

INTRODUCTION TO
LOGIC DESIGN

60945_FM.indd 1 12/18/07 11:40:49 AM

60945_FM.indd 2 12/18/07 11:40:49 AM

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Svetlana N. Yanushkevich
University of Calgary, Alberta, Canada

Vlad P. Shmerko
University of Calgary, Alberta, Canada

INTRODUCTION TO
LOGIC DESIGN

60945_FM.indd 3 12/18/07 11:40:49 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-6095-9 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

This textbook is dedicated to the
memory of Claude Shannon

(1916–2001)

Claude Elwood Shannon’s
inventive genius, probably
more than that of any other
single person, has altered
man’s understanding of
communication and digital
systems.

Contents

Preface xix

1 Design Process and Technology 1
1.1 Introduction . 3
1.2 Theory of logic design . 3
1.3 Analysis and synthesis . 4

1.3.1 Design hierarchy . 5
1.3.2 Design methodology 6
1.3.3 Design styles . 7
1.3.4 Simulation . 8

1.4 Implementation technologies 8
1.5 Predictable technologies 11
1.6 Contemporary CAD of logic networks 12
1.7 Summary of design process and technology 13
1.8 Further study . 15

2 Number Systems 19
2.1 Introduction . 21
2.2 Positional numbers . 21

2.2.1 The decimal system 21
2.2.2 Number radix . 23
2.2.3 Fractional binary numbers 26
2.2.4 Word size . 27

2.3 Counting in a positional number system 28
2.4 Basic arithmetic operations in various number

systems . 28
2.5 Binary arithmetic . 29
2.6 Radix-complement representations 31

2.6.1 10’s and 9’s complement systems 32
2.6.2 1’s complement system 33
2.6.3 2’s complement . 34

2.7 Conversion of numbers in various radices 36
2.8 Overflow . 40
2.9 Residue arithmetic . 43

2.9.1 The basics of residue arithmetic 43

vii

viii Introduction to Logic Design

2.9.2 Addition in residue arithmetic 45
2.9.3 Multiplication in residue arithmetic 46
2.9.4 Computing powers in residue arithmetic 47
2.9.5 Solving modular equations 47
2.9.6 Complete residue systems 48

2.10 Other binary codes . 50
2.10.1 Gray code . 50
2.10.2 Binary-coded decimal 52

2.11 Summary of number systems 54
2.12 Further study . 55
2.13 Solutions to practice problems 60
2.14 Problems . 62

3 Graphical Data Structures 65
3.1 Introduction . 67
3.2 Graphs in discrete device and system design 67

3.2.1 Graphs at the logical level 67
3.2.2 Graphs at the physical design level 68

3.3 Basic definitions . 69
3.3.1 Directed graphs . 70
3.3.2 Flow graphs . 71
3.3.3 Undirected graphs . 73
3.3.4 A path in a graph . 73
3.3.5 Isomorphism . 74
3.3.6 A subgraph and spanning tree 75
3.3.7 Cartesian product . 75
3.3.8 Planarity . 76
3.3.9 Operations on graphs 77
3.3.10 Embedding . 79

3.4 Tree-like graphs and decision trees 80
3.4.1 Basic definitions . 80
3.4.2 Lattice topology of graphs 81
3.4.3 H-trees . 82
3.4.4 Binary decision trees and functions 82
3.4.5 The relationship between decision trees and cube-like

graphs . 83
3.4.6 The simplification of graphs 83

3.5 Summary of graphical data structures 85
3.6 Summary (continuation) 86
3.7 Further study . 87
3.8 Problems . 91

4 Algebra I: Boolean 93
4.1 Introduction . 95
4.2 Definition of algebra over the set {0, 1} 95

Contents ix

4.2.1 Boolean algebra over the set {0, 1} 95
4.2.2 Postulates . 96
4.2.3 The principle of duality 97
4.2.4 Switch-based interpretation of computation rules . . . 99
4.2.5 Boolean algebra over Boolean vectors 99
4.2.6 DeMorgan’s law . 101

4.3 Boolean functions . 102
4.3.1 Boolean formulas . 102
4.3.2 Boolean functions . 103

4.4 Fundamentals of computing Boolean functions 105
4.4.1 Boolean literals and terms 105
4.4.2 Minterms and maxterms 105
4.4.3 Canonical SOP and POS expressions 106
4.4.4 Algebraic construction of standard SOP and POS

forms . 109
4.5 Proving the validity of Boolean equations 109
4.6 Gates . 111

4.6.1 Elementary Boolean functions 111
4.6.2 Switch models for logic gates 113
4.6.3 Digital waveforms and timing diagrams 116
4.6.4 Performance parameters 118

4.7 Local transformations . 119
4.8 Summary of Boolean algebra 121
4.9 Further study . 124
4.10 Solutions to practice problems 128
4.11 Problems . 129

5 Fundamental Expansions 133
5.1 Introduction . 135
5.2 Shannon expansion . 136

5.2.1 Expansion with respect to a single variable 137
5.2.2 Expansion with respect to a group of variables 139
5.2.3 Expansion with respect to all variables 142
5.2.4 Various forms of Shannon expansions 144

5.3 Shannon expansion for symmetric Boolean functions 146
5.3.1 Symmetric functions 146
5.3.2 Partially symmetric functions 147
5.3.3 Totally symmetric functions 148
5.3.4 Detection of symmetric Boolean functions 149
5.3.5 Characteristic set . 150
5.3.6 Elementary symmetric functions 150
5.3.7 Operations on elementary symmetric functions 153
5.3.8 Shannon expansion with respect to a group of

symmetric variables 154
5.4 Techniques for computing symmetric functions 155

x Introduction to Logic Design

5.4.1 Computing partially symmetric functions 155
5.4.2 Computing totally symmetric functions 155
5.4.3 Carrier vector . 160

5.5 The logic Taylor expansion 162
5.5.1 Change in a digital system 162
5.5.2 Boolean difference . 163
5.5.3 Boolean difference and Shannon expansion 164
5.5.4 Properties of Boolean difference 166
5.5.5 The logic Taylor expansion 166

5.6 Graphical representation of the fundamental
expansions . 173
5.6.1 Shannon expansion as a decision tree node function . . 173
5.6.2 Matrix notation of the node function 174
5.6.3 Using Shannon expansion in decision trees 176

5.7 Summary of fundamental expansions of Boolean
functions . 177

5.8 Further study . 180
5.9 Solutions to practice problems 186
5.10 Problems . 191

6 Boolean Data Structures 193
6.1 Introduction . 195
6.2 Data structure types . 196
6.3 Relationships between data structures 196
6.4 The truth table . 197

6.4.1 Construction of the truth table 197
6.4.2 Truth tables for incompletely specified functions . . . 197
6.4.3 Truth-vector . 199
6.4.4 Minterm and maxterm representations 199
6.4.5 Reduction of truth tables 199
6.4.6 Properties of the truth table 202
6.4.7 Deriving standard SOP and POS expressions from a

truth table . 203
6.5 K-map . 203
6.6 Cube data structure . 207
6.7 Graphical data structure for cube representation . . 211
6.8 Logic networks . 218

6.8.1 Design goals . 218
6.8.2 Basic components of a logic network 218
6.8.3 Specification . 220
6.8.4 Network verification 221

6.9 Networks of threshold gates 223
6.9.1 Threshold functions 224
6.9.2 McCulloch-Pitts models of Boolean functions 226
6.9.3 Networks of threshold gates 227

Contents xi

6.10 Binary decision trees . 228
6.10.1 Representation of elementary Boolean functions using

decision trees . 229
6.10.2 Minterm and maxterm expression representations

using decision trees . 231
6.10.3 Representation of elementary Boolean functions by

incomplete decision trees 231
6.11 Decision diagrams . 234
6.12 Summary of Boolean data structures 236
6.13 Further study . 237
6.14 Solutions to practice problems 240
6.15 Problems . 243

7 Properties of Boolean functions (Optional) 247
7.1 Introduction . 249
7.2 Self-dual Boolean functions 249
7.3 Monotonic Boolean functions 252

7.3.1 Monotonically increasing Boolean functions 252
7.3.2 A monotonically decreasing Boolean functions 254
7.3.3 Unate Boolean functions 256

7.4 Linear functions . 257
7.5 Universal set of functions 258
7.6 Summary of properties of Boolean functions 261
7.7 Further study . 262
7.8 Solutions to practice problems 262
7.9 Problems . 263

8 Optimization I: Algebraic and K-maps 265
8.1 Introduction . 267
8.2 Minterm and maxterm expansions 267
8.3 Optimization of Boolean functions in algebraic form 270

8.3.1 The consensus theorem 271
8.3.2 Combining terms . 272
8.3.3 Eliminating terms . 273
8.3.4 Eliminating literals . 273
8.3.5 Adding redundant terms 275

8.4 Implementing SOP expressions using logic gates . . . 276
8.4.1 Two-level logic networks 277
8.4.2 Multilevel logic networks 279
8.4.3 Conversion of factored expressions into logic networks 281

8.5 Minimization of Boolean functions using K-maps . . 282
8.6 Quine-McCluskey algorithm 289
8.7 Boolean function minimization using decision

diagrams . 294
8.8 Summary of optimization of Boolean functions 296

xii Introduction to Logic Design

8.9 Further study . 298
8.10 Solutions to practice problems 300
8.11 Problems . 303

9 Optimization II: Decision Diagrams 307
9.1 Introduction . 309
9.2 Optimization of Boolean functions using decision

trees . 309
9.2.1 The formal basis for the reduction of decision trees

and diagrams . 310
9.2.2 Decision tree reduction rules 311

9.3 Decision diagrams for symmetric Boolean functions . 322
9.4 Measurement of the efficiency of decision diagrams . 324
9.5 Representation of multi-output Boolean functions . . 326
9.6 Embedding decision diagrams into lattice structures 327
9.7 Summary of optimization of Boolean functions using

decision diagrams . 328
9.8 Further study . 329
9.9 Solutions to practice problems 332
9.10 Problems . 333

10 Algebra II: Polynomial 337
10.1 Introduction . 339
10.2 Algebra of the polynomial forms 345

10.2.1 Theoretical background 345
10.2.2 Polynomials for Boolean functions 347

10.3 GF(2) algebra . 348
10.3.1 Operational and functional domains 349
10.3.2 The functional table 352
10.3.3 The functional map 353
10.3.4 Polarized minterms . 353

10.4 Relationship between standard SOP and polynomial
forms . 360

10.5 Local transformations for EXOR expressions 361
10.6 Factorization of polynomials 363
10.7 Validity check for EXOR networks 363
10.8 Summary of polynomial algebra 365
10.9 Further study . 368
10.10 Solutions to practice problems 370
10.11 Problems . 374

11 Manipulation of Polynomial Expressions 377
11.1 Introduction . 379
11.2 Fixed and mixed polarity polynomial forms 379

11.2.1 Fixed polarity polynomial forms 379

Contents xiii

11.2.2 Deriving polynomial expressions from SOP forms . . . 382
11.2.3 Conversion between polarities 383
11.2.4 Deriving polynomial expressions from K-maps 384
11.2.5 Simplification of polynomial expressions 385

11.3 Computing the coefficients of polynomial forms . . . 386
11.3.1 Matrix operations over GF(2) 386
11.3.2 Polarized literals and minterms in matrix form 388
11.3.3 Computing the coefficients in fixed polarity

polynomial forms . 391
11.4 Summary of the polynomial expressions 396
11.5 Further study . 398
11.6 Solutions to practice problems 399
11.7 Problems . 400

12 Decision Diagrams for Polynomial Forms (Optional)403
12.1 Introduction . 405
12.2 Function of the nodes . 406

12.2.1 Algebraic form of the positive Davio expansions 407
12.2.2 Algebraic form of the negative Davio expansion 410
12.2.3 Matrix forms of positive and negative Davio

expansions . 411
12.2.4 Gate level implementation of Shannon and Davio

expansions . 412
12.3 Techniques for functional decision tree construction . 414

12.3.1 The structure of functional decision trees 414
12.3.2 Design example: Manipulation of pD and nD nodes . 414
12.3.3 Design example: Application of matrix transforms . . 416
12.3.4 Design example: Minterm computing 419

12.4 Functional decision tree reduction 420
12.4.1 Elimination rule . 421
12.4.2 Merging rule . 421

12.5 Summary of functional decision diagrams 425
12.6 Further study . 426
12.7 Solutions to practice problems 429
12.8 Problems . 430

