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Preface

This book is designed as an introduction to “abstract” algebra, particularly
for students who have already seen a little calculus, as well as vectors and
matrices in 2 or 3 dimensions. The emphasis is not placed on abstraction
for its own sake, or on the axiomatic method. Rather, the intention is to
present algebra as the main tool underlying discrete mathematics and the
digital world, much as calculus was accepted as the main tool for continuous
mathematics and the analog world.

Traditionally, treatments of algebra at this level have faced a dilemma:
groups first or rings first? Presenting rings first immediately offers familiar
concepts such as polynomials, and builds on intuition gained from working
with the integers. On the other hand, the axioms for groups are less complex
than the axioms for rings. Moreover, group techniques, such as quotients
by normal subgroups, underlie ring techniques such as quotients by ideals.
The dilemma is resolved by emphasizing semigroups and monoids along with
groups. Semigroups and monoids are steps up to groups, while rings have
both a group structure and a semigroup or monoid structure.

The first three chapters work at the concrete level: numbers, functions,
and equivalence. Semigroups of functions and groups of permutations appear
early. Functional composition, cycle notation for permutations, and matrix
notation for linear functions provide techniques for practical computation,
avoiding less direct methods such as generators and relations or table look-
up. Equivalence relations are used to introduce rational numbers and modular
arithmetic. They also enable the First Isomorphism Theorem to be presented
at the set level, without the requirement for any group structure. If time is
short (say just one quarter), the first three chapters alone may be used as a
quick introduction to algebra, sufficient to exhibit irrational numbers or to
gain a taste of cryptography.

Abstract groups and monoids are presented in the fourth chapter. The
examples include orthogonal groups and stochastic matrices, while concepts
such as Lagrange’s Theorem and groups of units of monoids are covered. The
fifth chapter then deals with homomorphisms, leading to Cayley’s Theorem
reducing abstract groups to concrete groups of permutations. Rings form
the topic of the sixth chapter, while integral domains and fields follow in the
seventh. The first six or seven chapters provide basic coverage of abstract
algebra, suitable for a one-semester or two-quarter course.

Subsequent chapters deal with slightly more advanced topics, suitable for
a second semester or third quarter. Chapter 8 delves deeper into the theory

ix
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of rings and fields, while modules — particularly vector spaces and abelian
groups — form the subject of Chapter 9. Chapter 10 is devoted to group
theory, and Chapter 11 gives an introduction to quasigroups.

The final four chapters are essentially independent of each other, so that
instructors have the freedom to choose which topics they wish to emphasize.
In particular, the treatment of fields in Chapter 8 does not make use of any of
the concepts of linear algebra, such as vector space, basis, or dimension, which
are covered in Chapter 9. For a one-semester introduction to groups, one could
replace Chapter 6 with Chapter 10, using the field of integers modulo a prime
in the examples that call for a finite field.

Each chapter includes a range of exercises, of varying difficulty. Chapter
notes point out variations in notation and approach, or list the names of
mathematicians that are used in the terminology. No biographical sketches are
given, since libraries and the Internet can offer much more detail as required.

A special feature of the book is the inclusion of the “Study Projects” at the
end of each chapter. The use of these projects is at the instructor’s discretion.
Some of them may be incorporated into the main presentation, offering typical
applications or extensions of the algebraic topics. Some are coherent series
of exercises, that could be assigned along with the other problems, or used
for extra credit. Some projects are suitable for group study by students,
occasionally involving some outside research.

I have benefited from many discussions with my students and colleagues
about algebra, its presentation and application. Specific acknowledgments are
due to Mark Ciecior, Dan Nguyen, Jessica Schuring, Dr. Sungyell Song, Shibi
Vasudevan, and anonymous referees for helpful comments on a preliminary
version of the book. The original impetus for the project came from Bob
Stern at Taylor & Francis. I am grateful to him, and the publishing staff, for
bringing it to fruition.



Chapter 1

NUMBERS

Algebra begins as the art of working with numbers. The integers are the
whole numbers, positive, negative, and zero. Put together, they form the set

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . } (1.1)

(the letter Z coming from the German word Zahlen, meaning “numbers”).
The natural numbers are the nonnegative integers, including zero. They are
“natural” because they are the possible numbers of elements in a finite set.
For example, 4 is the number of elements of the set

{♠,♥,♦,♣} (1.2)

of suits in a deck of cards, while 13 is the number of elements of the set

{A♥, K♥, Q♥, J♥, 10♥, 9♥, 8♥, 7♥, 6♥, 5♥, 4♥, 3♥, 2♥} (1.3)

of cards in the suit ♥ of hearts. Note that 0 is the number of elements in the
empty set ∅ or { }. The natural numbers form the set

N = {0, 1, 2, 3, . . . } . (1.4)

Another set of numbers familiar from calculus is the set R of real numbers,
like −17,

√
2 = 1.41421 . . . , e = 2.71828 . . . , π = 3.14159 . . . , and so on. It is

hard to display the set of real numbers as a list of elements between braces,
like the sets (1.1)–(1.4) above. Instead, the set R is pictured as the real line

-
−4 −3 −2 −1 0 1 2 3 4

(like an axis in the graph of a function). Pictures like this are useful as
geometric visualizations of real numbers. At times similar pictures can even
be useful for natural numbers or integers, since these numbers also happen to
be real numbers.

1.1 Ordering numbers

In calculus, order relations between real numbers are crucial, for instance
when we want to find the maximum value of a function over a certain range.

