

Elements of
Compiler

Design

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Accelerating Process Improvement Using
Agile Techniques
Deb Jacobs
0-8493-3796-8

Antipatterns: Identification, Refactoring,
and Management
Phillip A. Laplante and Colin J. Neill
0-8493-2994-9

Business Process Management Systems
James F. Chang
0-8493-2310-X

The Complete Project Management
Office Handbook
Gerard M. Hill
0-8493-2173-5

Defining and Deploying Software Processes
F. Alan Goodman
0-8493-9845-2

Embedded Linux System Design
and Development
P. Raghavan, Amol Lad, and Sriram Neelakandan
0-8493-4058-6

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick,
Daniel J. Paulish, and Juergen Kazmeier
0-8493-9384-1

Implementing the IT Balanced Scorecard
Jessica Keyes
0-8493-2621-4

The Insider’s Guide to Outsourcing Risks
and Rewards
Johann Rost
0-8493-7017-5

Interpreting the CMMI®
Margaret Kulpa and Kent Johnson
0-8493-1654-5

Modeling Software with Finite State Machines
Ferdinand Wagner, Ruedi Schmuki, Thomas
Wagner, and Peter Wolstenholme
0-8493-8086-3

Optimizing Human Capital with a
Strategic Project Office
J. Kent Crawford and Jeannette Cabanis-Brewin
0-8493-5410-2

A Practical Guide to Information
Systems Strategic Planning, Second Edition
Anita Cassidy
0-8493-5073-5

Process-Based Software Project
Management
F. Alan Goodman
0-8493-7304-2
Project Management Maturity Model,
Second Edition
J. Kent Crawford
0-8493-7945-8

Real Process Improvement Using the
CMMI®
Michael West
0-8493-2109-3

Reducing Risk with Software Process
Improvement
Louis Poulin
0-8493-3828-X

The ROI from Software Quality
Khaled El Emam
0-8493-3298-2

Software Engineering Quality Practices
Ronald Kirk Kandt
0-8493-4633-9
Software Sizing, Estimation, and Risk
Management
Daniel D. Galorath and Michael W. Evans
0-8493-3593-0

Software Specification and Design: An
Engineering Approach
John C. Munson
0-8493-1992-7
Software Testing and Continuous Quality
Improvement, Second Edition
William E. Lewis
0-8493-2524-2

Strategic Software Engineering: An
Interdisciplinary Approach
Fadi P. Deek, James A.M. McHugh,
and Osama M. Eljabiri
0-8493-3939-1

Successful Packaged Software
Implementation
Christine B. Tayntor
0-8493-3410-1

UML for Developing Knowledge
Management Systems
Anthony J. Rhem
0-8493-2723-7

Other Auerbach Publications in
Software Development, Software Engineering,

and Project Management

Alexander Meduna

Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

Elements of
Compiler

Design

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131031

International Standard Book Number-13: 978-1-4200-6325-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

in memory of St. John of the Cross

vii

Contents

Preface ix
Acknowledgement xi
About the Author xiii

1 Introduction 1

1.1 Mathematical Preliminaries 1
1.2 Compilation 8
1.3 Rewriting Systems 15
Exercises 16

2 Lexical Analysis 21

2.1 Models 21
2.2 Methods 32
2.3 Theory 42
 2.3.1 Transformation of Regular Expressions to Finite Automata 42
 2.3.2 Simplification of Finite Automata 49
 2.3.3 Non-Regular Lexical Constructs 56
 2.3.4 Decidable problems 65
Exercises 68

3 Syntax Analysis 75

3.1 Models 75
3.2 Methods 89
3.3 Theory 103
 3.3.1 Power of Parsing Models 103
 3.3.2 Verification of the Grammatical Syntax Specification 104
 3.3.3 Simplification of Grammars 106
 3.3.4 Grammatical Normal Forms and Parsing Based on Them 116
 3.3.5 Syntax that Grammars cannot Specify 121
 3.3.6 Decidable Problems 128
Exercises 129

4 Deterministic Top-Down Parsing 139

4.1 Predictive Sets and LL Grammars 139
4.2 Predictive Parsing 145
Exercises 154

5 Deterministic Bottom-Up Parsing 159

5.1 Precedence Parsing 159
5.2 LR Parsing 168
Exercises 180

Contents

viii

6 Syntax-Directed Translation and Intermediate Code Generation 185

6.1 Bottom-Up Syntax-Directed Translation and Intermediate Code Generation 186
 6.1.1 Syntax Trees 187
 6.1.2 Three-Address Code 193
 6.1.3 Polish Notation 195
6.2 Top-Down Syntax-Directed Translation 196
6.3 Semantic Analysis 199
6.4 Symbol Table 200
6.5 Software Tools for Syntax-Directed Translation 204
Exercises 208

7 Optimization and Target Code Generation 213

7.1 Tracking the Use of Variables 213
7.2 Optimization of Intermediate Code 221
7.3 Optimization and Generation of Target Code 225
Exercises 229

Conclusion 233

Appendix: Implementation 239

A.1 Concept 239
A.2 Code 242

Bibliography 255

Indices 277
 Index to the Case Study 277
 Index to Algorithms 279
 Subject Index 281

ix

Preface

This book is intended as a text for a one-term introductory course in compiler writing at a senior
undergraduate level. It maintains a balance between a theoretical and practical approach to this
subject. From a theoretical viewpoint, it introduces rudimental models underlying compilation and
its essential phases. Based on these models, it demonstrates the concepts, methods, and techniques
employed in compilers. It also sketches the mathematical foundations of compilation and related
topics, including the theory of formal languages, automata, and transducers. Simultaneously, from
a practical point of view, this book describes how the compiler techniques are implemented.
Running throughout the book, a case study designs a new Pascal-like programming language and
constructs its compiler; while discussing various methods concerning compilers, the case study
illustrates their implementation. Additionally, many detailed examples and computer programs
are presented to emphasize the actual applications of the compilation algorithms. Essential
software tools are also covered. After studying this book, the student should be able to grasp the
compilation process, write a simple real compiler, and follow advanced books on the subject.