13 Standard Modules of Combinational Networks 435
13.1 Introduction . 437
13.2 Data transfer logic . 437

13.2.1 Shared data path . 437
13.2.2 Multiplexer . 439
13.2.3 Multiplexers and Shannon expansion theorem 442
13.2.4 Single-bit (2-to-1) multiplexer 442
13.2.5 Word-level multiplexer 444

xiv Introduction to Logic Design

13.3 Implementation of Boolean functions using
multiplexers . 445
13.3.1 Multiplexer tree . 446
13.3.2 Multiplexers and Shannon expansion theorem 447
13.3.3 Combination of design approaches using multiplexers . 450

13.4 Demultiplexers . 454
13.4.1 Implementation of decision diagrams on multiplexers . 457

13.5 Decoders . 457
13.6 Implementation of Boolean functions using decoders 462
13.7 Encoders . 464

13.7.1 Comparators . 464
13.7.2 Code detectors . 467

13.8 Summary of standard modules of combinational logic
networks . 468

13.9 Further study . 470
13.10 Solutions to practice problems 471
13.11 Problems . 474

14 Combinational Logic Network Design 477
14.1 Introduction . 479
14.2 Design example: Binary adder 479
14.3 Design example: Magnitude comparator 484
14.4 Design example: BCD adder 490
14.5 The verification problem 492

14.5.1 Formal verification . 493
14.5.2 Equivalence checking problem 494
14.5.3 Design example 1: Functionally equivalent networks . 495
14.5.4 Design example 2: Verification of logic networks using

decision diagrams . 497
14.6 Decomposition . 501

14.6.1 Disjoint and non-disjoint decomposition 502
14.6.2 Decomposition chart 503
14.6.3 Disjoint bi-decomposition 504
14.6.4 Design example: The OR type bi-decomposition . . . 505
14.6.5 Design example: The AND type bi-decomposition . . 505
14.6.6 Functional decomposition using decision diagrams . . 507
14.6.7 Design example: Shannon decomposition with respect

to a subfunction . 507
14.7 Error detection and error correction logic networks . 510

14.7.1 The simplest error detecting network 511
14.7.2 Error correction . 514
14.7.3 Gray code . 519

14.8 Summary of combinational network design 521
14.9 Further study . 523
14.10 Solutions to practice problems 526

Contents xv

14.11 Problems . 530

15 Standard Modules of Sequential Logic Networks 535
15.1 Introduction . 537
15.2 Physical phenomena and data storage 537
15.3 Basic principles . 538

15.3.1 Feedback . 539
15.3.2 Clocking techniques 540

15.4 Data structures for sequential logic networks 541
15.4.1 Characteristic equations 541
15.4.2 State tables and diagrams 542

15.5 Latches . 543
15.5.1 SR latch . 543
15.5.2 Gated SR latch . 545
15.5.3 D latch . 545

15.6 Flip-flops . 548
15.6.1 The master-slave principle in flip-flop design 548
15.6.2 D flip-flop . 549
15.6.3 JK flip-flop . 552
15.6.4 T flip-flop . 552

15.7 Registers . 556
15.7.1 Storing register . 556
15.7.2 Shift register . 556
15.7.3 Other shift registers: FIFO and LIFO 557

15.8 Counters . 558
15.8.1 Binary counters . 559
15.8.2 Countdown chains . 564

15.9 Summary of standard modules of sequential logic
networks . 565

15.10 Further study . 567
15.11 Solutions to practice problems 572
15.12 Problems . 574

16 Memory and Programmable Devices 575
16.1 Introduction . 577
16.2 Programmable devices . 578
16.3 Random-access memory 580

16.3.1 Memory array . 580
16.3.2 Words . 581
16.3.3 Address . 582
16.3.4 Memory capacity . 583
16.3.5 Write and read operations 584
16.3.6 Address management 585

16.4 Read-only memory . 585
16.4.1 Programming ROM 587

xvi Introduction to Logic Design

16.4.2 Programming the decoder 587
16.4.3 Combinational logic network implementation 587

16.5 Memory expansion . 589
16.6 Programmable logic . 590

16.6.1 Programmable logic array (PLA) 591
16.6.2 The PLA’s connection matrices 593
16.6.3 Implementation of Boolean functions using PLAs . . . 593
16.6.4 Programmable array logic (PAL) 594
16.6.5 Using PLAs and PALs for EXOR polynomial

computing . 595
16.7 Field programmable gate arrays 596

16.7.1 Logic blocks . 598
16.7.2 FPGA architecture . 598

16.8 Summary of design techniques using memory and
programmable devices . 600

16.9 Further study . 602
16.10 Solutions to practice problems 604
16.11 Problems . 608

17 Sequential Logic Network Design 611
17.1 Introduction . 613
17.2 Mealy and Moore models of sequential networks . . . 614
17.3 Data structures for analysis of sequential networks . 615

17.3.1 State equations . 616
17.3.2 Excitation and output equations 616
17.3.3 State table . 618
17.3.4 State diagram . 618

17.4 Analysis of sequential networks with various types of
flip-flops . 619
17.4.1 Analysis of a sequential network with D flip-flops . . . 620
17.4.2 Analysis of a sequential network with JK flip-flops . . 620
17.4.3 Analysis of a sequential network with T flip-flops . . . 623

17.5 Techniques for the synthesis of sequential networks . 624
17.5.1 Synthesis of a sequential network using D flip-flops . . 625
17.5.2 Synthesis of sequential networks using JK flip-flops . . 625
17.5.3 Synthesis of sequential networks using T flip-flops . . . 626

17.6 Redesign . 629
17.7 State table reduction and assignment 632
17.8 Summary of sequential logic network design 636
17.9 Further study . 637
17.10 Solutions to practice problems 638
17.11 Problems . 642

18 Design for Testability 645
18.1 Introduction . 647

Contents xvii

18.2 Fault models . 649
18.2.1 The single stuck-at model 649
18.2.2 Fault coverage . 650

18.3 Controllability and observability 651
18.3.1 Observability and Boolean differences 655
18.3.2 Enhancing observability and controllability 656
18.3.3 Detection of stuck-at faults 660
18.3.4 Testing decision tree-based logic networks 664

18.4 Functional decision diagrams for computing Boolean
differences . 665

18.5 Random testing . 669
18.6 Design for testability techniques 671

18.6.1 Self-checking logic networks 671
18.6.2 Built-in self-test (BIST) 672
18.6.3 Easily testable EXOR logic networks 673
18.6.4 Improving testability using local transformations . . . 674
18.6.5 Testing sequential logic networks 675

18.7 Summary of design for testability 677
18.8 Further study . 678
18.9 Solutions to practice problems 681
18.10 Problems . 685

Index 687

Preface

The Introduction to Logic Design
Course in the Electrical Engineering
and Computer Science Undergraduate
Curriculum

An introductory course on the logic design of discrete devices is fundamental
to the study of the many fields that constitute the ever-expanding discipline
of computer engineering, computer science, and electrical engineering. Logic
design of discrete devices serves as the prerequisite for additional coursework
in the study of communications, signal processing, digital system design, and
neural networks.

An introductory course on logic design is frequently encountered in the
second year of undergraduate programs. Additional courses are then provided
that expand on the one-semester course by including a more detailed
treatment of digital system design, focusing, in particular, on simulation using
hardware description languages.

With respect to the audience, that is, electrical and computer engineering
and computer science, the introductory course on logic design can vary
significantly. The course on logic design is usually offered at the sophomore
or junior level and assumes no background on the part of the reader.

How This Book Satisfies the Essential
Needs of This Course

Given the introductory nature of the computing device design course and
the diversity of its applications, an appropriate textbook must be easy to read,
accurate, and contain an abundance of insightful examples, problems, and
computer experiments to expedite learning the fundamentals of logic design
of discrete devices and systems. The textbook must reflect the fundamentals
of state-of-the-art logic design and must be useful to people from other fields
who are interested in the basics of logic network design. This book has been
written with all of these objectives in mind.

We have verified in our academic and research work that the material
presented in this book is useful for not only computer/electrical engineering
and computer science students, but also students from physics and the

xix

xx Introduction to Logic Design

chemical sciences who are working on applications of physical and molecular
phenomena at nanoscale for computing logic functions. This textbook
attempts to fill this need with a balanced presentation of classic topics and
topics of advanced design, such decision trees and diagrams, focusing on the
manipulation of various data structures rather than optimization.

It is the primary purpose of this book to present problems relevance for
advanced as well as future technologies that will be educationally informative
for students and practicing engineers and researchers. The emphasis will be on
the manipulation of various data structures in logic network design. Of course,
knowledge of classical minimization techniques is also useful and necessary as
background. Such techniques are also included in complete detail.

This book builds on the authors’ lectures in various universities, providing
a balanced and integrated treatment of the fundamental theory of logic
functions and applications in the design of digital devices and systems.
This approach has the pedagogical advantage of helping the student see
the fundamental similarities and differences between various theoretical
approaches to the representation, manipulation, and optimization of Boolean
functions, and reflects the integrated nature of the advanced concepts in
modern engineering practice.

The text has been written with the aim of offering maximum teaching
flexibility in both coverage and order of presentation. A one-semester course
sequence would likely cover most, if not all, of the topics in the book.

Structure Designed to Facilitate and
Reinforce Learning

We designed this textbook to be up-to-date, comprehensive, and pragmatic
in its approach. It aims to provide balanced coverage of concepts, techniques,
and practices, and to do so in a way that is, at the same time, both scholarly
and supportive of the needs of the typical student reader. We wanted to give
students:
� A clear picture of fundamental concepts;
� Effective problem-solving techniques; and
� Appropriate exposure to modern technologies, design techniques, and

applications.

Through the mutual support of textual material, worked examples, end-
of-chapter problems, and other pedagogical features, we have attempted to
show how theoretical ideas, physical devices, and design methodologies can
all come together to form a successful design system.

Toward Predictable Technologies

With the advent of new technologies, a major shift has occurred in the field
of the design and application of digital systems. As a result, many engineers

Preface xxi

and scientists have found it necessary to understand the basic operation of
digital systems and how these systems can be designed if they carry out
particular information-processing tasks associated with their work. This trend
has produced a need for an introductory undergraduate course in logic design
to provide a unified overview of the interrelationship between digital system
design, computer organization, micro- and nano-electronics, and numerical
methods.

In this textbook, no specific prerequisites are assumed, nor is any knowledge
of electrical circuits or electronics required. In this way, this textbook satisfies
the requirements of interdisciplinary interest in logic design.

New Concepts in an Introductory Course

The approach taken in this book is a traditional one. That is, the emphasis
is on the presentation of basic principles of logic design and the illustration of
each of these principles. However, the following key features distinguish this
textbook:
� This textbook presents a comprehensive catalog of logic network design

techniques, including the most popular decision diagram techniques.
Standard textbooks on logic circuit design generally do not discuss
decision diagram techniques, either in their entirely or in a tutorial
manner.

� A central role is reserved for data structures, as a key to applications.
� Recent key trends in the theory and practice of logic network design

techniques are highlighted.
� Novel techniques of advanced logic design are presented with respect to

new possibilities in predictable technologies.

In summary, this is a textbook of a new generation of texts for
undergraduate students. Although classical in content, this book is different
from other introductory books on logic design in emphasizing topics, such as
design and data structures, and design and technological requirements. The
relationships between various data structures and their manipulation through
design represent the most important aspect of contemporary logic design.

This textbook is dedicated to the memory of Claude Shannon. Claude
Elwood Shannon, an electrical engineer and mathematician, was a graduate
of the University of Michigan, class of 1936. His legendary Master’s
thesis dealt with the application of Boolean logic to electronic relays, and
ushered in the era of the deployment of Boolean logic to ever-evolving
electrical circuits. Known for his mathematically rigorous approach, Shannon
remarkably contributed to scientific knowledge in the fields of communication
and logic design of discrete devices. He is widely regarded as the father of
information theory, and his work helped lay the foundation for the electronic
age. It is likely that techniques based on Shannon’s information theory will

xxii Introduction to Logic Design

become some of the main design tools for nanosystems – computing systems
for the age of nanotechnology.