1



2 Introduction to Abstract Algebra

Recall that x < y (read “x less than y”) means y − x is positive, while x ≤ y
(read “x less than or equal to y”) means that y − x is nonnegative. We can
also write y > x (“x greater than y”) instead of x < y, or y ≥ x (“x greater
than or equal to y”) instead of x ≤ y. In the real line picture, with the positive
numbers going off to the right, the relation x < y becomes an arrow x −→ y.
It is often helpful to signify the relation x ≤ y with an arrow from x to y,
without requiring the arrow to go horizontally from left to right.

Since algebra also needs to work with order relations between numbers, it
is important to know the rules for manipulating them. The first rule is called
reflexivity :

x ≤ x (1.5)

for any real (or integral, or natural) number x. This particular rule doesn’t
seem to be saying very much, but it often serves as a place-holder. The second
rule is transitivity :

(
x ≤ y and y ≤ z

)
implies x ≤ z (1.6)

for any real (or integral, or natural) numbers x, y, and z. If Xavier can’t beat
Yerkes, and Yerkes can’t beat Zandor, then Xavier can’t beat Zandor either.
Why does (1.6) hold? Well, if x ≤ y and y ≤ z, the quantities y−x and z− y
are nonnegative. In that case, so is their sum z − x, meaning that x ≤ z.
Transitivity makes a natural arrow picture:

¡
¡¡µ

x

y

@
@@R

z

implies
¡

¡¡µ

x

y

@
@@R

z-

. . . “completing the triangle.” The final rule for the order relation is the one
that yields conclusions of proofs, when you want to show that two numbers
are actually equal:

(
x ≤ y and y ≤ x

)
implies x = y (1.7)

for real numbers x and y. This rule is called antisymmetry . If Xavier can’t
beat Yerkes, and Yerkes can’t beat Xavier either, then Xavier and Yerkes will
tie.

Rules for an order relation

(R) Reflexivity: x ≤ x

(T) Transitivity: x ≤ y and y ≤ z imply x ≤ z

(A) Antisymmetry: x ≤ y and y ≤ x imply x = y
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As an illustration of the use of the rules, here’s a proposition with its proof.

PROPOSITION 1.1 (Squeezing.)
Suppose x, y, and z are real numbers. If x ≤ y ≤ z ≤ x, then x = z.

PROOF Since x ≤ y ≤ z, transitivity shows that x ≤ z. But also z ≤ x,
so antisymmetry gives x = z.

1.2 The Well-Ordering Principle

Compare (1.1) with (1.4). The elements of Z in (1.1) stretch off arbitrarily
far to the left inside the braces: There is no smallest integer. In a version
of the schoolyard game “My Dad earns more than your Dad,” consider two
players trying to name the smaller integer. Whatever number the first player
names, say −10, 000, 000, the second player can always choose −10, 000, 001
or something even more negative. With the natural numbers, the situation is
different. It is summarized by the following statement, the so-called

Well-Ordering Principle:

Each nonempty subset S of N has a least element inf S.

(Compare Exercise 7. The mathematical notation inf S stands for the infimum
of S.) Of course, the principle is only required for infinite subsets S. For finite
nonempty subsets S, the least element inf S, in this case often denoted as the
minimum min S, can be located easily (Project 2).

Example 1.2 (An application of the Well-Ordering Principle.)
Suppose S = {n ∈ N | 10n < 1

2nn}, the set of natural numbers n for which
the power 10n is less than half the power nn. The set S is nonempty, indeed
infinite, since as n increases beyond 10, the power nn grows faster than 10n.
(Formally, limn→∞(1

2nn
/
10n) = ∞.) The Well-Ordering Principle guarantees

that S has a least element inf S. You are invited to find it in Exercise 5.

In one of its main applications, the Well-Ordering Principle underwrites
the techniques known as recursion and mathematical induction. For example,
consider the definition of the factorial n! of a natural number n. This quantity
is usually defined recursively as follows:

0! = 1 , (n + 1)! = (n + 1) · n!



4 Introduction to Abstract Algebra

How can we be sure that the definition is complete, that it will not leave a
quantity such as 50001200! undefined?

For generality, consider a property P (n) of a natural number n, say the
property that n! is defined by the given recursive procedure.

• The Induction Basis is the statement that the property P (0) holds.

• The Induction Step is the statement that truth of the property P (n)
implies the truth of the property P (n + 1).

• The Principle of Induction states: The Induction Basis and Induction
Step together guarantee that P (n) holds for all natural numbers n.

To justify the Principle of Induction, suppose that it goes wrong. In other
words, the set

S = {n | P (n) is false }
is nonempty. By the Well-Ordering Principle, the set S has a least element
s. The Induction Basis shows that s cannot be 0. Thus s > 0, and s− 1 is a
natural number. Since s − 1 does not lie in S, the property P (s − 1) holds.
The Induction Step then gives the contradiction that P (s) is true. Thus the
Principle of Induction cannot go wrong.