From a logical standpoint, the book divides compilation into six cohesive phases. At the
same time, it points out that a real compiler does not execute these phases in a strictly consecutive
manner; instead, their execution somewhat overlaps to speed up and enhance the entire
compilation process as much as possible. Accordingly, the book covers the compilation process
phase by phase while simultaneously explaining how each phase is connected during compilation.
It describes how this mutual connection is reflected in the compiler construction to achieve the
most effective compilation as a whole.
 On the part of the student, no previous knowledge concerning compilation is assumed.
Although this book is self-contained, in the sense that no other sources are needed for
understanding the material, a familiarity with an assembly language and a high-level language,
such as Pascal or C, is helpful for quick comprehension. Every new concept or algorithm is
preceded by an explanation of its purpose and followed by some examples, computer program
passages, and comments to reinforce its understanding. Each complicated material is preceded by
its intuitive explanation. All applications are given in a quite realistic way to clearly demonstrate a
strong relation between the theoretical concepts and their uses.
 In computer science, strictly speaking, every algorithm requires a verification that it
terminates and works correctly. However, the termination of the algorithms given in this book is
always so obvious that its verification is omitted throughout. The correctness of complicated
algorithms is verified in detail. On the other hand, we most often give only the gist of the
straightforward algorithms and leave their rigorous verification as an exercise. The text describes
the algorithms in Pascal-like notation, which is so simple and intuitive that even the student
unfamiliar with Pascal can immediately pick it up. In this description, a Pascal repeat loop is
sometimes ended with until no change, meaning that the loop is repeated until no change can
result from its further repetition. As the clear comprehensibility is a paramount importance in the
book, the description of algorithms is often enriched by an explanation in words.
 Algorithms, conventions, definitions, lemmas, and theorems are sequentially numbered
within chapters and are ended with . Examples and figures are analogously organized. At the
end of each chapter, a set of exercises is given to reinforce and augment the material covered.
Selected exercises, denoted by Solved in the text, have their solutions at the chapter’s conclusion.
The appendix contains a C++ implementation of a substantial portion of a real compiler. Further
backup materials, including lecture notes, teaching tips, homework assignments, errata, exams,
solutions, programs, and implementation of compilers, are available at

http://www.fit.vutbr.cz/~meduna/books/eocd

xi

Acknowledgements

This book is based on lecture notes I have used for my classes about compilers and related
computer science topics, such as the automata theory, at various American, European, and
Japanese universities over the past three decades. Notes made at the Kyoto Sangyo University in
Japan, the National Taiwan University, and the University of Buenos Aires in Argentina were
particularly helpful. Nine years I taught compiler writing at the University of Missouri—
Columbia in the United States back in the 1990’s, and since 2000, I have taught this subject at the
Brno University of Technology in the Czech Republic. The lecture notes I wrote at these two
universities underlie this book, and I have greatly benefited from conversations with many
colleagues and students there. Writing this book was supported by the GACR 201/07/0005 and
MSM 0021630528 grants.
 My special thanks go to Erzsebet Csuhaj-Varju, Jan Hrouzek, Masami Ito, Miroslav
Novotný, Dušan Kolář, Jan Lipowski, and Hsu-Chun Yen for fruitful discussions about compilers
and related topics, such as formal languages and their automata. Roman Lukáš carefully read and
verified the mathematical passages of this book, and his comments were invaluable. This book
would be hardly possible without Zbyněk Křivka, whose help was enormous during its
preparation. I am also grateful to Andrea Demby, Katy E. Smith, Jessica Vakili, and John
Wyzalek at Taylor and Francis for an excellent editorial and production work. Most importantly, I
thank my wife Ivana for her support and love.

A. M.

xiii

About the Author

Alexander Meduna, PhD, is a full professor of computer science at the Brno University of
Technology in the Czech Republic, where he earned his doctorate in 1988. From 1988 until 1997,
he taught computer science at the University of Missouri⎯Columbia in the United States. Even
more intensively, since 2000, he has taught computer science and mathematics at the Brno
University of Technology. In addition to these two universities, he has taught computer science at
several other American, European, and Japanese universities for shorter periods of time. His
classes have been primarily focused on compiler writing. His teaching has also covered various
topics including automata, discrete mathematics, formal languages, operating systems, principles
of programming languages, and the theory of computation.

Alexander Meduna is the author of Automata and Languages (Springer, 2000) and a co-
author of the book Grammars with Context Conditions and Their Applications (Wiley, 2005). He
has published over seventy studies in prominent international journals, such as Acta Informatica
(Springer), International Journal of Computer Mathematics (Taylor and Francis), and Theoretical
Computer Science (Elsevier). All his scientific work discusses compilers, the subject of this book,
or closely related topics, such as formal languages and their models.

Alexander Meduna’s Web site is http://www.fit.vutbr.cz/~meduna. His scientific work is
described in detail at http://www.fit.vutbr.cz/~meduna/work.

1

CHAPTER 1

Introduction

In this chapter, we introduce the subject of this book by describing the process of compiling and
the components of a compiler. We also define some mathematical notions and concepts in order
to discuss this subject clearly and precisely.

Synopsis. We first review the mathematical notions used throughout this text (Section 1.1). Then,
we describe the process of compiling and the construction of a compiler (Section 1.2). Finally, we
introduce rewriting systems as the fundamental models that formalize the components of a
compiler (Section 1.3).

1.1 Mathematical Preliminaries

This section reviews well-known mathematical notions, concepts, and techniques used in this
book. Specifically, it reviews sets, languages, relations, translations, graphs, and proof techniques.

Sets and Sequences

A set, Σ, is a collection of elements, which are taken from some pre-specified universe. If Σ
contains an element a, then we symbolically write a ∈ Σ and refer to a as a member of Σ. On the
other hand, if a is not in Σ, we write a ∉ Σ. The cardinality of Σ, card(Σ), is the number of Σ’s
members. The set that has no member is the empty set, denoted by ∅; note that card(∅) = 0. If Σ
has a finite number of members, then Σ is a finite set; otherwise, Σ is an infinite set.
 A finite set, Σ, is customarily specified by listing its members; that is, Σ = {a1, a2, …, an}
where a1 through an are all members of Σ. An infinite set, Ω, is usually specified by a property, π,
so that Ω contains all elements satisfying π; in symbols, this specification has the following
general format Ω = {a| π(a)}. Sets whose members are other sets are usually called families of
sets rather than sets of sets.
 Let Σ and Ω be two sets. Σ is a subset of Ω, symbolically written as Σ ⊆ Ω, if each
member of Σ also belongs to Ω. Σ is a proper subset of Ω, written as Σ ⊂ Ω, if Σ ⊆ Ω and Ω
contains an element that is not in Σ. If Σ ⊆ Ω and Ω ⊆ Σ, Σ equals Ω, denoted by Σ = Ω. The
power set of Σ, denoted by Power(Σ), is the set of all subsets of Σ.

For two sets, Σ and Ω, their union, intersection, and difference are denoted by Σ ∪ Ω, Σ ∩
Ω, and Σ − Ω, respectively, and defined as Σ ∪ Ω = {a| a ∈ Σ or a ∈ Ω}, Σ ∩ Ω = {a| a ∈ Σ and
a ∈ Ω}, and Σ − Ω = {a| a ∈ Σ and a ∉ Ω}. If Σ is a set over a universe U, the complement of Σ is
denoted by complement(Σ) and defined as complement(Σ) = U − Σ. The operations of union,
intersection, and complement are related by DeMorgan’s rules stating that
complement(complement(Σ) ∪ complement(Ω)) = Σ ∩ Ω and complement(complement(Σ) ∩
complement(Ω)) = Σ ∪ Ω, for any two sets Σ and Ω. If Σ ∩ Ω = ∅, Σ and Ω are disjoint. More
generally, n sets ∆1, ∆ 2, …, ∆n, where n ≥ 2, are pairwise disjoint if ∆ i ∩ ∆j = ∅ for all 1 ≤ i, j ≤ n
such that i ≠ j.