We would like to acknowledge several people for their useful suggestions
and discussions:

Acknowledgments

Dr. N. Bartley, University of Calgary, Canada
Dr. D. Bochmann, University of Chemnitz, Germany
Dr. J. T. Butler, Naval Postgraduate School, Monterey, CA, U.S.A.
Dr. G. Dueck, University of New Brunswick, Canada
Dr. D. Green, University of Manchester, UK
Dr. M. Kameyama, Tohoku University, Japan
Dr. T. Luba, Warsaw University of Technology, Poland
Dr. S. E. Lyshevski, Rochester Institute of Technology, Rochester, NY, USA
Dr. D. M. Miller, University of Victoria, Canada
Dr. C. Moraga, Dortmund University, Germany
Dr. J. Muzio, University of Victoria, Canada
Dr. M. Perkowski, Portland State University, OR, U.S.A.
Dr. S. Rudeanu, University of Bucharest, Romania
Dr. T. Sasao, Kyushu Institute of Technology, Japan
Dr. R. Stanković, University of Nis, Serbia
Dr. B. Steinbach, Freiberg University of Mining and Technology, Germany
Dr. A. Stoica, California Institute of Technology, U.S.A.
Dr. H. Watanabe, Soka University, Tokyo, Japan

Also, we would like to acknowledge the efforts of the staff at CRC Press, in
particular, Nora Konopka and Prudence Board. We would like to thank our
undergraduate and graduate students, and also Ian Pollock, for their valuable
suggestions and assistance, which were helpful to us in ensuring the coherence
of topics and material delivery “synergy.”

Svetlana N. Yanushkevich

Vlad P. Shmerko

Calgary, Canada

1

Design Process and
Technology

Design process

� Design levels

� Design hierarchy

� Top-down design methodology

� Bottom-up design methodology

Implementation technologies

� Very large scale integration

� Deep submicron integration

Data structures

� Algebraic

� Graphical

Design methodologies

� Application-specific integrated circuits

� System-on-chip

Predictable technologies

� Energy-efficient design

� Nanoelectronics

� Molecular devices

Design Process and Technology 3

1.1 Introduction

Digital logic networks are used in all devices that process information in
digital form. Information – recorded or communicated facts, or data – takes a
variety of physical forms when being stored, communicated, or manipulated.
Information on the nature of a physical phenomenon is conveyed by signals
that assume a finite number of discrete values, that is, it is expressed as a
finite sequence of symbols. A signal is defined as a function of one or more
variables, and a system is defined as an entity that manipulates one or more
signals to accomplish a function, thereby yielding new signals.

In this book, each signal is assumed to have only one of two values, denoted
by the symbols 0 and 1. If the signals are constrained to only two values, the
system is binary.

There are many methodologies for discrete system design. A discrete system
is a combination of logic networks and discrete devices that is assembled to
accomplish a desired result, such as the computing and transferring of data.
Discrete system are classified using various criteria; in particular, with respect
to applications, power consumption, requirements for reliability, performance,
technological criteria, etc.

1.2 Theory of logic design

In 1854, George Boole introduced a systematic treatment of logic in the work
An Investigation of the Laws of Thought and developed for this purpose an
algebraic system, now called Algebra. Boole’s goal was the development of a
formalism to compute the truth or falsehood of complex compound statements
from the truth values of their component statements.

Boolean algebra was applied by C. Shannon in 1938 to relay-contact
networks, the first switching circuits. This theory is called switching theory
and has been used ever since in the design of digital logic networks or logic
circuits. Since then the technology has gone from relay-contacts through
diode gates, transistor gates, integrated circuits, to future nanotechnologies,
and still Boolean algebra is its fundamental and unchanging basis:

Boolean algebra
| {z }

F undamental basic

Implementation−→ Switching theory
| {z }

Logic network design

Modern logic design includes methods and techniques from various fields,
in particular:

4 Introduction to Logic Design

Methods and techniques of modern logic design

� Digital signal processing is adopted in logic design for efficient
manipulation of data.

� Communication theory to solve communication problems between
computing components in logic networks.

� Artificial intelligence methods and techniques for optimization at logic

and physical levels of logic network design.

As far as predictable technologies are concerned, non-traditional computing
paradigms that are based on various physical and chemical phenomena are
studied in logic design. The assumed stochastic nature of many processes at
nanoscale implies that random signals must be used instead of deterministic
signals. Random signals take on random values at any given moment in
time and must be modeled probabilistically, while deterministic signals can
be modeled as completely specified functions of time. The theoretical base of
probabilistic logic signals is called probabilistic logic. Schematically, advanced
logic design can be viewed as follows:

1.3 Analysis and synthesis

The specification of a system is defined as a description of its function. The
implementation of a system refers to the construction of a system (Figure 1.1).
The analysis of a system has as its objective to determine its specification from
the implementation:

Logic network
Analysis−→ Specification

Synthesis, or design, consists of obtaining an implementation that satisfies
the specification of the system:

Specification
Synthesis−→ Logic network

The central task in logic synthesis is to optimize the representation of a logic
function with respect to various criteria. In Figure 1.1, analysis and synthesis
are shown as the relationship between the specification and implementation
of a system.

A system can be examined at various levels of abstraction. Each such
level is called a design level (Figure 1.2a). The following design levels are
distinguished:

Design Process and Technology 5

Specification
Network of
modules

Analysis

Synthesis

Problems of
analysis

Problems of
synthesis

Description Implementation

FIGURE 1.1
Design of discrete systems.

� The top design level is called the architectural or system level.

� The intermediate design level is called the logic level; this level is the
subject of the present book.

� The bottom design level is called the physical level; this level is concerned
with the details needed to manufacture or assemble the system.

At the physical level, a system is implemented by a complex interconnection
of elements such as transistors, resistors, etc. Because of this complexity, it
is impractical to perform design and optimization at this level, motivating a
move to the intermediate level of design. At the intermediate level, a modular
structure provides a reasonable simplification of design. Libraries of standard
modules significantly simplify the design of different systems. Assembling
modules of increasing complexity into higher hierarchical blocks is achieved
at the system level.

1.3.1 Design hierarchy

A hierarchical approach to digital system design aims at

� Reducing the cost of the design of a system, and

� Improving the quality of the solutions obtained.

The hierarchical approach to design makes a large system more manageable
by reducing complexity and introducing a rational partitioning of the design
processes. They can be designed, tested, and manufactured separately. This
is the basis for standardization. The specified components can be mass
produced at relatively low cost. In the design process, these components
can be composed in standard libraries and reused with minor modifications.
This facilitates the reduction of overall design time and cost. The robustness
of the hierarchical approach provides many possibilities for avoiding design
errors, design corrections, and repairs after manufacture.

6 Introduction to Logic Design

Architecture

Logic design

Physical design

Top level

Intermediate
level

Bottom level

Design
 levels

Top-down
design strategy

The system architecture
is specified

Bottom-up
design strategy

The system architecture
is not specified

(a) (b) (c)

FIGURE 1.2
Design hierarchy (a), top-down (b), and bottom-up (c) design strategies.

Any design process includes a design loop that provides the possibility to
carry out a redesign if errors are detected in simulation. This loop is repeated
until the simulation indicates a successful design.

1.3.2 Design methodology

Top-down design methodology

A design that evolves from a generalized or abstract point of view and proceeds
in steps to specific components is referred to as a top-down design methodology
(Figure 1.2b):

System

architecture

| {z }

Specified

Partitioning−→
Subsystem

design

| {z }

Logic level

Design−→
Implemented

technology

| {z }

Physical level
| {z }

T o p - d o w n d e s i g n s t r a t e g y

In this approach, the hierarchy tree is traversed from top to bottom. The
system architecture is specified at the highest level first. The disadvantage
of this approach is that no systematic procedure exists for optimization of
the final implementation; that is, optimization at one particular level does
not guarantee an optimal final solution. The success of the approach depends
mainly on the experience and professional skills of the designer.

An example of an advanced top-down methodology is so-called platform-
based design. A platform is defined as a family of the designs and not a

Design Process and Technology 7

single design. In this top-down process, the constraints that accompany the
specification are mapped into constraints on the components of the platform.

Bottom-up design methodology

An alternative process to the top-down approach is a bottom-up design
methodology (Figure 1.2c):

Libraries

of primitives

| {z }

Specified

Synthesis−→
Subsystem

design

| {z }

Logic level

Synthesis−→
System

architecture

| {z }

Highest level
| {z }

B o t t o m - u p d e s i g n s t r a t e g y

This is the reverse of the top-down design process. One starts with specific
components in mind and proceeds by interconnecting these components into
a generalized system. In a bottom-up design approach, the components at
or near the lowest design level of the hierarchy tree are designed first. The
architecture of the entire system is not specified until the top of the tree
is reached. Unfortunately, in general, there is no systematic technique that
results in correct system specification.

1.3.3 Design styles

In a general sense, the following design styles are distinguished:

Digital device design styles

Full-custom design; this style provides freedom to the designer and is
characterized by great flexibility; however, this style is not acceptable
for the design of large systems.

Semi-custom design provides more possibilities for automation using, in
particular, standardization; such as a library of standard cells.

Mixed design styles often provide an acceptable reduction to the flexibility
of full-custom style, while opening up possibilities for the automation
and optimization of semi-custom style.

Gate-array design meets the requirements of fabrication and simplifies the

optimization problem; this style results in regular structures within

the chip, that is, connected cells that are placed on a chip in a regular

way.

8 Introduction to Logic Design

1.3.4 Simulation

The use of software simulation is an important part of any modern design
process. The primary uses of a simulator are to check a design for functional
correctness and to evaluate its performance. Simulators are key tools in
determining whether design goals have been met and whether redesign is
necessary. More details on sample simulation tools are given in Chapter 19.

1.4 Implementation technologies

The scaling of microelectronics down to nanoelectronics is the inevitable result
of technological evolution (Figure 1.3). The most general classification of the
trends in technology is based on grouping computers into generations. Using
this criterion, five generations of computers are distinguished (Table 1.1).
Each computer generation is 8 to 10 years in length.

1000

0.1 1 10

1

100

10 100

1000 1000100 101

Nanometer

Micrometer

Millimeter

Scaling

Computer generation
1 23 4 5

FIGURE 1.3
Progress from micro- to nanosize in computing devices.

TABLE 1.1

Computer generations are determined by the change in the dominant
technology.

Generation Dates Technology

1 1950–1964 Vacuum tubes (zero-scale integration)
2 1965–1969 Transistors (small-scale integration)

3 1970–1979
Integrated circuits (medium-scale
integration)

4 1980–2004
Large, very large, ultra large-scale
integration

5 2005– Nanotechnology (giga-scale integration)

Design Process and Technology 9

The following can be compared against this scale:

The scaling of microelectronics down to nanoelectronics

� The size of an atom is approximately 10−10 m. Atoms are composed of
subatomic particles; e.g., protons, neutrons and electrons. Protons and
neutrons form the nucleus, with a diameter of approximately 10−15 m.

� 2-dimensional molecular assembly (1 nm).

� 3-dimensional functional nanoICs topology with doped carbon molecules (2×
2× 2 nm).

� 3-dimensional nanobioICs (10 nm).

� E.coli bacteria (2 mm) and ants (5 mm) have complex and high-performance
integrated nanobiocircuitry.

� 1.5 × 1.5 cm 478-pin Intel� Pentium� processor with millions of transistors,

and Intel 4004 Microprocessor (made in 1971 with 2,250 transistors).

Binary states are encountered in many different physical forms in various
technologies. The standard approach is to use the digit symbols 0 and 1
to represent the two possible values of binary quantity. These symbols are
referred to as bits.

Binary arithmetic has the following advantages:

(a) It can be implemented using on-off switches, the simplest binary devices.

(b) It provides for the simplest decision-making such as YES (1) and NO (0).

(c) Binary signals are more reliable than those formed by more than two
quantization levels.

Significant evolutionary progress has been achieved in microelectronics.
This progress (miniaturization, optimal design and technology enhancement)
has been achieved by scaling down microdevices, approaching 45 nm sizing
features for structures, while increasing the integration level (Figure 1.4).
Complementary metal-oxide semiconductor (CMOS) technology is being
enhanced, as nanolithography, advanced etching, enhanced deposition, novel
materials, and modified processes are all currently used to fabricate ICs.
The channel length of metal-oxide-semiconductor field effect transistors
(MOSFETs) has decreased from

� 50 μm in 1960, to

� 1 μm in 1990, and to

� 130 nm in 2004, 65 nm in 2006, and 45 nm in 2007.