Example 1.3 (A model proof by induction.)
Let P (n) be the statement that the identity

12 + 22 + 32 + . . . + (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6
(1.8)

holds for a natural number n. As Induction Basis, note that (1.8) reduces to
the triviality 0 = 0 for n = 0, so P (0) is true. For the Induction Step, suppose
that P (n) is true, so that (1.8) holds as written. Then

12 + 22 + 32 + . . . + (n− 1)2 + n2 + (n + 1)2

=
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)

(
2(n + 1) + 1

)

6
,

so that P (n + 1) is true. This proves (1.8) by induction.
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1.3 Divisibility

The set Z of integers is a subset of the set R of real numbers; so integers can
certainly be compared using the order relation ≤ for real numbers. However,
in many cases a different relation between integers is more relevant. This is
the relation of divisibility . Given two integers m and n, the integer m is said
to be a multiple of n if there is an integer r such that m = r ·n. For example,
946 is a multiple of 11, since 946 = 86 · 11. Even integers are the multiples
of 2. Zero is a multiple of every integer. Turning the relationship around, an
integer n is said to divide an integer m, or to be a divisor of m, if m is a
multiple of n. Summarizing,

n divides m is equivalent to m is a multiple of n . (1.9)

The statement “n divides m” is written symbolically as n | m.
It is useful to compare the two equivalent concepts of (1.9). Divisibility is

most convenient for formulating mathematical claims. On the other hand, it
is generally easier to prove those claims by working with the corresponding
equation m = r · n from the relation of being a multiple. As an example,
consider the proof that the divisibility relation | on Z shares the reflexivity
(R) and transitivity (T) properties of the relation ≤ on R (page 2).

PROPOSITION 1.4 (Divisibility on Z is reflexive and transitive.)
Let m, n, and p be integers. Then:

(R) m | m;

(T)
(

m | n and n | p )
implies m | p.

PROOF (R) For each integer m, the equation m = 1 ·m holds, so m is a
multiple of m.

(T) Since m | n, there is an integer r with n = rm. Since n | p, there is an
integer s with p = sn. Then

p = sn = s(rm) = (sr)m

is a multiple of m, so m | p.

However, the relation | on Z is not antisymmetric. For example, 5 | −5 since
−5 = (−1) · 5, and −5 | 5 since 5 = (−1) · (−5). Nevertheless, 5 6= −5. The
situation changes when we restrict ourselves to natural numbers. We regain
all three properties: reflexivity (R), transitivity (T), and antisymmetry (A).
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PROPOSITION 1.5 (Divisibility on N is an order relation.)
Let m, n, and p be natural numbers. Then:

(R) m | m;

(T)
(

m | n and n | p )
implies m | p;

(A)
(

m | n and n | m )
implies m = n.

The proof of Proposition 1.5 is assigned as Exercise 14. The proposition
means that divisibility relations between natural numbers may be displayed
with arrow diagrams, just like the order relations between real numbers. For
example, the set

{1, 2, 3, 4, 6, 12}
of divisors of 12 is exhibited in Figure 1.1. The diagram explicitly displays
divisibilities such as 3 | 6 with arrows: 3 −→ 6. Other relations, such as
3 | 12 or 4 | 4, are implicit from the transitivity and reflexivity guaranteed by
Proposition 1.5.

6

1

3

- 2

6
6-

- 4

12-

6

FIGURE 1.1: The positive divisors of 12.

1.4 The Division Algorithm

To check whether a positive integer d divides a given integer a (positive,
negative, or zero), a formal procedure known as the Division Algorithm is
available. Given the

input : a positive integer d (the divisor) and (1.10)
an integer a (the dividend), (1.11)

the Division Algorithm (Figure 1.2) produces the

output : an integer q (the quotient) and (1.12)
an integer r (the remainder), (1.13)
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satisfying the following:

a = dq + r ; (1.14)
0 ≤ r < d . (1.15)

For example, given the divisor 5 and dividend 37, the algorithm produces 7
as the quotient and 2 as the remainder: 37 = 5 · 7 + 2, with 0 ≤ 2 < 5. Given
divisor 5 and dividend −42, it produces −42 = 5 · (−9) + 3, with 0 ≤ 3 < 5.
In general, the dividend a is a multiple of the divisor d if and only if the
remainder r is zero.

-
dividend a

divisor d

-

a = dq + r

0 ≤ r < d

-
quotient q

remainder r

-

FIGURE 1.2: The Division Algorithm.

The word dividend in (1.11) means “the thing that is to be divided,” like
the profits of a company being divided among the shareholders. The word
quotient in (1.12) is Latin for “How many times?” (the divisor d has to be
added to itself to approach or equal the dividend). Then the remainder r is
what is left after subtracting q times the divisor d from the dividend a.

The following proposition, with its proof, is a guarantee that the Division
Algorithm will always perform as claimed. The proof relies on the use of the
Well-Ordering Principle as presented in Section 1.2.

PROPOSITION 1.6
Given a dividend a as in (1.11), and a divisor d as in (1.10), there is a unique
quotient q as in (1.12) and a unique remainder r as in (1.13), such that the
equation (1.14) and inequalities (1.15) hold.

PROOF Define a subset S of N by

S = {a− dk | k ∈ Z, a− dk ≥ 0} (1.16)

— the set all integers of the form a − dk in which k is an element of the set
Z of integers, and such that the inequality a− dk ≥ 0 is satisfied.
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Claim 1: The set S is nonempty.

If a ≥ 0, then a− d · 0 = a is an element of S. Now d is a positive integer,
so d− 1 ≥ 0. Then if a < 0, we have a− da = (−a)(d− 1) ≥ 0, as a product
of two nonnegative integers. Thus a− da is an element of S in this case.