A sequence is a list of elements from some universe. A sequence is finite if it represents a
finite list of elements; otherwise, it is infinite. The length of a finite sequence x, denoted by |x|, is
the number of elements in x. The empty sequence, denoted by ε, is the sequence consisting of no

2 1 Introduction

element; that is, |ε| = 0. A finite sequence is usually specified by listing its elements. For instance,
consider a finite sequence x specified as x = (0, 1, 0, 0), and observe that |x| = 4.

Languages

An alphabet Σ is a finite non-empty set, whose members are called symbols. Any non-empty
subset of Σ is a subalphabet of Σ. A finite sequence of symbols from Σ is a string over Σ;
specifically, ε is referred to as the empty string. By Σ*, we denote the set of all strings over Σ; Σ+ =
Σ* − {ε}. Let x ∈ Σ*. Like for any sequence, |x| denotes the length of x. For any a ∈ Σ, occur(x,
a) denotes the number of occurrences of as in x, so occur(x, a) always satisfies 0 ≤ occur(x, a) ≤
|x|. Furthermore, if x ≠ ε, symbol(x, i) denotes the ith symbol in x, where i = 1, …, |x|. Any subset
L ⊆ Σ* is a language over Σ. Set symbol(L, i) = {a| a = symbol(x, i), x ∈ L − {ε}, 1 ≤ i ≤ |x|}. Any
subset of L is a sublanguage of L. If L represents a finite set of strings, L is a finite language;
otherwise, L is an infinite language. For instance, Σ*, which is called the universal language over
Σ, is an infinite language while ∅ and {ε} are finite; noteworthy, ∅ ≠ {ε} because card(∅) = 0 ≠
card({ε}) = 1. Sets whose members are languages are called families of languages.

Convention 1.1. In strings, for brevity, we simply juxtapose the symbols and omit the parentheses
and all separating commas. That is, we write a1a2…an instead of (a1, a2, …, an).

Operations. Let x, y ∈ Σ* be two strings over an alphabet Σ, and let L, K ⊆ Σ* be two languages
over Σ. As languages are defined as sets, all set operations apply to them. Specifically, L ∪ K,
L ∩ K, and L – K denote the union, intersection, and difference of languages L and K, respectively.
Perhaps most importantly, the concatenation of x with y, denoted by xy, is the string obtained by
appending y to x. Notice that from an algebraic point of view, Σ* and Σ+ are the free monoid and
the free semigroup, respectively, generated by Σ under the operation of concatenation. Notice that
for every w ∈ Σ*, wε = εw = w. The concatenation of L and K, denoted by LK, is defined as LK =
{xy| x ∈ L, y ∈ K}.

Apart from binary operations, we also make some unary operations with strings and
languages. Let x ∈ Σ* and L ⊆ Σ*. The complement of L is denoted by complement(L) and defined
as complement(L) = Σ* − L. The reversal of x, denoted by reversal(x), is x written in the reverse
order, and the reversal of L, reversal(L), is defined as reversal(L) = {reversal(x)| x ∈ L}. For all
i ≥ 0, the ith power of x, denoted by xi, is recursively defined as (1) x0 = ε, and (2) xi = xxi-1, for
i ≥ 1. Observe that this definition is based on the recursive definitional method. To demonstrate
the recursive aspect, consider, for instance, the ith power of xi with i = 3. By the second part of the
definition, x3 = xx2. By applying the second part to x2 again, x2 = xx1. By another application of
this part to x1, x1 = xx0. By the first part of this definition, x0 = ε. Thus, x1 = xx0 = xε = x. Hence,
x2 = xx1 = xx. Finally, x3 = xx2 = xxx. By using this recursive method, we frequently introduce new
notions, including the ith power of L, Li, which is defined as (1) L0 = {ε} and (2) Li = LLi-1, for
i ≥ 1. The closure of L, L*, is defined as L* = L0 ∪ L1 ∪ L2 ∪ ... , and the positive closure of L, L+,
is defined as L+ = L1 ∪ L2 ∪ Notice that L+ = LL* = L*L, and L* = L+ ∪ {ε}. Let w, x, y, z ∈ Σ*.
If xz = y, then x is a prefix of y; if in addition, x ∉ {ε, y}, x is a proper prefix of y. By prefixes(y),
we denote the set of all prefixes of y. Set prefixes(L) = {x| x ∈ prefixes(y) for some y ∈ L}. For
i = 0, ..., |y|, prefix(y, i) denotes y’s prefix of length i; notice that prefix(y, 0) = ε and prefix(y, |y|) =
y. If zx = y, x is a suffix of y; if in addition, x ∉ {ε, y}, x is a proper suffix of y. By suffixes(y), we
denote the set of all suffixes of y. Set suffixes(L) = {x| x ∈ suffixes(y) for some y ∈ L}. For i = 0,
..., |y|, suffix(y, i) denotes y’s suffix of length i. If wxz = y, x is a substring of y; if in addition, x ∉
{ε, y}, x is a proper substring of y. By substrings(y), we denote the set of all substrings of y.
Observe that for all v ∈ Σ*, prefixes(v) ⊆ substrings(v), suffixes(v) ⊆ substrings(v), and {ε,

1 Introduction 3

v} ∈ prefixes(v) ∩ suffixes(v) ∩ substrings(v). Set substrings(L) = {x| x ∈ substrings(y) for some
y ∈ L}.

Example 1.1 Operations. Consider a binary alphabet, {0, 1}. For instance, ε, 1, and 010 are
strings over {0, 1}. Notice that |ε| = 0, |1| = 1, |010| = 3. The concatenation of 1 and 010 is 1010.
The third power of 1010 equals 101010101010. Observe that reversal(1010) = 0101. String 10
and 1010 are prefixes of 1010. The former is a proper prefix of 1010 whereas the latter is not. We
have prefixes(1010) = {ε, 1, 10, 101, 1010}. Strings 010 and ε are suffixes of 1010. String 010 is
a proper suffix of 1010 while ε is not. We have suffixes(1010) = {ε, 0, 10, 010, 1010} and
substrings(1010) = {ε, 0, 1, 01, 10, 010,101, 1010}.
 Set K = {0, 01} and L = {1, 01}. Observe that L ∪ K, L ∩ K, and L – K equal to {0, 1,
01}, {01}, and {0}, respectively. The concatenation of K and L is KL = {01, 001, 011, 0101}. For
L, complement(L) = Σ* − L, so every binary string is in complement(L) except 1 and 01.
Furthermore, reversal(L) = {1, 10} and L2 = {11, 101, 011, 0101}. L* = L0 ∪ L1 ∪ L2 ∪; the
strings in L* that consists of four or fewer symbols are ε, 1, 01, 11, 101, 011, and 0101. L+ = L* −
{ε}. Notice that prefixes(L) = {ε, 1, 0, 01}, suffixes(L) = {ε, 1, 01}, and substrings(L) = {ε, 0, 1,
01}.