This progress in miniaturization and integration can be observed, for
example, on Intel processors:

10 Introduction to Logic Design

Predictable

First

Past

Today

Previous

102

103

106

101

Technology
evolution

Small

Medium

Large

Very large

1011 Super large

Small-scale integration (SSI):

� 1960s, dozens of gates in a package

Medium-scale integration (MSI):

� 1970s, hundreds of gates in a package

Large-scale integration (LSI):

� 1980s, thousands of gates in a package

Very large-scale integration (VLSI):

� 1980s and 1990s, hundreds of
thousands of gates in a package

Giga-scale integration:

� Today, millions of gates in a package

Tera-scale integration:

� Expected, hundred millions of gates in
a package

FIGURE 1.4
Evolution of technologies: levels of integration of chips.

1971–1982: From Intel 4004 (1971, 2,250 transistors), to Intel 286 (1982,
120,000 transistors),

1993–2007: From Pentium (1993, 3,100,000 transistors), to Pentium 4 (2000,
42,000,000 transistors), to ItaniumTM 2 Processor (2002), Pentium� M
Processor (2003) with hundreds of millions of transistors, and Pentium
Dual-Core in 2007.

Typical signal integrity effects include interconnect delay, crosstalk (in
closely coupled lines the phenomenon of crosstalk can be observed), power
supply integrity, and noise-on-delay effects. In the early days of very large-
scale integration (VLSI) design, these effects were negligible because of
relatively slow chip speed and low integration density. However, with the
introduction of technological generations working at about 0.25 μm scale
and below, there have been many significant changes in wiring and electrical
performance.

As the number of computational and functional units on a single
chip increases, the need for communication between those units also
increases. Interconnection has started to become a dominant factor in chip
performance. As chip speed continually increases, the increasing inductance
of interconnections affects the signal parameters.

Noise is a deviation of a signal from its intended or ideal value. Most noise
in VLSI circuits is created by the system itself. Electromagnetic interference
is an external noise source between subsystems. In deep submicron circuits,

Design Process and Technology 11

the noise created by parasitic components with digital switching exhibits the
strongest effect on system performance.

Programmable versus ASIC methodology

Application-specific integrated circuits (ASIC) design methodology has been
very successful in a wide range of applications. The system-on-chip (SoC)
is where the integration of a complete electronic system including all its
periphery occurs. The reduction in size and cost that would come with this
high level of integration opens the door to truly ubiquitous electronics.

1.5 Predictable technologies

The key to the predictable technologies of the future is changing the computing
paradigm, that is, the model of computation and the physical effects for the
realization of this model:

Computing model
| {z }

Design

Implementation−→ Physical effects
| {z }

Technology

There are fundamental technological differences among

� Nanoelectronic devices vs. microelectronic ones (which can even be
nanometers in size),

� Nanoelectronics vs. microelectronics; e.g., nano integrated circuits
vs. integrated circuits.

These enormous differences are due to differences in basic physics and
other phenomena. The dimensions of nanodevices that have been made
and characterized are a hundred times less than even newly designed
microelectronic devices (including nanoFETs with 10 nm gate length).
Nanoelectronics sizing leads to volume reduction by a factor of 1,000,000
in packaging, not to mention revolutionary enhanced functionality due to
multiterminal and spatial features. For example, molecular electronics focuses
on the development of electronic devices using small molecules with feature
sizes on the order of a few nanometers.

A wide variety of factors, such as voltage scaling and thermal noise,
dramatically reduce the reliability of integrated systems. In nanotechnologies,
process variations and quantum fluctuations occur in the operations of very-
deep submicron transistors. Any computer with nanoscale components will
contain a significant number of defects, as well as massive numbers of wires
and switches for communication purposes. It therefore makes sense to consider
architectural issues and defect tolerance early in the development of a new
paradigm.

12 Introduction to Logic Design

Two main aspects are critical to the design of nanodevices: the probabilistic
behavior of nanodevices (electrons, molecules); this means that a valid
switching function can be calculated with some probability; and the high defect
rates of nanodevices; this means that because many of the fabricated devices
have defects, their logic correctness is distorted.

There are two types of fault tolerances exhibited by a nanosystem: fault
tolerance with respect to (a) data that are noisy, distorted, or incomplete,
which results from the manner in which data are organized and represented
in the nanosystem, and (b) physical degradation of the nanosystem itself. If
certain nanodevices or parts of a network are destroyed, the network will
continue to function properly. When the damage becomes extensive, the
network will only affect the system’s performance, as opposed to causing a
complete failure. Self-assembling nanosystems are capable of this type of fault
tolerance because they store information in a distributed (redundant) manner,
in contrast to traditional storage of data in a specific memory location in which
data can be lost in the case of a hardware fault.

The methods of stochastic computing provide another approach to
overcoming the problem of the design of reliable computers from unreliable
elements, i.e., nanodevices. For example, a signal may be represented by
the probability that a logic level has a value of 1 or 0 at a clock pulse. In
this way, random noise is deliberately introduced into the data. A quantity
is represented by a clocked sequence of logic levels generated by a random
process. Operations are performed via completely random data.

1.6 Contemporary CAD of logic networks

The goal of the computer aided design (CAD) of logic network tools is to
automatically transform a description of logic networks in the algorithmic or
behavioral domains to one in the physical domain, i.e., down to a layout mask
for chip production.

A CAD system has to produce logically correct circuits correct results, but
because of the complexity of the design process, verifying the correctness
of results is a necessary phase of design. Usually, formal verification
techniques deal with different data structures and descriptions. Computer
aided design tools are intended to support all phases of digital design:
description (specification), synthesis (design), including various optimizations
to reduce cost and improve performance, and verification of the design
with respect to its specification. A CAD system for logic synthesis and
analysis employs a suitable representation that allows Boolean functions to
be manipulated. These representations are realized internally by means of
suitable data structures.

Design Process and Technology 13

Data structures are used for the description or specification of a digital
system at various levels. The first approach to describing digital systems
consists of a description of their structure through graphical data structures.
This description provides a logic diagram of the system at different levels,
showing the modules and their interconnections. This process is supported by
libraries of standard components. The second approach is the use of hardware
description language (HDL). Both approaches are considered throughout this
textbook.

1.7 Summary of design process and technology

This chapter introduces the strategic approaches undertaken in
the contemporary design of discrete devices and systems. These
approaches and trends are being directed by advances in technology.
The key aspects of this chapter are as follows:

(a) The hierarchical approach to design makes a large system
more manageable by reducing complexity. In this approach,
components can be designed, tested, and manufactured
separately. Standard components can be mass produced at
relatively low cost. This facilitates the reduction of overall
design time and cost.

(b) Both top-down and bottom-up design methodologies are
employed. A design that evolves from an abstract point of
view and proceeds to specific components is a top-down design
methodology. In this approach, the system architecture is
specified at the highest level first. An alternative process,
bottom-up design methodology, requires the components at or
near the lowest design level of the hierarchy tree to be designed
first.

(c) Data structures are the fundamental components of logic
design. No universal data structure exists that can be efficient
in all applications. Choosing an appropriate data structure
based on its advantages and disadvantages, as well as the
relationships between these structures, in order to satisfy
design requirements, are crucial points of logic design.

14 Introduction to Logic Design

Summary (continuation)

The topics of this chapter are summarized as follows:

� Information – recorded or communicated facts or data – takes
a variety of physical forms when being stored, communicated,
or manipulated. Digital logic networks are characterized by the
fact that signals assume a finite number of discrete values. A
signal is defined as a function of one or more variables that
conveys information on the nature of a physical phenomenon.
A system is an entity that manipulates one or more signals to
accomplish a function, thereby yielding new signals.

� Logic design emphasizes the development of techniques for the
design of logic networks. The basis of logic design is two-valued
Boolean algebra, also called switching algebra. Modern logic
design includes methods and techniques from various fields.

� The specification of a system is defined as a description of its
function, including various parameters for the evaluation of
a system. The implementation refers to the construction
of the system. The analysis of the system has as its
objective the determination of the system’s specification from
its implementation.

� Complex systems are modeled at various levels of detail, called
design levels: (a) architectural or system level, (b) logic
level, and (c) physical level.

� The following design styles are distinguished: (a) full-custom
design (provides freedom to the designer), (b) semi-custom
design (more possibilities for automation), and (c) mixed
design style and gate-array design (meets the requirements of
fabrication).

� Progress in microelectronics striving for miniaturization, optimal
design, and technology enhancement is achieved by the scaling
down of microdevices. For example, the channel length of
metal-oxide-semiconductor field effect transistors (MOSFETs)
decreased from 50 μm in 1960 to 1 μm in 1990, and to 45 nm in
2007.

� New horizons in design processes and technology are introduced
in the next section, “Further study.” For instance, an essential
feature of logic design for predictable technologies of the future is
that random signals be used instead of deterministic signals.
Random signals are signals that take on random values at any
given instant and must be modeled probabilistically.

Design Process and Technology 15

1.8 Further study

Historical perspective

1930: Alan Turing is often considered to be the father of modern computer science.
Turing provided an influential formalisation of the concept of the algorithm
and computation with so-called Turing machine. Turing test contributed to
the debate regarding artificial intelligence: whether it will ever be possible to
say that a machine is conscious and can think. During the Second World
War Turing worked at Bletchley Park, Britain’s codebreaking centre, the
section responsible for German naval cryptanalysis. He devised a number
of techniques for breaking German ciphers.

1947: A device called a transistor, which has several applications in radio where a
vacuum tube ordinarily is employed, was demonstrated for the first time at
Bell Telephone Laboratories.

1955: Von Neumann’s classic work on probabilistic logic and reliable computation
upon nonreliable computing elements: “Probabilistic logics and the synthesis
of reliable organisms from unreliable components”, in C. E. Shannon and
J. McCarthy, Eds., Automata Studies, pages 329–378, Princeton University
Press, Princeton, NJ, 1955.

1958: Jack S. Kilby, employee at Texas Instruments, put all the circuit elements –
transistors, resistors, and capacitors, along with their interconnecting wiring
– into a single piece of germanium. His rough prototype was a thin piece
of germanium about one-half inch long containing five separate components
linked together by tiny wires. Since then, the first commercial ICs began to
emerge at the beginning of 1960.

1968: Robert Noyce and Gordon Moore established Intel in Santa Clara, California.
Intel produced the first 1K RAM (random access memory). Gordon Moore
formulated an empirical law stating that the performance of an integrated
circuits, including the number of components on it, doubled every 18–24
months with the same chip price. This became known as Moore’s rule. It
is still holding up.

1971: Ted Hoff at Intel invented Intel’s first microprocessor (4004). The 4-bit
4004 ran at 108 kHz and contained 2300 transistors. In 1972, the 8008
microprocessor was developed, twice as powerful as the 4004.

1980: The first programmable integrated circuits were developed. These devices
contain circuits whose logical function and connectivity can be programmed by
the user, rather than being fixed by the integrated circuit manufacturer. This
allows a single chip to be programmed to implement different logic functions.
Current devices, called field programmable gate arrays (FPGAs) can now
implement tens of thousands of logic networks in parallel and operate at up
to 550 MHz.

1981: IBM PC was released.

16 Introduction to Logic Design

1985: The Intel 80386 32-bit microprocessor featured 275,000 transistors – more
than 100 times as many as the original 4004. It could run multiple programs
simultaneously.

1985: David Deutsch described how a computer might run using rules of quantum
mechanics and why such a computer differs fundamentally from ordinary
computers.

1989: The Intel 486TM processor was the first built-in math coprocessor, which
speeded up computing because it offered complex math functions from the
central processor, greatly speeding up transcendental functions.

1995: Released in the fall of 1995 the Pentium Pro processor, with 5.5
million transistor and with a second speed-enhancing cache memory chips,
was designed to support 32-bit server and workstation-level applications,
enabling fast computer-aided design, mechanical engineering and scientific
computation.

1997: The 7.5 million-transistor Pentium II processor incorporated Intel MMX
technology, which was designed specifically to process video, audio and
graphics data efficiently.

2003: The 130 nanometer technology was announced.

2005: The 65 nanometer chip manufacturing process was announced. AMD and
NEC have started using a 65 nanometer process.

2007: Intel, IBM, NEC, and AMD started using 45 nanometers for their CPU chips.

Advanced topics of logic design and technology

Topic 1: Specific-area design. The theory and techniques for logic network
design, developed to solve problems of computation and information
processing, are being very rapidly adopted by those solving problems of
communication, control, and artificial intelligence for various specific-area
applications such as humanoid robotics, decision-making support systems,
bio-medical applications, and biometric-based security systems (in particular,
artificial intelligence, encryption, watermarking, and humanoid robotics).