With Claim 1 established, we can appeal to the Well-Ordering Principle.
It tells us that the nonempty subset S of N has a least element inf S. Set

r = inf S . (1.17)

Since r is an element of S, we have 0 ≤ r, the left-hand inequality in (1.15).
And again since r is an element of S, we know that it is of the form r = a−dk
for some integer k. Set the quotient q to be the integer with

r = a− dq . (1.18)

Adding dq to both sides of this equation yields (1.14).

Claim 2: r < d.

Could Claim 2 possibly be false? Could it happen that r ≥ d? Well, if so,
r − d is still a natural number. But by (1.18),

r − d = a− d(q + 1) ,

so r − d would be a member of S strictly less than r. That would contradict
(1.17), so the assumption that led to the contradiction, namely r ≥ d, must
be false. This shows that Claim 2 must be true, and verifies the right-hand
inequality in (1.15).

Claim 3: The integers q and r satisfying (1.14) and (1.15) are unique.

Suppose a = dq′ + r′ for integers q′ and r′ with 0 ≤ r′ < d. Now r′ < r
cannot be true, for otherwise we would have 0 ≤ r′ = a − dq′ as an element
of S less than r, the least element of S. Conversely, r < r′ cannot be true
either, for then we would have q > q′, i.e., (q − q′) > 0 and (q − q′) ≥ 1, with

r′ = r + (r′ − r) = r +
(
(a− dq′)− (a− dq)

)
= r + d(q − q′) ≥ d ,

in contradiction to r′ < d. Thus r = r′ and q = q′.
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1.5 Greatest common divisors

Let a and b be nonzero integers. A positive integer c is said to be a common
divisor of a and b if it divides both a and b:

c | a and c | b .

For example, consider the divisors of 72 displayed in Figure 1.3. It is apparent
that 4 is a common divisor of 24 and 36.

1

6

-

3 -

6

2

6
6

6

-

-

4 -

12 -

6

6

8

6
24

6
9 - 18 - 36 - 72

FIGURE 1.3: The positive divisors of 72.

There are other common divisors of 24 and 36, such as 2 and 12.

DEFINITION 1.7 (Greatest common divisor, relatively prime.)
Let a and b be nonzero integers.

(a) A positive integer d is the greatest common divisor (GCD) of a and b if

• d is a common divisor of a and b, and

• if c is a common divisor of a and b, then c ≤ d.

(b) The integers a and b are said to be relatively prime or coprime if their
greatest common divisor is 1.

For instance, 12 is the greatest common divisor of 24 and 36. The numbers
8 and 9 are relatively prime. Note that 1 is coprime to every nonzero integer.

Why should the greatest common divisor of two nonzero integers a and b be
guaranteed to exist? Well, the set of common divisors of a and b is a finite set
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S, the intersection of the finite sets of positive divisors of a and b. (Compare
Exercise 11.) The greatest common divisor is then just the maximum element
of the finite set S. Since each pair a, b of nonzero integers has a uniquely
defined greatest common divisor, we may use a functional notation

gcd(a, b)

to denote that number. For example, gcd(24, 36) = 12. Note that

gcd(a, a) = |a| , (1.19)

gcd(b, a) = gcd(a, b) , (1.20)

and
gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) (1.21)

for nonzero integers a and b (compare Exercise 26).
The defining properties of the greatest common divisor of a pair of nonzero

integers a and b may be summarized as follows:

d = gcd(a, b) if and only if:
• d | a and d | b ; (1.22)

• (
c | a and c | b )

implies c ≤ d . (1.23)

1.6 The Euclidean Algorithm

Given nonzero integers a and b, how can we compute gcd(a, b)? By (1.21),
it is sufficient to consider the case where a and b are both positive. By (1.19),
it is sufficient to consider the case where a and b are distinct. And finally,
by (1.20), it is sufficient to consider the case where a > b. Then for positive
integers a > b, the positive integer gcd(a, b) is produced by the Euclidean
Algorithm.

In fact, the Euclidean Algorithm is capable of more. Borrowing terminology
from matrix theory or linear algebra, define a real number z to be an integral
linear combination of real numbers x and y if it can be expressed in the form

z = lx + my (1.24)

with integer coefficients l and m. Much of the significance of integral linear
combinations resides in the following simple result, whose proof is assigned as
Exercise 27.

PROPOSITION 1.8 (Common divisor divides linear combination.)
A common divisor c of integers n and p is a divisor of each integral linear

combination ln + mp of n and p.
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The Euclidean Algorithm not only produces gcd(a, b), but if required
may also be used to exhibit gcd(a, b) as an integral linear combination of a
and b. Given integers a > b > 0, the algorithm works with a strictly decreasing
sequence

r−1 > r0 > r1 > r2 > · · · > rk > rk+1 = 0 (1.25)

of natural numbers. Following the initial specification

r−1 = a and r0 = b ,

the natural numbers (1.25) are produced by a series of steps. For 0 ≤ i ≤ k,
Step (i) applies the Division Algorithm with ri−1 as the dividend and ri as
the divisor:

ri−1 = qi+1ri + ri+1 , (1.26)

obtaining ri+1 as the remainder with ri > ri+1 ≥ 0 (and some integer qi+1

as the quotient). The Euclidean Algorithm makes its last call to the Division
Algorithm in Step (k), obtaining the remainder rk+1 = 0. At that time the
greatest common divisor gcd(a, b) is output as rk, the last nonzero remainder
in the list (1.25).

