the signals
are periodically regenerated by additional buffering logic.

The vulnerability of nanocircuits to defects and faults arising from
instability and noise-proneness at nanometer scales [43] leads to unreliable
and undesirable results of computation. Robustness to errors is an important

44 Computer Arithmetics for Nanoelectronics

design consideration for nanocomputers in the light of the noise and
instabilities that affect the reliability of nanometer-scale devices.

2.6.4 Carbon-nanotube-based logic devices

Carbon nanotubes are sheets of graphite rolled into tubes. Depending on
the direction in which the graphite sheet is rolled, the single-walled carbon
nanotubes can be metallic or semiconductor. Semiconducting nanotubes
are used for fabrication switches and transistors known as carbon-nanotube
field-effect transistors (CNFETs). The CNFETs are considered as possible
successors to silicon MOSFETs because CNFETs inherit current-voltage
characteristics that are qualitatively to silicon MOSFETs. That is, MOS-
based logic networks can be transferred to a CNFET-based design.

Storage elements are implemented as the molecular scale junction switches
formed at the crosspoints of the wires. Addressing memory array (random
access memory) can be designed based on the crosspoint array by using a
decoder.

State-of-the art defect-tolerant techniques can be applied to the crossbar
memory. The crossbar memory does not operate correctly if defects occurred
during the fabrication. These defect can be located and identified. Using
redundant rows and columns, the faults caused by the identified defects can
be eliminated.

Example 2.11 The following faults caused by the defects can be used
in defect tolerance techniques: (a) broken nanowire,
(b) stuck-at-low and stuck-at-high resistance state, (c)
short at a crosspoint, and (d) open at a crosspoint.

2.6.5 Crossbar-based computing structures

The crossbar structures can be designed using the bottom-up approach.
Various physical phenomena can be utilized in crossbar structure design.

Example 2.12 The following physical implementation can be utilized
in crossbar structure design:

� Self-assembled nanowires
� Nano-imprinted wires
� Nanotubes

Computing properties are delegated in crossbar structure using (a)
crosspoint function and (b) topological properties such as distribution of this

Computational Nanostructures 45

function in a rectangular array. The simplest function of the crosspoint is
switch.

Example 2.13 Functions of a crosspoint in a crossbar structure can
be switches. The advantage of this array is that an
arbitrary Boolean function can be directly assembled.
The drawback is that the signal is degradated with
respect to the number of active switches.

The crossbar computing structures utilize the common paradigm for
molecular electronics. The crossbar structure has a simple interconnection
topology and is therefore attractive for fabrication. Different types of crossbar
address different types of elements such as resistor, diode, or transistor. These
elements can be combined to perform larger functions.

Example 2.14 The basic crossbar structure consists of the
combination of planes of parallel wires laid out
in orthogonal directions.

Each junction or crosspoint within the crossbar can be independently
configured. After fabrication, the bistable junctions at the wire crossing can
be customized, that is programmed to perform the designed Boolean function.

2.6.6 Noise

The term noise means undesirable variations of voltages and currents in
a circuit. Noise is an unpredictable and random phenomenon. The noise
become significant in a logic network when the noise signal causes incorrect
logic functions. Noise in integrated circuits is the interference signal inducted
by signals on neighboring wires or from the substrate. This noise is different
from the intrinsic noise generated by active device components. Most CMOS
digital circuits have a relatively high immunity to noise. However, as power
supply levels have decreased, this property has diminished. Both the power
supply distribution and signal distortion along coupled interconnect lines are
interconnect-related problems. Interconnections in CMOS integrated circuits
are multiconductor lines existing on different physical planes. The parasitic
impedances of these conductor lines can be extracted from the geometric
layout. The coupling capacitance is physically a fringing capacitance between
neighboring interconnect lines, and strongly depends upon the physical
structure of the adjacent interconnections.

46 Computer Arithmetics for Nanoelectronics

Example 2.15 For parallel metal lines on the same layers, the fringing
capacitance will increase as the spacing between the
interconnections and the thickness-to-width aspect
ratio of the interconnection increases.

Due to the screening effect of low-level interconnect, the metal-to-metal
coupling capacitance among different layers also contributes to the total
coupling capacitance. Coupling effects become more significant as the feature
size is decreased. The induced noise voltage may cause extra power to be
dissipated on the quiet line due to momentary glitches at the output of the
logic gates.

