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Preface 

This book is intended as a text for a one-term introductory course in compiler writing at a senior 
undergraduate level.  It maintains a balance between a theoretical and practical approach to this 
subject.  From a theoretical viewpoint, it introduces rudimental models underlying compilation and 
its essential phases.  Based on these models, it demonstrates the concepts, methods, and techniques 
employed in compilers.  It also sketches the mathematical foundations of compilation and related 
topics, including the theory of formal languages, automata, and transducers.  Simultaneously, from 
a practical point of view, this book describes how the compiler techniques are implemented.  
Running throughout the book, a case study designs a new Pascal-like programming language and 
constructs its compiler; while discussing various methods concerning compilers, the case study 
illustrates their implementation.  Additionally, many detailed examples and computer programs 
are presented to emphasize the actual applications of the compilation algorithms.  Essential 
software tools are also covered.  After studying this book, the student should be able to grasp the 
compilation process, write a simple real compiler, and follow advanced books on the subject. 

From a logical standpoint, the book divides compilation into six cohesive phases.  At the 
same time, it points out that a real compiler does not execute these phases in a strictly consecutive 
manner; instead, their execution somewhat overlaps to speed up and enhance the entire 
compilation process as much as possible.  Accordingly, the book covers the compilation process 
phase by phase while simultaneously explaining how each phase is connected during compilation.  
It describes how this mutual connection is reflected in the compiler construction to achieve the 
most effective compilation as a whole. 
 On the part of the student, no previous knowledge concerning compilation is assumed.  
Although this book is self-contained, in the sense that no other sources are needed for 
understanding the material, a familiarity with an assembly language and a high-level language, 
such as Pascal or C, is helpful for quick comprehension.  Every new concept or algorithm is 
preceded by an explanation of its purpose and followed by some examples, computer program 
passages, and comments to reinforce its understanding.  Each complicated material is preceded by 
its intuitive explanation.  All applications are given in a quite realistic way to clearly demonstrate a 
strong relation between the theoretical concepts and their uses. 
 In computer science, strictly speaking, every algorithm requires a verification that it 
terminates and works correctly.  However, the termination of the algorithms given in this book is 
always so obvious that its verification is omitted throughout.  The correctness of complicated 
algorithms is verified in detail.  On the other hand, we most often give only the gist of the 
straightforward algorithms and leave their rigorous verification as an exercise.  The text describes 
the algorithms in Pascal-like notation, which is so simple and intuitive that even the student 
unfamiliar with Pascal can immediately pick it up.  In this description, a Pascal repeat loop is 
sometimes ended with until no change, meaning that the loop is repeated until no change can 
result from its further repetition.  As the clear comprehensibility is a paramount importance in the 
book, the description of algorithms is often enriched by an explanation in words. 
 Algorithms, conventions, definitions, lemmas, and theorems are sequentially numbered 
within chapters and are ended with .  Examples and figures are analogously organized.  At the 
end of each chapter, a set of exercises is given to reinforce and augment the material covered.  
Selected exercises, denoted by Solved in the text, have their solutions at the chapter’s conclusion. 
The appendix contains a C++ implementation of a substantial portion of a real compiler.  Further 
backup materials, including lecture notes, teaching tips, homework assignments, errata, exams, 
solutions, programs, and implementation of compilers, are available at 
 

http://www.fit.vutbr.cz/~meduna/books/eocd 
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1 

CHAPTER 1 

Introduction 

In this chapter, we introduce the subject of this book by describing the process of compiling and 
the components of a compiler.  We also define some mathematical notions and concepts in order 
to discuss this subject clearly and precisely. 
 
Synopsis. We first review the mathematical notions used throughout this text (Section 1.1).  Then, 
we describe the process of compiling and the construction of a compiler (Section 1.2).  Finally, we 
introduce rewriting systems as the fundamental models that formalize the components of a 
compiler (Section 1.3). 

1.1 Mathematical Preliminaries 

This section reviews well-known mathematical notions, concepts, and techniques used in this 
book.  Specifically, it reviews sets, languages, relations, translations, graphs, and proof techniques. 
 
Sets and Sequences 
 
A set, Σ, is a collection of elements, which are taken from some pre-specified universe.  If Σ 
contains an element a, then we symbolically write a ∈ Σ and refer to a as a member of Σ.  On the 
other hand, if a is not in Σ, we write a ∉ Σ.  The cardinality of Σ, card(Σ), is the number of Σ’s 
members.  The set that has no member is the empty set, denoted by ∅; note that card(∅) = 0.  If Σ 
has a finite number of members, then Σ is a finite set; otherwise, Σ is an infinite set. 
 A finite set, Σ, is customarily specified by listing its members; that is, Σ = {a1, a2, …, an} 
where a1 through an are all members of Σ.  An infinite set, Ω, is usually specified by a property, π, 
so that Ω contains all elements satisfying π; in symbols, this specification has the following 
general format Ω = {a| π(a)}.  Sets whose members are other sets are usually called families of 
sets rather than sets of sets. 
 Let Σ and Ω be two sets.  Σ is a subset of Ω, symbolically written as Σ ⊆ Ω, if each 
member of Σ also belongs to Ω.  Σ is a proper subset of Ω, written as Σ ⊂ Ω, if Σ ⊆ Ω and Ω 
contains an element that is not in Σ.  If Σ ⊆ Ω and Ω ⊆ Σ, Σ equals Ω, denoted by Σ = Ω.  The 
power set of Σ, denoted by Power(Σ), is the set of all subsets of Σ. 

For two sets, Σ and Ω, their union, intersection, and difference are denoted by Σ ∪ Ω, Σ ∩ 
Ω, and Σ − Ω, respectively, and defined as Σ ∪ Ω = {a| a ∈ Σ or a ∈ Ω}, Σ ∩ Ω = {a| a ∈ Σ and 
a ∈ Ω}, and Σ − Ω = {a| a ∈ Σ and a ∉ Ω}.  If Σ is a set over a universe U, the complement of Σ is 
denoted by complement(Σ) and defined as complement(Σ) = U − Σ.  The operations of union, 
intersection, and complement are related by DeMorgan’s rules stating that 
complement(complement(Σ) ∪ complement(Ω)) = Σ ∩ Ω and complement(complement(Σ) ∩ 
complement(Ω)) = Σ ∪ Ω, for any two sets Σ and Ω.  If Σ ∩ Ω = ∅, Σ and Ω are disjoint.  More 
generally, n sets ∆1, ∆ 2, …, ∆n, where n ≥ 2, are pairwise disjoint if ∆ i ∩ ∆j = ∅ for all 1 ≤ i, j ≤ n 
such that i ≠ j. 