Why is rk = gcd(a, b), and how is rk produced as a linear combination of a
and b.? To answer these questions, it is helpful to rewrite (1.26) as the matrix
equation [

ri−1

ri

]
=

[
qi+1 1
1 0

] [
ri

ri+1

]
(1.27)

holding for 0 ≤ i ≤ k. (Compare Section 2.3, page 28, for a review of matrix
multiplication.) Note that (1.27) is an equality between 2-dimensional column
vectors with integral entries. Equality of the bottom entries is trivial, while
(1.26) is the equality between the top entries. Now

[
0 1
1 −qi+1

] [
qi+1 1
1 0

]
=

[
1 0
0 1

]
=

[
qi+1 1
1 0

] [
0 1
1 −qi+1

]
,

so (1.27) is equivalent to the matrix equation
[

ri

ri+1

]
=

[
0 1
1 −qi+1

] [
ri−1

ri

]
(1.28)

for 0 ≤ i ≤ k. Repeated use of (1.28) gives
[

rk

rk+1

]
=

[
0 1
1 −qk+1

]
. . .

[
0 1
1 −q1

] [
r−1

r0

]
=

[
s t
u v

] [
r−1

r0

]

for integers s and t (computed by multiplying the 2×2 matrices in the middle
term), so rk is expressed as the integral linear combination

rk = sr−1 + tr0 = sa + tb (1.29)
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of a and b. By Proposition 1.8, any common divisor c of a and b is a divisor of
rk, confirming that rk satisfies the requirement (1.23) for the greatest common
divisor of a and b. Finally, repeated use of (1.27) gives

[
a
b

]
=

[
r−1

r0

]
=

[
q1 1
1 0

]
. . .

[
qk+1 1

1 0

] [
rk

rk+1

]
=

[
s′ t′

u′ v′

] [
rk

0

]

for integers s′, t′, u′, and v′, so that a = s′rk and b = u′rk. This means that
rk | a and rk | b. Thus rk satisfies the requirement (1.22) for the greatest
common divisor of a and b.

Now we know that rk = gcd(a, b), the import of the equation (1.29) may
be recorded for future reference as follows. (Compare Exercise 28.)

PROPOSITION 1.9 (GCD as an integral linear combination.)
Let a and b be nonzero integers. Then the greatest common divisor gcd(a, b)
may be expressed as an integral linear combination of a and b.

Example 1.10 (A run of the Euclidean Algorithm.)
Consider the determination of gcd(7, 5) with the Euclidean Algorithm. The

calls to the Division Algorithm are as follows:

Step (0) : 7 = 1 · 5 + 2
Step (1) : 5 = 2 · 2 + 1
Step (2) : 2 = 2 · 1 + 0

Thus gcd(7, 5) emerges as 1, the remainder from the penultimate Step (1).
The matrix equations (1.27) become

[
7
5

]
=

[
1 1
1 0

] [
5
2

]
,

[
5
2

]
=

[
2 1
1 0

] [
2
1

]
,

[
2
1

]
=

[
2 1
1 0

] [
1
0

]
.

The matrix equations (1.28) become

[
1
0

]
=

[
0 1
1 −2

] [
2
1

]
,

[
2
1

]
=

[
0 1
1 −2

] [
5
2

]
,

[
5
2

]
=

[
0 1
1 −1

] [
7
5

]
.

Thus [
1
0

]
=

[
0 1
1 −2

] [
0 1
1 −2

] [
0 1
1 −1

] [
7
5

]
=

[−2 3
5 −7

] [
7
5

]
,

whence gcd(7, 5) = 1 = (−2) · 7 + 3 · 5.
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1.7 Primes and irreducibles

The positive number 35 can be reduced to a product 5 ·7 of smaller positive
numbers 5 and 7. On the other hand, neither 5 nor 7 can be reduced further.
In fact, if 5 = a · b for positive integers a and b, then a = 1 and b = 5 or a = 5
and b = 1. We define a positive integer p to be irreducible if p > 1 and

0 < d | p implies
(

d = 1 or d = p
)

(1.30)

for integers d. Irreducibility is an “internal” or “local” property of a positive
integer p, only involving the finite set of positive divisors of p.

Now look outwards rather than inwards. The positive number 35 may divide
a product, without necessarily dividing any of the factors in that product. For
example, 35 divides 7 · 10, but 35 does not divide 7 or 10. On the other hand,
5 divides the product 7 · 10, and then 5 divides the factor 10 in the product.
We define a positive integer p to be prime if p > 1 and

p | a · b implies
(

p | a or p | b )
(1.31)

for any integers a and b. Primality may be considered as an “external” or
“global” property of a positive integer p, since it involves arbitrary integers a
and b. The two properties are summarized as follows:

Properties of an integer p > 1:

(internal) irreducible: 0 < d | p implies
(

d = 1 or d = p
)

(external) prime: p | a · b implies
(

p | a or p | b )

It is a feature of the integers that the internal concept of irreducibility
agrees with the external concept of primality.

PROPOSITION 1.11 (“Prime” ≡ “irreducible” for integers.)
Let p > 1 be an integer.

(a) If p is prime, then it is irreducible.

(b) If p is irreducible, then it is prime.

PROOF (a): Suppose p is prime and 0 < d | p, say p = d′d for some
positive integer d′. Then p | d′d. Since p is prime, it follows that p | d′ or
p | d. In the latter case, d | p and p | d, so d = p by antisymmetry. In the
former case, the same argument (replacing d by d′) shows d′ = p. Then d = 1.



