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Preface

Medical imaging is an indispensible tool for many branches of medicine. It
enables and facilitates the capture, transmission, and analysis of medical
images and aids in medical diagnoses. The use of medical imaging is still on
the rise with new imaging modalities being developed and continuous improve-
ments being made to devices’ capabilities. Recently, computational intelligence
techniques have been employed in various applications of medical imaging and
have been shown to be advantageous compared to classical approaches, par-
ticularly when classical solutions are difficult or impossible to formulate and
analyze. In this book, we present some of the latest trends and developments
in the field of computational intelligence in medical imaging.

The first three chapters present the current state of the art of various areas
of computational intelligence applied to medical imaging. Chapter 1 details
neural networks, Chapter 2 reviews evolutionary optimization techniques, and
Chapter 3 covers in detail rough sets and their applications in medical image
processing.

Chapter 4 explains how neural networks and support vector machines can
be utilized to classify wound images and arrive at decisions that are compa-
rable to or even more consistent than those of clinical practitioners. Neural
networks are also explored in Chapter 5 in the context of accurately extract-
ing the boundaries of skin lesions, a crucial stage for the identification of
melanoma. Chapter 6 discusses tabu search, an intelligent optimization tech-
nique, for feature selection and classification in the context of prostate cancer
analysis.

In Chapter 7, the authors demonstrate how image processing techniques
based on intuitionistic fuzzy sets can successfully handle the inherent uncer-
tainties present in mammographic images. Fuzzy logic is also employed in
Chapter 8, where fuzzy set–based clustering techniques for medical image
segmentation are discussed.

A comprehensive system for handling and utilizing biomedical image
databases is described in Chapter 9: The features extracted from medical
images are encoded within a Bayesian probabilistic framework that enables
learning from previously retrieved relevant images. Chapter 10 explores how
machine learning techniques are used to develop a statistical parts-based
appearance model that can be used to encapsulate the natural intersubject
anatomical variance in medical images.

vii



viii Preface

In Chapter 11, a multistage image segmentation algorithm based on
reinforcement learning is introduced and successfully applied to the prob-
lem of prostate segmentation in transrectal ultrasound images. Chapter 12
presents a machine learning approach for automatic segmentation and diag-
nosis of bone scintigraphy. Chapter 13 employs a set of intelligent agents that
communicate via a blackboard architecture to provide accurate and efficient
3-D medical image segmentation.

Chapter 14 explains how Monte Carlo simulations are employed to perform
reconstruction of SPECT and PET tomographic images. Chapter 15 discusses
the use of artificial life concepts to develop intelligent, deformable models that
segment and analyze structures in medical images.

Obviously, a book of 15 chapters is nowhere near sufficient to encompass
all the exciting research that is being conducted in utilizing computational
intelligence techniques in the context of medical imaging. Nevertheless, we
believe the chapters that were selected from among almost 40 proposals and
rigorously reviewed by three experts present a good snapshot of the field. This
work will prove useful not only in documenting recent advances but also in
stimulating further research in this area.

Gerald Schaefer, Aboul Ella Hassanien, Jianmin Jiang
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Chapter 1

Computational Intelligence on
Medical Imaging with Artificial
Neural Networks

Z. Q. Wu, Jianmin Jiang, and Y. H. Peng
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Neural networks have been widely reported in the research community
of medical imaging. In this chapter, we provide a focused literature survey
on neural network development in computer-aided diagnosis (CAD), medi-
cal image segmentation and edge detection toward visual content analysis,
and medical image registration for its preprocessing and postprocessing. From
among all these techniques and algorithms, we select a few representative ones
to provide inspiring examples to illustrate (a) how a known neural network
with fixed structure and training procedure can be applied to resolve a med-
ical imaging problem; (b) how medical images can be analyzed, processed,
and characterized by neural networks; and (c) how neural networks can be
expanded further to resolve problems relevant to medical imaging. In the con-
cluding section, a comparison of all neural networks is included to provide
a global view on computational intelligence with neural networks in medical
imaging.
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2 Medical Imaging Techniques and Applications

1.1 Introduction

An artificial neural network (ANN) is an information processing system
that is inspired by the way biological nervous systems store and process infor-
mation like human brains. It contains a large number of highly interconnected
processing neurons working together in a distributed manner to learn from the
input information, to coordinate internal processing, and to optimize its final
output. In the past decades, neural networks have been successfully applied
to a wide range of areas, including computer science, engineering, theoretical
modeling, and information systems. Medical imaging is another fruitful area
for neural networks to play crucial roles in resolving problems and providing
solutions. Numerous algorithms have been reported in the literature applying
neural networks to medical image analysis, and we provide a focused survey on
computational intelligence with neural networks in terms of (a) CAD with spe-
cific coverage of image analysis in cancer screening, (b) segmentation and edge
detection for medical image content analysis, (c) medical image registration,
and (d) other applications covering medical image compression, providing a
global view on the variety of neural network applications and their potential
for further research and developments.

Neural network applications in CAD represent the mainstream of compu-
tational intelligence in medical imaging. Their penetration and involvement
are comprehensive for almost all medical problems because (a) neural net-
works can adaptively learn from input information and upgrade themselves in
accordance with the variety and change of input content; (b) neural networks
can optimize the relationship between the inputs and outputs via distributed
computing, training, and processing, leading to reliable solutions desired by
specifications; (c) medical diagnosis relies on visual inspection, and medical
imaging provides the most important tool for facilitating such inspection and
visualization.

Medical image segmentation and edge detection remains a common prob-
lem fundamental to all medical imaging applications. Any content analy-
sis and regional inspection requires segmentation of featured areas, which
can be implemented via edge detection and other techniques. Conventional
approaches are typified by a range of well-researched algorithms, including
watershed, region-growing, snake modeling, and contour detection. In com-
parison, neural network approaches exploit the learning capability and train-
ing mechanism to classify medical images into content-consistent regions to
complete segmentations as well as edge detections.

Another fundamental technique for medical imaging is registration, which
plays important roles in many areas of medical applications. Typical examples
include wound care, disease prediction, and health care surveillance and mon-
itoring. Neural networks can be designed to provide alternative solutions via
competitive learning, self-organizing, and clustering to process input features
and find the best possible alignment between different images or data sets.
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The remainder of this chapter provides useful insights for neural network
applications in medical imaging and computational intelligence. We explain
the basics of neural networks to enable beginners to understand the structure,
connections, and neuron functionalities. Then we present detailed descriptions
of neural network applications in CAD, image segmentation and edge detec-
tion, image registration, and other areas.

1.2 Neural Network Basics

To enable understanding of neural network fundamentals, to facilitate pos-
sible repetition of those neural networks introduced and successfully applied
in medical imaging, and to inspire further development of neural networks, we
cover essential basics in this section about neural networks to pave the way for
the rest of the chapter in surveying neural networks. We start from a theoret-
ical model of one single neuron and then introduce a range of different types
of neural networks to reveal their structure, training mechanism, operation,
and functions.

The basic structure of a neuron can be theoretically modeled as shown in
Figure 1.1.

Figure 1.1 shows the model of a single neuron, where X{xi, i = 1, 2, . . . , n}
represents the inputs to the neuron and Y represents the output. Each input
is multiplied by its weight wi, a bias b is associated with each neuron, and
their sum goes through a transfer function f . As a result, the relationship
between input and output can be described as follows.

Y = f

(
n∑

i=1

wixi + b

)
(1.1)

A range of transfer functions have been developed to process the weighted
and biased inputs. Four of the basic transfer functions widely adopted for
medical image processing are illustrated in Figure 1.2.