A sequence is a list of elements from some universe.  A sequence is finite if it represents a 
finite list of elements; otherwise, it is infinite.  The length of a finite sequence x, denoted by |x|, is 
the number of elements in x.  The empty sequence, denoted by ε, is the sequence consisting of no 
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element; that is, |ε| = 0.  A finite sequence is usually specified by listing its elements.  For instance, 
consider a finite sequence x specified as x = (0, 1, 0, 0), and observe that |x| = 4. 

 
Languages 
 
An alphabet Σ is a finite non-empty set, whose members are called symbols.  Any non-empty 
subset of Σ is a subalphabet of Σ.  A finite sequence of symbols from Σ is a string over Σ; 
specifically, ε is referred to as the empty string.  By Σ*, we denote the set of all strings over Σ; Σ+ = 
Σ* − {ε}.  Let x ∈ Σ*.  Like for any sequence, |x| denotes the length of x.  For any a ∈ Σ, occur(x, 
a) denotes the number of occurrences of as in x, so occur(x, a) always satisfies 0 ≤ occur(x, a) ≤ 
|x|.  Furthermore, if x ≠ ε, symbol(x, i) denotes the ith symbol in x, where i = 1, …, |x|.  Any subset 
L ⊆ Σ* is a language over Σ.  Set symbol(L, i) = {a| a = symbol(x, i), x ∈ L − {ε}, 1 ≤ i ≤ |x|}.  Any 
subset of L is a sublanguage of L.  If L represents a finite set of strings, L is a finite language; 
otherwise, L is an infinite language.  For instance, Σ*, which is called the universal language over 
Σ, is an infinite language while ∅ and {ε} are finite; noteworthy, ∅ ≠ {ε} because card(∅) = 0 ≠ 
card({ε}) = 1.  Sets whose members are languages are called families of languages. 
 
Convention 1.1.  In strings, for brevity, we simply juxtapose the symbols and omit the parentheses 
and all separating commas.  That is, we write a1a2…an instead of (a1, a2, …, an). 

 
 
Operations.  Let x, y ∈ Σ* be two strings over an alphabet Σ, and let L, K ⊆ Σ* be two languages 
over Σ.  As languages are defined as sets, all set operations apply to them.  Specifically, L ∪ K, 
L ∩ K, and L – K denote the union, intersection, and difference of languages L and K, respectively.  
Perhaps most importantly, the concatenation of x with y, denoted by xy, is the string obtained by 
appending y to x.  Notice that from an algebraic point of view, Σ* and Σ+ are the free monoid and 
the free semigroup, respectively, generated by Σ under the operation of concatenation.  Notice that 
for every w ∈ Σ*, wε = εw = w.  The concatenation of L and K, denoted by LK, is defined as LK = 
{xy| x ∈ L, y ∈ K}. 

Apart from binary operations, we also make some unary operations with strings and 
languages.  Let x ∈ Σ* and L ⊆ Σ*.  The complement of L is denoted by complement(L) and defined 
as complement(L) = Σ* − L.  The reversal of x, denoted by reversal(x), is x written in the reverse 
order, and the reversal of L, reversal(L), is defined as reversal(L) = {reversal(x)| x ∈ L}.  For all 
i ≥ 0, the ith power of x, denoted by xi, is recursively defined as (1) x0 = ε, and (2) xi = xxi-1, for 
i ≥ 1.  Observe that this definition is based on the recursive definitional method.  To demonstrate 
the recursive aspect, consider, for instance, the ith power of xi with i = 3.  By the second part of the 
definition, x3 = xx2.  By applying the second part to x2 again, x2 = xx1.  By another application of 
this part to x1, x1 = xx0.  By the first part of this definition, x0 = ε.  Thus, x1 = xx0 = xε = x.  Hence, 
x2 = xx1 = xx. Finally, x3 = xx2 = xxx. By using this recursive method, we frequently introduce new 
notions, including the ith power of L, Li, which is defined as (1) L0 = {ε} and (2) Li = LLi-1, for 
i ≥ 1.  The closure of L, L*, is defined as L* = L0 ∪ L1 ∪ L2 ∪ ... , and the positive closure of L, L+, 
is defined as L+ = L1 ∪ L2 ∪ ... .  Notice that L+ = LL* = L*L, and L* = L+ ∪ {ε}.  Let w, x, y, z ∈ Σ*.  
If xz = y, then x is a prefix of y; if in addition, x ∉ {ε, y}, x is a proper prefix of y.  By prefixes(y), 
we denote the set of all prefixes of y.  Set prefixes(L) = {x| x ∈ prefixes(y) for some y ∈ L}.  For 
i = 0, ..., |y|, prefix(y, i) denotes y’s prefix of length i; notice that prefix(y, 0) = ε and prefix(y, |y|) = 
y.  If zx = y, x is a suffix of y; if in addition, x ∉ {ε, y}, x is a proper suffix of y.  By suffixes(y), we 
denote the set of all suffixes of y.  Set suffixes(L) = {x| x ∈ suffixes(y) for some y ∈ L}.  For i = 0, 
..., |y|, suffix(y, i) denotes y’s suffix of length i.  If wxz = y, x is a substring of y; if in addition, x ∉ 
{ε, y}, x is a proper substring of y.  By substrings(y), we denote the set of all substrings of y.  
Observe that for all v ∈ Σ*, prefixes(v) ⊆ substrings(v), suffixes(v) ⊆ substrings(v), and {ε, 
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v} ∈ prefixes(v) ∩ suffixes(v) ∩ substrings(v).  Set substrings(L) = {x| x ∈ substrings(y) for some 
y ∈ L}. 
 