Topic 2: Energy-efficient design of logic networks requires specialized
techniques and tools. Mobile devices contain integrated circuits and employ
battery-powered systems. The lifetime of the battery decreases as the power
consumption of the integrated circuits grows. In energy-efficient design
techniques, the most significant power savings are achieved at high levels
of abstraction and during early phases of the design. In particular, portable
computers, mobile navigation, and robotics. One possible the approach to
energy-efficient design is the minimization of the switching activity of logic
networks. Switching activity is defined as the expected number of logic
transitions during one clock cycle.

Topic 3: Trends and potential application for nanoscale devices design.
Selected topics in the theory and technique of logic network design are found
useful in the design of computing devices based on nanotechnology. As a
result, researchers from physics and the chemical sciences have an urgent desire
and need to become familiar with the theory and practice of contemporary

Design Process and Technology 17

logic design. For earlier technologies, the relevant problems were primary
concerned with component minimization. With the development of VLSI and
ULSI logic network technologies and the advent of nanoscale technologies
in digital system design, the problems concerned with the minimization
of components have become less relevant. These types of problems have
been replaced by less well defined and much more difficult problems, such
as physical design including partitioning, layout and routing, structural
simplicity, and uniformity of modules. The last problem, uniformity, and
related data structures are of particular interest in logic design in nanoscale.
Many of these problems cannot be solved based on traditional approaches.
However, a great amount of theoretical and practical work has been done in
these areas.

Further reading

A. Advanced logic design

Digital Design: Principles and Practices by Richard S. Sandige, Prentice Hall,
2002.

Digital Design Essentials by John F. Wakerly, Prentice Hall, 2001.

“Electronic Design Automation at the Turn of Century”, special issue of the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 19, number 12, 2000.

Fundamentals of Logic Design by Jr. C. H. Roth, 5th Edition, Thomson
Brooks/Cole, 2004.

Fundamentals of Digital Logic with VHDL Design by S. Brown and Z. Vranesic,
New York, McGraw-Hill, 2000.

Introduction to Digital Logic Design by John P. Hayes, Addison-Wesley, 1993.

Introduction to Digital Systems by M. D. Ercegovac, T. Lang, and J. H. Moreno,
John Wiley & Sons, 1999.

“Logic Design of Computational Nanostructures” by S. Yanushkevich, Journal of
Computational and Theoretical Nanoscience, American Scientific Publishers,
volume 4, number 3, pages 384–407, May 2007.

“Logic Design of Nanodevices” by S. Yanushkevich, In: Handbook of Theoretical
and Computational Nanotechnology by M. Rieth, and W. Schommers, Editors,
Scientific American Publishers, Chapter 110, pages 1–52, 2007.

Logic Design Principles: With Emphasis on Testable Semicustom Circuits by
Edward J. McCluskey, Prentice Hall, 1986.

Logic Synthesis and Verification edited by S. Hassoun and T. Sasao, Consulting
Editor R. K. Brayton, Kluwer, 2002.

Synthesis and Optimization of Digital Circuits by G. De Micheli, McGraw-Hill,
1994.

Switching Theory for Logic Synthesis by T. Sasao, Kluwer, 1999.

“The Future of Logic Synthesis and Verification” by R. K. Brayton, in Logic
Synthesis and Verification Edited by S. Hassoun and T. Sasao, Consulting
Editor R. K. Brayton, Kluwer, Dordrecht, 2002.

18 Introduction to Logic Design

B. Predictable technologies and computing devices

“Computing with Molecules” by M. A. Reed and J. M. Tour, Scientific American,
pages 86–93, June 2000.

Introduction to Nanotechnology by C. P. Jr. Poole and F. J. Owens, John Wiley
& Sons, New York, 2003.

Logic Design of NanoICs by S. Yanushkevich, V. Shmerko, and S. E. Lyshevski,
CRC Press, Boca Raton, FL, 2005.

“The Topsy Turvy World of Quantum Computing” by J. Mullins, IEEE Spectrum,
pages 42–49, February 2001.

Molecular Electronics, Circuits and Processing Platforms by S. E. Lyshevski, CRC
Press, Taylor & Francis Group, Boca Raton, FL, 2007.

“Ultimate Theoretical Models of Nanocomputers” by M. P. Frank and T. F. Jr.
Knight, Nanotechnology, volume 9, pages 162–176, 1998.

2

Number Systems

Computer Arithmetic

� Binary

� Octal

� Decimal

� Hexadecimal

Binary arithmetic

� Sign and magnitude

� 1’s complement

� 2’s complement

� Addition and subtraction

Residue arithmetics

� Modular adder

� Modular subtractor

� Modular multiplier

Binary codes

� Gray code and Hamming distance

� Binary-coded decimal codes

� Weighted codes

Advanced topics

� Number systems and cryptography

� Numbers and information

Number Systems 21

2.1 Introduction

The binary number system is the most important number system in digital
design. This is because it is suited to the binary nature of the phenomena used
in dominant microelectronic technology. Even in situations where the binary
number system is not used as such, binary codes are employed to represent
information at the signal level. For example, multi-valued logic values are
often encoded using binary representations. However, humans prefer decimal
numbers, – thus, that is, binary numbers must be converted into decimal
numbers.

In this chapter, various number systems are examined that are used in
digital data structures. These number systems, such as octal and hexadecimal,
are used to simplify the manipulation of binary numbers.

2.2 Positional numbers

A number system is defined by

� Its basic symbols, called digits or numbers, and

� The ways in which the digits can be combined to represent the full range
of numbers we need.

2.2.1 The decimal system

The ten digits 0, 1, 2, . . . , 9 can be combined in various ways to represent any
number. The fundamental method of constructing a number is to form a
sequence or string of digits or coefficients :

dn−1 · · · d1d0
︸ ︷︷ ︸

Integer part

Decimal
point

↓• d−1d−2 · · · d−m
︸ ︷︷ ︸

Fractional part
︸ ︷︷ ︸

String of digits or coefficients

where integer and fractional parts are represented by n and m digits to
the left and to the right of the decimal point, respectively. The subscript
i = −m, m − 1, . . . , 0, 1, . . . , n gives the position of the digit. Depending on
the position of digits in the string, each digit has an associated value of an
integer raised to the power of 10 as follows:

22 Introduction to Logic Design

The decimal system

N = dn−1dn−2 · · · d1d0

Decimal
point

↓• d−1d−2 · · · d−m
︸ ︷︷ ︸

String of coefficients

= dn−1 × 10n−1 + dn−2 × 10n−2 + · · ·+ d1 × 101 + d0 × 100

︸ ︷︷ ︸

Computing the integer part

= d−1 × 10−1 + d−2 × 10−2 + · · ·+ d−m × 10−m

︸ ︷︷ ︸

Computing the fractional part

=
n−1
∑

i=−m

di10i

This method of representing numbers is called the decimal system. In the
positional representation of digits:

Positional representation

� Each digit has a fixed value, or weight, determined by its position.
� All the weights used in the decimal number system are powers of 10.
� Each decimal digit di ranges between 0 and 9.
� The weighting of the digits is defined relative to the decimal point. This

symbol means that digits to the left are weighted by positive powers
of 10, giving integer values, while digits to the right are weighted by
negative powers of 10, giving fractional values.

� Fractions are denoted by sequences of digits whose weights are negative
powers of 10.

Example 2.1 (Decimal numbers.) The four digits in
the number 2008 represent, from left to right, thousands (digit
2), hundreds (number 0), tens (number 0), and ones (number
8). Hence, this four-digit number can be represented in the
following form:

2008 = 2×
Weight

103 + 0×
Weight

102 + 0×
Weight

101 + 8×
Weight

100

Practice problem 2.1. (Decimal numbers.) Write the decimal

number 747 in positional form.
Answer: 747 = 7× 102 + 4× 101 + 7× 100.

Number Systems 23

Example 2.2 (Integer and fraction.) The decimal num-
ber 12.3456 consists of an integer part (12) and a fractional
part (3456) separated by the decimal point. Thus, this number
can be represented in the following form:

12.3456 = 1× 101 + 2× 100

︸ ︷︷ ︸

Integer part

+ 3× 10−1 + 4× 10−2 + 5× 10−3 + 5× 10−4

︸ ︷︷ ︸

Fractional part

The number 0.3410 is represented as

N =
−1
∑

i=−2

10i × di = 3× 10−1 + 4× 10−2 = 34/100

Practice problem 2.2. (Fraction.) What does the number 7.538

represent?
Answer is given in “Solutions to practice problems.”

2.2.2 Number radix

In general, an n-digit number in radix r consists of n digits, each taking one
of r values: 0, 1, 2, . . . , r − 1

︸ ︷︷ ︸

Radix r system

. A general number N in a positional number

system is represented by the following formula (Figure 2.1):

Number radix

N =

n+m digits
z }| {

an−1an−2 · · · a1a0
| {z }

Integer part

Radix
point

↓• a−1a−2 · · · a−m
| {z }

F ractional part

= an−1 × rn−1 + an−2 × rn−2 + · · ·+ a1 × r1 + a0 × r0

| {z }

Integer part

+ a−1 × r−1 + a−2 × r−2 + · · ·+ a−m × r−m

| {z }

F ractional part

=

n−1
X

i=−m

air
i (2.1)

where ai denotes a digit in the number system such that

0 ≤ ai ≤ (r − 1),

where r is the base of the number system, n is the number of digits in the
integer part of N , and m is the number of digits in the fractional part of N .

24 Introduction to Logic Design

The integer part is separated from the fractional part by the radix point. The
digits an−1 and a−m are referred to as the most significant digits (MSD) and
the least significant digits (LSD) of the number N , respectively.

i = − m
Σ

n − 1

di r i Number =

Digit position

Fractional part

Integer part

Digit value

Radix

FIGURE 2.1
Number representation in the positional system.

A number system is said to be of base, or radix r, because the digits are
multiplied by powers of r, and this system uses r distinct digits.

Example 2.3 (Radix.) The decimal number system is
said to be of base, or radix, 10, because the digits are
multiplied by powers of 10, and this system uses 10 distinct
digits.

To avoid possible confusion, the radix of the number system is often written
as a decimal subscript appended to the number; that is, the subscript is placed
after the LSD to indicate the radix of the number. When the context makes
the radix obvious, it is not necessary to indicate the radix.

Example 2.4 (Radix.) The radix of the number system is
written as a decimal subscript as follows. The binary (r = 2)
number 10110 can be written in the form 101102. The octal
(r = 8) number 67344.25 is indicated in the form 67344.258.
The decimal (r = 10) number 67390.845 is indicated in the form
67390.84510.

Equation 2.1 is used in number representation as follows:

Algorithm for representing a number in the radix r system

Step 1. Choose the radix r of a number system

Step 2. Choose the number of digits n in the integer part of N
Step 3. Choose the number of digits m in the fractional part of N
Step 4. Write the number N in the radix r number system

Number Systems 25

Example 2.5 (Positional number systems.) In Table
2.1, the most useful number systems are listed. Observe that for
those number systems of base less than 10, a subset of the digit
symbols of the decimal number system is used. For example,
maximal two digit numbers in various radix are as follows:112 =
310, 223 = 810, 334 = 1510, 778 = 6310, 9910, FF16 =
16× F + F .

TABLE 2.1

The most important positional number systems used in data
representation and computing (Example 2.5).

Base r Number system Digit symbols

2 Binary 0,1
3 Ternary 0,1,2
4 Quaternary 0,1,2,3
8 Octal 0,1,2,3,4,5,6,7
10 Decimal 0,1,2,3,4,5,6,7,8,9
16 Hexadecimal 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Practice problem 2.3. (Positional number systems.) Using digit

symbols for the hexadecimal number system, write digit symbols for the
duodecimal (base 12) system.
Answer: 0,1,2,3,4,5,6,7,8,9,A, and B.

Example 2.6 (Positional number system.) Given n =
3, Equation 2.1 represents a number in hexadecimal, decimal,
octal, and binary number systems by the following:

N16 =
2

X

i=0

16i × hi = h2 × 162 + h1 × 161 + h0 × 160

N10 =
2

X

i=0

10i × di = d2 × 102 + d1 × 101 + d0 × 100

N8 =
2

X

i=0

8i × oi = o2 × 82 + o1 × 81 + o0 × 80

N2 =
2

X

i=0

2i × bi = b2 × 22 + b1 × 21 + b0 × 20

The largest numbers that can be represented by three digits in
these systems are Max(N16) = FFF16 = 408110, Max(N10) =
99910, Max(N8) = 7778 = 51110, and Max(N2) = 1112 = 710.