Example 2.16 At gigahertz operating frequencies and high integration
densities, power dissipation densities are expected to
approach 20W/cm2, a power density limit for an
aircooled package devices. Such a power density is
equivalent to 16.67 ampers of current for 1.2V power
supply in a 0.1μm CMOS technology.

2.7 Switch-based computing structures

Decision trees and diagrams are the graphical data structures, which
correspond to the networks of switches. Therefore, they are called switch-
based computing structures. This data structures are useful for two classes
of problems: (a) for computing Boolean functions and (b) for embedding
computational properties into spatial structures.

2.7.1 Switches

A switch is any device by means of which two or more conductors (electrical,
electrochemical) can be conveniently connected or disconnected. The status
of the contact, which can be opened or closed, can be represented by a variable
xi. A switch is the simplest computing device that operates on a single bit.
Computations with n bits can be realized as compositions of such one-bit
switching changes. Switches are the basic elements for construction of logic
gates.

Switches have two states: operated or active, and released or or inactive.
There are many different types of switches, but they fall into two general
classes: nonlocking switches, which return to a normal state when released,
and locking switches, which retain their state after the controlling level is
released.

Computational Nanostructures 47

Example 2.17 A NOT gate can be implemented as a single-bit
switch.

A switch whose level is operated by a molecular phenomenon is called a
molecular switch. The state of the molecular switch “contacts” when the
switch is not energized (activated), is called the normal state of the switch.
Thus, a molecular switch can have both normally open and normally closed
states.

Switches might be a clue to the resolving of the poor input–output gain
in the device-centered (based on the library of logic gates) design considered
above. Many nanocircuits, such as arrays of nanowires, charge state logic, and
other devices, are nonuniliteral, i.e., they have no clearly distinguished input
and output voltage. In terms of logic design, these circuits act as decision
diagram-based pass-gate logic, or switch (simplest multiplexer)-based devices.

A Boolean function realized by a switch-based network has the value of 1 if
there is closed path between two specified terminals of the logic network. The
switch themselves are assumed to be operated by the binary variables of the
Boolean function. A variable xi and xi may be associated with a switch that is
closed if and only if xi = 1 and xi = 0, respectively. Switches associated with
uncomplemented and complemented variables are assumed to be normally
open (xi = 0) and closed (xi = 1), respectively.

Example 2.18 When two switches are connected in series, the path
through them is closed only when both of them are
closed. This condition can be described by the equation
x1 × x2 = 1, where x1 and x2 are the binary variables
associated with these two switches. In the parallel
connection of switches, there is a closed path between
the terminals if either switch is closed. Figure 2.4
shows the series and parallel connections of switches.

Probabilistic switching paradigm is the base of models for the energy
saving computing in contemporary logic design of discrete devices. Based
on this model, probabilistic logic gates can be constructed. In these models,
noise is considered as a resource to achieving the accurate energy and power
characteristics of discrete devices.

A switch operates in a single bit. It is assumed that the minimum energy
needed to compute a bit with error of 1−p by idealized probabilistic switch is
kt ln 2p Joules, where k is the Boltzmann’s constant, and t is the temperature
of the thermodynamic system.

48 Computer Arithmetics for Nanoelectronics

=
x x x

x x =
x

=
x

x
x

x

x

x
=

(a) (b)
FIGURE 2.4
Two switches are connected in series; the closed path through them is closed
only when both of them are closed (a). Two switches are connected in a
parallel connection of switches; the path between the terminals is closed if
either switch is closed (b) (Example 2.18).

2.7.2 Switch-based networks represented by decision
diagrams

A decision diagram is a rooted directed acyclic graph consisting of

� The root node
� A set of terminal (constant) nodes
� A set of nonterminal nodes

connected with directed edges (links) (Figure 2.5). These components make
up a topology of decision trees and diagrams. The topology is characterized
by a set of topological parameters such as size, number of nonterminal nodes,
number of levels, and number of links.

Root Nonterminal Terminal Links beetwen
node nodes nodes nodes

f

FIGURE 2.5
Components of a decision diagram.

Decision diagrams are graph-based data structures that represent algebraic
ones. The algebraic data structure can be mapped into a decision tree or
diagram, and vice versa.