14 Introduction to Abstract Algebra

(b): Suppose p is irreducible and p | a · b, say ab = pk for some integer k.
Suppose p does not divide a. It will be shown that p | b. Since p is irreducible,
its only positive divisors are 1 and p. Thus gcd(p, a) = 1, for gcd(p, a) = p
would mean p | a. Using Proposition 1.9, write gcd(p, a) as an integral linear
combination

1 = lp + ma

of p and a. Postmultiplying by b gives

b = lpb + mab

= lpb + mpk = p(lb + mk) ,

so that p | b as required.

With Proposition 1.11 proved, prime numbers (as in Figure 1.4) may be
characterized equally well by either the irreducibility (1.30) or the primality
(1.31). (See the Notes to this section on page 23.)

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 161 191 193 197 199 211 223 227 229

FIGURE 1.4: The first 50 prime numbers.

There is a traditional adjective for numbers which are not prime:

DEFINITION 1.12 (Composite numbers.) An integer n is said to
be composite if n > 1, but n is not prime.

Thus a number n > 1 is composite if it is not irreducible, i.e., if it has a
nontrivial factorization n = a · b with integers 1 < a < n and 1 < b < n.

1.8 The Fundamental Theorem of Arithmetic

In Figure 1.3, the number 72 is displayed as the product 72 = 8·9 = 23 ·32 =
2 · 2 · 2 · 3 · 3 of prime numbers. The latter product may be written with the
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factors in various orders, such as 72 = 2 ·3 ·2 ·2 ·3 or 72 = 2 ·3 ·2 ·3 ·2. But to
within such reorderings of the prime factors, the factorization is unique. The
Fundamental Theorem of Arithmetic states that every integer greater than
1 has a factorization as a product of primes, unique up to reordering of the
factors.

The existence part of the theorem is stated and proved as follows.

THEOREM 1.13 (Existence of factorizations.)
Each integer n > 1 may be expressed as a product of prime numbers.

PROOF Let B be the set of integers n > 1 which cannot be expressed
as a product of primes. If the theorem is false, then B is nonempty. In that
case, the Well-Ordering Principle says that B has a least element b. Since
the integer b lies in the set B, it is not itself prime (or irreducible), so it has
divisors g1 and g2 with

b = g1g2 (1.32)

and 1 < g1, g2 < b. Since the divisors g1 and g2 are strictly less than b,
the least element of B, they are expressible as products of primes. But then
(1.32) expresses the integer b as a product of primes, contradicting its status
as a member of B. Since falsehood of the theorem leads to an inevitable
contradiction, we conclude that the theorem is true.

Implicit in the proof of Theorem 1.13 is a method, however slow, to produce
the factorization of a given integer larger than 1 as a product of primes. For
example, consider b = 500, which factorizes as b = g1g2 with g1 = 50 and
g2 = 10. Then g1 = 5 · 10 = 5 · 2 · 5 and g2 = 2 · 5, so 500 = 5 · 2 · 5 · 2 · 5. If
b is less friendly, e.g., b = 281957, then one has to try dividing b in turn by
successive primes p = 2, 3, 5, 7, 11, . . . up to

√
b (compare Exercise 36).

We now state the uniqueness half of the fundamental theorem.

THEOREM 1.14 (Uniqueness of factorization.)
Suppose that p1, p2, . . . , pr and q1, q2 . . . , qs are primes. Then if

p1 · p2 · . . . · pr = q1 · q2 · . . . · qs , (1.33)

r = s, and each pi on the left hand side of (1.33) appears as a qj on the right
hand side of (1.33).

To prove Theorem 1.14, we will use a subsidiary result, a “lemma.”

LEMMA 1.15
Suppose that p1, q1, q2, . . . , qs are primes. Then if

p1 | q1 · q2 · . . . · qs , (1.34)
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there is some 1 ≤ j ≤ s such that p1 = qj.

PROOF Suppose that the lemma is false. Let S be the set of natural
numbers s for which there are primes p1, q1, q2, . . . , qs with (1.34) holding,
but where p1 does not appear as any qj with 1 ≤ j ≤ s. Since the lemma
is false, the set S is nonempty, and thus has a least element s. Consider
p1, q1, q2, . . . , qs as in (1.34) for this integer s. Now p1 does not divide the
product q1 ·q2 · . . . ·qs−1, for then the minimality of s in S would mean that p1

shows up among q1, q2, . . . , qs−1. Since p1 is prime, and (1.34) holds, it follows
that p1 | qs. Since 1 < p1 and qs is irreducible, p1 = qs, in contradiction to
the assumption. Thus the lemma is true after all.

To complete the proof of Theorem 1.14, suppose (1.33) holds. Then

p1 | q1 · q2 · . . . · qs .

By Lemma 1.15, there is some 1 ≤ j ≤ s such that p1 = qj . Then

p2 · p3 · . . . · pr = q1 · . . . · qj−1 · qj+1 · . . . · qs .

By Lemma 1.15, p2 cancels with some qk from the right-hand side. Continuing
in this fashion, the pi on the left of (1.33) are paired off with the qj on the
right. In particular, the number r of factors on the left-hand side of (1.33)
agrees with the number s of factors on the right.

The Fundamental Theorem of Arithmetic makes a connection between the
two order relations ≤ and | on the set N of natural numbers. Specifically, for
distinct primes p1, p2, . . . , pr and natural numbers e1, f1, e2, f2,. . . , er, fr,

pe1
1 · pe2

2 · . . . · per
r | pf1

1 · pf2
2 · . . . · pfr

r if and only if e1 ≤ f1, . . . , er ≤ fr.