26 Introduction to Logic Design

2.2.3 Fractional binary numbers

In the binary number positional representation, B =
∑m

i=−n 2i × bi, each
binary digit or bit, bi, is 0 or 1. The symbol “.” becomes a binary point,
separating bits on the left being weighted by positive powers of two, and
those on the right being weighted by negative powers of two.

Example 2.7 (Binary numbers.) The binary number
101.112 is written as follows:

N =
1

∑

i=−2

2i × bi

= 1× 22 + 0× 21 + 1× 20

︸ ︷︷ ︸

Integer part

+ 1× 2−1 + 1× 2−2

︸ ︷︷ ︸

Fractional part

= 5 3/4

Practice problem 2.4. (Binary numbers.) What does the num-ber

10.012 represent?
Answer is given in “Solutions to practice problems.”

Shifting the binary point one position to the left has the effect of dividing
the number by two.

Example 2.8 (Dividing by two.) The binary number
101.112 represents the decimal number 5 3/4. Shifting the point
one position to the left results in 10.1112, that is,

10.1112 = 2 + 0 + 1/2 + 1/4 + 1/8 = 2 7/8

Practice problem 2.5. (Dividing by two.) Divide the number

2 1/4 = 10.012 by two.
Answer is given in “Solutions to practice problems.”

Similarly, shifting the binary point one position to the right has the effect of
multiplying the number by two. In computing, replacing arithmetic by shifts
can occur when multiplying by constants.

Example 2.9 (Multiplying by two.) The binary number
101.112 represents the decimal number 5 3/4:

101.112 = (1 × 22) + (0× 21) + (1× 20) + (1× 2−1) + (1 × 2−2)
= 5 3/4

Shifting the point one position to the right results in 1011.12 =
11 1/2, that is,

1011.12 = (1 × 23) + (0× 22) + (1× 21) + (1× 20) + (1 × 2−1)
= 8 + 0 + 2 + 1 + 1/2 = 11 1/2

Number Systems 27

Practice problem 2.6. (Multiplying by two.) Multiply the num-

ber 1 1/8 by two.
Answer is given in “Solutions to practice problems.”

Example 2.10 (Fractional part.) Samples of integer
and fractional parts of binary numbers and their corresponding
decimal equivalents are given in Table 2.2.

TABLE 2.2

Integer and fractional parts of binary numbers (Example
2.10).

Binary Fraction (decimal) Integer (decimal)

1. 1
10. 2
100. 4
1000. 8
10000. 16
100000. 32
0.1 1/2 0.5
0.01 1/4 0.25
0.001 1/8 0.125
0.0001 1/16 0.0625

2.2.4 Word size

In discrete systems, a word refers to a set of bits. Word size is defined as
the number of bits in the binary numbers. Word size is typically a power of
two and ranges from 8 bits, called a byte, to 32, 64, 128, or even 256 in some
computers.

Example 2.11 (Byte.) A 16-bit (two-byte) represen-
tation of a binary number with 8 bits for the integer part and
8 bits for the fractional part is shown below:

8−bit integer part
z }| {

1

0

2

0

3

0
| {z }

Leading zeroes

4

1

MSB

5

1

6

0

7

1

8

0 �
Point

8−bit fractional part
z }| {

9

1

10

1

11

0

12

1

13

1

LSB

14

0

15

0

16

0
| {z }

Trailing zeroes

28 Introduction to Logic Design

Practice problem 2.7. (Byte.) Represent the number 7.062510 using

an 8-bit (byte) number (four bits for the integer part and four bits for the
fractional part).
Answer is given in “Solutions to practice problems.”

2.3 Counting in a positional number system

Counting is the fundamental operation in digital systems. A positional
number system is well-suited for counting; that is, the counting is well-
automated and implemented in software and hardware.

Example 2.12 (Positional number systems.) In Table
2.3, the counting process is illustrated in various number
systems in order to show regularities, which are useful for
automation.

Practice problem 2.8. (Positional number systems.) Using Table

2.3, write the number 1610 in the binary, ternary, octal, and hexadecimal
number systems.
Answer: 1610 = 100002 = 1213 = 208 = 1016.

2.4 Basic arithmetic operations in various number
systems

The four basic arithmetic operations:

� Addition,
� Subtraction,
� Multiplication, and
� Division

can be performed in various positional number systems.

Example 2.13 (Basic operations.) Addition and sub-
traction on the integer numbers in the binary, octal, decimal,
and hexadecimal number systems are given in Table 2.4.

Number Systems 29

TABLE 2.3

The first 16 integers in the binary, ternary, octal, decimal,
and hexadecimal number systems (Example 2.12).

Binary Ternary Octal Decimal Hexadecimal

0 0 0 0 0
1 1 1 1 1
10 2 2 2 2
11 10 3 3 3
100 11 4 4 4
101 12 5 5 5
110 20 6 6 6
111 21 7 7 7
1000 22 10 8 8
1001 100 11 9 9
1010 101 12 10 A
1011 102 13 11 B
1100 110 14 12 C
1101 111 15 13 D
1110 112 16 14 E
1111 120 17 15 F

TABLE 2.4

Some arithmetic operations with unsigned numbers.

Techniques for computing with unsigned numbers

Radix Technique

Binary (r = 2)
(310) 1 1 1 12

(210) + 0 1 1 02

(510) 1 0 1 0 12

(510) 1 1 1 12

(610) − 0 1 1 02

(1110) 1 0 0 12

Octal (r = 8)
(1510) 1 78

(610) + 68

(2110) 2 58

(1510) 1 78

(610) − 68

(910) 1 18

Decimal (r = 10)
1 510

+ 610

2 110

1 510

− 610

910

Hexadecimal (r = 16)
(1510) F16

(610) + 616

(2110) 1 516

(1510) F16

(610) − 616

(910) 916

2.5 Binary arithmetic

In the decimal system, the sign of a number is indicated by a special symbol,
“+” or “-”. In the binary system, the sign of a number is denoted by the

30 Introduction to Logic Design

left-most bit. Positive numbers are represented using the positional number
representation. The so-called unsigned representation (magnitude only) is
used to denote positive numbers.

Negative numbers can be represented in different ways. The most commonly
used are sign-and-magnitude and complemented, which can be 1’s complement
or 2’s complement notation (Figure 2.2).

an-1

Magnitude

MSB . . .

a1 a0an-2

an-1

Magnitude

. . .

a1 a0 an-2

 Sign MSB

(a) (b)

FIGURE 2.2
Unsigned number format (a) and sign-and-magnitude format (b).

Sign-and-magnitude is a two-point binary notation (one bit for sign and the
rest for magnitude):

Number = <Sign><Magnitude>

The sign bit is the left-most bit, called the most significant bit, and it is
equal to 0 for positive numbers and 1 for negative numbers.

While performing addition, the magnitudes are added, and the resulting
sum is given the sign of the operands. If the operands have opposite signs, it
is necessary to subtract the smaller number from the larger one (logic networks
that compare and subtract numbers are needed). The range of signed integers
is −(2n−1−1) ≤ x ≤ 2n−1−1. In such a system, zero has two representations:
positive zero 00 . . . 0 and negative zero 10 . . . 0.

Example 2.14 (Sign-and-magnitude.) The 8-bit sign-
and-magnitude representation of the number 1810 is

1810 = 0

Magnitude
︷ ︸︸ ︷

0010010

The 8-bit sign-and-magnitude form of the number −1810 is

−1810 = 1

Magnitude
︷ ︸︸ ︷

0010010 .

Practice problem 2.9. (Sign-and-magnitude.) Represent the

Number Systems 31

number −710 in 8-bit sign-and-magnitude form.
Answer: −710 = 100001112.

Techniques for manipulation of binary numbers in sign-and-magnitude
format are given in Table 2.5.

TABLE 2.5

Sign-and-magnitude techniques.

Techniques for computing in sign-and-magnitude format

Example Technique

(3) 0 0 1 1
(2) + 0 0 1 0
(5) 0 1 0 1

(7) 0 1 1 1
(7) + 0 1 1 1

(−6) 1 1 1 0
Incorrect

If sign bits are both 0, perform addition
of two binary numbers. If sum of the
magnitudes is greater then 2n−1 − 1, the
result is incorrect.

(+3) 0 0 1 1
(−2) + 1 0 1 0

(1) 0 0 0 1

(−3) 1 0 1 1
(+2) + 0 0 1 0
(−1) 1 0 0 1

If signs are different, compare the
magnitudes. Subtract the smallest
magnitude from the greater, and assign
to the result the sign of the greater
magnitude.

(−3) 1 0 1 1
(−2) + 1 0 1 0
(−5) 1 1 0 1

(−7) 1 1 1 1
(−1) + 1 0 0 1

(0) 1 0 0 0 0
Incorrect

If sign bits are both 1, perform addition of
both magnitudes; the sign bit of the result
is 1. If sum of the magnitudes is greater
then 2n−1 − 1, the result is incorrect.

2.6 Radix-complement representations

Consider the number D that consists of n digits di, i = 1, 2, . . . , n in the radix
r number system. There are two types of radix-complements for representation
of the number:

The r radix-complement

D = rn −D (2.2)

The r − 1 radix-complement

D = (rn − 1)−D (2.3)

32 Introduction to Logic Design

Example 2.15 (Radix-complement.) Given the binary
number D = 1012 (n = 3), the 2’s and 1’s complements are
D = 23 − 101 = 1000− 101 = 0112 and D = (23 − 1)− 101 =
111 − 101 = 0102. Given the the decimal number D = 12510

(n = 3), the 10’s and 9’s complements are D = 103 − 125 =
87510 and D = 103 − 1− 125 = 87410.

While the sign-and-magnitude system makes a number negative by changing
its sign, a complement number system makes a number negative by taking its
complement. Two numbers in a complement number system can be added or
subtracted directly without the sign and magnitude checks required by the
sign-and-magnitude system.

The radix-complement representation for decimal (r = 10) and binary
(r = 2) number systems is shown in Figure 2.3.

 Radix-complement
number representations

10’s
complement

Decimal
system

9’s
complement

2’s
complement

1’s
complement

Binary
system

10n − D

(10n -1) − D

2n − D

(2n -1) − D

FIGURE 2.3
Radix-complement representations of decimal and binary numbers.

2.6.1 10’s and 9’s complement systems

In 10’s and 9’s complement systems, positive numbers are represented using
the same binary code as for unsigned numbers. Negative numbers are
represented in a complement form.

10’s complement system

In the decimal number system, the radix-complement is called 10’s
complement.

The rule for forming the 10’s complement

Given: A decimal number D = dn−1dn . . . d0.

Step 1: Subtract each di from 9: (9−dn−1), (9−dn−2), . . . , (9−d0).
Step 2: Add 1 to the resulting number.

Number Systems 33

Example 2.16 (10’s complement.) Given the decimal
number 125, its 10’s complement is calculated as follows:

125 = (9− d2)(9− d1)(9− d0) + 1
= (9− 1)(9− 2)(9− 5) + 1 = 874 + 1 = 875

which is the same result as the that obtained by the calculation
in Example 2.15.

Practice problem 2.10. (10’s complement.) Find the 10’s

complement of the number 1710.
Answer: 1710 = (9 − 1)(9− 7) + 1 = 82 + 1 = 8310.

9’s complement

The 9’s complement of a decimal number is formed as follows:

The rule for forming the 9’s complement

Given: A decimal number D = dn−1dn . . . d0.

Step 1: Subtract each di from 9: (9−dn−1), (9−dn−2), . . . , (9−d0).

Example 2.17 (9’s complement.) Given the decimal
number 46, 125 and 5329, their 9’s complements are calculated
as follows:

46 = (9− d1)(9 − d0) = (9− 4)(9 − 6) = 53
125 = (9− d2)(9 − d1)(9 − d0) = (9− 1)(9− 2)(9− 5) = 1874

5329 = (9− d3)(9 − d2)(9 − d1)(9 − d0)
= (9− 5)(9− 3)(9− 2)(9− 9) = 4670

Practice problem 2.11. (9’s complement.) Find the 9’s

complement of the number 1710.
Answer: 1710 = (9− 1)(9− 7) = 8210.