Computational Nanostructures 49

Example 2.19 Figure 2.6 shows the implementation of decision
diagrams for the AND Boolean function using
multiplexers.

0 1

f

S

S

0 1

 x1

x2

x1

x2

⎯x1

⎯x2

f

Decision diagram is a switch-based
computing structure. Nonterminal
nodes of the decision diagrams are
replaced by multiplexers

FIGURE 2.6
Mapping of decision diagram into the multiplexer-based logic network
(Example 2.19).

Manipulation of algebraic representations is based on the rules and axioms
of Boolean algebra. These are aimed at simplification, factoring, composition,
and decomposition. Manipulation of graphical data structures is based on the
rules for reduction of nodes and links in decision trees and diagrams. There is
a mapping between these representations. Algebraic expressions are relevant
to the corresponding graphical data structures (hypercubes and hypercube-
like structures, decision trees and diagrams, etc.)

Example 2.20 Figure 2.7 shows the relationship between algebraic and
graphical data structures for a 3-input NOR function.
The algebraic form (a) is mapped into decision tree
(b), which is reduced to the decision diagram (c).

If the relationship between the basic rules of algebraic and graphical data
structures established, an arbitrary logic function can be mapped into a
corresponding decision diagram and vice versa. Because of the variety of
algebraic structures and techniques for their synthesis, a wide variety of
diagram types have been developed in the last four decades.

The implementation costs of decision trees and diagrams can be estimated
directly from their topology. The other important properties, which can
be evaluated on the diagram or tree, are a probability distribution that
can be specified on the variables’ spaces (which can be assumed uniform
if not otherwise known) and information-theoretic measures that also use
probability distributions. In Figure 2.8, the information-theoretic model of
decision diagrams is given.

50 Computer Arithmetics for Nanoelectronics

fx1

x2

x3

f = x1 ∨ x2∨ x3

⎯x1

f

0 0 0 0 00 0 1

⎯x2 ⎯x2

x1

x2

x3x3 x3 x3⎯x3 ⎯x3 ⎯x3 ⎯x3

x2
S

S

S

S S S

S

1

x1

⎯x2

⎯x3

⎯x1

0

x3

x2

f

s

s

s

(a) (b) (c)

FIGURE 2.7
The 3-input NOR function (a), decision tree (b), and decision diagram (c)
(Example 2.20).

Source of
 information
(transmitter)

Receiver of
information

Change of
 information
(computing)

The information-theoretic model includes:

� The source or transmitter of information,
which corresponds to the input of the
root node

� The channel where the information is
transmitted. In a decision diagram, this
corresponds to processing (changing) of
information by nonterminal nodes

� The receiver of information, which
corresponds to the terminal nodes
of a decision diagram

FIGURE 2.8
Information-theoretic model of a decision diagram.

The topology of decision trees and diagrams can be changed by the
manipulation of the algebraic representation or by direct manipulation of the
graphical structure.

Example 2.21 Manipulation of algebraic expression and graphical
structure implies various topologies of decision
diagrams (Figure 2.9). The topologies shown in Figure
2.9a,b,c are classified as planar topologies of decision
diagrams (useful in the design of networks without
crossings).

Reduction of decision trees is aimed at simplification with respect to
various criteria, in particular, reduction of the number of nonterminal
nodes, satisfaction of topological constraints to meet the requirements of
implementation, and reduction of the length of paths from root to terminal
nodes.

Computational Nanostructures 51

(a) (b) (c) (d)

FIGURE 2.9
Various topologies of decision diagrams: (a) the topology is achieved by
linearization of an algebraic expression of a Boolean function; (b) the topology
is derived by linearization of an algebraic expression and manipulation
(composition) of graphical elements; (c,d) the topologies are achieved by using
various representations of Boolean functions and their symmetric properties
(Example 2.21).

A path in the decision tree consists of the edges connecting a nonterminal
node with a terminal node. A complete path connects the root node with a
terminal node. Decision trees and diagrams are graphical representations of
functional expressions. For instance, each complete path in a binary decision
tree or diagram corresponds to a term in sum-of-products expression of a
function f .