Relations and Translations

For two object, a and b, (a, b) denotes the ordered pair consisting of a and b in this order. Let A
and B be two sets. The Cartesian product of A and B, A × B, is defined as A × B = {(a, b)| a ∈ A
and b ∈ B}. A binary relation or, briefly, a relation, ρ, from A to B is any subset of A × B; that is,
ρ ⊆ A × B. If ρ represents a finite set, then it is a finite relation; otherwise, it is an infinite relation.
The domain of ρ, denoted by domain(ρ), and the range of ρ, denoted by range(ρ), are defined as
domain(ρ) = {a| (a, b) ∈ ρ for some b ∈ B} and range(ρ) = {b| (a, b) ∈ ρ for some a ∈ A}. If A =
B, then ρ is a relation on Σ. A relation σ is a subrelation of ρ if σ ⊆ ρ. The inverse of ρ, denoted
by inverse(ρ), is defined as inverse(ρ) = {(b, a)| (a, b) ∈ ρ}. A function from A to B is a relation φ
from A to B such that for every a ∈ A, card({b| b ∈ B and (a, b) ∈ φ)} ≤ 1. If domain(φ) = A, φ is
total; otherwise, φ is partial. If for every b ∈ B, card({a| a ∈ A and (a, b) ∈ φ)} ≤ 1, φ is an
injection. If for every b ∈ B, card({a| a ∈ A and (a, b) ∈ φ)} = 1, φ is a surjection. If φ is both a
surjection and an injection, φ represents a bijection.

Convention 1.2. Instead of (a, b) ∈ ρ, we often write b ∈ ρ(a) or aρb; in other words, (a, b) ∈ ρ,
aρb, and a ∈ ρ(b) are used interchangeably. If ρ is a function, we usually write ρ(a) = b.

Let A be a set, ρ be a relation on A, and a, b ∈ A. For k ≥ 1, the k-fold product of ρ, ρk, is
recursively defined as (1) aρ1b if and only if aρb, and (2) aρkb if and only if there exists c ∈ A
such that aρc and cρk-1b, for k ≥ 2. Furthermore, aρ0b if and only if a = b. The transitive closure
of ρ, ρ+, is defined as aρ+b if and only if aρkb, for some k ≥ 1, and the reflexive and transitive
closure of ρ, ρ*, is defined as aρ*b if and only if aρkb, for some k ≥ 0.
 Let K and L be languages over alphabets T and U, respectively. A translation from K to L
is a relation σ from T* to U* with domain(σ) = K and range(σ) = L. A total function τ from T* to
Power(U*) such that τ(uv) = τ(u)τ(v) for every u, v ∈ T* is a substitution from T* to U*. By this
definition, τ(ε) = {ε} and τ(a1a2…an) = τ(a1)τ(a2) …τ(an), where ai ∈ T, 1 ≤ i ≤ n, for some n ≥ 1,
so τ is completely specified by defining τ(a) for every a ∈ T.

A total function υ from T* to U* such that υ(uv) = υ(u)υ(v) for every u, v ∈ T* is a
homomorphism from T* to U*. As any homomorphism is obviously a special case of a

4 1 Introduction

substitution, we simply specify υ by defining υ(a) for every a ∈ T. If for every a, b ∈ T , υ(a) =
υ(b) implies a = b, υ is an injective homomorphism.

Example 1.2 Polish Notation. There exists a useful way of representing ordinary infix arithmetic
expressions without using parentheses. This notation is referred to as Polish notation, which has
two fundamental forms⎯postfix and prefix notation. The former is defined recursively as follows.

Let Ω be a set of binary operators, and let Σ be a set of operands.
1. Every a ∈ Σ is a postfix representation of a.
2. Let AoB be an infix expression, where o ∈ Ω, and A, B are infix expressions. Then, CDo is the

postfix representation of AoB, where C and D are the postfix representations of A and B,
respectively.

3. Let C be the postfix representation of an infix expression A. Then, C is the postfix
representation of (A).

Consider the infix expression (a + b) * c. The postfix expression for c is c. The postfix expression
for a + b is ab+, so the postfix expression for (a + b) is ab+, too. Thus the postfix expression for
(a + b) * c is ab+c*.

The prefix notation is defined analogically except that in the second part of the definition,
o is placed in front of AB; the details are left as an exercise.

To illustrate homomorphisms and substitutions, set Ξ = {0, 1, …, 9} and Ψ = ({A, B, …, Z} ∪ {|})
and consider the homomorphism h from Ξ* to Ψ* defined as h(0) = ZERO|, h(1) = ONE|, …, h(9) =
NINE|. For instance, h maps 91 to NINE|ONE|. Notice that h is an injective homomorphism.
Making use of h, define the infinite substitution s from Ξ* to Ψ* as s(x) = {h(x)}{|}*. As a result,
s(91) = {NINE|}{|}*{ONE|}{|}*, including, for instance, NINE|ONE| and NINE||||ONE||.

Graphs

Let A be a set. A directed graph or, briefly, a graph is a pair G = (A, ρ), where ρ is a relation on
A. Members of A are called nodes, and ordered pairs in ρ are called edges. If (a, b) ∈ ρ, then edge
(a, b) leaves a and enters b. Let a ∈ A; then, the in-degree of a and the out-degree of a are
card({b| (b, a) ∈ ρ}) and card({c| (a, c) ∈ ρ}). A sequence of nodes, (a0, a1, …, an), where n ≥ 1,
is a path of length n from a0 to an if (ai-1, ai) ∈ ρ for all 1 ≤ i ≤ n; if, in addition, a0 = an, then (a0,
a1, …, an) is a cycle of length n. In this book, we frequently label G’s edges with some attached
information. Pictorially, we represent G = (A, ρ) so we draw each edge (a, b) ∈ ρ as an arrow
from a to b possibly with its label as illustrated in the next example.

Figure 1.1 Graph.