We conclude with an application of this idea.

DEFINITION 1.16 (Least common multiple.) Let a and b be
nonzero integers. The least common multiple lcm(a, b) of a and b is the
minimum element of the set S = {m | m > 0 , a | m, b | m} of positive
common multiples of a and b.

Write max{e, f} for the maximum of integers e and f . The Fundamental
Theorem of Arithmetic yields the following result. Its proof is assigned as
Exercise 39.

PROPOSITION 1.17 (Computing the least common multiple.)
Let a = pe1

1 · pe2
2 · . . . · per

r and b = pf1
1 · pf2

2 · . . . · pfr
r for distinct primes p1, p2,

. . . , pr, and natural numbers e1, f1, e2, f2,. . . , er, fr. Then

lcm(a, b) = p
max{e1,f1}
1 · pmax{e2,f2}

2 · . . . · pmax{er,fr}
r .
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1.9 Exercises

1. Suppose x, y, and z are real numbers. If x ≤ y ≤ z ≤ x, give a formal
proof that y = z by use of transitivity and antisymmetry.

2. Suppose that x0, x1, . . . , xn are real numbers, with x0 ≤ x1 ≤ · · · ≤ xn.
If xn ≤ x0, show that x0 = xr for 1 ≤ r ≤ n.

3. Why is (1.7) true?

4. Why is (1.5) true?

5. Find the least element inf S of the set S from Example 1.2.

6. Find the smallest integer n for which 2n < n!.

7. Let S be a nonempty subset of N. Let s be an element of S. The
intersection {0, 1, . . . , s − 1} ∩ S denotes the set of elements of S less
than s.

(a) If the intersection {0, 1, . . . , s−1}∩S is empty, show that inf S = s.

(b) If the intersection {0, 1, . . . , s − 1} ∩ S is nonempty, show that
inf S = min({0, 1, . . . , s− 1} ∩ S).

8. Prove

13 + 23 + 33 + . . . + n3 =
(

n(n + 1)
2

)2

for natural numbers n.

9. (a) Prove

1 + 2 + 3 + . . . + n =
n(n + 1)

2
(1.35)

for natural numbers n by induction.

(b) Can you prove (1.35) directly, without using induction?

10. Prove n < 2n for natural numbers n.

11. Let m be a nonzero integer.

(a) Show that n | m implies |n| ≤ |m|. (In words: each divisor of a
nonzero integer is no greater than that integer in absolute value.)

(b) If you are uncomfortable with absolute values, show instead that
n | m implies n2 ≤ m2.

(c) Conclude that the set of divisors of m is finite.

12. Show that every integer divides zero.
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13. There are 36 inches in a yard, and 100 centimeters in a meter.

(a) In how many ways can a piece of wood a yard long be divided into
equal pieces whose length is an integral number of inches?

(b) In how many ways can a piece of wood a meter long be divided into
equal pieces whose length is an integral number of centimeters?

14. Prove Proposition 1.5. [Hint: To prove the antisymmetry (A) that does
not hold for divisibility on Z, consider the solutions x of the equation
x2 = 1 in Z and N.]

15. Describe the divisibility relation | on the set R of real numbers.

16. Consider running the Division Algorithm on the inputs a = 1 and d = 0.

(a) For the set S of (1.16), what is inf S?

(b) Show that a unique remainder r is obtained, but that the quotient
q is not unique.

(c) Is Proposition 1.6 contradicted?

17. Let d be a positive odd number. Show that for each integer a, there are
unique integers q and r such that a = dq + r with |r| < d/2. In other
words, each integer a can be approximated by a multiple of d to within
an error of less than d/2.

18. Consider the 16× 11 rectangular array of 176 pixels in a display.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9
10

¥

The pixels are located by their coordinates in the array, so that the
bottom left pixel has coordinates (0, 0), and the top right pixel has
coordinates (15, 10). The pixels are addressed by the numbers from 0
to 175. The address of the pixel with coordinates (q, r) is

a = 11q + r .
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(a) What is the address of the pixel with the black square?

(b) What are the coordinates of the pixel with address 106?

19. Let d > 1 be a fixed integer, known as the base. To represent a given
positive integer n as a sequence n = nknk−1 . . . n2n1 of digits in base d,
with 0 ≤ ni < d for 1 ≤ i ≤ k, consider the following algorithm:

(a) Initialize with q0 = n and i = 1 ;

(b) At Step (i), obtain qi−1 = qid + ni with the Division Algorithm;

(c) Stop at Step (k) when qk = 0 ;
(d) Otherwise, replace i by i + 1 and return to (b).

Show that n = nkdk−1 + nk−1d
k−2 + . . . + n2d + n1.

20. Express the base 10 number 3817 as a hexadecimal (base 16) number.
Use A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 for the digits
above 9.

21. In a certain state, persons under age 21 are not allowed into bars that
serve intoxicating beverages. If 21 were read as an octal number (to base
8), what would be the minimum age (to the usual base 10) of persons
allowed into bars?

22. In Figure 1.3:

(a) Identify the set of positive divisors of 18.

(b) Identify the set of positive divisors of 24.
(c) Identify the set S of common divisors of 18 and 24.

(d) Identify gcd(18, 24) as the largest element of the set S.

23. Find all pairs of relatively prime positive integers less than 10.

24. Show that 1 is the only positive integer that is relatively prime to every
positive integer.

25. In a gearbox, gear wheel A meshes with gear wheel B. The two rotate
together many times. Gear wheel A has a teeth, and gear wheel B has b
teeth. Show that each tooth of A meshes with each tooth of B at some
time if and only if a and b are relatively prime.