Example 1.1 Operations.  Consider a binary alphabet, {0, 1}.  For instance, ε, 1, and 010 are 
strings over {0, 1}.  Notice that |ε| = 0, |1| = 1, |010| = 3.  The concatenation of 1 and 010 is 1010.  
The third power of 1010 equals 101010101010.  Observe that reversal(1010) = 0101.  String 10 
and 1010 are prefixes of 1010.  The former is a proper prefix of 1010 whereas the latter is not.  We 
have prefixes(1010) = {ε, 1, 10, 101, 1010}.  Strings 010 and ε are suffixes of 1010.  String 010 is 
a proper suffix of 1010 while ε is not.  We have suffixes(1010) = {ε, 0, 10, 010, 1010} and 
substrings(1010) = {ε, 0, 1, 01, 10, 010,101, 1010}. 
 Set K = {0, 01} and L = {1, 01}.  Observe that L ∪ K, L ∩ K, and L – K equal to {0, 1, 
01}, {01}, and {0}, respectively.  The concatenation of K and L is KL = {01, 001, 011, 0101}.  For 
L, complement(L) = Σ* − L, so every binary string is in complement(L) except 1 and 01.  
Furthermore, reversal(L) = {1, 10} and L2 = {11, 101, 011, 0101}.  L* = L0 ∪ L1 ∪ L2 ∪ ....; the 
strings in L* that consists of four or fewer symbols are ε, 1, 01, 11, 101, 011, and 0101.  L+ = L* − 
{ε}.  Notice that prefixes(L) = {ε, 1, 0, 01}, suffixes(L) = {ε, 1, 01}, and substrings(L) = {ε, 0, 1, 
01}. 

 
 
Relations and Translations 
 
For two object, a and b, (a, b) denotes the ordered pair consisting of a and b in this order.  Let A 
and B be two sets.  The Cartesian product of A and B, A × B, is defined as A × B = {(a, b)| a ∈ A 
and b ∈ B}.  A binary relation or, briefly, a relation, ρ, from A to B is any subset of A × B; that is, 
ρ ⊆ A × B.  If ρ represents a finite set, then it is a finite relation; otherwise, it is an infinite relation.  
The domain of ρ, denoted by domain(ρ),  and the range of ρ, denoted by range(ρ), are defined as 
domain(ρ) = {a| (a, b) ∈ ρ for some b ∈ B} and range(ρ) = {b| (a, b) ∈ ρ for some a ∈ A}. If A = 
B, then ρ is a relation on Σ.  A relation σ is a subrelation of ρ if σ ⊆ ρ.  The inverse of ρ, denoted 
by inverse(ρ), is defined as inverse(ρ) = {(b, a)| (a, b) ∈ ρ}.  A function from A to B is a relation φ 
from A to B such that for every a ∈ A, card({b| b ∈ B and (a, b) ∈ φ)} ≤ 1.  If domain(φ) = A, φ  is 
total; otherwise, φ is partial.  If for every b ∈ B, card({a| a ∈ A and (a, b) ∈ φ)} ≤ 1, φ  is an 
injection.  If for every b ∈ B, card({a| a ∈ A and (a, b) ∈ φ)} = 1, φ  is a surjection.  If φ is both a 
surjection and an injection, φ represents a bijection. 
 
Convention 1.2.  Instead of (a, b)  ∈ ρ, we often write b ∈ ρ(a) or aρb; in other words, (a, b)  ∈ ρ, 
aρb, and a ∈ ρ(b) are used interchangeably.  If ρ is a function, we usually write ρ(a) = b. 

 
 
Let A be a set, ρ be a relation on A, and a, b ∈ A.  For k ≥ 1, the k-fold product of ρ, ρk, is 
recursively defined as (1) aρ1b if and only if aρb, and (2) aρkb if and only if there exists c ∈ A 
such that aρc and cρk-1b, for k ≥ 2.  Furthermore, aρ0b if and only if a = b.  The transitive closure 
of ρ, ρ+, is defined as aρ+b if and only if aρkb, for some k ≥ 1, and the reflexive and transitive 
closure of ρ, ρ*, is defined as aρ*b if and only if aρkb, for some k ≥ 0. 
 Let K and L be languages over alphabets T and U, respectively.  A translation from K to L 
is a relation σ from T* to U* with domain(σ) = K and range(σ) = L.  A total function τ  from T* to 
Power(U*) such that τ(uv) = τ(u)τ(v) for every u, v ∈  T* is a substitution from T* to U*.  By this 
definition, τ(ε) = {ε} and τ(a1a2…an) = τ(a1)τ(a2) …τ(an), where ai ∈  T, 1 ≤ i ≤ n, for some n ≥ 1, 
so τ is completely specified by defining τ(a) for every a ∈ T. 

A total function υ from T* to U* such that υ(uv) = υ(u)υ(v) for every u, v ∈ T* is a 
homomorphism from T* to U*.  As any homomorphism is obviously a special case of a 
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substitution, we simply specify υ by defining υ(a) for every a ∈ T.  If for every a, b ∈ T , υ(a) = 
υ(b) implies a = b, υ is an injective homomorphism. 
 
Example 1.2 Polish Notation.  There exists a useful way of representing ordinary infix arithmetic 
expressions without using parentheses.  This notation is referred to as Polish notation, which has 
two fundamental forms⎯postfix and prefix notation.  The former is defined recursively as follows. 

Let Ω be a set of binary operators, and let Σ be a set of operands. 
1. Every a ∈ Σ is a postfix representation of a. 
2. Let AoB be an infix expression, where o ∈ Ω, and A, B are infix expressions.  Then, CDo is the 

postfix representation of AoB, where C and D are the postfix representations of A and B, 
respectively. 

3. Let C be the postfix representation of an infix expression A.  Then, C is the postfix 
representation of (A). 

 
Consider the infix expression (a + b) * c.  The postfix expression for c is c.  The postfix expression 
for a + b is ab+, so the postfix expression for (a + b) is ab+, too.  Thus the postfix expression for 
(a + b) * c is ab+c*. 

The prefix notation is defined analogically except that in the second part of the definition, 
o is placed in front of AB; the details are left as an exercise. 
 