Via selection of transfer function and connection of neurons, various neu-
ral networks can be constructed to be trained for producing the specified out-
puts. Major neural networks commonly used for medical image processing are

b

n

i51
wi xi

Transfer
function

x1

f
x2

xn
Output

Y

w1

w2

wn

Weights
1

Inputs

FIGURE 1.1: The model of a neuron.



4 Medical Imaging Techniques and Applications

�1

�1

�1

�1
0

�1

�1

0

�1

�1

0 0

(a) (b) (c) (d)

FIGURE 1.2: Four widely adopted transfer functions: (a) hardlimit,
(b) linear, (c) RBF, and (d) sigmoid.

classified as feedforward neural network, feedback network, and self-organizing
map. The learning paradigms for the neural networks in medical image pro-
cessing generally include supervised networks and unsupervised networks. In
supervised training, the training data set consists of many pairs in the source
and target patterns. The network processes the source inputs and compares
the resulting outputs against the target outputs, and adjusts its weights to
improve the correct rate of the resulting outputs. In unsupervised networks,
the training data set does not include any target information.

A general feedforward network [1] often consists of multiple layers, typically
including one input layer, a number of hidden layers, and an output layer.
In the feedforward neural networks, the neurons in each layer are only fully
interconnected with the neurons in the next layer, which means signals or
information being processed travel along a single direction.

A back-propagation (BP) network [2] is a supervised feedforward neural
network, and it is a simple stochastic gradient descent method to minimize
the total squared error of the output computed by the neural network. Its
errors propagate backwards from the output neurons to the inner neurons. The
processes of adjusting the set of weights between the layers and recalculating
the output continue until a stopping criterion is satisfied.

The radial basis function (RBF) [3] network is a three-layer, supervised
feedforward network that uses a nonlinear transfer function (normally the
Gaussian) for the hidden neurons and a linear transfer function for the output
neurons. The Gaussian is applied to the net input to produce a radial function
of the distance between each pattern vector and each hidden unit weight
vector.

The feedback (or recurrent) neural network [4] can have signals traveling in
both directions by introducing loops. Their state is changing continuously until
they reach an equilibrium point. They remain at the equilibrium point until
the input changes and a new equilibrium must be found. They are powerful
but can get extremely complicated.

The Hopfield network [4] is a typical feedback, and its inspiration is to
store certain patterns in a manner similar to the way the human brain stores
memories. The Hopfield network has no special input or output neurons, but
all neurons are both input and output, and all of them connect to all others in
both directions. After receiving the input simultaneously by all the neurons,
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they output to each other, and the process does not stop until a stable state
is reached. In the Hopfield network, it is simple to set up the weights between
neurons in order to set up a desired set of patterns as stable class patterns.
The Hopfield network is an unsupervised learning network and thus does not
require a formal training phase.

Quite different from feedforward and feedback networks, the Kohonen neu-
ral network (a self-organizing map, SOM) [5] learns to classify input vectors
according to how they are grouped in the input space. In the network, a
set of artificial neurons learns to map points in an input space to the coor-
dinates in an output space. Each neuron stores a weight vector (an array
of weights), each of which corresponds to one of the inputs in the data.
When presented with a new input pattern, the neuron whose weight is clos-
est in Euclidian space to the new input pattern is allowed to adjust its
weight so that it gets closer to the input pattern. The Kohonen neural net-
work uses a competitive learning algorithm to train itself in an unsupervised
manner.

In Kohonen neural networks, each neuron is fed by input vector (data
point) x ∈ Rn through a weight vector w ∈ Rn. Each time a data point is
input to the network, only the neuron j whose weight vector most resembles
the input vector is selected to fire, according to the following rule:

j = arg min(‖x − w‖2) (1.2)

The firing or winning neuron j and its neighboring neurons i have their
weight vectors w modified according to the following rule:

wi(t + 1) = wi(t) + hij(‖ri − rj‖, t) · (x(t) − wi(t)) (1.3)

where hij(||ri − rj ||, t) is a kernel defined on the neural network space as a
function of the distance ||ri−rj || between the firing neuron j and its neighbor-
ing neurons i, and the time t defines the number of iterations. Its neighboring
neurons modify their weight vectors so they also resemble the input signal,
but less strongly, depending on their distance from the winner.

The remainder of the chapter provides detailed descriptions of compu-
tational intelligence in medical imaging with neural networks. Their recent
applications are classified into four categories: CAD, image segmentation, reg-
istration, and other applications. Each section gives more details on an appli-
cation in one of these categories and provides overviews of the other relevant
applications. A comparison of neural networks is presented in Section 1.7.

1.3 Computer-Aided Diagnosis (CAD) with Neural
Networks

Neural networks have been incorporated into many CAD systems, most
of which distinguish cancerous signs from normal tissues. Generally, these
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systems enhance the images first and then extract interesting regions from
the images. The values of many features are calculated based on the extracted
regions and are forwarded to neural works that make decisions in terms of
learning, training, and optimizations. Among all applications, early diagnosis
of breast cancers and lung cancers represents the most typical examples in the
developed CAD systems.

Ge and others [6] developed a CAD system to identify microcalcification
clusters automatically on full-field digital mammograms. The main procedures
of the CAD system included six stages: preprocessing, image enhancement,
segmentation of microcalcification candidates, false positive (FP) reduction
for individual microcalcifications, regional clustering, and FP reduction for
clustered microcalcifications.

To reduce FP individual microcalcifications, a convolution neural network
(CNN) was employed to analyze 16 × 16 regions of interest centered at the
candidate derived from segmentations. The CNN was designed to simulate
the vision of vertebrate animals and could be considered a simplified vision
machine designed to perform the classification of the regions into two out-
put types: disease and nondisease. Their CNN contained an input layer with
14 neurons, two hidden layers with 10 neurons each, and one output layer.
The convolution kernel sizes of the first group of filters between the input and
the first hidden layer were designed as 5 × 5, and those of the second group
of filters between the first and second hidden layers were 7 × 7. The images
in each layer were convolved with convolution kernels to obtain the pixel val-
ues to be transferred to the following layer. The logistic sigmoid function
was chosen as the transfer function for both the hidden neurons and output
neurons. An illustration of the neural network structure and its internal con-
nections between the input layer, hidden layer, and output layers is given in
Figure 1.3.

1

2

N2

N1

2

1

Input ROI 1st Hidden
layer

2nd Hidden
layer

Output
neuron

FIGURE 1.3: Schematic diagram of a CNN.
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The convolution kernels are arranged in a way to emphasize a number
of image characteristics rather than those less correlated values derived from
feature spaces of input. These characteristics include (a) the horizontal ver-
sus vertical information, (b) local versus nonlocal information, and (c) image
processing (filtering) versus signal propagation [7].

The CNN was trained using a backpropagation learning rule with the sum-
of-squares error (SSE) function, which allowed a probabilistic interpretation
of the CNN output, that is, the probability of correctly classifying the input
sample as a true microcalcification region of interest (ROI).

At the stage of FP reduction for clustered microcalcifications, morpholog-
ical features (such as the size, mean density, eccentricity, moment ratio, axis
ratio features, and number of microcalcifications in a cluster) and features
derived from the CNN outputs (such as the minimum, maximum, and mean
of the CNN output values) were extracted from each cluster. For each cluster,
25 features (21 morphological plus 4 CNN features) were extracted. A lin-
ear discriminating analysis (LDA) classifier was then applied to differentiate
clustered microcalcifications from FPs. The stepwise LDA feature selection
involved the selection of three parameters for selection.