2.8 Spatial computational nanostructures

It has been justified in a number of papers that 3D topologies of computer
elements are optimal, physically realistic models for scalable computers. In
the contemporary logic network design, the use of the third dimension is
motivated by decreasing of the interconnect topology. The third dimension is
thought of as layering. For example, in chips, networks are typically assembled
from about ten layers. In our study, the third dimension is considered not
because of layers but as a dimension that relates to electrochemomechanical
phenomena. It includes the space orientations, that is, the 3D relationship
between molecules, as the key factor for achieving the desired functional logical
properties.

52 Computer Arithmetics for Nanoelectronics

2.8.1 Graph embedding problem

There are several documented approaches in computing in 3D. The first
approach is based on the idea that 2D computational structures can be
layered. An example is the computer structures that are used in the
contemporary logic network fabrication: logic network (for instance, a 2D
silicon-based substrate) is layered and interconnected (between layers) to
achieve the desired functionality. The interconnected layers form the third
dimension. In this approach, the third dimension does not carry functional
information about the implemented logic functions. For example, this
computational 3D model is not adequate to the natural 3D neural structure.

The second approach is based on the mapping of a logic function into a
3D system (a system with three coordinates) [3]. This approach requires
complicated transformations of logic functions with respect to each dimension.
The main drawback is that the known techniques of logic network design can
not be used in the representation of logic functions in the 3D space. That is,
each logic function requires a 3D expansion. This approach is nonacceptable
in practice because it requires revision of the previously obtained techniques
and tools. The third approach is related to the 3D cellular arrays and their
particular case, 3D systolic arrays [29]. These structures are very complicated
in design and control, and they are have not been completely implemented in
practice. However, linear systolic arrays, which are reasonable for practice,
can be used in the 3D computing structure design.

The following characteristics are critical in 3D computing: (a) embedding
capabilities, (b) ability to extend the size of structure with minimal changes to
the existing configuration, (c) ability to increase reliability and fault tolerance
with minimal changes to the existing configuration, and (d) flexibility
regarding technology-dependence and technology-independence.

There are two formulations of the embedding problem (Figure 2.10):

(a) Given a guest data structure, find an appropriate topology for its
representation; this is a direct problem.

(b) Given a topological structure, find a corresponding data structure which is
suitably represented by this topology; this is an inverse problem (using
the properties of the host representation, specify possible data structures
that satisfy certain criteria).

The direct and inverse problems of embedding address different problems of
nanocomputing. In a direct problems, the topology is not specified, and the
designer can map a representation of a logic function into spatial dimensions
without strong topological limitations. In this way, a high efficiency in
embedding can be achieved. The inverse formulation of the problem assumes
that the topology is constrained by technology. That is, the question is how
to use a given topology in the efficient representation of logic functions.

Computational Nanostructures 53

Direct
embedding

problem

Guest
data

structure

Topological compatibility

Topological
flexibility

Topological
flexibility

Host
topology

Inverse
embedding

problem

Host
topology

Guest
data

structure

FIGURE 2.10
A formulation of direct and inverse embedding problems.

2.8.2 Embedding decision tree into spatial dimensions

There are a number of particular considerations for representing Boolean
functions in nanospace:

(a) The Boolean functions have to be represented by a spatial data structure
in which information about the function satisfies the requirements of
the implementation technology.

(b) Information flow has to comply with the implementation topology.
(c) Data structure and information flow must be effectively embedded into

the 3D topological structure.

In embedding problem, the initial (guest) structure must be specified with
respect to computational abilities. A data structure becomes a computing
network if the properties of data structures for the representation of Boolean
functions are delegated. We utilize the fact that decision tree is topologically
isomorphic to the H-tree, which can be embedded into a 3D hypercube. Hence,
computational abilities are delegated to the H-tree. The 3D H-tree topology is
constructed recursively from 2D elementary H-clusters. An H-tree embedded
into a hypercube is called an N-hypercube topology.

The N-hypercube topology is the most suitable data structures for the
representation of Boolean functions for the following reasons:

(a) They are 3D, and thus, meet the requirements of distributed spatial
topology.

(b) They correspond to functional (Shannon expansion) and dataflow
organization (information relation of variables and function values)
requirements, as data structures such as decision trees can be embedded
into hypercubes.

(c) They meet the requirements of certain nanotechnologies with local
quantum effects and charge-state logic.