Example 1.3 Graphs. Consider a program p and its call graph G = (P, ρ), where P represents the
set of subprograms in p, and (x, y) ∈ ρ if and only if subprogram x calls subprogram y.
Specifically, let P = {a, b, c, d}, and ρ = {(a, b), (a, c), (b, d), (c, d)}, which says that a calls b and
c, b calls d, and c calls d as well (see Figure 1.1). The in-degree of a is 0, and its out-degree is 2.

ba

dc

1 Introduction 5

Notice that (a, b, d) is a path of length 2 in G. G contains no cycle because none of its paths starts
and ends in the same node.

Suppose we use G to study the value of a global variable during the four calls. Specifically, we
want to express that this value is zero when call (a, b) occurs; otherwise, it is one. Pictorially, we
express this by labeling G’s edges in the way given in Figure 1.2.

Figure 1.2 Labeled Graph.

Let G = (A, ρ) be a graph. G is an acyclic graph if it contains no cycle. If (a0, a1, …, an) is a path
in G, then a0 is an ancestor of an and an is a descendent of a0; if in addition, n = 1, then a0 is a
direct ancestor of an and an a direct descendent of a0. A tree is an acyclic graph T = (A, ρ) such
that A contains a specified node, called the root of T and denoted by root(T), and every a ∈ A −
root(T) is a descendent of root(A) and its in-degree is one. If a ∈ A is a node whose out-degree is
0, a is a leaf; otherwise, it is an interior node. In this book, a tree T is always considered as an
ordered tree in which each interior node a ∈ A has all its direct descendents, b1 through bn, where
n ≥ 1, ordered from the left to the right so that b1 is the leftmost direct descendent of a and bn is the
rightmost direct descendent of a. At this point, a is the parent of its children b1 through bn, and all
these nodes together with the edges connecting them, (a, b1) through (a, bn), are called a parent-
children portion of T. The frontier of T, denoted by frontier(T), is the sequence of T’s leaves
ordered from the left to the right. The depth of T, depth(T), is the length of the longest path in T.
A tree S = (B, υ) is a subtree of T if ∅ ⊂ B ⊆ A, υ ⊆ ρ ∩ (B × B), and in T, no node in A − B is a
descendent of a node in B. Like any graph, a tree T can be described as a two-dimensional
structure. Apart from this two-dimensional representation, however, it is frequently convenient to
specify T by a one-dimensional representation, ℜ(T), in which each subtree of T is represented by
the expression appearing inside a balanced pair of 〈 and 〉 with the node which is the root of that
subtree appearing immediately to the left of 〈. More precisely, ℜ(T) is defined by the following
recursive rules to T:

1. If T consists of a single node a, then ℜ(T) = a.
2. Let (a, b1) through (a, bn), where n ≥ 1, be the parent-children portion of T, root(T) = a, and Tk

be the subtree rooted at bk, 1 ≤ k ≤ n, then ℜ(T) = a〈ℜ(T1) ℜ(T2) ... ℜ(Tn)〉.

Apart from a one-dimensional representation of T, we sometimes make use of a postorder of T’s
nodes, denoted by postorder(T), obtained by recursively applying the next procedure
POSTORDER, starting from root(T).

POSTORDER: Let POSTORDER be currently applied to node a.
• If a is an interior node with children a1 through an,
 recursively apply POSTORDER to a1 through an, then list a;
• if a is a leaf, list a and halt.

ba

dc

0

1 1

1

6 1 Introduction

Convention 1.3. Graphically, we draw a tree T with its root on the top and with all edges directed
down. Each parent has its children drawn from the left to the right according to its ordering.
Drawing T in this way, we always omit all arrowheads. When T is actually implemented, T
denotes the pointer to T’s root. Regarding T’s one-dimensional representation, if depth(T) = 0 and,
therefore, ℜ(T) consists of a single leaf a, we frequently point this out by writing leaf a rather than
a plain a. Throughout this book, we always use ℜ as a one-dimensional representation of trees.

Example 1.4 Trees. Graph G discussed in Figure 1.2 is acyclic. However, it is no tree because
the in-degree of node d is two. By removing edge (b, d), we obtain a tree T = (P, τ), where P = {a,
b, c, d} and τ = {(a, b), (a, c), (c, d)}. Nodes a and c are interior nodes while b and d are leaves.
The root of T is a. We define b and c as a’s first child and a’s second child, respectively.
A parent-children portion of T is, for instance, (a, b) and (a, c). Notice that frontier(T) = bd, and
depth(T) = 2. T’s one-dimensional representation ℜ(T) = a〈bc〈d〉〉, and postorder(T) = bdca. Its
subtrees are a〈bc〈d〉〉, c〈d〉, b, and d. For clarity, we usually write the one-leaf subtrees b and d as
leaf b and leaf d, respectively. In Figure 1.3, we pictorially give a〈bc〈d〉〉 and c〈d〉.

Figure 1.3 Tree and Subtree.

Proofs

Next, we review the basics of elementary logic. We pay a special attention to the fundamental
proof techniques used in this book.

In general, a formal mathematical system S consists of basic symbols, formation rules, axioms, and
inference rules. Basic symbols, such as constants and operators, form components of statements,
which are composed according to formation rules. Axioms are primitive statements, whose
validity is accepted without justification. By inference rules, some statements infer other
statements. A proof of a statement s in S consists of a sequence of statements s1, …, si, …, sn such
that s = sn and each si is either an axiom of S or a statement inferred by some of the statements s1,
…, si-1 according to the inference rules; s proved in this way represents a theorem of S.

Logical connectives join statements to create more complicated statements. The most common
logical connectives are not, and, or, implies, and if and only if. In this list, not is unary while the
other connectives are binary. That is, if s is a statement, then not s is a statement as well.
Similarly, if s1 and s2 are statements, then s1 and s2, s1 or s2, s1 implies s2, and s1 if and only if s2 are
statements, too. We often write ∧ and ∨ instead of and and or, respectively. The following truth
table presents the rules governing the truth, denoted by 1, or falsehood, denoted by 0, concerning

b

d

c

a

d

c

1 Introduction 7

statements connected by the binary connectives. Regarding the unary connective not, if s is true,
then not s is false, and if s is false, then not s is true.

s1 s2 and or implies if and only if
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Figure 1.4 Truth Table.

By this table, s1 and s2 is true if both statements are true; otherwise, s1 and s2 is false.
Analogically, we can interpret the other rules governing the truth or falsehood of a statement
containing the other connectives from this table. A statement of equivalence, which has the form
s1 if and only if s2, plays a crucial role in this book. A proof that it is true usually consists of two
parts. The only-if part demonstrates that s1 implies s2 is true while the if part proves that s2 implies
s1 is true. There exist many logic laws useful to demonstrate that an implication is true.
Specifically, the contrapositive law says (s1 implies s2) if and only if ((not s2) implies (not s1)), so
we can prove s1 implies s2 by demonstrating that (not s2) implies (not s1) holds true. We also often
use a proof by contradiction based upon the law saying ((not s2) and s1) implies 0 is true. Less
formally, if from the assumption that s2 is false and s1 is true, we obtain a false statement, s1
implies s2 is true.