In the study by Ge and colleagues, a set of 96 images was split into a
training set and a validation set, each with 48 images. An appropriate set of
parameters was selected by searching in the parameter space for the combi-
nation of three parameters of the LDA that could achieve the highest classi-
fication accuracy with a relatively small number of features in the validation
set. Then the three parameters of LDA were applied to select a final set of
features and the LDA coefficients by using the entire set of 96 training images,
which contained 96 true positive (TP) and over 500 FP clusters. The trained
classifier was applied to a test subset to reduce the FPs in the CAD system [6].

To develop a computerized scheme for the detection of clustered microcal-
cifications in mammograms, Nagel and others [8] examined three methods of
feature analysis: rule based (the method currently used), an ANN, and a com-
bined method. The ANN method used a three-layer error-backpropagation
network with five input units corresponding to the radiographic features of
each microcalcification and one output unit corresponding to the likelihood of
being a microcalcification. The reported work revealed that two hidden units
were insufficient for good performance of the ANN, and it was necessary to
have at least three hidden units to achieve adequate performance. However,
the performance was not improved any further when the number of hidden
units was increased over three. Therefore, the finalized ANN had five inputs,
three hidden units, and one output unit. It was reported that such a combined
method performed better than any method alone.

Papadopoulossa, Fotiadisb, and Likasb [9] presented a hybrid intelligent
system for the identification of microcalcification clusters in digital mam-
mograms, which could be summarized in three steps: (a) preprocessing and
segmentation, (b) ROI specification, and (c) feature extraction and classifi-
cation. In the classification schema, 22 features were automatically computed
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that referred either to individual microcalcifications or to groups of them.
The reduction of FP cases was performed using an intelligent system contain-
ing two subsystems: a rule-based system and a neural network-based system.
The rule construction procedure consisted of the feature identification step
as well as the selection of the particular threshold value for each feature.
Before using the neural network, the reduction in the number of features
was achieved through principal component analysis (PCA), which transforms
each 22-dimensional feature vector into a 9-dimensional feature vector as the
input to the neural network. The neural network used for ROI characteriza-
tion was a feedforward neural network with sigmoid hidden neuron (multilayer
perceptron, MLP).

Christoyiani, Dermatas, and Kokkinakis [10] presented a method for fast
detection of circumscribed mass in mammograms employing an RBF neural
network (RBFNN). In the method, each neuron output was a nonlinear trans-
formation of a distance measure of the neuron weights and its input vector.
The nonlinear operator of the RBFNN hidden layer was implemented using
a Cauchy-like probability density function. The implementation of RBFNN
could be achieved by using supervised or unsupervised learning algorithms
for an accurate estimation of the hidden layer weights. The k-means unsu-
pervised algorithm was adopted to estimate the hidden-layer weights from a
set of training data containing statistical features from both circumscribed
lesions and normal tissue. After the initial training and the estimation of the
hidden-layer weights, the weights in the output layer were computed by using
Wincer-filter theory, or minimizing the mean square error (MSE) between the
actual and the desired filter output.

Patrocinio and others [11] demonstrated that only several features, such as
irregularity, number of microcalcifications in a cluster, and cluster area, were
needed as the inputs of a neural network to separate images into two distinct
classes: suspicious and probably benign. Setiono [12] developed an algorithm
by pruning a feedforward neural network, which produced high accuracy rates
for breast cancer diagnosis with a small number of connections. The algorithm
extracted rules from a pruned network by considering only a finite number of
hidden-unit activation values. Connections in the network were allowed only
between input units and hidden units and between hidden units and output
units. The algorithm found and eliminated as many unnecessary network con-
nections as possible during the training process. The accuracy of the extracted
rules from the pruned network is almost as high as the accuracy of the original
network.

The abovementioned applications cover different aspects of applying neu-
ral networks, such as the number of neurons in the hidden layer, the reduction
of features in classifications, and the reduction of connections for better effi-
ciency. Similar improvements could be made in applying ANN to other prac-
tical utilizations rather than just in identifying microcalcification clusters.

ANN also plays an important role in detecting the cancerous signs in lungs.
Xu and colleagues [13] developed an improved CAD scheme for the automated
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detection of lung nodules in digital chest images to assist radiologists who may
miss up to 30% of the actually positive cases in their daily practice. In the
CAD scheme, nodule candidates were selected initially by multiple gray-level
thresholds of the difference image (subtraction of a signal-enhanced image and
a signal-suppressed image) and then classified into six groups. A large number
of FPs were eliminated by adaptive rule-based tests and an ANN.

Zhou and others [14] proposed an automatic pathological diagnosis pro-
cedure called neural ensemble-based detection that utilized an ANN ensem-
ble to identify lung cancer cells in the specimen images of needle biopsies
obtained from the bodies of the patients to be diagnosed. An ANN ensemble
formed a learning paradigm while several ANNs were jointly used to solve
a problem. The ensemble was built on a two-level ensemble architecture,
and the predictions of those individual networks were combined by plural-
ity voting.

Keserci and Yoshida [15] developed a CAD scheme for automated detection
of lung nodules in digital chest radiographs based on a combination of morpho-
logical features and the wavelet snake. In their scheme, an ANN was used to
efficiently reduce FPs by using the combined features. The scheme was applied
to a publicly available database of digital chest images for pulmonary nodules.
Qian and others [16] trained a computer-aided cytologic diagnosis (CACD)
system to recognize expression of the cancer biomarkers histone H2AX in lung
cancer cells and then tested the accuracy of this system to distinguish resected
lung cancer from preneoplastic and normal tissues. The major characteristics
of CACD algorithms were to adapt detection parameters according to cellular
image contents. Coppini and colleagues [17] described a neural network–based
system for the computer-aided detection of lung nodules in chest radiograms.
The approach was based on multiscale processing and feedforward neural net-
works that allowed an efficient use of a priori knowledge about the shape of
nodules and the background structure.

Apart from the applications in breast cancer and lung cancer, ANN has
been adopted in many other analyses and diagnosis. Mohamed and others [18]
compared bone mineral density (BMD) values for healthy persons and iden-
tified those with conditions known to be associated with BMD obtained
from dual X-ray absorptiometry (DXA). An ANN was designed to quanti-
tatively estimate site-specific BMD values in comparison with reference val-
ues obtained by DXA. Anthropometric measurements (i.e., sex, age, weight,
height, body mass index, waist-to-hip ratio, and the sum of four skinfold thick-
nesses) were fed to an ANN as input variables. The estimates based on four
input variables were generated as output and were generally identical to the
reference values among all studied groups.

Scott [19] tried determining whether a computer-based scan analysis could
assist clinical interpretation in this diagnostically difficult population. An
ANN was created using only objective image-derived inputs to diagnose the
presence of pulmonary embolism. The ANN predictions performed compara-
bly to clinical scan interpretations and angiography results.
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In all the applications mentioned above, the roles of ANNs have a common
principle in the sense that most of them are applied to reduce FP detections
in both mammograms and chest images via examining the features extracted
from the suspicious regions. As a matter of fact, ANN is not limited to aca-
demic research but also plays important roles in commercially available diag-
nosis systems, such as ImageChecker for mammograms.

1.4 Medical Image Segmentation and Edge Detection
with Neural Networks

Medical image segmentation is a process for dividing a given image into
meaningful regions with homogeneous properties. Image segmentation is an
indispensable process in outlining boundaries of organs and tumors and in the
visualization of human tissues during clinical analysis. Therefore, segmenta-
tion of medical images is very important for clinical research, diagnosis, and
applications, leading to requirement of robust, reliable, and adaptive segmen-
tation techniques.