54 Computer Arithmetics for Nanoelectronics

Example 2.22 Given a Boolean function f = x1x2 ∨ x1x2 ∨ x1x2x3.
Its representation by a hypercube given in Figure 2.11a.
Another representation is the hypercube-like structure
obtained by embedding a decision tree of a function f
into 3D H-tree (Figure 2.11(b)).

000 100

010 110

011 111

001 101

⎯x1x2

x2x3

x1⎯x2

000

010

001

011

100

110

101

111

f

⎯x1x2⎯x3

x1⎯x2⎯x3

x1⎯x2x3

x1x2x3

⎯x1x2x3 1

1

1

1

1 0

0

0

(a) (b)

FIGURE 2.11
Representation of Boolean function f = x1x2 ∨ x1x2 ∨ x1x2x3 by the classic
hypercube (a) and hypercube-like structure (b) (Example 2.22).

2.9 Further study

Advanced topics of computational nanostructures

Topic 1: The fundamental theoretical sources are adopted from computer
science, graph theory, artificial intelligence, and information theory. These
techniques are the base of a 3D computing paradigm, in particular:

Graph theory provides techniques for delegation (embedding) of computing
properties from 2D to 3D structures for the representation,
manipulation, and optimization of logic functions using decision trees
and diagrams. Graphical data structures become efficient tools in
combination with techniques of logic function theory and information-
theoretic approaches.

Logic function theory provides various techniques for manipulation of logic
functions, including probabilistic Boolean and multivalued logic
functions. These techniques address such problems as reliable computing
using unreliable elements, fault-tolerant computing, and optimization
techniques.

Information theory provides various techniques for manipulation and

Computational Nanostructures 55

optimization of data structures using criteria of entropy; a topic of
particular interest is the relationship of thermodynamic entropy (useful
measure in molecular structures) and communication entropy (Shannon
entropy).

Artificial intelligence provides the basis of neural network modeling.

Topic 2: The measure of computing structure. The five classic components
of a computer structure are input, output, memory, datapath, and control.
These are a technology-independent components. Description of this
computer structure is based on a principle of abstraction, that is, each lower
layer in the hierarchy of layers hiding details from the level above. The
interface between the levels of abstraction is called the instruction set. The
measure of computing structure is CPU execution time (in seconds):

CPU execution time =
Instructions

Program︸ ︷︷ ︸
Instruction count

× Clock cycles

Instruction︸ ︷︷ ︸
CPI

× Seconds

Clock cycle︸ ︷︷ ︸
Clock cycle time

where CPI is a clock cycles per instruction.

In computer structure, data are represented by bit patterns. These patterns
can represent numbers (signed and unsigned integers, floating-point numbers),
instructions, and other encoded parameters. Special instructions specify the
meaning of the bit pattern.

Topic 3: Collision-based computing. The basic principle of collision-based
computing is self-localizations [1, 56]. Truth values of logical variables are
represented by the absence or presence of the traveling information quanta.

Further reading

[1] Adamatzky A. Computing with waves in chemical media: Massively parallel
reaction-diffusion processors, IEICE Trans. Electron., E87-C(11):1748-1756,
2004.

[2] Agraval V. An information theoretic approach to digital fault testing. IEEE
Trans. Comput., 30(8):582–587, 1981.

[3] Al-Rabady A and Perkowski M. Shannon and Davio sets of new lattice
structures for logic synthesis in three-dimensional space. In Proc. 5th Int.
Workshop on Applications of the Reed–Muller Expansion in Circuit Design,
Mississippi State University, pp.165–184, 2001.

[4] Akers SB. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516,
1978.

[5] Alexander MJ, Cohoon JP, Colflesh JL, Karro J, Peters EL, and Robins G.
Placment and roting for three-dimensional FPGAs. In Proc. 4th Canadian
Workshop on Field-Programmable Devices, pp. 11–18, 1996.

[6] Alspector J and Allen RB. A neuromorphic VLSI learning system. In Losleben
P, Ed., Advanced Research in VLSI: Proc. 1987 Stanford Conf., The MIT
Press, Cambridge, MA, pp. 313–349, 1987.

[7] Ancona MG. Systolic processor design using single-electron digital circuits.
Superlattices and Microstructures, 20(4):461–472, 1996.

56 Computer Arithmetics for Nanoelectronics

[8] Asahi N, Akazawa M, and Amemiya Y. Single-electron logic device based on
the binary decision diagram. IEEE Trans. Electron Devices, 44(7):1109–1116,
1997.