Example 1.5 Proof by Contradiction. Let P be the set of all primes (a natural number n is prime
if its only positive divisors are 1 and n). By contradiction, we next prove that P is infinite. That
is, assume that P is finite. Set k = card(P). Thus, P contains k numbers, p1, p2, …, pk. Set n =
p1p2…pk + 1. Observe that n is not divisible by any pi, 1 ≤ i ≤ k. As a result, either n is a new
prime or n equals a product of new primes. In either case, there exists a prime out of P, which
contradicts that P contains all primes. Thus, P is infinite.

A proof by induction demonstrates that a statement si is true for all integers i ≥ b, where b is a non-
negative integer. In general, a proof of this kind is made in this way:

Basis. Prove that sb is true.
Inductive Hypothesis. Suppose that there exists an integer n such that n ≥ b and sm is true for all
b ≤ m ≤ n.
Inductive Step. Prove that sn+1 is true under the assumption that the inductive hypothesis holds.

Example 1.6 Proof by Induction. Consider statement si as

1 + 3 + 5 + ... + 2i − 1 = i2

for all i ≥ 1. In other words, si states that the sum of odd integers is a perfect square. An inductive
proof of this statement follows next.

Basis. As 1=12, s1 is true.
Inductive Hypothesis. Assume that sm is true for all 1 ≤ m ≤ n, where n is a natural number.
Inductive Step. Consider

sn+1 = 1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = (n + 1)2.

8 1 Introduction

By the inductive hypothesis, sn = 1 + 3 + 5 + ... + (2n − 1) = n2. Hence,

1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = n2 + 2n + 1 = (n + 1)2.

Consequently, sn+1 holds, and the inductive proof is completed.

1.2 Compilation

A compiler reads a source program written in a source language and translates this program into a
target program written in a target language so that both programs are functionally
equivalent⎯that is, they specify the same computational task to perform. As a rule, the source
language is a high-level language, such as Pascal or C, while the target language is the machine
language of a particular computer or an assembly language, which is easy to transform to the
machine language. During the translation, the compiler first analyzes the source program to verify
that the source program is correctly written in the source language. If so, the compiler generates
the target program; otherwise, the compiler reports the errors and unsuccessfully ends the
translation.

Compilation Phases

In greater detail, the compiler first makes the lexical, syntax, and semantic analysis of the source
program. Then, from the information gathered during this threefold analysis, it generates the
intermediate code of the source program, makes its optimization, and creates the resulting target
code. As a whole, the compilation thus consists of these six compilation phases, each of which
transforms the source program from one inner representation to another:

• lexical analysis
• syntax analysis
• semantic analysis
• intermediate code generation
• optimized intermediate code generation
• target code generation

Lexical analysis breaks up the source program into lexemes⎯that is, logically cohesive lexical
entities, such as identifiers or integers. It verifies that these entities are well-formed, produces
tokens that uniformly represent lexemes in a fixed-sized way, and sends these tokens to the syntax
analysis. If necessary, the tokens are associated with attributes to specify them in more detail.
The lexical analysis recognizes every single lexeme by its scanner, which reads the sequence of
characters that make up the source program to recognize the next portion of this sequence that
forms the lexeme. Having recognized the lexeme in this way, the lexical analysis creates its
tokenized representation and sends it to the syntax analysis.

Syntax analysis determines the syntax structure of the tokenized source program, provided by the
lexical analysis. This compilation phase makes use of the concepts and techniques developed by
modern mathematical linguistics. Indeed, the source-language syntax is specified by grammatical
rules, from which the syntax analysis constructs a parse⎯that is, a sequence of rules that
generates the program. The way by which a parser, which is the syntax-analysis component
responsible for this construction, works is usually explained graphically. That is, a parse is
displayed as a parse tree whose leaves are labeled with the tokens and each of its parent-children
portion forms a rule tree that graphically represents a rule. The parser constructs this tree by

1 Introduction 9

smartly selecting and composing appropriate rule trees. Depending on the way it makes this
construction, we distinguish two fundamental types of parsers. A top-down parser builds the parse
tree from the root and proceeds down toward the frontier while a bottom-up parser starts from the
frontier and works up toward the root. If the parser eventually obtains a complete parse tree for
the source program, it not only verifies that the program is syntactically correct but also obtains its
syntax structure. On the other hand, if this tree does not exist, the source program is syntactically
erroneous.

Semantic analysis checks that the source program satisfies the semantic conventions of the source
language. Perhaps most importantly, it performs type checking to verify that each operator has
operands permitted by the source-language specification. If the operands are not permitted, this
compilation phase takes an appropriate action to handle this incompatibility. That is, it either
indicates an error or makes type coercion, during which the operands are converted so they are
compatible.

Intermediate code generation turns the tokenized source program to a functionally equivalent
program in a uniform intermediate language. As its name indicates, this language is at a level
intermediate between the source language and the target language because it is completely
independent of any particular machine code, but its conversion to the target code represents a
relatively simple task. The intermediate code fulfills a particularly important role in a retargetable
compiler, which is adapt or retarget for several different computers. Indeed, an installation of a
compiler like this on a specific computer only requires the translation of the intermediate code to
the computer’s machine code while all the compiler part preceding this simple translation remains
unchanged.

As a matter of fact, this generation usually makes several conversions of the source
program from one internal representation to another. Typically, this compilation phase first
creates the abstract syntax tree, which is easy to generate by using the information obtained during
syntax analysis. Indeed, this tree compresses the essential syntactical structure of the parse tree.
Then, the abstract syntax tree is transformed to the three-address code, which represents every
single source-program statement by a short sequence of simple instructions. This kind of
representation is particularly convenient for the optimization.

Optimized intermediate code generation or, briefly, optimization reshapes the intermediate code so
it works in a more efficient way. This phase usually involves numerous subphases, many of which
are applied repeatedly. It thus comes as no surprise that this phase slows down the translation
significantly, so a compiler usually allows optimization to be turned off.

In greater detail, we distinguish two kinds of optimizations⎯machine-independent
optimization and machine-dependent optimization. The former operates on the intermediate code
while the latter is applied to the target code, whose generation is sketched next.

Target code generation maps the optimized intermediate representation to the target language,
such as a specific assembly language. That is, it translates this intermediate representation into a
sequence of the assembly instructions that perform the same task. As obvious, this generation
requires detailed information about the target machine, such as memory locations available for
each variable used in the program. As already noted, the optimized target code generation
attempts to make this translation as economically as possible so the resulting instructions do not
waste space or time. Specifically, considering only a tiny target-code fragment at a time, this
optimization shortens a sequence of target-code instructions without any functional change by
some simple improvements. Specifically, it eliminates useless operations, such as a load of a
value into a register when this value already exists in another register.