2.6.2 1’s complement system

In 1’s complement system, positive numbers are represented in the same
way as unsigned numbers. Let a negative number −P be given, where P
is the magnitude of the number. An n-bit negative number K is obtained by
subtracting the positive number P (magnitude) from 2n − 1:

1’s complement system
K = (2n − 1)− P (2.4)

34 Introduction to Logic Design

An advantage of 1’s complement representation is that a negative number
is generated by complementing all bits of the corresponding positive number
(magnitude). The addition of 1’s complement numbers may require a
correction, and the time needed to add two 1’s complement numbers may be
twice as long as the time needed to add two unsigned numbers.

Rule for forming the 1’s complement

Given: A binary number B = bn−1bn . . . b0.

Step 1: Complement each digit of the binary number:

(1− bn−1), (1− bn−2), . . . , (1− b0)

Step 2: Add 1 to the result.

Example 2.18 (1’s complement.) An n-bit binary
representation of numbers between +7 and -7 with 1’s
complement representation of negative numbers is given below.

Binary Decimal
number number

0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 +0

Binary Decimal
number number

1111 -0
1110 -1
1101 -2
1100 -3
1011 -4
1010 -5
1001 -6
1000 -7

For example, the negative number −710 is represented as a 4-bit

number using the equation K = (24− 1)− 7 = 810 = 1 0002.
Alternatively, given −710 = 01112, its complement is the

desired number −710 = 01112 = 1 0002.

Practice problem 2.12. (1’s complement.) Represent the numbers

−5 and 5 using 4-bit binary code.
Answer: −510 = (24 − 1) − 5 = 1010 = 10102, or −510 = 01012 = 10102.
+510 = 01012.

2.6.3 2’s complement

A code for representing an n-bit negative number K is obtained by subtracting
its equivalent positive number P from 2n, i.e., K = 2n − P . An advantage
of 2’s complement representation is that when the numbers are added, the

Number Systems 35

result is always correct. If there is a carry-out from the sign-bit position, it
is simply ignored.

The rule for forming the 2’s complement

Given: The binary code for the magnitude of the negative

number B = bn−1bn . . . b0

Step 1: Complement each digit of the code

(1− bn−1), (1− bn−2), . . . , (1− b0)

Example 2.19 (2’s complement.) Binary represen-
tation of numbers between +7 and −7 with 2’s complement
representation of negative numbers is given below. Note that
the binary codes of the positive numbers are represented exactly
like the unsigned numbers.

Binary Decimal
number number

0111 +7
0110 +6
0101 +5
0100 +4
0011 +3
0010 +2
0001 +1
0000 0

Binary Decimal
number number

1111 -1
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7

For example, the negative number −710 is represented in 2’s
complement form as

−710 = 24 − 7 = 910 = 10012

Alternatively,

−710 = 11112 + 1 = 10002 + 1 = 10012

Practice problem 2.13. (2’s complement.) Represent the numbers

−610 and 610 in 2’s complement form.
Answer: −610 = 01102 + 1 = 10102. 610 = 01102.

Example 2.20 (2’s complement.) Techniques for the
addition of 2’s complement binary numbers are demonstrated
in Table 2.6.

36 Introduction to Logic Design

TABLE 2.6

Techniques for representation and addition of binary numbers:
unsigned, sign-and-magnitude, 1’s and 2’s complement.

Techniques for computing binary numbers

Radix Technique

Unsigned
(3) 0 0 1 1
(2) + 0 0 1 0
(5) 0 1 0 1

(5) 0 1 0 1
(6) + 0 1 1 0

(11) 1 0 1 1

Sign-and-magnitude
(+7) 0 1 1 1
(−2) + 1 0 1 0
(+5) 0 1 0 1

(−5) 1 1 0 1
(−2) + 1 0 1 0
(−7) 1 1 1 1

1’s complement
K = (2n − 1) − P
−5 = 1111

| {z }

24−1

− 0101
| {z }

P=5

= 1010

−9 = 11111
| {z }

25−1

− 01001
| {z }

P=9

= 10110

(+5) 0 1 0 1
+(−2) + 1 1 0 1

(+3) 1 0 0 1 0
+ −→ 1

0 0 1 1

(−5) 1 0 1 0
+(−2) + 1 1 0 1

(−7) 1 0 1 1 1
+ −→ 1

1 0 0 0

2’s complement
K = 2n − P

−5 = 1000
| {z }

24

− 0101
| {z }

P=5

= 1011

−9 = 10000
| {z }

25

− 01001
| {z }

P=9

= 10111

(+5) 0 1 0 1
+(−2) + 1 1 1 0

(+3) 1 0 0 1 1
↑

Ignore

(−5) 1 0 1 1
+(−2) + 1 1 1 0

(−7) 1 1 0 0 1
↑

Ignore

2.7 Conversion of numbers in various radices

Consider a radix r number that includes a radix point. First, the number must
be separated into an integer part and a fractional part, since the parts must
be converted differently. There are various algorithms for the conversion of
numbers between systems. In Figure 2.4, possible conversions between binary,
octal, hexadecimal, and decimal systems are shown.

Conversion of numbers from decimal to other radices

Given a decimal number, the conversion of this number to a radix r number
is as follows:

Number Systems 37

Octal number
system

Binary number

system

Hexadecimal
number system

Decimal
number system

N2 ↔ N16

N2 ↔ N10
N10 ↔ N16

N8 ↔ N16

N2 ↔ N8

N8 ↔ N10

FIGURE 2.4
Conversion of numbers in various radices Nri ↔ Nrj .

Conversion of numbers from decimal to other radices

� The conversion of a decimal integer to a radix r number is achieved by
dividing the number and all successive quotients by r and accumulating
the remainders.

� The conversion of a fraction to a radix r fraction is accomplished by multiplying
by radix r to give the integer and fraction; the new fraction is multiplied
by r to give a new integer and a new fraction. This process is continued
until the fractional part equals 0 or until there are enough digits to achieve
sufficient accuracy.

Conversion of decimal integers to binary integers

For the conversion of decimal integers to binary integers, the following steps
are needed:

Conversion of decimal integers to binary integers

Given: A decimal integer

Step 1: Divide the decimal number by two to give a quotient and

a remainder

Step 2: Divide the quotient by two to give a new quotient and a

remainder

Step 3: Repeat division until the fractional part is 0 or until

required number of digits is achieved

Result: The remainders are written bottom-up (from recent to

the first obtained) of the desired binary number

38 Introduction to Logic Design

Example 2.21 (Conversion of a decimal into a
binary number.) Convert the decimal integer number 5010

into a binary number. Figure 2.5a illustrates the conversion:

50 : 2 = 25 + 0

25 : 2 = 12 + 1

12 : 2 = 6 + 0

6 : 2 = 3 + 0

3 : 2 = 1 + 1

1 : 2 = 0 + 1

The sequence of remainders is
0,1,0,0,1,1. The result of conversion
is obtained by reading the remainders
in reverse order (from the bottom up
in Figure 2.5),

5010 = 1100102

Practice problem 2.14. (Conversion of a decimal into a binary

number.) Convert the decimal number 2159 into a binary number.
Answer is given in “Solutions to practice problems.”

Conversion of a decimal fraction to a binary fraction

For the conversion of a decimal fraction to a binary fraction, the following
steps are needed:

Conversion of a decimal fraction to a binary fraction

Given: A decimal fraction

Step 1: Multiply the fraction by 2

Step 2: Write down the obtained integer part. Multiply the

fractional part of the obtained result by 2

Step 3: Repeat until 0 is obtained as a fractional part, or

until the required accuracy is achieved

Example 2.22 (Conversion of a decimal into a
binary number.) Convert the decimal fraction 0.410 into
a binary fraction. Represent the result using 8 bits. Figure
2.5b illustrates the conversion. The result of conversion is
obtained by reading the remainders from the bottom-up, that
is, 0.410 = 011001102.

Practice problem 2.15. (Conversion of a decimal into a binary

number.) Convert +12.062510 into a binary number.
Answer is given in “Solutions to practice problems.”

Number Systems 39

Convert 5010

to a binary number

2 50

Reminder

25 0 2

12 1 2

6 02

3 0 2

1 1 2

0 1 2

Read the
result

110010

Divide
by two

5010 =1100102

Result

Convert 0.410

to an 8-bit binary number

Read the
result

0.01100110

Multiply
by two

0.410 =0.011001102

2

0.4
×

2

0.8
×

2

1.6
×

2

1.2
×

2

0.4
×

2

0.8
×

2

1.6
×

2

1.2
×

0.4

0

1

1

0

0

1

1

1

8 bits

Result

(a) (b)

FIGURE 2.5
Conversion of a integer decimal number into a binary one (a) and conversion
of a decimal fraction into a binary one (b) (Examples 2.21 and 2.22).

Conversion of decimal integers to octal integers

The following steps are needed to convert a decimal integer to an octal integer:

Conversion of decimal integer to octal integer

Given: A decimal integer.

Step 1: Divide the decimal number by 8 to give a quotient and a

remainder.

Step 2: Divide the quotient by 8 to give new quotient and a

remainder.

Step 3: Repeat division until the fractional part is 0 or until

the required number of digits is achieved.

Result: The remainders written bottom-up (from recent to the

first obtained) of the desired octal number.

Practice problem 2.16. (Conversion of a decimal into an octal

number.) Convert the decimal number 2159 into an octal number using the
intermediate binary number system (use the result of Practice problem 2.15).

40 Introduction to Logic Design

Answer is given in “Solutions to practice problems.”

Conversion of decimal integers to hexadecimal integers

The following steps are needed to convert decimal integer into hexadecimal
integer:

Conversion of decimal integer to hexdecimal integer

Given: A decimal integer.

Step 1: Divide the decimal number by 16 to give a quotient and

a remainder.

Step 2: Divide the quotient by 16 to give a new quotient and a

remainder.

Step 3: Repeat division until the fractional part is 0 or until

the required number of digits is achieved.

Result: The remainders written bottom-up (from most recent to

first obtained) of the desired hexadecimal number.

Practice problem 2.17. (Conversion of a decimal into a

hexadecimal number.) Convert the decimal number 2159 into a
hexadecimal number using the intermediate binary number system (use the
result of Practice problem 2.15).
Answer is given in “Solutions to practice problems.”

A binary number can be converted to a decimal one via an intermediate
system (octal or hexadecimal) (Figure 2.6).

Practice problem 2.18. (Conversion of decimal into octal and

hexadecimal numbers.)

(a) Convert the decimal number 74610 into an octal number.
(b) Convert the decimal number 74610 into a hexadecimal number.

Answer is given in “Solutions to practice problems.”

Techniques for conversion between binary, octal, and hexadecimal number
systems are given in Table 2.7.

2.8 Overflow

The operations under consideration here are executed within the binary
system as well other systems of restricted word length or number of digits.

Number Systems 41

TABLE 2.7

Techniques for conversion between binary, octal, and hexadecimal numbers
systems.

Techniques for conversion between numbers

Example Technique

Binary to octal

11010012 = 001
|{z}

1

101
|{z}

5

001
|{z}

1

= 1518

Separate the bits into groups of three,
starting from the right.

10101.01012 = 010
|{z}

2

101
|{z}

5

. 010
|{z}

2

100
|{z}

4

= 25.248 For the fractional part, start from the
left.

Octal to binary

457.248 = 100
|{z}

4

101
|{z}

5

111
|{z}

7

. 010
|{z}

2

100
|{z}

4

Replace each octal digit with a 3-bit
string.
For the fractional part, start from the
left.

Binary to hexadecimal

1011011012 = 0001
| {z }

1

0110
| {z }

6

1101
| {z }

D

= 16D16

Separate the bits into groups of four,
starting from the right.

10111.112 = 0001
| {z }

1

0111
| {z }

7

. 0011
| {z }

3

= 17.316 For the fractional part, start from the
left.

Hexadecimal to binary

5E416 = 0101
| {z }

5

1110
| {z }

E

0100
| {z }

4

Replace each hexadecimal digit with
the corresponding 4-bit string.

C2.A116 = 1100
| {z }

C

0010
| {z }

2

. 1010
| {z }

A

0001
| {z }

1

For the fractional part, start replacing
from the left.

Octal to hexadecimal

13528 = 001
|{z}

1

011
|{z}

3

101
|{z}

5

110
|{z}

6

= 0010
| {z }

2

1110
| {z }

E

1010
| {z }

A

= 2EA16

Separate the bits into groups of three,
starting from the right, and then re-
group into groups of four.