[9] Bachtold A, Hadley P, Nakanishi T, and Dekker C. Logic circuits with carbon
nanotube transistors. Science, 294:1317–1320, 2001.

[10] Beiu V, Quintana JM, and Avedillo MJ. VLSI implementation of threshold
logic – A comprehensive survay. IEEE Neural Networks, 14(5):1217–1243,
2003.

[11] Bryant RE. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., 35(6):677–691, 1986.

[12] Brown BD and Card HC. Stochastic neural computing I: Computational
elements. IEEE Trans. Comput., 50(9):891–905, 2001.

[13] Chakradhar ST, Agrawal VD, and Bushnell ML. Neural Models and
Algorithms for Digital Testing, Kluwer, Dordrecht, 1991.

[14] Crawley D, Nikolić K, Forshaw M, Ackermann J, Videlot C, Nguyen TN.
Wang L, and Sarro PM. 3D molecular interconnection technology, J.
Micromechanics and Microengineering, 13(5):655–662, 2003.

[15] Ellenbogen JC and Love JC. Architectures for molecular electronic computers:
Logic structures and an adder designed from molecular electronic diodes.
Proceedings IEEE, 88(3):386–426, 2000.

[16] Evans WS and Schulman LJ. Signal propagation and noisy circuits. IEEE
Trans. Information Theory, 45(7):2367–2373, 1999.

[17] Feringa BL, Ed., Molecular Switches, Wiley-VCH, Weinheim, Germany, 2001.

[18] Frank MP and Knight TF, Jr. Ultimate theoretical models of nanocomputers.
Nanotechnology, 9:162–176, 1998.

[19] Frank MP. Approaching the physical limits of computing. In Proc. 35th IEEE
Int. Symp. Multiple-Valued Logic, pp. 168–185, 2005.

[20] Gaines BR. Stochastic computing systems. In Tou JT, Ed., Advances in
Information Systems Science, Plenum, New York, vol. 2, chap. 2, pp. 37–172,
1969.

[21] Gershenfeld N. Signal entropy and the thermodynamics of computation. IBM
Systems J., 35:577–586, 1996.

[22] Gerousis C, Goodnick SM, and Porod W. Toward nanoelectronic cellular
neural networks. Int. J. Circuits Theory Appl. 28(6):523-535, 2000.

[23] Han J and Jonker P. A system archtecture solution for unreliable
nanoelectronic devices. IEEE Trans. Nanotechnology, 1(4):201–208, 2002.

[24] Han J, Jonker P, Qi Y, and Fortes JAB. Toward hardware-redundant, fault-
tolerant logic for nanoelectronics. IEEE Design and Test Comput., July-
August, pp. 328–339, 2005.

[25] Hopfield JJ. Neural networks and physical systems with emergent collective
computational abilities. Proceedings National Academy of Sciences, 79:2554–
2558, 1982.

Computational Nanostructures 57

[26] Hopfield JJ. Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings National Academy of
Sciences, 81(10):3088–3092, 1984.

[27] Hopfield JJ. Pattern recognition computation using action potential timing
for stimulus representation. Nature, 376:3–36, 1995.

[28] Janer CL, Quero JM, Ortega JG, and Franquelo LG. Fully parallel stochastic
computation architecture. IEEE Trans. Signal Processing, 44(8):2110–2117,
1996.

[29] Kung SY. VLSI Array Processors, Prentice Hall, Englewood Cliffs, NJ, 1988.

[30] McCulloch WS and Pitts WH. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–137, 1943.

[31] Majumdar A and Vrudhula SBK. Analysis of signal probability in logic circuits
using stochastic models. IEEE Trans. VLSI, 1(3):365–379, 1993.

[32] Mead C. Neuromorphic electronic systems. Proceedings IEEE, 78(10):1629–
1639, 1990.

[33] Minato S. Binary Decision Diagrams and Applications for VLSI CAD.
Kluwer, Dordrecht, 1996.

[34] Moore EF and Shannon CE. Reliable circuits using less reliable relays. J.
Franklin Institute, 262:191–208, Sept, 1956, and 262:281–297, Oct. 1956.

[35] Mullin AA. Stochastic combinational relay switching circuits and reliability.
IRE Trans. Circuit Theory, 6(1):131–133, 1959.