To illustrate homomorphisms and substitutions, set Ξ = {0, 1, …, 9} and Ψ = ({A, B, …, Z} ∪ {|}) 
and consider the homomorphism h from Ξ* to Ψ* defined as h(0) = ZERO|, h(1) = ONE|, …, h(9) = 
NINE|.  For instance, h maps 91 to NINE|ONE|.  Notice that h is an injective homomorphism.  
Making use of h, define the infinite substitution s from Ξ* to Ψ* as s(x) = {h(x)}{|}*.  As a result, 
s(91) = {NINE|}{|}*{ONE|}{|}*, including, for instance, NINE|ONE| and NINE||||ONE||. 

 
 
Graphs 
 
Let A be a set.  A directed graph or, briefly, a graph is a pair G = (A, ρ), where ρ is a relation on 
A.  Members of A are called nodes, and ordered pairs in ρ are called edges.  If (a, b) ∈ ρ, then edge 
(a, b) leaves a and enters b.  Let a ∈ A; then, the in-degree of a and the out-degree of a are 
card({b| (b, a) ∈ ρ}) and card({c| (a, c) ∈ ρ}).  A sequence of nodes, (a0, a1, …, an), where n ≥ 1, 
is a path of length n from a0 to an if (ai-1, ai) ∈ ρ for all 1 ≤ i ≤ n; if, in addition, a0 = an, then (a0, 
a1, …, an) is a cycle of length n.  In this book, we frequently label G’s edges with some attached 
information.  Pictorially, we represent G = (A, ρ) so we draw each edge (a, b) ∈ ρ as an arrow 
from a to b possibly with its label as illustrated in the next example. 
 

  
Figure 1.1 Graph. 

 
Example 1.3 Graphs.  Consider a program p and its call graph G = (P, ρ), where P represents the 
set of subprograms in p, and (x, y) ∈ ρ if and only if subprogram x calls subprogram y.  
Specifically, let P = {a, b, c, d}, and ρ = {(a, b), (a, c), (b, d), (c, d)}, which says that a calls b and 
c, b calls d, and c calls d as well (see Figure 1.1).  The in-degree of a is 0, and its out-degree is 2.  

ba

dc
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Notice that (a, b, d) is a path of length 2 in G.  G contains no cycle because none of its paths starts 
and ends in the same node. 
 
Suppose we use G to study the value of a global variable during the four calls.  Specifically, we 
want to express that this value is zero when call (a, b) occurs; otherwise, it is one.  Pictorially, we 
express this by labeling G’s edges in the way given in Figure 1.2. 

 
Figure 1.2 Labeled Graph. 

  
 
Let G = (A, ρ) be a graph.  G is an acyclic graph if it contains no cycle.  If (a0, a1, …, an) is a path 
in G, then a0 is an ancestor of an and an is a descendent of a0; if in addition, n = 1, then a0 is a 
direct ancestor of an and an a direct descendent of a0.  A tree is an acyclic graph T = (A, ρ) such 
that A contains a specified node, called the root of T and denoted by root(T), and every a ∈ A − 
root(T) is a descendent of root(A) and its in-degree is one.  If a ∈ A is a node whose out-degree is 
0, a is a leaf; otherwise, it is an interior node.  In this book, a tree T is always considered as an 
ordered tree in which each interior node a ∈ A has all its direct descendents, b1 through bn, where 
n ≥ 1, ordered from the left to the right so that b1 is the leftmost direct descendent of a and bn is the 
rightmost direct descendent of a.  At this point, a is the parent of its children b1 through bn, and all 
these nodes together with the edges connecting them, (a, b1) through (a, bn), are called a parent-
children portion of T.  The frontier of T, denoted by frontier(T), is the sequence of T’s leaves 
ordered from the left to the right.  The depth of T, depth(T), is the length of the longest path in T.  
A tree S = (B, υ) is a subtree of T if ∅ ⊂ B ⊆ A, υ ⊆ ρ ∩ (B × B), and in T, no node in A − B is a 
descendent of a node in B.  Like any graph, a tree T can be described as a two-dimensional 
structure.  Apart from this two-dimensional representation, however, it is frequently convenient to 
specify T by a one-dimensional representation, ℜ(T), in which each subtree of T is represented by 
the expression appearing inside a balanced pair of 〈 and 〉 with the node which is the root of that 
subtree appearing immediately to the left of 〈.  More precisely, ℜ(T) is defined by the following 
recursive rules to T: 
 
1. If T consists of a single node a, then ℜ(T) = a. 
2. Let (a, b1) through (a, bn), where n ≥ 1, be the parent-children portion of T, root(T) = a, and Tk 

be the subtree rooted at bk, 1 ≤ k ≤ n, then ℜ(T) = a〈ℜ(T1) ℜ(T2) ... ℜ(Tn)〉. 
 
Apart from a one-dimensional representation of T, we sometimes make use of a postorder of T’s 
nodes, denoted by postorder(T), obtained by recursively applying the next procedure 
POSTORDER, starting from root(T). 
 
POSTORDER: Let POSTORDER be currently applied to node a. 
• If a is an interior node with children a1 through an,  
 recursively apply POSTORDER to a1 through an, then list a; 
• if a is a leaf, list a and halt. 
 

ba

dc

0

1 1

1
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Convention 1.3.  Graphically, we draw a tree T with its root on the top and with all edges directed 
down.  Each parent has its children drawn from the left to the right according to its ordering.  
Drawing T in this way, we always omit all arrowheads.  When T is actually implemented, T 
denotes the pointer to T’s root.  Regarding T’s one-dimensional representation, if depth(T) = 0 and, 
therefore, ℜ(T) consists of a single leaf a, we frequently point this out by writing leaf a rather than 
a plain a.  Throughout this book, we always use ℜ as a one-dimensional representation of trees. 