Kobashi and others [20] proposed an automated method to segment the
blood vessels from three-dimensional (3-D) time-of-flight magnetic resonance
angiogram (MRA) volume data. The method consisted of three steps: removal
of the background, volume quantization, and classification of primitives by
using an artificial neural network.

After volume quantization by using a watershed segmentation algorithm,
the primitives in the MRA image stand out. To further improve the result
of segmentation, the obtained primitives had to be separated into the blood
vessel class and the fat class. Three features and a three-layered, feedforward
neural network were adopted for the classification. Compared with the fat,
the blood vessel is like a tube—long and narrow. Two features, vascularity
and narrowness, were introduced to measure such properties. Because the
histogram of blood vessels is quite different from that of the fat in shapes,
the third feature, histogram consistency, was added for further improvement
of the segmentation.

The feedforward neural network is composed of three layers: an input layer,
a hidden layer, and an output layer. The structure of the described neural
network is illustrated in Figure 1.4.

As seen, three input units were included at the input layer, which was
decided by the number of features extracted from medical images. The number
of neurons in the output layer was one to produce two classes. The number
of neurons in the hidden layer was usually decided by experiments. Generally,
a range of different numbers were tried in the hidden layer, and the number
that achieved the best training results was selected.

In the proposed method, the ANN classified each primitive, which was
a clump of voxels, by evaluating the intensity and the 3-D shape. In their
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FIGURE 1.4: Three-layer feedforward neural network.

experiments, the ANN was trained using 60 teaching data sets derived from
an MRA data set. Each primitive was classified into the blood vessel (indi-
cated by the value of 1) or the fat (indicated by the value of 0), and the
values of the three features were calculated. All these values were fed into the
feedforward ANN for training the weights of the neurons. Seven new MRA
data, whose primitives were unclassified, were fed into the trained neural net-
work for testing. The segmentation performance was measured by the value
of accuracy, as defined in Equation 1.4, and the rate achieved by the reported
algorithm is 80.8% [20].

Accuracy =
Number of correctly classified primitives

Total number of primitives
× 100% (1.4)

Apart from the work proposed by Kobashi and colleagues in ANN-based
segmentation, there are many applications for the images generated by com-
puted tomography (CT) and magnetic resonance imaging (MRI). Middle-
ton and Damper [21] combined use of a neural network (an MLP, a type
of feedforward neural network) and active contour model (“snake”) to seg-
ment structures in magnetic resonance (MR) images. The highlights of the
reported work can be summarized by the following two steps:

1. The perceptron was trained to produce a binary classification of each
pixel as either a boundary or a nonboundary;

2. The resulting binary (edge-point) image formed the external energy
function for a snake model, which was applied to link the candidate
boundary points into a continuous and closed contour.

Lin [22] applied the Hopfield neural network (a feedback neural network)
with penalized fuzzy c-means (FCM) technique to medical image segmenta-
tion. In the algorithm, the pixels with their first- and second-order moments
constructed from their n nearest neighbors as a training vector were mapped
to a two-dimensional (2-D) Hopfield neural network for the purpose of classi-
fying the image into suitable regions.

Lin and colleagues [23] generalized the Kohonen competitive learning
(KCL) algorithm with fuzzy and fuzzy-soft types called fuzzy KCL (FKCL)
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and fuzzy-soft KCL (FSKCL). These KCL algorithms fused the competitive
learning with soft competition and FCM membership functions. These gener-
alized KCLs were applied to MRI and MRA ophthalmological segmentations.
It was found that these KCL-based MRI segmentation techniques were use-
ful in reducing medical image noise effects using a learning mechanism. The
FSKCL algorithm was recommended for use in MR image segmentation as an
aid to small lesion diagnosis.

Dokur and Olmez [24] proposed a quantizer neural network (QNN) for
the segmentation of MR and CT images. QNN was a novel neural network
structure and was trained by genetic algorithms. It was comparatively exam-
ined with an MLP and a Kohonen network for the segmentation of MR and
CT head images. They reported that QNN achieved the best classification
performance with fewer neurons after a short training time.

Stalidis and others [25] presented an integrated model-based processing
scheme for cardiac MRI, which was embedded in an interactive computing
environment suitable for quantitative cardiac analysis. The scheme provided a
set of functions for the extraction, modeling, and visualization of cardiac shape
and deformation. In the scheme, a learning segmentation process incorporating
a generating–shrinking neural network was combined with a spatiotemporal
parametric model through functional basis decomposition.

Chang and Ching [26] developed an approach for medical image segmen-
tation using a fuzzy Hopfield neural network based on both global and local
gray-level information. The membership function simulated with neuron out-
puts was determined using a fuzzy set, and the synaptic connection weights
between the neurons were predetermined and fixed in order to improve the
efficiency of the neural network.

Shen and others [27] proposed a segmentation technique based on an
extension to the traditional FCM clustering algorithm. In their work, a neigh-
borhood attraction, which was dependent on the relative location and features
of neighboring pixels, was shown to improve the segmentation performance,
and the degree of attraction was optimized by a neural-network model. Simu-
lated and real brain MR images with different noise levels were segmented to
demonstrate the superiority of the technique compared to other FCM-based
methods.

Chang and Chung [28] designed a two-layer Hopfield neural network called
the competitive Hopfield edge-finding neural network (CHEFNN) to detect the
edges of CT and MRI images. To effectively remove the effect of tiny details
or noises and the drawback of disconnected fractions, the CHEFNN extended
the one-layer 2-D Hopfield network at the original image plane to a two-layer
3-D Hopfield network with edge detection to be implemented on its third
dimension. Under the extended 3-D architecture, the network was capable
of incorporating a pixel’s contextual information into a pixel-labeling proce-
dure. In addition, they [29] discovered that high-level contextual information
could not be incorporated into the segmentation procedure in techniques
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using traditional Hopfield neural networks and thus proposed the contextual
constraint-based Hopfield neural cube (CCBHNC) for image segmentation.
The CCBHNC adopted a 3-D architecture with pixel classification imple-
mented on its third dimension. Recently, still for the edge detection, Chang [30]
presented a specially designed Hopfield neural network called the contex-
tual Hopfield neural network (CHNN). The CHNN mapped the 2-D Hopfield
network at the original image plane. With direct mapping, the network was
capable of incorporating pixels’ contextual information into an edge-detecting
procedure. As a result, the CHNN could effectively remove the influence of
tiny details and noise.

Most of these applications were developed based on CT or MRI images but
the neural networks adopted are in quite different ways. ANN can reduce the
influence of noise in the image and hence make the segmentation more robust.
Further, ANN can classify different tissues and then combine them accord-
ing to segmentation requirements, which is beyond the power of traditional
segmentation.

1.5 Medical Image Registration with Neural Networks

Image registration is the process of transforming the different sets of data
into one coordinate system. Registration is necessary in order to be able to
compare or integrate the images from different measurements, which may be
taken at different points in time from the same modality or obtained from the
different modalities such as CT, MR, angiography, and ultrasound. Medical
imaging registration often involves elastic (or nonrigid) registration to cope
with elastic deformations of the body parts imaged. Nonrigid registration of
medical images can also be used to register a patient’s data to an anatomical
atlas. Medical image registration is the preprocessing needed for many medical
imaging applications with strong relevance to the result of segmentation and
edge detection.