26. Prove the equalities (1.19), (1.20), and (1.21).

27. Prove Proposition 1.8.

28. Without appealing to the discussion of the Euclidean Algorithm, give
a direct proof of Proposition 1.9. [Hint: Applying the Well-Ordering
Principle, show that gcd(a, b) is the smallest member of the set S of
positive, integral linear combinations of a and b.]



20 Introduction to Abstract Algebra

29. Let c be a positive common divisor of two nonzero integers a and b.

(a) Show that c divides gcd(a, b).

(b) Show that gcd(a, b)/c = gcd(a/c, b/c).

30. For nonzero integers a, b, and c, with c > 0, show that gcd(ac, bc) =
gcd(a, b) · c .

31. Let a and b be distinct nonzero integers. Show that the greatest common
divisor gcd(a, b) can be expressed in infinitely many distinct ways as an
integral linear combination gcd(a, b) = la + mb of a and b.

32. Use the Euclidean Algorithm to determine gcd(109, 60), and to express
it as an integral linear combination of 109 and 60.

33. Show that 2n + 1 and 3n + 1 are coprime for all natural numbers n.

34. Show that the Euclidean Algorithm will make at most b calls to the
Division Algorithm when it computes gcd(a, b) with a > b > 0.

35. (a) In how many ways can 72 be expressed as an ordered product of
three twos and two threes?

(b) Interpret each such expression 72 = p1p2p3p4p5 (with pi = 2 or 3)
as a walk from 1 to 72 along the path

1 → p1 → p1p2 → p1p2p3 → p1p2p3p4 → p1p2p3p4p5 = 72

in Figure 1.3.

(c) Conversely, show that each path from 1 to 72, following the arrows
at each step, determines an ordered factorization.

36. (a) Show that a composite number b has a prime divisor p with p ≤
√

b.

(b) Conclude that an integer n is prime if it is not divisible by any
prime less than

√
n.

37. Factorize b = 281957 as a product of primes.

38. Can you prove that n2 − n + 41 is prime for each natural number n?

39. Prove Proposition 1.17.

40. For positive integers a and b, show that an integer is a multiple of both
a and b if and only if it is a multiple of lcm(a, b).

41. Use the Fundamental Theorem of Arithmetic to obtain a formula for
gcd(a, d), similar to the formula for lcm(a, b) given in Proposition 1.17.

42. For nonzero integers a, b, and c, show that gcd(a, bc) = 1 if and only if
both gcd(a, b) = 1 and gcd(a, c) = 1.
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43. For positive integers a and b, prove a · b = gcd(a, b) · lcm(a, b) . [Hint:
For natural numbers e and f , prove e + f = min{e, f}+ max{e, f}.]

44. (a) Give an example of prime numbers p1, p2 and natural numbers e1,
f1, e2, f2 such that

lcm
(
pe1
1 pe2

2 , pf1
1 pf2

2

) 6= p
max{e1,f1}
1 · pmax{e2,f2}

2 .

(b) Why does this not contradict Proposition 1.17?

45. (a) Let p1 = 2, p2 = 3, p3 = 5, . . . , pr be the first r primes. Show that

n = p1 · p2 · . . . · pr + 1

is not divisible by any of p1, p2, . . . , pr.

(b) Applying Theorem 1.13 to n, deduce that there is a prime number
ps with pr < ps ≤ n.

(c) Conclude that there is an infinite number of primes.

46. Let n be a positive integer. A positive integer d is said to be a unitary
divisor of n if d divides n, and gcd(d, n/d) = 1. In this case, n is said
to be a unitary multiple of d.

(a) Determine the unitary divisors of 72 and 1200.

(b) Determine the least common unitary multiple of 18 and 45.

(c) Show that there is no least common unitary multiple of 3 and 9.

47. Consider a world in which the only positive numbers are the numbers

1, 5, 9, 13, 17, 21, 25, 29, . . . (1.36)

of the form 4r + 1 for r in N. Suppose that the numbers are only
multiplied, not added.

(a) Show that the product of two numbers from the list (1.36) also
appears in the list.

(b) Show that the numbers below 25 in the list (1.36) are irreducible
within this alternative world.

(c) Show that 9 divides 21 · 21, but 9 does not divide 21.

(d) Conclude that in this world, the property of being prime is distinct
from the property of being irreducible.
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1.10 Study projects

1. For a sport competition of your choice (say one season of a particular
league), determine whether the transitivity rule (1.6) and antisymmetry
rule (1.7) apply.

2. Consider the problem of finding the minimum minS of a finite set S of
natural numbers with n elements. Design a procedure to do this with
just n−1 comparisons between pairs of elements from S. As inspiration,
look at the brackets for a single-elimination sport competition in a league
with n members. (Compare Figure 1.5 for the case n = 6.)

bye

Forfar

bye

Easton

Dunbar

Caspar

Bangor

Avalon

Forfar

Easton

Dunbar

Avalon

Easton

Dunbar

Easton

FIGURE 1.5: Brackets for a competition.

3. The number 946 is a multiple of 11. Also, the difference between the
respective sums 9 + 6 and 4 of the odd-placed and even-placed digits of
946 is (a multiple of) 11. Is this just a coincidence, or can you extend
the observation to derive a quick way of recognizing multiples of 11?