 
 
Example 1.4 Trees.  Graph G discussed in Figure 1.2 is acyclic.  However, it is no tree because 
the in-degree of node d is two.  By removing edge (b, d), we obtain a tree T = (P, τ), where P = {a, 
b, c, d} and τ = {(a, b), (a, c), (c, d)}.  Nodes a and c are interior nodes while b and d are leaves.  
The root of T is a.  We define b and c as a’s first child and a’s second child, respectively.  
A parent-children portion of T is, for instance, (a, b) and (a, c).  Notice that frontier(T) = bd, and 
depth(T) = 2.  T’s one-dimensional representation ℜ(T) = a〈bc〈d〉〉, and postorder(T) = bdca. Its 
subtrees are a〈bc〈d〉〉, c〈d〉, b, and d.  For clarity, we usually write the one-leaf subtrees b and d as 
leaf b and leaf d, respectively.  In Figure 1.3, we pictorially give a〈bc〈d〉〉 and c〈d〉. 
 

 

 
Figure 1.3 Tree and Subtree. 

 
 
Proofs 
 
Next, we review the basics of elementary logic.  We pay a special attention to the fundamental 
proof techniques used in this book. 
 
In general, a formal mathematical system S consists of basic symbols, formation rules, axioms, and 
inference rules.  Basic symbols, such as constants and operators, form components of statements, 
which are composed according to formation rules.  Axioms are primitive statements, whose 
validity is accepted without justification.  By inference rules, some statements infer other 
statements.  A proof of a statement s in S consists of a sequence of statements s1, …, si, …, sn such 
that s = sn and each si is either an axiom of S or a statement inferred by some of the statements s1, 
…, si-1 according to the inference rules; s proved in this way represents a theorem of S. 
 
Logical connectives join statements to create more complicated statements.  The most common 
logical connectives are not, and, or, implies, and if and only if.  In this list, not is unary while the 
other connectives are binary.  That is, if s is a statement, then not s is a statement as well.  
Similarly, if s1 and s2 are statements, then s1 and s2, s1 or s2, s1 implies s2, and s1 if and only if s2 are 
statements, too.  We often write ∧ and ∨ instead of and and or, respectively.  The following truth 
table presents the rules governing the truth, denoted by 1, or falsehood, denoted by 0, concerning 

b

d

c

a 

d

c
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statements connected by the binary connectives.  Regarding the unary connective not, if s is true, 
then not s is false, and if s is false, then not s is true. 
 
 

s1 s2 and or implies if and only if
0 0 0 0 1 1 
0 1 0 1 1 0 
1 0 0 1 0 0 
1 1 1 1 1 1 

 
Figure 1.4 Truth Table. 

 
By this table, s1 and s2 is true if both statements are true; otherwise, s1 and s2 is false.  
Analogically, we can interpret the other rules governing the truth or falsehood of a statement 
containing the other connectives from this table.  A statement of equivalence, which has the form 
s1 if and only if s2, plays a crucial role in this book.  A proof that it is true usually consists of two 
parts.  The only-if part demonstrates that s1 implies s2 is true while the if part proves that s2 implies 
s1 is true.  There exist many logic laws useful to demonstrate that an implication is true.  
Specifically, the contrapositive law says (s1 implies s2) if and only if ((not s2) implies (not s1)), so 
we can prove s1 implies s2 by demonstrating that (not s2) implies (not s1) holds true.  We also often 
use a proof by contradiction based upon the law saying ((not s2) and s1) implies 0 is true.  Less 
formally, if from the assumption that s2 is false and s1 is true, we obtain a false statement, s1 
implies s2 is true. 
 
Example 1.5 Proof by Contradiction.  Let P be the set of all primes (a natural number n is prime 
if its only positive divisors are 1 and n).  By contradiction, we next prove that P is infinite.  That 
is, assume that P is finite.  Set k = card(P).  Thus, P contains k numbers, p1, p2, …, pk.  Set n = 
p1p2…pk + 1.  Observe that n is not divisible by any pi, 1 ≤ i ≤ k.  As a result, either n is a new 
prime or n equals a product of new primes.  In either case, there exists a prime out of P, which 
contradicts that P contains all primes.  Thus, P is infinite. 

 
 
A proof by induction demonstrates that a statement si is true for all integers i ≥ b, where b is a non-
negative integer.  In general, a proof of this kind is made in this way: 
 
Basis.  Prove that sb is true. 
Inductive Hypothesis.  Suppose that there exists an integer n such that n ≥ b and sm is true for all 
b ≤ m ≤ n. 
Inductive Step.  Prove that sn+1 is true under the assumption that the inductive hypothesis holds. 
 
Example 1.6 Proof by Induction.  Consider statement si as 
 

1 + 3 + 5 + ... + 2i − 1 = i2 
 
for all i ≥ 1.  In other words, si states that the sum of odd integers is a perfect square.  An inductive 
proof of this statement follows next. 
 
Basis.  As 1=12, s1 is true. 
Inductive Hypothesis.  Assume that sm is true for all 1 ≤ m ≤ n, where n is a natural number. 
Inductive Step.  Consider  
 

sn+1 = 1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = (n + 1)2. 
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By the inductive hypothesis, sn = 1 + 3 + 5 + ... + (2n − 1) = n2.  Hence, 
 

1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = n2 + 2n + 1 = (n + 1)2. 
 
Consequently, sn+1 holds, and the inductive proof is completed. 

 

1.2 Compilation 

A compiler reads a source program written in a source language and translates this program into a 
target program written in a target language so that both programs are functionally 
equivalent⎯that is, they specify the same computational task to perform.  As a rule, the source 
language is a high-level language, such as Pascal or C, while the target language is the machine 
language of a particular computer or an assembly language, which is easy to transform to the 
machine language.  During the translation, the compiler first analyzes the source program to verify 
that the source program is correctly written in the source language.  If so, the compiler generates 
the target program; otherwise, the compiler reports the errors and unsuccessfully ends the 
translation. 
 