Generally, image registration algorithms can be classified into two groups:
area-based methods and feature-based methods. For area-based image regis-
tration methods, the algorithm looks at the structure of the image via correla-
tion metrics, Fourier properties, and other means of structural analysis. Most
feature-based methods fine-tune their mapping to the correlation of image
features: lines, curves, points, line intersections, boundaries, and so on.

To measure the volume change of lung tumor, Matsopoulos and colleagues
[31] proposed an automatic, 3-D, nonrigid registration scheme that applied
SOM to thoracic CT data of patients for establishing correspondence between
the feature points. The practical implementation of this scheme could pro-
vide estimations of lung tumor volumes during radiotherapy treatment plan-
ning. In the algorithm, the automatic correspondence of the interpolant points
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FIGURE 1.5: The elastic registration scheme.

was based on the initialization of the Kohonen neural network model able to
identify 500 corresponding pairs of points approximately in the two CT sets
S1 and S2. An overview of the described algorithm is illustrated in Figure 1.5.

In the algorithm, two sets of points were defined: S2 is the set of points
for vertebrae, ribs, and blades segmented from the reference data; and S1 is
the set of points for the same anatomical structures from the second data set,
called float data. Preregistration took place between these sets of points, and
triangulation of S1 was performed. The preregistration process was applied
in three dimensions and was applied in order to realign the two data sets in
all coordinates. After preregistration, two steps were performed to obtain the
interpolant points:

1. Triangulating S1 and producing a wire frame based on the topology of
S1; the triangulation was based on Feitzke’s work [32] and was performed
by defining an SOM with the following characteristics:

a. A grid of neurons with 20 rows by 100 columns (20 × 100) was
chosen for the specific implementation.

b. The initial weighting vectors of the neurons of the grid were set
equal to the coordinates of a set of points extracted from an enclos-
ing surface, typically a cylindrical surface.

c. The input to the neural network consisted of the Cartesian coordi-
nates of the set of points to be triangulated.

After the process of adaptation of the neural network, the weighting
vectors of the neurons had values identical to the appropriate points
of S1. A wire frame consisting of one node for each neuron could be
constructed, with Cartesian coordinates of each node equal to the weight
vector of the corresponding neuron. The wire frame was triangulated
according to the connectivity of the neurons.

2. Establishing an SOM in terms of the topology of S1 and training the
SOM by using S2; the search for corresponding points was based on
replicating the topology of the set S1 on the input layer of an SOM
model. In the SOM model, one neuron was allocated to each node of the
wire frame and the connections between the neurons were identical to the
connections of the wire frame. No connection between two neurons was
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accepted when the two corresponding nodes were not directly connected
in the float set. The initial weight vector of the neurons was the Cartesian
coordinates of the corresponding wire frame nodes in the 3-D space.

The training of the network was realized by providing the network with
the coordinates of randomly selected points sampled from the reference set
S2. The neuron with weight vector closest to signal was selected to fire. The
firing neuron adjusted its weight vector, and its neighboring neurons modified
their weight vectors as well but less strongly. The neighboring neurons were
restricted to a window of 3 × 3 neurons during the network training.

The convergence of the SOM network during the triangulation of S1 set
of points leads to a triangulated subset of points (S1

′). Each node of subset
S1

′ corresponded to a neuron of the SOM network (20 × 100 neurons), whose
initial weighting vector (wx0, wy0, wz0) in S1 was set to the initial Cartesian
coordinates of this node. In S1, this node was moved to new coordinates and
equal to the final weighting vector (wx1, wy1, wz1). The new position always
coincided with a point in S2.

Although SOM lateral interactions between neurons generated a one-to-
one point correspondence, more than one point from S1

′ might correspond to
one point in S2. However, most such point mismatches are avoided by using
a distance threshold criterion to exclude corresponding points exceeding a
distance of more than five voxels. With the help of this process, excessive
deformation of the final warped image was also prohibited. Therefore, the total
number of successful corresponding points was cut down to approximately 500
pairs of points for all patient data [31].

SOM also has been used in many other applications. Shang, Lv, and Yi
[33] developed an automatic method to register CT and MR brain images
by using first principal directions of feature images. In the method, a PCA
neural network was used to calculate the first principal directions from feature
images, and then the registration was realized by aligning feature images’ first
principal directions and centroids.

Coppini, Diciotti, and Valli [34] presented a general approach to the prob-
lem of image matching that exploits a multiscale representation of local image
structure. In the approach, a given pair of images to be matched were named
target and stimulus, respectively, and were transformed by Gabor wavelets.
Correspondence was calculated by exploiting the learning procedure of a neu-
ral network derived from Kohonen’s SOM. The SOM neurons coincided with
the pixels of the target image, and their weights were pointers to those in the
stimulus images. The standard SOM rule was modified to account for image
features.

Fatemizadeh, Lucas, and Soltanian-Zadeh [35] proposed a method for auto-
matic landmark extraction from MR brain images. In the method, land-
mark was extracted by modifying growing neural gas (GNG), which was a
neural network–based cluster-seeking algorithm. Using the modified GNG
(a splitting–merging SOM), corresponding dominant points of contours
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extracted from two corresponding images are found. The contours were the
boundaries of the regions generated by segmenting the MR brain image.

Di Bona and Salvetti [36] developed the volume-matcher 3-D project, an
approach for a data-driven comparison and registration of 3-D images. The
approach was based on a neural network model derived from self-organizing
maps and extended to match a full 3-D data set of a source volume with the
3-D data set of a target volume.

These applications suggest that SOM is a promising algorithm for elastic
registration, which is probably due to its clustering characteristics.

1.6 Other Applications with Neural Networks

In addition to those mentioned previously, ANN has been applied to other
relevant areas such as medical image compression, enhancement, and restora-
tion. In image compression [37,38], medical images such as mammograms are
usually quite large in size and are stored in databases inside hospitals, which
causes some difficulties in image transfer over the Internet or intranet. Some
researchers applied ANN to existing compression algorithms to select inter-
esting regions transmission for transmission or reduce the errors during the
quantization in compression [40–43,47].

Panagiotidis and others [39] proposed a neural network architecture to
perform lossy compression on medical images. To achieve higher compression
ratio while retaining the significant (from a medical viewpoint) image content,
the neural architecture adaptively selected ROI in the images.

Karlik [40] presented a combined technique for image compression based
on the hierarchical finite state vector quantization and neural networks. The
algorithm performed nonlinear restoration of diffraction-limited images con-
currently with quantization. The neural network was trained on image pairs
consisting of a lossless compression algorithm named hierarchical vector quan-
tization.

Meyer-Bäse and colleagues [41] developed a method based on topology-
preserving neural networks to implement vector quantization for medi-
cal image compression. The method could be applied to larger image
blocks and represented better probability distribution estimation methods.
A “neural-gas” network for vector quantization converged quickly and reached
a distortion error lower than that from Kohonen’s feature map. The influence
of the neural compression method on the phantom features and the mammo-
grams was not visually perceptible up to a high compression rate.

Jaiswal and Gaikwad [42] trained a resilient backpropagation neural net-
work to encode and decode the input data so that the resulting difference
between input and output images was minimized. Lo, Li, and Freedman [43]
developed a neural network–based framework to search for an optimal wavelet
kernel that could be used for a specific image processing task. In the algorithm,
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a linear convolution neural network was applied to seek a wavelet that mini-
mized errors and maximized compression efficiency for an image or a defined
image pattern such as microcalcifications in mammograms and bone in CT
head images.