[36] Negrini R and Sami MG. Fault Tolerance Trough Reconfiguration in VLSI
and WSI Arrays. The MIT Press, Cambridge, MA, 1989.

[37] Palem KV. Energy aware computing through probabilistic switching: a study
of limits. IEEE Trans. Comput., 54(9):1123–1137, 2005.

[38] Parker KP and McCluskey EJ. Probabilistic treatment of general
combinational networks. IEEE Trans. Comput., 24(6):668–670, 1981.

[39] Peper F, Lee J, Abo F, Isokawa T, Adachi S, Matsui N, and Mashiko S.
Fault-tolerance in nanocomputers: a cellular array approach. IEEE Trans.
Nanotechnology, 3(1):187–201, 2004.

[40] Pierce WH. Failure-Tolerant Computer Design, Academic Press, San Diego,
CA, 1965.

[41] Poole CP Jr. and Owens FJ. Introduction to Nanotechnology, John Wiley &
Sons, New York, 2003.

[42] Reed MA and Tour JM. Computing with Molecules, Scientific American, pp.
86–93, June 2000.

[43] Sadek AS, Nikolić K, and Forshaw M. Parallel information and compuation
with restriction for noise-tolerant nanoscale logic networks. Nanotechnology,
15:192–210, 2004.

[44] Shannon C. Reliable machines from unreliable components. Notes by W. W.
Peterson of Seminar at MIT, March, 1956.

[45] Shmerko VP and Yanushkevich SN. Three-dimensional feedforward neural
networks and their realization by nano-devices. Artificial Intelligence Review,

58 Computer Arithmetics for Nanoelectronics

An Int. Science and Eng. J. (UK), Special Issue on Artificial Intelligence in
Logic Design, 20(3-4):473–494, 2004.

[46] Siu KY, Roychowdhury VP, and Kailath T. Depth-size tradeoffs for neural
computation. IEEE Trans. Comput., 40(12):1402–1411, 1991.

[47] Shukla S and Bahar RI, Eds., Nano, Quantum and Molecular Computing:
Implications to High Level Design and Validation Kluwer, Dordrecht, 2004.

[48] Tour JM, Zandt WLV, Husband CP, Husband SM, Wilson LS, Franzon PD,
and Nackashi DP. Nanocell logic gates for molecular computing. IEEE Trans.
Nanotechnology, 1(2):100–109, 2002.

[49] Tryon JG. Quadded logic. In [53], pp. 205–228.

[50] Von Neumann J. Probabilistic logics and the synthesis of reliable organisms
from unreliable components. In Shannon CE and McCarthy J, Eds., Automata
Studies, Princeton University Press, Princeton, NJ, pp. 43–98, 1956.

[51] Webster J, Ed., Encyclopedia of Electrical and Electronics Engineering.
Threshold Logic, Vol. 22, John Wiley & Sons, New York, pp. 178–190, 1999.

[52] Wicker SW. Error Control Systems for Digital Communication and Storage.
Prentice-Hall, New York, 1995.

[53] Wilcox RH and Mann WC, Eds., Redundancy Techniques for Computing
Systems. Spartan Books, Washington, 1962.

[54] Winograd S and Cowan JD. Reliable Computation in the Presence of Noise.
The MIT Press, Cambridge, MA, 1963.

[55] Yakovlev VV and Fedorov RF. Stochastic Computing. Engineering Industry
Publishers, Moscow, 1974 (in Russian).

[56] Yamada K, Asai T, Hirose T, and Amemia Y. On digital LSI circuits
exploiting collision-based fusion gates. Int. J. of Unconventional Computing,
4:45–59, 2007.

3

Binary Arithmetic

3.1 Introduction

The binary number system is the most important number system in digital
design. This is because it is suited to the binary nature of the phenomena
used in dominant microelectronic technology. Even in situations where the
binary number system is not used as such, binary codes are employed to
represent information at the signal level. However, other number systems
can be useful in computing nanosystems. For example, 4,8,16, and 32 number
systems can be used for memory devices. These systems address a multivalued
logic. Multivalued logic values are often encoded using binary representations.
However, humans prefer decimal numbers; that is, binary numbers must be
converted into decimal numbers.