Compilation Phases 
 
In greater detail, the compiler first makes the lexical, syntax, and semantic analysis of the source 
program.  Then, from the information gathered during this threefold analysis, it generates the 
intermediate code of the source program, makes its optimization, and creates the resulting target 
code.  As a whole, the compilation thus consists of these six compilation phases, each of which 
transforms the source program from one inner representation to another: 
 
• lexical analysis 
• syntax analysis 
• semantic analysis 
• intermediate code generation 
• optimized intermediate code generation 
• target code generation 
 
Lexical analysis breaks up the source program into lexemes⎯that is, logically cohesive lexical 
entities, such as identifiers or integers.  It verifies that these entities are well-formed, produces 
tokens that uniformly represent lexemes in a fixed-sized way, and sends these tokens to the syntax 
analysis.  If necessary, the tokens are associated with attributes to specify them in more detail.  
The lexical analysis recognizes every single lexeme by its scanner, which reads the sequence of 
characters that make up the source program to recognize the next portion of this sequence that 
forms the lexeme.  Having recognized the lexeme in this way, the lexical analysis creates its 
tokenized representation and sends it to the syntax analysis. 
 
Syntax analysis determines the syntax structure of the tokenized source program, provided by the 
lexical analysis.  This compilation phase makes use of the concepts and techniques developed by 
modern mathematical linguistics.  Indeed, the source-language syntax is specified by grammatical 
rules, from which the syntax analysis constructs a parse⎯that is, a sequence of rules that 
generates the program.  The way by which a parser, which is the syntax-analysis component 
responsible for this construction, works is usually explained graphically.  That is, a parse is 
displayed as a parse tree whose leaves are labeled with the tokens and each of its parent-children 
portion forms a rule tree that graphically represents a rule.  The parser constructs this tree by 
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smartly selecting and composing appropriate rule trees.  Depending on the way it makes this 
construction, we distinguish two fundamental types of parsers.  A top-down parser builds the parse 
tree from the root and proceeds down toward the frontier while a bottom-up parser starts from the 
frontier and works up toward the root.  If the parser eventually obtains a complete parse tree for 
the source program, it not only verifies that the program is syntactically correct but also obtains its 
syntax structure.  On the other hand, if this tree does not exist, the source program is syntactically 
erroneous. 
 
Semantic analysis checks that the source program satisfies the semantic conventions of the source 
language.  Perhaps most importantly, it performs type checking to verify that each operator has 
operands permitted by the source-language specification.  If the operands are not permitted, this 
compilation phase takes an appropriate action to handle this incompatibility.  That is, it either 
indicates an error or makes type coercion, during which the operands are converted so they are 
compatible. 
 
Intermediate code generation turns the tokenized source program to a functionally equivalent 
program in a uniform intermediate language.  As its name indicates, this language is at a level 
intermediate between the source language and the target language because it is completely 
independent of any particular machine code, but its conversion to the target code represents a 
relatively simple task.  The intermediate code fulfills a particularly important role in a retargetable 
compiler, which is adapt or retarget for several different computers.  Indeed, an installation of a 
compiler like this on a specific computer only requires the translation of the intermediate code to 
the computer’s machine code while all the compiler part preceding this simple translation remains 
unchanged. 

As a matter of fact, this generation usually makes several conversions of the source 
program from one internal representation to another.  Typically, this compilation phase first 
creates the abstract syntax tree, which is easy to generate by using the information obtained during 
syntax analysis.  Indeed, this tree compresses the essential syntactical structure of the parse tree.  
Then, the abstract syntax tree is transformed to the three-address code, which represents every 
single source-program statement by a short sequence of simple instructions.  This kind of 
representation is particularly convenient for the optimization.   
 
Optimized intermediate code generation or, briefly, optimization reshapes the intermediate code so 
it works in a more efficient way.  This phase usually involves numerous subphases, many of which 
are applied repeatedly.  It thus comes as no surprise that this phase slows down the translation 
significantly, so a compiler usually allows optimization to be turned off. 

In greater detail, we distinguish two kinds of optimizations⎯machine-independent 
optimization and machine-dependent optimization.  The former operates on the intermediate code 
while the latter is applied to the target code, whose generation is sketched next. 
 
Target code generation maps the optimized intermediate representation to the target language, 
such as a specific assembly language.  That is, it translates this intermediate representation into a 
sequence of the assembly instructions that perform the same task.  As obvious, this generation 
requires detailed information about the target machine, such as memory locations available for 
each variable used in the program.  As already noted, the optimized target code generation 
attempts to make this translation as economically as possible so the resulting instructions do not 
waste space or time.  Specifically, considering only a tiny target-code fragment at a time, this 
optimization shortens a sequence of target-code instructions without any functional change by 
some simple improvements.  Specifically, it eliminates useless operations, such as a load of a 
value into a register when this value already exists in another register. 
 
All the six compilation phases make use of error handler and symbol table management, sketched 
next. 
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Error Handler.  The three analysis phases can encounter various errors.  For instance, the lexical 
analysis can find out that the upcoming sequence of numeric characters represents no number in 
the source language.  The syntax analysis can find out that the tokenized version of the source 
program cannot be parsed by the grammatical rules.  Finally, the semantic analysis may detect an 
incompatibility regarding the operands attached to an operator.  The error handler must be able to 
detect any error of this kind.  After issuing an error diagnostic, however, it must somehow recover 
from the error so the compiler can complete the analysis of the entire source program.  On the 
other hand, the error handler is no mind reader, so it can hardly figure out what the author actually 
meant by an erroneous passage in the source program code.  As a result, no mater how 
sophisticatedly the compiler handles the errors, the author cannot expect that a compiler turns an 
erroneous program to a properly coded source program.  Therefore, no generation of the target 
program follows the analysis of an erroneous program. 
 
Symbol table management is a mechanism that associates each identifier with relevant 
information, such as its name, type, and scope.  Most of this information is collected during the 
analysis; for instance, the identifier type is obtained when its declaration is processed.  This 
mechanism assists almost every compilation phase, which can obtain the information about an 
identifier whenever needed.  Perhaps most importantly, it provides the semantic analyzer with 
information to check the source-program semantic correctness, such as the proper declaration of 
identifiers.  Furthermore, it aids the proper code generation.  Therefore, the symbol-table 
management must allow the compiler to add new entries and find existing entries in a speedy and 
effective way.  In addition, it has to reflect the source-program structure, such as identifier scope 
in nested program blocks.  Therefore, a compiler writer should carefully organize the symbol-table 
so it meets all these criteria.  Linked lists, binary search trees, and hash tables belong to commonly 
used symbol-table data structures. 
 