To enhance original images, ANN has been used to suppress unwanted
signals such as noise and tissues affecting cancerous signs. Suzuki and others
[44] proposed an analysis method that makes clear the characteristics of the
trained nonlinear filter, which is based on multilayer neural networks, and
developed an approximate filter that achieves very similar results but was
computational cost-efficient.

To detect lung nodules overlapped with ribs or clavicles in chest radio-
graphs, Suzuki and colleagues [45] developed an image-processing technique
for suppressing the contrast of ribs and clavicles in chest radiographs by means
of a multiresolution massive training artificial neural network (MTANN). The
structure of this neural network is illustrated in Figure 1.6, in which “bone”
images are obtained by use of a dual-energy subtraction technique [46] as
the teaching images to facilitate the neural network training. After that, the
multiresolution MTANN was able to provide “bone-image-like” images that
were similar to the teaching bone images. By subtracting the bone-image-like
images from the corresponding chest radiographs, they were able to produce
“soft-tissue-image-like” images where ribs and clavicles were substantially
suppressed.

The MTANN consists of a linear-output multilayer ANN model, which
was capable of operating on image data directly. The linear-output multilayer
ANN model employed a linear function as the transfer function in the output
layer because the characteristics of an ANN were improved significantly with
a linear function when applied to the continuous mapping of values in image
processing [47]. The inputs of the MTANN are the pixel values in a size-fixed
subimage and can be written as

�Ix,y = {I1, I2, . . . , IN} (1.5)

Overlapped
subimage

Linear-output
multilayer ANN

Output
image

Teaching
image

FIGURE 1.6: Architecture of MTANN.
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where N is the number of inputs (i.e., the number of pixels inside a subimage).
The output of the nth neuron in the hidden layer is represented by

On = fh

{
N∑

m=1

wmn · Im − bn

}
(1.6)

where wmn is a weight between the mth unit in the input layer and the nth
neuron in the hidden layer, fh is a sigmoid function, and bn is an offset of the
nth unit in the hidden layer. The output of the neuron in the output layer is
represented by

f(x, y) = fo

{
Nh∑

m=1

wo
m · OH

m − bo

}
(1.7)

where wo
m is a weight between the mth neuron in the hidden layer and the

neuron in the output layer, bo is an offset of the neuron in the output layer,
and fo is a linear function.

To train MTANN, a dual-energy subtraction technique [48] was used to
obtain the teaching image T (i.e., “bone” images) for suppression of ribs in
chest radiographs. Input chest radiographs were divided pixel by pixel into
a large number of overlapping subimages. Each subimage I(x, y) corresponds
to a pixel T (x, y) in the teaching image, and the MTANN was trained with
massive subimage pairs as defined in Equation 1.8:

{I(x, y), T (x, y) |x, y ∈ RT } =
{(

�I1, T1

)
, (�I2, T2), . . . , (�INT

, TNT
)
}

(1.8)

where RT is a training region corresponding to the collection of the centers of
subimages, and NT is the number of pixels in RT . After training, the MTANN
is expected to produce images similar to the teaching images (i.e., bone-image-
like images).

Since ribs in chest radiographs included various spatial–frequency compo-
nents and it was difficult in practice to train the MTANN with a large subimage,
multiresolution decomposition/composition techniques were employed in the
algorithm. Three MTANNs for different resolutions were trained independently
with the corresponding resolution images: a low-resolution MTANN was used
for low-frequency components of ribs, a medium-resolution MTANN was used
for medium-frequency components, and a high-resolution MTANN was used for
high-frequency components. After training, the MTANNs produced a complete
high-resolution image based on the images with different resolution [45].

Hainc and Kukal [49] found the ANN could also be employed as a kind
of a sophisticated nonlinear filter on a local pixel neighborhood (3× 3), since
linear system sensitivity to impulse (isolated) noise was not good.

Chen, Chiueh, and Chen [50] introduced an ANN architecture for reduc-
ing the acoustic noise level in MRI processes. The proposed ANN consisted of
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two cascaded time-delay ANNs. The ANN was employed as the predictor of a
feedback active noise control (ANC) system for reducing acoustic noises. Pre-
liminary results showed that with the proposed ANC system installed, acoustic
MR noises were greatly attenuated, while verbal communication during MRI
sessions was not affected.

Apart from compression and enhancement, ANN has been applied to medi-
cal image processing for other purposes. Wu [51] developed a new method to
extract the patient information number field automatically from the film-
scanned image using a multilayer cluster neural network. Cerveri and oth-
ers [52] presented a hierarchical RBF network to correct geometric distortions
in X-ray image intensifiers, which reduced the accuracy of image-guided pro-
cedures and quantitative image reconstructions.

Hsu and Tseng [53] established a method to predict and create a profile
of bone defect surfaces by a well-trained 3-D orthogonal neural network. To
train the neural network to team the scattering characteristic, the coordinates
of the skeletal positions around the boundary of bone defects were input into
the network. After the neural network had been well trained, the mathematic
model of the bone defect surface was generated, and the pixel positions were
obtained. The 3-D orthogonal neural network avoided local minima and con-
verges rapidly.

It is difficult to generalize all these applications of ANN into several unified
models. However, it might be possible to analyze the general pattern of apply-
ing ANNs. In Section 1.7, a comparison is made by studying the applications
described in all previous sections.

1.7 Conclusions

As described in the previous five sections, applications of neural networks
are classified into four major categories. These applications seem quite differ-
ent from one another and cover many aspects of medical image processing. To
summarize all the neural networks successfully applied to medical imaging, we
highlight the comparisons of their application patterns, structures, operations,
and training design in Table 1.1. Because there is no theory to indicate what
is the best neural network structure for medical image processing and pattern
recognition, the information such as type of network, type of input, number
of inputs, neurons in hidden layers, and neurons in output is listed to help
with searching and designing similar neural networks for future applications.
Although these applications may come from different areas, such as CAD and
segmentation, and inputs for neural networks are various, the essential pur-
pose of applying these neural networks lies in their classifications, providing
inspiring summary for existing modes of neural network applications and thus
leading to further developments. Since the data sets for these applications are
quite different, it is not possible to compare their results and the performance
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of these algorithms. Some applications are ignored in the list because the
details about their neural networks are limited. The total number of neurons
needed in the hidden layers somewhat depends on the total number of training
samples.

In contrast to feedforward neural network, the applications of feedback
neural networks for medical image processing have been quite limited in the
past decade, and most of them are in the area of image segmentation and are
primarily based on Hopfield neural networks. The similarities among these
applications are quite limited, but all of them need to minimize an energy
function during convergence of the network. The energy function must be
designed individually, which might affect its application in medical imaging.
Because the Hopfield neural network is unsupervised, it may not work for
CAD like the feedforward neural network, which requires a priori knowledge
in classifications.

Although the applications of Kohonen’s SOM are not as many as those
of feedforward neural networks, its clustering and unsupervised properties
make it very suitable for image registration. SOM converges to a solution that
approximates its input data by adapting to prototype vectors. During this
process, the relation of its neighborhood neurons is also taken into account,
leading to preservation of topology and mapping of training sets. For the
applications of image registration, the input vectors of the neurons in SOM
usually contain the spatial coordinate and intensity of pixels. For applications
in image compression, SOM is used as a topology-preserving feature map to
generate vector quantization for code words. Sometimes, SOM produces the
segmentation results for feedforward neural networks due to its unsupervised
clustering property.