All the six compilation phases make use of error handler and symbol table management, sketched
next.

10 1 Introduction

Error Handler. The three analysis phases can encounter various errors. For instance, the lexical
analysis can find out that the upcoming sequence of numeric characters represents no number in
the source language. The syntax analysis can find out that the tokenized version of the source
program cannot be parsed by the grammatical rules. Finally, the semantic analysis may detect an
incompatibility regarding the operands attached to an operator. The error handler must be able to
detect any error of this kind. After issuing an error diagnostic, however, it must somehow recover
from the error so the compiler can complete the analysis of the entire source program. On the
other hand, the error handler is no mind reader, so it can hardly figure out what the author actually
meant by an erroneous passage in the source program code. As a result, no mater how
sophisticatedly the compiler handles the errors, the author cannot expect that a compiler turns an
erroneous program to a properly coded source program. Therefore, no generation of the target
program follows the analysis of an erroneous program.

Symbol table management is a mechanism that associates each identifier with relevant
information, such as its name, type, and scope. Most of this information is collected during the
analysis; for instance, the identifier type is obtained when its declaration is processed. This
mechanism assists almost every compilation phase, which can obtain the information about an
identifier whenever needed. Perhaps most importantly, it provides the semantic analyzer with
information to check the source-program semantic correctness, such as the proper declaration of
identifiers. Furthermore, it aids the proper code generation. Therefore, the symbol-table
management must allow the compiler to add new entries and find existing entries in a speedy and
effective way. In addition, it has to reflect the source-program structure, such as identifier scope
in nested program blocks. Therefore, a compiler writer should carefully organize the symbol-table
so it meets all these criteria. Linked lists, binary search trees, and hash tables belong to commonly
used symbol-table data structures.

Convention 1.4. For a variable x, x denotes a pointer to the symbol-table entry recording the
information about x throughout this book.

Case Study 1/35 FUN Programming Language. While discussing various methods concerning
compilers in this book, we simultaneously illustrate how they are used in practice by designing a
new Pascal-like programming language and its compiler. This language is called FUN because it
is particularly suitable for the computation of mathematical functions.

In this introductory part of the case study, we consider the following trivial FUN program
that multiplies an integer by two. With this source program, we trace the six fundamental
compilation phases described above. Although we have introduced all the notions used in these
phases quite informally so far, they should be intuitively understood in terms of this simple
program.

program DOUBLE;
{This FUN program reads an integer value and multiplies it by two.}

integer u;

begin

read(u);
u = u * 2;
write(u);

end.

Lexical analyzer divides the source program into lexemes and translates them into tokens, some of
which have attributes. In general, an attributed token has the form t{a}, where t is a token and a

1 Introduction 11

represents t’s attribute that provides further information about t. Specifically, the FUN lexical
analyzer represents each identifier x by an attributed token of the form i{ x}, where i is the token
specifying an identifier as a generic type of lexemes and the attribute x is a pointer to the
symbol-table entry that records all needed information about this particular identifier x, such as its
type. Furthermore, #{n} is an attributed token, where # represents an integer in general and its
attribute n is the integer value of the integer in question. Next, we give the tokenized version of
program DOUBLE, where | separates the tokens of this program. Figure 1.5 gives the symbol
table created for DOUBLE’s identifiers.

program | i{ DOUBLE} | ; | integer | i{ u} | ; | begin | read | (| i{ u} |) | ; | i{ u} | = |
i{ u} | * | #{2} | ; | write| (| i{ u} |) | end | .

Name Type …
DOUBLE
u integer
M

Figure 1.5 Symbol Table.

Syntax analyzer reads the tokenized source program from left to right and verifies its syntactical
correctness by grammatical rules. Graphically, this grammatical verification is expressed by
constructing a parse tree, in which each parent-children portion represents a rule. This analyzer
works with tokens without any attributes, which play no role during the syntax analysis. In
DOUBLE, we restrict our attention just to the expression i{ u} * #{2}, which becomes i * #
without the attributes. Figure 1.6 gives the parse tree for this expression.

Figure 1.6 Parse Tree.

Semantic analyzer checks semantic aspects of the source program, such as type checking. In
DOUBLE, it consults the symbol table to find out that u is declared as integer.

Intermediate code generator produces the intermediate code of DOUBLE. First, it implements its
syntax tree (see Figure 1.7).

〈expression〉

〈term〉

〈term〉

〈factor〉

 # *

〈factor〉

 i

12 1 Introduction

Figure 1.7 Syntax Tree.

Then, it transforms this tree to the following three-address code, which makes use of a temporary
variable t produced by the compiler. The get instruction moves the input integer value into u. The
mul instruction multiplies the value of u by 2 and sets t to the result of this multiplication. The
mov instruction moves the value of t to u. Finally, the put instruction prints the value of u out.

[get, , , u]
[mul, u, 2, t]
[mov, t, , u]
[put, , , u]

Optimizer reshapes the intermediate code to perform the computational task more efficiently.
Specifically, in the above three-address program, it replaces t with u, and removes the third
instruction to obtain this shorter one-variable three-address program

[get, , , u]
[mul, u, 2, u]
[put, , , u]

Target code generator turns the optimized three-address code into a target program, which
performs the computational task that is functionally equivalent to the source program. Of course,
like the previous optimizer, the target code generator produces the target program code as
succinctly as possible. Specifically, the following hypothetical assembly-language program,
which is functionally equivalent to DOUBLE, consists of three instructions and works with a
single register, R. First, instruction GET R reads the input integer value into R. Then, instruction
MUL R, 2 multiplies the contents of R by 2 and places the result back into R, which the last
instruction PUT R prints out.

GET R
MUL R, 2
PUT R

Compiler Construction

The six fundamental compilation phases⎯lexical analysis, syntax analysis, semantic analysis,
intermediate code generation, optimization, and target code generation⎯are abstracted from the

mov

get

 u

 *

2

put

 u

 u

1 Introduction 13

translation process made by a real compiler, which does not execute these phases strictly
consecutively. Rather, their execution somewhat overlaps in order to complete the whole
compilation process as fast as possible (see Figure 1.8). Since the source-program syntax structure
represents probably the most important information to the analysis as a whole, the syntax analyzer
guides the performance of all the analysis phases as well as the intermediate code generator.
Indeed, the lexical analyzer goes into operation only when the syntax analyzer requests the next
token. The syntax analyzer also calls the semantic analysis routines to make their semantic-related
checks. Perhaps most importantly, the syntax analyzer directs the intermediate code generation
actions, each of which translates a bit of the tokenized source program to a functionally equivalent
portion of the intermediate code. This syntax-directed translation is based on grammatical rules
with associated actions over attributes attached to symbols occurring in these rules to provide the
intermediate code generator with specific information needed to produce the intermediate code.
For instance, these actions generate some intermediate code operations with operands addressed
by the attributes. When this generation is completed, the resulting intermediate code usually
contains some useless or redundant instructions, which are removed by a machine-independent
optimizer. Finally, in a close cooperation with a machine-dependent optimizer, the target code
generator translates the optimized intermediate program into the target program and, thereby,
completes the compilation process.