Hexadecimal to octal

2EA16 = 0010
| {z }

2

1110
| {z }

E

1010
| {z }

A

= 001
|{z}

1

011
|{z}

3

101
|{z}

5

010
|{z}

2

= 13528

Replace each hexadecimal digit with a
4-bit binary string.
Separate the bits into groups of four,
starting from the right, and then re-
group into groups of three.

42 Introduction to Logic Design

Techniques for conversion between numbers

Binary number system

Digital
technology

Octal
number
system

Hexa-
decimal
number
system

Decimal number system

Preferred by
humans

Intermediate
number systems

Conversion

Examples of conversion using
intermediate number systems:

100
|{z}

48

0002
| {z }

08

= 408

= 4× 81 + 0× 80

= 3210

0001
| {z }

116

10012
| {z }

916

= 1916

= 1× 161 + 9× 160

= 2510

FIGURE 2.6
Binary numbers are converted into decimal ones using octal and hexadecimal
systems.

Below we will focus on the binary number system. Binary word size
determines the range of the allowed number values of both operands and
results.

Example 2.23 (The range.) Given a 4-bit word, the
binary numbers that can be represented are varied: (a) from
−710 = 11112 to +710 = 01112 for unsigned numbers; (b) from
−710 = 11112 to +710 = 01112 in the sign-magnitude system;
(c) from −810 = 10002 to +710 = 01112 for the 2’s complement
system.

In particular, if an addition operation in the 2’s complement system
produces a result that does not fit the range −2n−1 to 2n−1 − 1, then we
say that arithmetic overflow has occurred. To ensure the correct operation,
it is important to be able to detect the occurrence of overflow.

The following rules are used for detecting overflow:

The rules for detecting overflow

Rule 1: An addition overflows if:

(a) The signs of the addends are the same and

(b) The sign of the sum is different from the addends’ sign

Rule 2: An addition overflows (Figure 2.7) if

the carry-in, Cin, and the carry-out of the most significant

bit in 2’s complement representation are different, Cin �= Cout.

Number Systems 43

 an-1

 . . . LSB

a1 a0an-2

 Sign MSB

Magnitude

Cin

(carry-in)

Cout

(carry-out)

An addition overflows if the carry bit
Cin into and carry bit Cout out of the
sign position are different:

Cin �= Cout

There is no overflow if

Cin = Cout

FIGURE 2.7
Overflow detection using carries.

Example 2.24 (Overflow.) Figure 2.8 illustrates four
cases of overflow detection using carry bits Cin and Cout for
the two 4-bit binary numbers. Note that in all cases the sign
bit is included in computing the sum.

Practice problem 2.19. (Detection of overflow.) Find which of

the following operations result in overflow using 6-bit 2’s complement codes
of the given decimal numbers:

(a) 1410 + 2210 (c) (−1810) + (−2710)
(b) (−1810) + (−1110) (d) 2510 + (−1710)

Answer is given in “Solutions to practice problems.”

2.9 Residue arithmetic

Residue arithmetic offers the alternative number format. An arithmetic
operation performed on n-bit numbers may produce a result that is too long
to be represented completely by n bits; that is, overflow occurs. In residue
arithmetic, the results of all arithmetic operations are confined to some fixed
set of m values such as 0, 1, . . . , m − 1. Residue arithmetic ensures a finite
word size in computing and is widely used in computing devices.

2.9.1 The basics of residue arithmetic

A residue is defined as the remainder after a division. Given the representation
of an integer N ,

N = Im + r

44 Introduction to Logic Design

Techniques for overflow detection

1 1 1 0

Magnitude

Overflow Cin =1

0 1 0 0

+7 =

+2 =

+9 = 0 0 1 1

Sign

No overflow Cout = 0

In +710 + 210 = +910:

� The numbers have the same sign.
� The magnitude of the result in binary

representation is 1001, which cannot be
represented with three significant bits.

� (Cin = 1) �= (Cout = 0)
� Conclusion: overflow.

0 0 1 1

Magnitude

No overflow Cin = 0

0 1 0 0

-7 =

+2 =

- 5 = 0 1 1 1

Sign

No overflow Cout = 0

In −710 + 210 = −510:

� The numbers have opposite signs.
� The magnitude of the result in binary

representation is 101, which can be
represented with three significant bits.

� (Cin = 0) = (Cout = 0)
� Conclusion: no overflow.

1 1 1 0

Magnitude

Overflow Cin =1

1 1 0 1

+7 =

-2 =

+5 = 1 0 1 0

Sign

Overflow Cout = 1

In +710 − 210 = 510:

� The numbers have opposite signs.
� The magnitude of the result in binary

representation is 5, which can be
represented with three significant bits.

� (Cin = 1) = (Cout = 1)
� Conclusion: no overflow.

1 1 1 0

Magnitude

No overflow Cin =0

1 1 0 1

-7 =

-2 =

-9 = 1 0 1 0

Sign

Overflow Cout = 1

In −710 − 210 = −910:

� The numbers have the same sign.
� The magnitude of the result in binary

representation is 9, which can be
represented with three significant bits.

� (Cin = 0) �= (Cout = 1)
� Conclusion: overflow.

FIGURE 2.8
Overflow detection using carries Cin and Cout.

Number Systems 45

where m is a check base and I is an integer, so that 0 ≤ r ≤ m, and N is said
to be equivalent to modulo m to r:

r ≡ N (mod m)

The numbers a and b are said to be equivalent to modulo m if the remainder
obtained when a is divided by m is the same as the remainder that is obtained
when b is divided by m:

a ≡ b (mod m)

(read as “a is congruent b modulo m”).

Example 2.25 (Residue arithmetic.) If a = 10 and
b = 18, then 10 ≡ 18 (mod 8) since

10 = 1× 8 +

Remainder
︷︸︸︷

2 and 18 = 2× 8 −

Remainder
︷︸︸︷

2

Example 2.26 (Residue arithmetic.)

(a) 3 ≡ 17 (mod 7) because 3− 17 = −14 is divisible by 7.

(b) −2 ≡ 13 (mod 3) because −2− 13 = −15 is divisible by 3.

(c) 60 ≡ 10 (mod 25) because 60−10 = −50 is divisible by 25.

(d) −4 ≡ −49 (mod 9) because −4 − (−49) = 45 is divisible
by 9.

It follows from these examples that an integer a is congruent to 0, a ≡
0 (mod m), if and only if it is divisible by m. Additional properties of
congruence are:

� a ≡ a (mod m) (reflexive property),
� If a ≡ b (mod m), then b ≡ a (mod m) (symmetry property), and
� If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m) (transitive

property).

2.9.2 Addition in residue arithmetic

If a ≡ b (mod m) and c ≡ d (mod m), then

Addition in residue arithmetic

a + c ≡ b + d (mod m)
a− c ≡ b− d (mod m)

46 Introduction to Logic Design

Example 2.27 (Addition.) Find the sum 1017 +
2876 (mod 7). There are two ways to calculate the sum. First
approach: 1017 + 2876 = 3893 ≡ 1 (mod 7). Second approach:
1017 ≡ 2 (mod 7), 2876 ≡ 6 (mod 7), and 1017 + 2876 ≡
2 + 6 = 8 ≡ 1 (mod 7). The second approach is preferable
because it keeps the numbers involved small.

Practice problem 2.20. (Addition.) Find the sum of two

congruences: 13 ≡ 4 (mod 9) and 16 ≡ −2 (mod 9).
Answer: 13 + 16 ≡ 4− 2 = 29 ≡ 2 (mod 9).

2.9.3 Multiplication in residue arithmetic

If a ≡ b (mod m) and c ≡ d (mod m), then

Multiplication in residue arithmetic

ac ≡ bd (mod m)

Example 2.28 (Multiplication.) Find the product
1017 × 2876 (mod 7). Solution: 1017 ≡ 2 (mod 7), 2876 ≡
6 (mod 7), and 1017× 2876 ≡ 2× 6 = 12 ≡ 5 (mod 7)4.

Practice problem 2.21. (Multiplication.) Find the multiplication

of two congruences: 13 ≡ 4 (mod 9) and 16 ≡ −2 (mod 9).
Answer: 13× 16 ≡ 4× (−2) = 208 ≡ −8 (mod 9).

Example 2.29 (Addition and multiplication modulo
m=5.) Addition and multiplication modulo 5 of two residues
are given in the following tables:

Addition Subtraction Multiplication

a + c ≡ b + d (mod 5) a − c ≡ b − d (mod 5) ac ≡ bd (mod m)

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

− 0 1 2 3 4
0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

For example, the residue 3 subtracted from the residue 1
modulo 5 is calculated as 1−3 equals −2, and −2 ≡ 3 (mod 5),
so the difference is the residue 3. The product of the two
residues 3 and 4 modulo5 is the residue 2, because 3 × 4 ≡
2 (mod 5).

Number Systems 47

2.9.4 Computing powers in residue arithmetic

If a ≡ b (mod m), then

Computing powers in residue arithmetic

an ≡ bn (mod m) for every positive integer n

Example 2.30 (Computing powers.) Find the products
10172 (mod 7), 10173 (mod 7), 10174 (mod 7), 10175 (mod 7),
101712 (mod 7). Since 1017 ≡ 2 (mod 7),

10172 ≡ 22 (mod 7)

10173 = 10172 × 1017 ≡ 4× 2 = 8 ≡ 1 (mod 7)

10174 = 10173 × 1017 ≡ 1× 2 = 2 (mod 7)

10175 = 10174 × 1017 ≡ 2× 2 = 4 (mod 7)

101712 = ((10174))3 ≡ 23 = 8 ≡ 1 (mod 7)

Practice problem 2.22. (Computing powers.) Compute 313.

Answer is given in “Solutions to practice problems.”

The following property of a residue arithmetic is useful, for example, in
electronic cash systems. The quadratic residues of a set modulo n are the
elements that have a square root in the set.

Example 2.31 (Computing powers.) For n = 11, the
number 4 is a quadratic residue because 22 (mod 11) = 4. The
number 5 is also a quadratic residue because 72 (mod 11) = 5.
If n is prime, then there are (n − 1)/2 quadratic residues. In
the case of n = 11, the residues are:

12 = 1 (mod 11)

22 = 4 (mod 11)

32 = 9 (mod 11)

42 = 5 (mod 11)

52 = 3 (mod 11)

62 = 3 (mod 11)

72 = 5 (mod 11)

82 = 9 (mod 11)

92 = 4 (mod 11)

102 = 1 (mod 11)

Each quadratic residue has two square roots if n is prime. One of them is
smaller than n/2. The other is larger.

2.9.5 Solving modular equations

To solve a congruence or a system of congruences involving one or more
unknowns means to find all possible values of the unknowns which make the

48 Introduction to Logic Design

congruence true.

Example 2.32 (Modular equation.) Solution of the
congruence 3x ≡ 1 (mod 5) can be found by trying all possible
values of x modulo 5:

If x = 0, then 3x = 0 ≡ 0 (mod 5)

If x = 1, then 3x = 3 ≡ 3 (mod 5)

If x = 2, then 3x = 6 ≡ 1 (mod 5)

If x = 3, then 3x = 9 ≡ 4 (mod 5)

If x = 4, then 3x = 12 ≡ 2 (mod 5)

Since the modulus is 5, the integer x is in the range 0 ≤ x ≤ 5.
Thus, the only solution to the congruence is x = 2.

Practice problem 2.23. (Modular equation.) Solve the following

congruences if possible: (a) 3x ≡ 1 (mod 6) and (b) 3x ≡ 3 (mod 6).
Answer is given in “Solutions to practice problems.”

2.9.6 Complete residue systems

In residue arithmetic, an integer is represented as a set of residues with respect
to a set of relatively prime integers called moduli. Residue arithmetic is
defined in terms of a set of relatively prime moduli {r1, r2, . . . , rs}, where
the greatest common divisor is equal to 1 for each pair of moduli. The set of
integers {r1, r2, . . . , rs} is called a complete residue system modulo m if ri �= rj

(mod m) whenever i �= j, and for each integer n exists a corresponding ri such
that n = ri (mod m).

Example 2.33 (Complete residue system.) The sets
{1, 2, 3}, {−1, 0, 1}, and {1, 7, 9} are all complete residue
systems modulo 3. The set {0, 1, 2, 3, 4, 5} is a complete residue
system modulo 6. It should be noted that this set can be reduced
to {1, 5}.

While in ordinary arithmetic there is an infinite number of integers
0, 1, 2, . . . , in modular arithmetic there is essentially only a finite number
of integers.