In summary, the applications of ANN in medical image processing have to
be analyzed individually, although many successful models have been reported
in the literature. ANN has been applied to medical images to deal with
the issues that cannot be addressed by traditional image processing algo-
rithms or by other classification techniques. By introducing ANNs, algo-
rithms developed for medical image processing and analysis often become
more intelligent than conventional techniques. While this chapter provided
a focused survey on a range of neural networks and their applications to
medical imaging, the main purpose here is to inspire further research and
development of new applications and new concepts in exploiting neural
networks.
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Many scientific problems can be formulated as optimization problems.
Among the many classes of algorithms for solving such problems, one interest-
ing, biologically inspired group is that of evolutionary optimization techniques.
In this chapter, we provide an overview of such techniques, in particular of
genetic algorithms and genetic programming and its related subtasks of selec-
tion, crossover, mutation, and coding. We then explore some applications of
genetic techniques in the context of medical imaging.
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2.1 Evolutionary Computing

Many scientific problems can be viewed as search or optimization prob-
lems, where an optimum input parameter vector for a given system has to
be found in order to maximize or to minimize the system response to that
input vector. Often, auxiliary information about the system, like its transfer
function and derivatives, is not known, and the measures might be incomplete
and distorted by noise. This makes such problems difficult to solve by tra-
ditional mathematical methods. Evolutionary optimization algorithms, which
are based on biological principles borrowed from nature, can offer a solution.
These algorithms work on a population of candidate solutions, which are iter-
atively improved so that an optimal solution evolves over time.

This chapter discusses the general problem of search and optimization
before it introduces the system’s view, followed by a definition of search space
and fitness landscape. It then explains the process of optimization and the
concept of optimization loops. It introduces biologically inspired evolution-
ary optimization algorithms: genetic algorithms and genetic programming.
Finally, it provides an overview of same sample applications of evolutionary
approaches in medical imaging.

2.1.1 Systems

Every process or object can be seen as a system. Fenton and Hill (1993)
define a system as “an assembly of components, connected together in an
organised way, and separated from its environment by a boundary. This organ-
ised assembly has an observable purpose which is characterised in terms of how
it transforms input from the environment into output to the environment.”
By definition, a system has exactly one input channel x and exactly one out-
put channel y (see Figure 2.1). All interactions with the environment must be
made through these interfaces.

Both input and output can be vectors or scalars. The input is called the
independent variable or parameter, because its value(s) can be chosen freely,
and it results in the output y, the so-called dependent variable. If the present
state of the system does not depend on previous states but only on the current
input, the system is said to be a steady-state system, and the output of the
system can be described as a function of the input y = f(x).

System Sx y

FIGURE 2.1: Generic system.
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2.1.2 Objective function

In order to rate the quality of a candidate solution x, it is necessary to
transform the system response to x into an appropriate measure, called the
objective or fitness. If the system has only one output variable, the system
output y equals the fitness. If y has more than one component, the output
variables of the system have to be combined into a single value, computed by
the objective function or fitness function. In general, there are four approaches
to judge the system output: aggregation, the changing objectives method, the
use of niche techniques, and Pareto-based methods (Fonseca and Fleming,
1995). The most often used method is aggregation. In its simplest case, the
fitness function F (x) equals the weighted sum of the components yi = ci ·Fi(x)
of y, where ci is the weight for component i:

F (x) = c0 + c1 · F1(x) + · · · + cn · Fn(x) (2.1)

2.1.3 Search space and fitness landscape

If all the possible candidate solutions are collected in an ordered way, this
collection is called the search space and sometimes the input space. For an
optimization problem of dimension n, that is, a system with n independent
parameters, the search space also has dimension n. Adding the dimension
fitness or costs to the search space results in the (n + 1) dimensional fitness
landscape (Wright, 1931); see Figure 2.2.
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FIGURE 2.2: Example of a fitness landscape for a system with two input
parameters.
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2.1.4 Optimization

Optimization (Schwefel, 1995) is the process of selecting the best candidate
solution from a range of possibilities (i.e., from the search space). In other
words, a system S that has to be optimized in terms of a quality output value
y is brought into a new state that has a better quality output value y than the
previous state. This is done by changing the independent input parameters x.
The error function describes the difference between the predefined objective
ydesired and system response f(x) to the input x.

Error(x) = ydesired − f(x) (2.2)

Usually, the aim is to find the vector x′ that leads to a minimal error for
the system S, that is, the minimal departure from the optimal output value:

Error(x′) = 0 (2.3)

Often, a predefined target value is not known. In this case, one tries to
gain a fitness value that is as high as possible in the case of maximization
or as low as possible in the case of minimization. Ideally, one would evaluate
all possible candidates and choose the best one. This is known as exhaustive
search. However, often it is not feasible to consider all possible solutions,
for example, if the search space is too large and the evaluation of a single
candidate is too expensive. In such cases, only a subset of the solutions can
be evaluated.

Optimization problems can be either function optimization problems or
combinatorial problems. The first class of problems can be divided into con-
tinuous optimization and discrete optimization problems. In continuous func-
tion optimization, the independent variables are real numbers, whereas for
discrete function optimization, the independent variables can be chosen only
from a predefined set of allowed and somehow ordered numbers, such as
{10, 20, 30, 40}.

In combinatorial optimization problems, the optimum sequence or combi-
nation of a fixed set of input values has to be found. Here, the input values are
symbols and might not be connected or ordered, for example {apple, orange,
strawberry}. An example of a combinatorial optimization problem is the clas-
sical traveling salesman problem (TSP), where a sales agent needs to visit a
predefined set of cities and return to base. The problem here is to find an
optimal route that connects all cities while having the shortest travel distance
by choosing the order in which the cities are visited.

2.1.5 Optimization loop

Mathematical or calculus-based methods use known functional relation-
ships among variables and objectives to calculate the optimum of the given
system. Therefore, an exact mathematical model of the process must exist.
Edelbaum (1962) introduced the differentiation of calculus-based methods in
direct methods and indirect methods.



Evolutionary Computing and Its Use in Medical Imaging 31

System Sx y

Algorithm

Target value

FIGURE 2.3: Closed optimization loop consisting of a system and an
optimization algorithm.

Direct methods solve the optimization problem by iterative calculation and
derivation of the error function and moving in a direction to the maximum
slope gradient. Indirect methods solve the optimization problem in one step—
without testing—by solving a set of equations (usually nonlinear). These equa-
tions result from setting the derivative of the error function equal to zero.

Both classes of methods are local in scope: they tend to find only local
optima. Therefore, they are not robust. They depend on the existence of
derivatives. Real problem functions tend to be perturbed by noise and are
not smooth (i.e., derivations may not exist for all points of functions). This
class of problem cannot be solved by mathematical methods.

If the functional relations among input variables and objectives are not
known, one can experiment on the real system (or a model of this system)
in order to find the optimum. Access to the independent variables must exist
for the whole multidimensional search space—the collection of all possible
candidate solutions. Also, a possibility of measuring the independent variable
and the objective must be given. The optimization process is iterative; that
is, it has to be done in a closed optimization loop (Figure 2.3).

Experimental optimization methods can therefore be seen as a search for
the optimum by traversing over the fitness landscape.

2.2 Genetic Algorithms

As Darwin’s theory of natural selection articulates, nature is very effec-
tive at optimization (e.g., enabling life forms to survive in a unfriendly
and changing environment by means of simple trial and error). Genetic
algorithms (GAs) simulate this evolutionary mechanism by using heredity
and mutation. They were first introduced by Holland (1975), who also pro-
vided a theoretical framework for genetic algorithms, the schemata theorem
(Goldberg, 1989).
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For genetic algorithms, the independent input parameters of a system S
(Figure 2.4) are coded into a binary string, the genotype of an individual
(Figure 2.5).