Convention 1.4.  For a variable x, x denotes a pointer to the symbol-table entry recording the 
information about x throughout this book. 

 
 
Case Study 1/35 FUN Programming Language.  While discussing various methods concerning 
compilers in this book, we simultaneously illustrate how they are used in practice by designing a 
new Pascal-like programming language and its compiler.  This language is called FUN because it 
is particularly suitable for the computation of mathematical functions. 

In this introductory part of the case study, we consider the following trivial FUN program 
that multiplies an integer by two.  With this source program, we trace the six fundamental 
compilation phases described above.  Although we have introduced all the notions used in these 
phases quite informally so far, they should be intuitively understood in terms of this simple 
program. 
 
program DOUBLE; 
{This FUN program reads an integer value and multiplies it by two.} 
 
integer u;  
 
begin 

read(u); 
u = u * 2; 
write(u); 

end. 
 
Lexical analyzer divides the source program into lexemes and translates them into tokens, some of 
which have attributes.  In general, an attributed token has the form t{a}, where t is a token and a 
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represents t’s attribute that provides further information about t.  Specifically, the FUN lexical 
analyzer represents each identifier x by an attributed token of the form i{ x}, where i is the token 
specifying an identifier as a generic type of lexemes and the attribute x is a pointer to the 
symbol-table entry that records all needed information about this particular identifier x, such as its 
type.  Furthermore, #{n} is an attributed token, where # represents an integer in general and its 
attribute n is the integer value of the integer in question.  Next, we give the tokenized version of 
program DOUBLE, where | separates the tokens of this program.  Figure 1.5 gives the symbol 
table created for DOUBLE’s identifiers. 
 
program | i{ DOUBLE} |  ; | integer  | i{ u} | ; | begin | read |  ( | i{ u} | ) | ; |  i{ u} |  =  | 
i{ u} | * | #{2} | ; | write| ( | i{ u} | )  | end | . 
 
 

Name Type … 
DOUBLE      
u integer   
M   

 
Figure 1.5 Symbol Table. 

 
Syntax analyzer reads the tokenized source program from left to right and verifies its syntactical 
correctness by grammatical rules.  Graphically, this grammatical verification is expressed by 
constructing a parse tree, in which each parent-children portion represents a rule.  This analyzer 
works with tokens without any attributes, which play no role during the syntax analysis.  In 
DOUBLE, we restrict our attention just to the expression i{ u} * #{2}, which becomes i * # 
without the attributes.  Figure 1.6 gives the parse tree for this expression. 
 
 

 
Figure 1.6 Parse Tree. 

 
Semantic analyzer checks semantic aspects of the source program, such as type checking.  In 
DOUBLE, it consults the symbol table to find out that u is declared as integer. 
 
Intermediate code generator produces the intermediate code of DOUBLE.  First, it implements its 
syntax tree (see Figure 1.7). 
 
 

〈expression〉 

〈term〉 

〈term〉 

〈factor〉 

  #  * 

〈factor〉 

  i 
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Figure 1.7 Syntax Tree. 
 
Then, it transforms this tree to the following three-address code, which makes use of a temporary 
variable t produced by the compiler.  The get instruction moves the input integer value into u.  The 
mul instruction multiplies the value of u by 2 and sets t to the result of this multiplication.  The 
mov instruction moves the value of t to u.  Finally, the put instruction prints the value of u out. 
 
[get,  ,  , u] 
[mul, u, 2, t] 
[mov, t,   , u] 
[put,  ,  , u] 
 
Optimizer reshapes the intermediate code to perform the computational task more efficiently.  
Specifically, in the above three-address program, it replaces t with u, and removes the third 
instruction to obtain this shorter one-variable three-address program 
 
[get,  ,  , u] 
[mul, u, 2,  u] 
[put,  ,  , u] 
 
Target code generator turns the optimized three-address code into a target program, which 
performs the computational task that is functionally equivalent to the source program.  Of course, 
like the previous optimizer, the target code generator produces the target program code as 
succinctly as possible.  Specifically, the following hypothetical assembly-language program, 
which is functionally equivalent to DOUBLE, consists of three instructions and works with a 
single register, R.  First, instruction GET R reads the input integer value into R.  Then, instruction 
MUL R, 2 multiplies the contents of R by 2 and places the result back into R, which the last 
instruction PUT R prints out. 
 
GET  R 
MUL R, 2 
PUT R 

 
 
Compiler Construction 
 
The six fundamental compilation phases⎯lexical analysis, syntax analysis, semantic analysis, 
intermediate code generation, optimization, and target code generation⎯are abstracted from the 

mov 

get 

 u  

  * 

2 

put 

 u 

 u 
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translation process made by a real compiler, which does not execute these phases strictly 
consecutively.  Rather, their execution somewhat overlaps in order to complete the whole 
compilation process as fast as possible (see Figure 1.8).  Since the source-program syntax structure 
represents probably the most important information to the analysis as a whole, the syntax analyzer 
guides the performance of all the analysis phases as well as the intermediate code generator.  
Indeed, the lexical analyzer goes into operation only when the syntax analyzer requests the next 
token.  The syntax analyzer also calls the semantic analysis routines to make their semantic-related 
checks.  Perhaps most importantly, the syntax analyzer directs the intermediate code generation 
actions, each of which translates a bit of the tokenized source program to a functionally equivalent 
portion of the intermediate code.  This syntax-directed translation is based on grammatical rules 
with associated actions over attributes attached to symbols occurring in these rules to provide the 
intermediate code generator with specific information needed to produce the intermediate code.  
For instance, these actions generate some intermediate code operations with operands addressed 
by the attributes.  When this generation is completed, the resulting intermediate code usually 
contains some useless or redundant instructions, which are removed by a machine-independent 
optimizer.  Finally, in a close cooperation with a machine-dependent optimizer, the target code 
generator translates the optimized intermediate program into the target program and, thereby, 
completes the compilation process. 
 