Passes. Several compilation phases may be grouped into a single pass consisting of reading an
internal version of the program from a file and writing an output file. As passes obviously slow
down the translation, one-pass compilers are usually faster than multi-pass compilers.
Nevertheless, some aspects concerning the source language, the target machine, or the compiler
design often necessitate an introduction of several passes. Regarding the source language, some
questions raised early in the source program may remain unanswered until the compiler has read
the rest of the program. For example, there may exist references to procedures that appear later in
the source code. Concerning the target machine, unless there is enough memory available to hold
all the intermediate results obtained during compilation, these results are stored into a file, which
the compiler reads during a subsequent pass. Finally, regarding the compiler design, the
compilation process is often divided into two passes corresponding to the two ends of a compiler
as explained next.

Ends. The front end of a compiler contains the compilation portion that heavily depends on the
source language and has no concern with the target machine. On the other hand, the back end is
primarily dependent on the target machine and largely independent of the source language. As a
result, the former contains all the three analysis phases, the intermediate code generation, and the
machine-independent optimization while the latter includes the machine-dependent optimization
and the target code generator. In this two-end way, we almost always organize a retargetable
compiler. Indeed, to adapt it for various target machines, we use the same front end and only redo
its back end as needed. On the other hand, to obtain several compilers that translate different
programming languages to the same target language, we use the same back end with different front
ends.

Compilation in Computer Context. To sketch where the compiler fits into the overall context of
writing and executing programs, we sketch the computational tasks that usually precede or follow
a compilation process.

Before compilation, a source program may be stored in several separate files, so a
preprocessor collects them together to create a single source program, which is subsequently
translated as a whole.

After compilation, several post-compilation tasks are often needed to run the generated program
on computer. If a compiler generates assembly code as its target language, the resulting target
program is translated into the machine code by an assembler. Then, the resulting machine code is

14 1 Introduction

usually linked together with some library routines, such as numeric functions, character string
operations, or file handling routines. That is, the required library services are identified, loaded
into memory, and linked together with the machine code program to create an executable code (the
discussion of linkers and loaders is beyond the scope of this book). Finally, the resulting
executable code is placed in memory and executed, or by a specific request, this code is stored on
a disk and executed later on.

Figure 1.8 Compiler Construction.

 syntax-directed
 translation

 lexical analyzer

scanner

 syntax analyzer

parser

intermediate code

generator

semantic
analyzer

optimizer

target code
generator

intermediate code

optimized
intermediate code

target program

generate instruction

semantic check

semantic information

token

get token

source program

1 Introduction 15

1.3 Rewriting Systems

As explained in the previous section, each compilation phase actually transforms the source
program from one compiler inner representation to another. In other words, it rewrites a string
that represents an inner form of the source program to a string representing another inner form that
is closer to the target program, and this rewriting is obviously ruled by an algorithm. It is thus
only natural to formalize these phases by rewriting systems, which are based on finite many rules
that abstractly represent the algorithms according to which compilation phases are performed.

Definition 1.5 Rewriting System. A rewriting system is a pair, M = (Σ, R), where Σ is an alphabet,
and R is a finite relation on Σ*. Σ is called the total alphabet of M or, simply, M’s alphabet. A
member of R is called a rule of M, so R is referred to as M’s set of rules.

Convention 1.6. Each rule (x, y) ∈ R is written as x → y throughout this book. For brevity, we
often denote x → y with a label r as r: x → y, and instead of r: x → y ∈ R, we sometimes write r ∈
R. For r: x → y ∈ R, x and y represent r’s left-hand side, denoted by lhs(r), and r’s right-hand
side, denoted by rhs(r), respectively. R* denotes the set of all sequences of rules from R; as a
result, by ρ ∈ R*, we briefly express that ρ is a sequence consisting of |ρ| rules from R. By
analogy with strings (see Convention 1.1), in sequences of rules, we simply juxtapose the rules and
omit the parentheses as well as all separating commas in them. That is, if ρ = (r1, r2, …, rn), we
simply write ρ as r1r2…rn. To explicitly express that Σ and R represent the components of M, we
write MΣ and MR instead of Σ and R, respectively.

Definition 1.7 Rewriting Relation. Let M = (Σ, R) be a rewriting system. The rewriting relation
over Σ* is denoted by ⇒ and defined so that for every u, v ∈ Σ*, u ⇒ v in M if and only if there
exist x → y ∈ R and w, z ∈ Σ* such that u = wxz and v = wyz.

Let u, v ∈ Σ*. If u ⇒ v in M, we say that M directly rewrites u to v. As usual, for every n ≥ 0, the
n-fold product of ⇒ is denoted by ⇒n. If u ⇒n v, M rewrites u to v in n steps. Furthermore, the
transitive-reflexive closure and the transitive closure of ⇒ are ⇒* and ⇒+, respectively. If u ⇒* v,
we simply say that M rewrites u to v, and if u ⇒+ v, M rewrites u to v in a nontrivial way. In this
book, we sometimes need to explicitly specify the rules used during rewriting. Suppose M makes
u ⇒ v so that u = wxz, v = wyz and M replaces x with y by applying r: x → y ∈ R. To express this
application, we write u ⇒ v [r] or, in greater detail, wxz ⇒ wyz [r] in M and say that M directly
rewrites uxv to uyv by r. More generally, let n be a non-negative integer, w0, w1, …, wn be a
sequence with wi ∈ Σ*, 0 ≤ i ≤ n, and rj ∈ R for 1 ≤ j ≤ n. If wj-1 ⇒ wj [rj] in M for 1 ≤ j ≤ n, M
rewrites w0 to wn in n steps by r1r2…rn, symbolically written as w0 ⇒n wn [r1r2…rn] in M (n = 0
means w0 ⇒0 w0 [ε]). By u ⇒* v [ρ], where ρ ∈ R*, we express that M makes u ⇒* v by using ρ;
u ⇒+ v [ρ] has an analogical meaning. Of course, whenever the specification of applied rules is
superfluous, we omit it and write u ⇒ v, u ⇒n v, and u ⇒* v for brevity.

Language Models

The language constructs used during some compilation phases, such as the lexical and syntax
analysis, are usually represented by formal languages defined by a special case of rewriting
systems, customarily referred to as language-defining models underlying the phase. Accordingly,
the compiler parts that perform these phases are usually based upon algorithms that implement the
corresponding language models.