The individual represented by genotype is called a phenotype. This pheno-
type has a certain quality or fitness to survive, which can be determined by
presenting the phenotype to the system S and measuring the system response.

The search is undertaken not only by one individual but by a population
of n genotypes, the genepool (Figure 2.6). Therefore, the search space is tested
at n points in parallel. All the individuals of the genepool at a time tn are
called a generation.

System S

x1

x2

x3

y

FIGURE 2.4: System to be optimized.

a1 a5a4a3a2 a7a6 a8 a9 a11a10 a12

x1 x3x2

Genotype

Phenotype

FIGURE 2.5: Binary string representing one input pattern of the system.
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FIGURE 2.6: Genepool consisting of individuals I1 . . . In.



Evolutionary Computing and Its Use in Medical Imaging 33

A new generation for time tn+1 is generated by selecting N individuals
from the current population for breeding. They are copied into the genepool
of the next generation, and their genetic information is then recombined, using
the crossover operator (see Section 2.2.2), with a predefined crossover prob-
ability pc. The resulting offspring is then copied into the new genepool, and
mutation is applied to the offspring. Figure 2.7 shows the flowchart of a simple
genetic algorithm.

The search is carried out until at least one individual has a better fitness
than the defined minimum fitness or a maximum number of generations has
been reached.

Initialize genepool

individual in genepool

fulfilled?

Print best solution

STOP

create offspring

applying crossover

them into new genepool

START

Yes

No

parameters
Select start

Evaluate fitness of each

Stop criteria

Apply mutation to
offspring and insert

Recombine offspring by

Select parents from
current genepool and

FIGURE 2.7: Flowchart of basic GA algorithm.



34 Medical Imaging Techniques and Applications

2.2.1 Selection

In general, there are three approaches to choose individuals from the
current generation for reproduction: tournament selection, fitness proportional
selection, and rank-based selection. In tournament selection, two or more indi-
viduals are randomly selected from the current generation of N genotypes to
compete with each other. The individual with the highest fitness of this set is
the winner and is selected for generating offspring. The process is repeated N
times in order to create the new population. Using tournament selection, the
least fit individual can never be selected.

In fitness proportional selection, the chance of an individual to be selected
is related to its fitness value. The most commonly used method of this type
is roulette wheel selection in which proportions of an imaginary roulette
wheel are distributed in proportion to the relative fitness of an individual.
Figure 2.8 shows an example for N = 3. In this example, the fitness of indi-
vidual 3 is approximately four times higher than the fitness of individual 1,
which means its chance of selection is four times greater than that of indivi-
dual 1. For a population of N individuals, the wheel is spun N times, and
the individual under the pointer is selected. In fitness proportional selec-
tion, all individuals have a chance of selection, but high-fitness individuals
are more likely to be selected because they occupy a larger portion of the
wheel.

However, there is the statistical chance that the actual selected distribution
might not reflect the expected distribution based on the fitness values. If the
selection is too strong, it can lead to premature convergence: the population
would converge before it found the region of the search space that contains
the global optimum. In other words, the exploitation would start before the
search space is fully explored. On the other hand, if the selection is too weak,
it can lead to stalled evolution, which means the search is reduced to randomly
walking through search space.

3

2
1

Before spinning After spinning

3

2

1

FIGURE 2.8: Roulette wheel selection.
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FIGURE 2.9: SUS selection.

These effects are overcome using stochastic universal selection (SUS). Here,
the same roulette wheel is used, but instead of using a single pointer, N equally
spaced pointers are used for a population of N individuals, and the wheel is
spun only once (Figure 2.9).

Instead of using the fitness of an individual for selection, a selective s
value can be used, which is based on the rank position of an individual in the
population (Equation 2.4).

si = Min + (Max − Min)
ranki − 1

N − 1
(2.4)

where

Min: minimum fitness within a generation
Max: maximum fitness within a generation
ranki: rank of individual i within the population in a generation
N : number of individuals within population

So, instead of using the raw fitness to determine the proportion for an
individual, the rank of the individual within the generation is used.

Sometimes the m fittest individuals in a generation are cloned into the
next generation in order to preserve their genetic material. This is known as
elitism.

2.2.2 Crossover

The most important operator in terms of robustness of the algorithm is the
crossover operator. Figure 2.10 shows the one-point crossover operator, which
combines the information of two parents. They are aligned and then both cut
at a randomly chosen crossover point, and the tails are swapped successively.

Instead of a single crossover point, two or more random crossover points
can be used for recombining the genetic information of the parents.
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G(t)

G(t � 1)

a1 a5a4a3a2 a7a6 a8 a9 a11a10 a12

b1 b5b4b3b2 b7b6 b8 b9 b11b10 b12

a1 a5a4a3a2 b7b6 b8 b9 b11b10 b12

b1 b5b4b3b2 a7a6 a8 a9 a11a10 a12

point
Crossover

FIGURE 2.10: Crossover operator.

Another form of crossover is called uniform crossover (Syswerda, 1989).
Here, every component of a parent individual X is randomly passed on either
to offspring A or offspring B. If X passes on its component to A, the position
in B is filled using the component from parent Y, and vice versa.

2.2.3 Mutation

After the genetic information of the parents is recombined using crossover,
mutation is applied to every individual of the new generation. Every bit of the
offspring is inverted (mutated) with probability pm. The mutation operator is
important for restoring lost information and producing a better effectiveness
of the genetic algorithm.

2.2.4 Discussion

The advantages of genetic algorithms are that they use payoff (objective
function) information, not derivatives or other auxiliary knowledge; that is,
they are black-box optimization methods. Genetic algorithms tend to converge
toward the global optimum rather than getting stuck in a local optimum, and
therefore they are very robust. On the other hand, it is not always straightfor-
ward to find the right GA parameters for a particular optimization problem,
such as a suitable genepool size or mutation probability. Also, the efficiency of
genetic algorithms relies heavily on the right coding of the input parameters
(i.e., the chosen mapping function from phenotype to genotype), and they
tend to fail if the inputs of the system are heavily correlated.
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2.2.5 Schemata theorem

Holland provided a theoretical foundation of genetic algorithms—a theo-
retical proof of convergence—which he called the schemata theorem. A schema
is a template for binary strings, but built from a three-letter alphabet con-
taining the symbols *, 0, and 1. The * symbol is the “don’t care” symbol,
which stands for either 0 or 1. Figure 2.11 shows an example of a schema for
chromosomes consisting of 12 bits, of which 3 are set to the don’t care symbol
and the remaining 9 bits are set to fixed values.

The distance between the first and the last fixed bit is called the defined
length of the schema, and the number of fixed bits is called the order of
the schema. Figure 2.12 shows an example of a schema H and the different
instances it represents.

A binary string s is an instance of a schema H if it fits into the template.
Therefore, any binary string of length l does not represent just one candi-
date solution; it is simultaneously an instance of 21 schemata. Consequently,
a genetic algorithm with the genepool of size n tests not only n different solu-
tions but also a high number of different schemata at the same time. This is
known as implicit parallelism in genetic algorithm and provides an explanation
for their effectiveness and efficiency.

According to Holland, the number of instances m of a schema H that
are contained in the population at generation t + 1 can be determined as
follows:

m(H, t + 1) = m(H, t) · f̄(H)
f̄

(2.5)

1 011 00 11 0

FIGURE 2.11: Example of a schema in GA.
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FIGURE 2.12: Example of a schema H and the instance it represents.