Passes.  Several compilation phases may be grouped into a single pass consisting of reading an 
internal version of the program from a file and writing an output file.  As passes obviously slow 
down the translation, one-pass compilers are usually faster than multi-pass compilers.  
Nevertheless, some aspects concerning the source language, the target machine, or the compiler 
design often necessitate an introduction of several passes.  Regarding the source language, some 
questions raised early in the source program may remain unanswered until the compiler has read 
the rest of the program.  For example, there may exist references to procedures that appear later in 
the source code.  Concerning the target machine, unless there is enough memory available to hold 
all the intermediate results obtained during compilation, these results are stored into a file, which 
the compiler reads during a subsequent pass.  Finally, regarding the compiler design, the 
compilation process is often divided into two passes corresponding to the two ends of a compiler 
as explained next. 
 
Ends.  The front end of a compiler contains the compilation portion that heavily depends on the 
source language and has no concern with the target machine.  On the other hand, the back end is 
primarily dependent on the target machine and largely independent of the source language.  As a 
result, the former contains all the three analysis phases, the intermediate code generation, and the 
machine-independent optimization while the latter includes the machine-dependent optimization 
and the target code generator.  In this two-end way, we almost always organize a retargetable 
compiler.  Indeed, to adapt it for various target machines, we use the same front end and only redo 
its back end as needed.  On the other hand, to obtain several compilers that translate different 
programming languages to the same target language, we use the same back end with different front 
ends. 

Compilation in Computer Context.  To sketch where the compiler fits into the overall context of 
writing and executing programs, we sketch the computational tasks that usually precede or follow 
a compilation process. 

Before compilation, a source program may be stored in several separate files, so a 
preprocessor collects them together to create a single source program, which is subsequently 
translated as a whole. 

After compilation, several post-compilation tasks are often needed to run the generated program 
on computer.  If a compiler generates assembly code as its target language, the resulting target 
program is translated into the machine code by an assembler.  Then, the resulting machine code is 
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usually linked together with some library routines, such as numeric functions, character string 
operations, or file handling routines.  That is, the required library services are identified, loaded 
into memory, and linked together with the machine code program to create an executable code (the 
discussion of linkers and loaders is beyond the scope of this book).  Finally, the resulting 
executable code is placed in memory and executed, or by a specific request, this code is stored on 
a disk and executed later on. 
 
 

 
Figure 1.8 Compiler Construction. 
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1.3 Rewriting Systems 

As explained in the previous section, each compilation phase actually transforms the source 
program from one compiler inner representation to another.  In other words, it rewrites a string 
that represents an inner form of the source program to a string representing another inner form that 
is closer to the target program, and this rewriting is obviously ruled by an algorithm.  It is thus 
only natural to formalize these phases by rewriting systems, which are based on finite many rules 
that abstractly represent the algorithms according to which compilation phases are performed. 
 
Definition 1.5 Rewriting System.  A rewriting system is a pair, M = (Σ, R), where Σ is an alphabet, 
and R is a finite relation on Σ*.  Σ is called the total alphabet of M or, simply, M’s alphabet.  A 
member of R is called a rule of M, so R is referred to as M’s set of rules. 

 
 
Convention 1.6.  Each rule (x, y) ∈ R is written as x → y throughout this book.  For brevity, we 
often denote x → y with a label r as r: x → y, and instead of r: x → y ∈ R, we sometimes write r ∈ 
R.  For r: x → y ∈ R, x and y represent r’s left-hand side, denoted by lhs(r), and r’s right-hand 
side, denoted by rhs(r), respectively.  R* denotes the set of all sequences of rules from R; as a 
result, by ρ ∈ R*, we briefly express that ρ is a sequence consisting of |ρ| rules from R.  By 
analogy with strings (see Convention 1.1), in sequences of rules, we simply juxtapose the rules and 
omit the parentheses as well as all separating commas in them.  That is, if ρ = (r1, r2, …, rn), we 
simply write ρ as r1r2…rn.  To explicitly express that Σ and R represent the components of M, we 
write MΣ and MR instead of Σ and R, respectively. 

 
 
Definition 1.7 Rewriting Relation.  Let M = (Σ, R) be a rewriting system.  The rewriting relation 
over Σ* is denoted by ⇒ and defined so that for every u, v ∈ Σ*, u ⇒ v in M if and only if there 
exist x → y ∈ R and w, z ∈ Σ* such that u = wxz and v = wyz. 

 
 
Let u, v ∈ Σ*.  If u ⇒ v in M, we say that M directly rewrites u to v.  As usual, for every n ≥ 0, the 
n-fold product of ⇒ is denoted by ⇒n.  If u ⇒n v, M rewrites u to v in n steps.  Furthermore, the 
transitive-reflexive closure and the transitive closure of ⇒ are ⇒* and ⇒+, respectively.  If u ⇒* v, 
we simply say that M rewrites u to v, and if u ⇒+ v, M rewrites u to v in a nontrivial way.  In this 
book, we sometimes need to explicitly specify the rules used during rewriting.  Suppose M makes 
u ⇒ v so that u = wxz, v = wyz and M replaces x with y by applying r: x → y ∈ R.  To express this 
application, we write u ⇒ v [r] or, in greater detail, wxz ⇒ wyz [r] in M and say that M directly 
rewrites uxv to uyv by r.  More generally, let n be a non-negative integer, w0, w1, …, wn be a 
sequence with wi ∈ Σ*, 0 ≤ i ≤ n, and rj ∈ R for 1 ≤ j ≤ n.  If wj-1 ⇒ wj [rj] in M for 1 ≤ j ≤ n, M 
rewrites w0 to wn in n steps by r1r2…rn, symbolically written as w0 ⇒n wn [r1r2…rn] in M (n = 0 
means w0 ⇒0 w0 [ε]).  By u ⇒* v [ρ], where ρ ∈ R*, we express that M makes u ⇒* v by using ρ; 
u ⇒+ v [ρ] has an analogical meaning.  Of course, whenever the specification of applied rules is 
superfluous, we omit it and write u ⇒ v, u ⇒n v, and u ⇒* v for brevity. 
 
Language Models 
 
The language constructs used during some compilation phases, such as the lexical and syntax 
analysis, are usually represented by formal languages defined by a special case of rewriting 
systems, customarily referred to as language-defining models underlying the phase.  Accordingly, 
the compiler parts that perform these phases are usually based upon algorithms that implement the 
corresponding language models. 