In this chapter, binary arithmetic is introduced. The binary number system
is fundamental to computers and to digital electronics in general. This
arithmetic operate with two values, 0s and 1s, and is the base of all computer
devices. Binary arithmetic is used in computing nanodevices design because
various chemical and physical phenomena can be encoded by 0s and 1s. Binary
arithmetic can be also considered as a fundamental basis for hybrid computing
devices design, in which the computing components are implemented using
various technologies.

We introduce the techniques for the manipulation of binary numbers and
show their relationship to other number systems such as decimal, hexadecimal,
octal, and others. Binary data can be logically combined and computed by
using theorems of Boolean algebra. Various number systems are examined
that are used in digital data structures. These number systems, such as octal
and hexadecimal, are used to simplify the manipulation of binary numbers.

59

60 Computer Arithmetics for Nanoelectronics

3.2 Positional numbers

A number system is defined by its basic symbols, called digits or numbers,
and the ways in which the digits can be combined to represent the full range
of numbers we need. In a positional number system there is a finite set of
digits. Each digit represents a nonnegative integer quantity. The number of
distinct digits in the number system defines the base or radix of the number
system. The numerical symbols are used to encode information. The encoding
process can result in encoded information having desirable properties for the
implementation.

3.2.1 The decimal system

The decimal number system is an example of a positional number system.
The ten digits 0, 1, 2, . . . , 9 can be combined in various ways to represent any
number. The fundamental method of constructing a number is to form a
sequence or string of digits or coefficients

dn−1 · · · d1d0︸ ︷︷ ︸
Integer part

Decimal
point
↓• d−1d−2 · · · d−m︸ ︷︷ ︸

Fractional part︸ ︷︷ ︸
String of digits or coefficients

where integer and fractional parts are represented by n and m digits to
the left and to the right of the decimal point, respectively. The subscript
i = −m, m − 1, . . . , 0, 1, . . . , n gives the position of the digit. Depending on
the position of digits in the string, each digit has an associated value of an
integer raised to the power of 10 as follows:

N = dn−1dn−2 · · · d1d0

Decimal
point
↓• d−1d−2 · · · d−m︸ ︷︷ ︸

String of coefficients

= dn−1 × 10n−1 + dn−2 × 10n−2 + · · · + d1 × 101 + d0 × 100︸ ︷︷ ︸
Computing the integer part

= d−1 × 10−1 + d−2 × 10−2 + · · · + d−m × 10−m︸ ︷︷ ︸
Computing the fractional part

=
n−1∑

i=−m

di10i

This method of representing numbers is called the decimal system. In the
positional representation of digits: (a) each digit has a fixed value, or weight,

Binary Arithmetic 61

determined by its position; (b) all the weights used in the decimal number
system are powers of 10; (c) each decimal digit di ranges between 0 and 9;
(d) the weighting of the digits is defined relative to the decimal point ; this
symbol means that digits to the left are weighted by positive powers of 10,
giving integer values, while digits to the right are weighted by negative powers
of 10, giving fractional values; and (e) fractions are denoted by sequences of
digits whose weights are negative powers of 10.

Example 3.1 The four digits in the number 2008 represent, from
left to right, thousands (digit 2), hundreds (number 0),
tens (number 0), and ones (number 8). Hence, this
four-digit number can be represented in the following
form:

2008 =
3∑

i=0

10i × di

= 2 × 103 + 0 × 102 + 0 × 101 + 8 × 100

The decimal number 747 in positional form is 747 =
7 × 102 + 4 × 101 + 7 × 100.

Example 3.2 The decimal number 12.3456 consists of an integer
part (12) and a fractional part (3456) separated by the
decimal point. Thus, this number can be represented
in the following form:

12.3456 =
1∑

i=−4

10i × di = 1 × 101 + 2 × 100︸ ︷︷ ︸
Integer part

+ 3 × 10−1 + 4 × 10−2 + 5 × 10−3 + 5 × 10−4︸ ︷︷ ︸
Fractional part

The number 0.3410 is represented as

0.3410 =
−1∑

i=−2

10i × di = 3 × 10−1 + 4 × 10−2 = 34/100

3.2.2 Number radix

In general, an n-digit number in radix r consists of n digits, each taking one
of r values: 0, 1, 2, . . . , r − 1︸ ︷︷ ︸

Radix r system

. A general number N in a positional number

system is represented by the following formula:

