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Preface

The book is devoted to the theory of diophantine approximations and the
theory of diophantine equations with emphasis on interactions between these
subjects. Many diophantine problems have simple formulations but are
extremely hard to attack. For instance, consider the rather simple looking
equation

Xn + Y n = Zn,

where n is a positive integer and which has to be solved in integers x, y, z.
Integer solutions x, y, z which satisfy xyz = 0 are — for obvious reasons —
called trivial. In the case n = 2 there are many other solutions, e.g.,

32 + 42 = 52, 52 + 122 = 132,

already known by the ancient Greeks. However, the situation becomes to-
tally different when n ≥ 3. For such exponents, Pierre de Fermat, a French
lawyer and mathematician in the seventeenth century, claimed to be able
to prove that there are no solutions other than trivial ones; however, he
never published his proof. In Fermat’s time publishing proofs was not very
common; usually, mathematicians wrote letters to other mathematicians an-
nouncing what they could prove and asked whether the other could do the
same. Fermat is famous for this method of doing math. But for more than
three centuries no one succeeded in proving Fermat’s statement, known as
Fermat’s last theorem (since it was the last of his statements to be proved).

In the twentieth century, diophantine analysis emerged from its very be-
ginnings to an extraordinary modern and powerful theory (with three Fields
medalists: Roth, Baker, Faltings); one example for this success story is
Wiles’ solution of Fermat’s last theorem, the final proof that there are no
solutions other than the trivial ones. However, there are still a lot of open
problems and conjectures which turn diophantine analysis into an active
and attractive field of interest for researchers and students.

The book’s motivation is contained in its introduction. Here we present
some basic principles of diophantine analysis. The second chapter deals
with classical approximation theorems and the third chapter is devoted to
the theory of continued fractions. Then we give a more detailed account on
certain topics of the classic theory (Chapters 5 and 6) and present some of
its applications (Chapters 4 and 7). Chapter 8 gives a short introduction to
the geometry of numbers and its applications. The following two chapters
deal with transcendental numbers and Roth’s theorem with applications to
Thue equations. In Chapter 11 we present the recent abc-conjecture and
discuss its importance. We conclude with a short introduction to p-adic
numbers and their applications to diophantine equations (Chapters 12–14).

Certain topics like elliptic curves or the metric theory of continued frac-
tions are touched but not entirely included because an appropriate presen-
tation would be beyond the scope of this book. However, there exist many
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excellent books describing these areas in detail and we refer to some of them
for further reading.

Modern topics (which were only considered in a few earlier textbooks) are
Apéry’s celebrated proof of the irrationality of ζ(3) (Chapter 4), the poly-
nomial Pell equation (parts of Chapters 6 and 11), and the abc-conjecture
with its plenty of applications (Chapter 11). Furthermore, we touch sev-
eral topics which are of interest in related fields of discrete mathematics:
factoring methods for large integers with continued fractions (Chapter 7),
the LLL-lattice reduction algorithm (Chapter 8), error-free computing with
p-adic numbers (Chapter 12), and factoring polynomials with Hensel lifting
(Chapter 13).

This book primarily aims at advanced undergraduate students or grad-
uates who may want to learn the fundamentals of this subject. In some
sense, diophantine analysis may be regarded as algebraic geometry over the
spectrum of a Dedekind domain. This modern point of view is much beyond
the scope of this introduction but we shall keep in mind the idea of using the
geometry of the objects under observation to learn something about their
arithmetic nature. Our approach is elementary; with exception of the proof
of Roth’s theorem, only a small background in algebra and number theory
is needed. Many of the results are presented with respect to their historical
development. I believe that the best way to learn math is to look at how
it was developed. However, only practice makes perfect. For this purpose,
at the end of each chapter, several exercises and problems of different de-
grees of difficulty are posed, the advanced ones indicated by an asterisk ∗.
Furthermore, I recommend using a computer algebra package like Mathe-
matica or Maple; excellent introductions to experimental mathematics are
Bressoud & Wagon [29] and Vivaldi [165], respectively.

The concept of the book is based upon a course which I gave at Frank-
furt University in the winter term 2002/2003. I am very grateful to the
audience, in particular, Iqbal Lahseb, Thomas Müller, and Matthias Völz.
I want to express my appreciation to my colleagues at the departments of
the universities in Frankfurt, Vilnius, Šiauliai, and Madrid; and the many
people from whom I learned this subject, in particular, my academic teach-
ers Georg Johann Rieger, Wolfgang Schwarz, and Jürgen Wolfart. I am
very much indebted to Jürgen Sander and Hessel Posthuma for inspiring
conversations and careful reading of the manuscript. My thanks also go to
Christian Beck, Artūras Dubickas, Carsten Elsner, Ernesto Girondo, and
Harald König for their interest, help, and valuable remarks. Further, I
want to thank Helena Redshaw, Bob Stern, and Kenneth Rosen from CRC
Press for their encouragement, and the editorial staff at CRC Press for their
support during the preparation of this book.

Finally, and most importantly, I want to thank Rasa.

Jörn Steuding, Madrid, December 2004
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CHAPTER 1

Introduction: basic principles

Diophantine analysis is devoted to diophantine approximations and dio-
phantine equations. Here the word diophantine means that we are concerned
about integral or rational solutions. The exact meaning will become clear
in the sequel. In this introductory chapter we shall learn some of the basic
principles of diophantine analysis. These are special methods (as Fermat’s
method of infinite descent) as well as building bridges to other fields (e.g.,
the use of real analysis or geometry for understanding underlying arithmetic
structures). In order to present these principles we prove some fundamental
historical results.

1.1. Who was Diophantus?

Diophantus of Alexandria was a mysterious mathematician who lived
around 250 a.d.; it is not known whether Diophantus was Greek or Egyptian
and there are even some rumors that his name stands for a collective of au-
thors (like Bourbaki). Virtually nothing more about his life is known than
the following conundrum:

God granted him to be a boy for the sixth part of his life,
and adding a twelfth part to this, He clothed his cheeks with
down. He lit him the light of wedlock after a seventh part,
and five years after his marriage He granted him a son.
Alas! late-born wretched child; after attaining the measure
of half his father’s life, chill Fate took him. After consoling
his grief by this science of numbers for four years he ended
his life. (cf. Singh [153])

How old was Diophantus when he died? This riddle is an example for the
kind of problems in which Diophantus was interested. Diophantus wrote
the influential monography Arithmetica, but, unfortunately, only 10 of the
13 books of it survived. He was the first writer who made a systematic
study of the solutions of polynomial equations in integers or rationals. The
Arithmetica is a collection of isolated problems for each of which Diophan-
tus gave a special solution, but in general, not all solutions. To some extent
he was aware of some general methods; however, there was no algebraic
formalism (as denoting unknowns by symbols) in Diophantus’ time. With
the rise of algebra around the tenth century in Arabia Diophantus’ monog-
raphy was translated into algebraic language and mathematicians asked for
generalizations of diophantine problems. Thus Diophantus’ epoch-making

1



2 Chapter 1 Introduction: basic principles

Arithmetica might be viewed as the birth to number theory. The first trans-
lation in Europe, by Regiomantus, appeared only in the fifteenth century.
Maybe the most important one is that of Bachet from 1621 which was edited
with Pierre de Fermat’s remarks by his son Samuel de Fermat in 1679 as
part of Fermat’s collected works. For more details we refer to Schappacher
[140] and Weil [172].∗

1.2. Pythagorean triples

We shall take a closer look at one of the problems discussed in Diophantus’
book. Consider the so-called Pythagorean equation

(1.1) X2 + Y 2 = Z2.

We are interested in solving this equation in integers and, of course, it
suffices to consider non-negative integers. Such solutions (x, y, z) are called
Pythagorean triples in honor of the contributions of Pythagoras (572–492
b.c.). With an integer solution (x, y, z) of (1.1) the triple (ax, ay, az) is also
an integer solution provided a ∈ Z. If we want to get an overview over all
Pythagorean triples, it thus makes sense to consider only integer solutions
(x, y, z) which are coprime; such solutions are called primitive. Given a
solution (x, y, z) of (1.1), it is easily seen that the greatest common divisor
of x and y, denoted by gcd(x, y), must divide z. Clearly, the same holds if
we interchange x or y and z. Hence, pairwise coprimality of a Pythagorean
triple is necessary and sufficient for having a primitive one.

Any solution of the Pythagorean equation in positive real numbers cor-
responds to a right angular triangle; this is Pythagoras’ famous theorem in
geometry. Integer solutions of (1.1) were known for quite a long time before
Pythagoras. The ancient Babylonians, four millennia ago, were aware of
the solutions

32 + 42 = 52, 52 + 122 = 132, 82 + 152 = 172

and many more. It is assumed that the Babylonians used Pythagorean
triples for constructing right angles.

Pythagoras not only gave a mathematical proof for what the Babylo-
nians knew in practice, but also constructed an infinitude of primitive
Pythagorean triples by the identity

(2n+ 1)2 + (2n2 + 2n)2 = (2n2 + 2n+ 1)2.

In the third century b.c. Euclid solved the problem of finding all solutions.

Theorem 1.1. If a and b are positive coprime integers of opposite parity
(i.e., a is even and b is odd, or vice versa) such that a > b, then the triple
(x,y,z), given by

(1.2) x = a2 − b2, y = 2ab, z = a2 + b2,

∗Of course, MacTutor’s Web page http://www-groups.dcs.st-and.ac.uk/∼history/ also
gives plenty of information on the history of mathematics.



Section 1.3 Fermat’s last theorem 3

is a primitive solution of (1.1). This establishes a bijection between the set
of pairs (a, b) satisfying the above conditions and the set of primitive integer
solutions of the Pythagorean equation (1.1).

Proof. It is easy to verify that any triple of the form (1.2) solves the
Pythagorean equation (1.1):

x2 + y2 =
(
a2 − b2)2 + (2ab)2 = a4 + 2a2b2 + b4 =

(
a2 + b2

)2
= z2.

Clearly, x, y, z are positive integers. If d = gcd(x, y, z), then d divides
x + z = 2a2 and z − x = 2b2. Since a and b are coprime, it follows that
either d = 1 or d = 2. Since a and b have opposite parity, x is odd and
thus the case d = 2 cannot occur. This shows that (x, y, z) is a primitive
Pythagorean triple.

For the converse implication assume that (x, y, z) is a Pythagorean triple.
Since x and y are coprime, and y is even, it follows that x and z are odd
and coprime. Hence, 1

2 (z + x) and 1
2 (z − x) are coprime integers and, by

(1.1),
(

1
2
y

)2

=
(

1
2
(z + x)

)
·
(

1
2
(z − x)

)
.

Since the factors on the right have no common divisor, both have to be
squares; i.e., there are coprime positive integers a and b such that

a2 =
1
2
(z + x) and b2 =

1
2
(z − x)

(here we used the fundamental theorem of arithmetic). Further,

a+ b ≡ a2 + b2 = z ≡ 1 mod 2,

so a and b have opposite parity. Now it is easy to deduce the parametrization
(1.2).

It remains to show the one-to-one correspondence between pairs (a, b)
and triples (x, y, z). If x and z are given, a2 and b2, and consequently a
and b, are uniquely determined. Thus, different triples (x, y, z) correspond
to different pairs (a, b). The theorem is proved. •

One important invention of mathematics is considering numbers modulo
m, so putting the infinitude of integers into a finite set of residues. We used
this idea of modular arithmetic only a tiny bit in the proof just given (when
we investigated the parity) but later on we shall meet it several times.

1.3. Fermat’s last theorem

Pierre de Fermat (1607(?)–1665) was a lawyer and government official
in Toulouse, and, last but not least, a hobby mathematician. Often his
year of birth is dated to be 1601; however, recent investigations make the
above given date more reasonable; see Barner [14]. When Fermat died, he
was one of the most famous mathematicians in Europe although he never
had published any mathematical work; his reputation simply grew out of
his extensive correspondence with other scientists. Fermat made impor-
tant contributions to the very beginnings of analytic geometry, probability
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theory, and number theory. The reading of Diophantus’ Arithmetica, in
particular, the part on the Pythagorean equation, inspired Fermat to write
in his copy of Diophantus’ monograph:

It is impossible for a cube to be written as a sum of two
cubes or a fourth power to be written as the sum of two
fourth powers or, in general, for any number which is a
power greater than the second to be written as a sum of two
like powers. I have a truly marvelous demonstration of this
proposition which this margin is too narrow to contain. (cf.
Singh [153])

In the modern language of algebra, he claimed to have a proof of

Fermat’s last theorem. All solutions of the equation

(1.3) Xn + Y n = Zn

in integers x, y, z are trivial, i.e., xyz = 0, whenever n ≥ 3.

Fermat never published a proof and, by the unsuccessful quest for a solution
of Fermat’s last theorem, mathematicians started to believe that Fermat
actually had no proof. However, no counterexample was found. In fact,
the above statement is the only result stated by Fermat which could not
be proved for quite a long time, and so it became Fermat’s last theorem.
Only recently Wiles [174], supported by Taylor and the earlier works of
many others, found a proof for Fermat’s last theorem. The proof relies on
a link to the theory of modular forms. We refer to Edwards [52] for the
prehistory of attempts to solve Fermat’s last theorem, Singh [153] for the
amazing story of this problem and its final solution, and Washington [169]
for a brief mathematical discussion of Wiles’ breakthrough.

One may ask why the ancient Greeks considered only the quadratic case
of the Fermat equation but not the general one. Greek mathematics was
inspired by at most three-dimensional geometry and only in the late works
of Greek mathematics higher powers occur. They also had an advanced
knowledge on divisibility and prime numbers but it seems that they had no
idea about the unique prime factorization of the integers.

The exponent in Fermat’s equation is crucial. By Theorem 1.1, there are
infinitely many solutions when n = 2, but by Wiles’ proof there are only
trivial solutions when n ≥ 3. This observation due to Fermat is essential
for the importance of Fermat’s last theorem for diophantine analysis. It is
the exponent n which defines the geometric character of the Fermat curve
(1.3) and indeed, the corresponding geometric quantity called genus rules
the solvability.

1.4. The method of infinite descent

The classification of the Pythagorean triples, Theorem 1.1, can be used
to prove that the biquadratic case of Fermat’s last theorem has only trivial
solutions. However, we start with a slightly more general equation.
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Theorem 1.2. There are no positive integer solutions of the equation

X4 + Y 4 = Z2.

We give Fermat’s original and marvelous

Proof. Suppose that z is the least positive integer for which the equation

X4 + Y 4 = z2

has a solution in positive integers x, y. It follows that x and y are coprime
since otherwise we can divide through gcd(x, y)4, contradicting the mini-
mality of z. Thus at least one of x and y is odd. Since the squares modulo
4 are 0 and 1, it follows that

z2 = x4 + y4 ≡ 1 or 2 mod 4.

A square cannot be congruent 2 mod 4, so z is odd, and only one of x and
y is odd; the other one is even. Without loss of generality we may assume
that y is even. Then, by (1.2) of Theorem 1.1,

x2 = a2 − b2, y2 = 2ab, z = a2 + b2,

where a and b are coprime positive integers of opposite parity. If a is even
and b is odd, then x2 ≡ −1 mod 4, which is impossible. Thus, a is odd and
b is even, say b = 2c for some integer c. We observe that

(
1
2
y

)2

= ac,

where a and c are coprime. It follows that a = u2 and c = v2 with some
positive coprime integers u, v, where u is odd (since a is odd). This leads to

(
2v2
)2

+ x2 =
(
u2
)2
,

where no two of the numbers 2v2, x, u2 have a common factor. Applying
once more Theorem 1.1 we obtain

2v2 = 2AB and u2 = A2 +B2,

where A and B are coprime positive integers. Dividing the v-equation by
2, we get (by the coprimality of A and B) the existence of some positive
coprime integers X and Y such that A = X 2 and B = Y2. Substituting this
in the u-equation gives

X 4 + Y4 = u2,

which is another non-trivial solution of the diophantine equation under con-
sideration. However,

u ≤ u2 = a ≤ a2 < a2 + b2 = z,

which contradicts the assumption that z was the least solution. This proves
the assertion of the theorem. •
The method of proof is called method of infinite descent. The simple
but ingenious idea of constructing a smaller solution out of a given one can
often be used for proving that certain diophantine equations have no integer
solutions.
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It is obvious how Theorem 1.2 solves Fermat’s last theorem in the case
n = 4. It might be possible that Fermat had this argument in mind when
he made his statement of having a proof for the general case. However, the
case n = 4 in Fermat’s last theorem is the only easy one. Odd exponents
cannot be treated as above.

1.5. Cantor’s paradise

Usually, the set of positive integers N is introduced by the Peano axioms.
Adding the neutral element zero and the inverse elements with respect to
addition, we obtain the set of integers Z. Further, incorporating the inverse
elements with respect to multiplication we get the field of rational numbers
Q. Hence, a number is said to be rational if it can be represented as a
quotient of two integers, the denominator being non-zero; all other numbers
(in the set R of real and the set C of complex numbers, respectively) are
called irrational.

It is believed that we are living in a finite universe: there are about
1080 atoms in our universe. So our world can be described using only
rational numbers. However, we cannot understand our world without a
larger set of numbers. The Pythagorean equation (1.1) led to one of the
great breakthroughs in ancient Greek mathematics. Hippasus, a pupil of
Pythagoras, discovered that the set of rational numbers is too small for the
simple geometry of triangles and squares. In fact, he proved that the length
of the diagonal of a unit square is irrational:

√
2 =

√
12 + 12 �∈ Q.

Nowadays this is taught at school and so we may omit a proof (a rather
new and simple proof of this fact was given by Estermann; see Exercise 1.7).
But for the Pythagoras school it was the death of its philosophy that all
natural phenomena could be explained in integers. It is said that Pythagoras
sentenced Hippasus to death by drowning (cf. Singh [153]). This unkind
act could not stop the mathematical progress. In order to solve polynomial
equations and to determine the merits in analysis, mathematicians invented
various types of new numbers:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

In fact, this is only the top of an iceberg; we shall learn about another type
of numbers in Chapter 12. We refer the interested reader to the collection
[51] of excellent surveys on numbers of all kinds. However, to begin with
we shall only consider the set R of real numbers.

An infinite set is called countable if there exists a bijection onto N;
otherwise the set is said to be uncountable. It is easy to see that any
union of countably many countable sets is again countable. Q is countable
as shown by the following one-to-one mapping from N to the set of positive
rationals:

Q
+ 	 m

n
←→ n+

1
2
(m+ n− 1)(m+ n− 2) for m,n ∈ N.
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The real numbers represent a quite different type of infinite set than Q.

Theorem 1.3. The set R of real numbers is uncountable.

This is a famous result of Cantor and it simply shows that almost all real
numbers are irrational. Its proof relies on his marvelous diagonalization
argument.

Proof. It suffices to prove the assertion for the subset of real numbers lying
in the interval (0, 1].

Suppose the contrary, that is, R is countable. Let {r1, r2, . . .} be a listing
of all real numbers in (0, 1]. Using the decimal fraction expansion, every rn
can be written as

rn = 0.an1an2an3 . . . ,

where the digits ank are integers satisfying 0 ≤ ank ≤ 9. If we assume
additionally that we do not allow any infinite sequence of zeros at the end,
this decimal expansion is unique (e.g., 0.1 = 0.09999 . . .). Now define some
r = 0.b1b2b3 . . . by choosing bn ∈ {1, . . . , 8} different from ann (the diagonal
entry in our list) for each n. Then, r is a real number in (0, 1) which does
not appear in the list of the rn (since r differs in the nth entry: bn �= ann).
This is the desired contradiction. •

Theorem 1.3 marks the beginning of modern set theory. Hilbert once said
in tribute to Cantor that no one will drive us from the paradise that Cantor
has created.

1.6. Irrationality of e

One of the most fundamental functions in analysis (and natural sciences)
is the exponential function given by the infinite series

exp(x) =
∞∑

k=0

xk

k!
;

as usual, we will sometimes also write ex for exp(x). A special role plays
Euler’s number

e := exp(1) =
∞∑

n=0

1
n!

= 2.71828 18284 . . . .

The exponential series converges very fast. For instance, taking into account
the first 15 terms gives the approximation above.

Theorem 1.4. e is irrational.

This result dates back to Euler in 1737, resp. Lambert in 1760; however,
their approach via continued fractions is rather difficult (we will return
to this subject later). The following simple proof would easily have been
possible in Euler’s time.
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Proof. Suppose the contrary; then there exist positive integers a, b such
that e = a

b . Let m be an integer ≥ b. Then b divides m! and the number

α := m!

(

e−
m∑

n=0

1
n!

)

= a
m!
b
−

m∑

n=0

m!
n!

is an integer (term by term). We have

α =
∞∑

n=m+1

m!
n!

<
1

m+ 1

∞∑

k=0

(
1

m+ 1

)k
.

By the formula for the infinite geometric series, we can easily bound the
right-hand side and find

0 < α <
1

m+ 1
· 1
1− 1

m+1

=
1
m
≤ 1.

Since the interval (0, 1) is free of integers, this contradicts the fact that α is
integral. The theorem is proved. •
This proof reveals an important principle in the diophantine toolbox: the
series converges so fast that the limit cannot be of a restricted arithmetic
nature!

The question whether a given real number is irrational might seem to
be simple at first glance. Actually, this is a rather difficult problem. For
instance, it is unknown whether the Euler–Mascheroni constant is irra-
tional:

γ := lim
N→∞

(
N∑

n=1

1
n
− logN

)

= 0.57721 . . . �∈ Q ?

1.7. Irrationality of π

Another important constant is the ratio π of the circumference to the
diameter of a circle. We define

π = 3.14159 26535 89793 . . .

to be the least positive root of the sine function. Our next aim is

Theorem 1.5. π and π2 are irrational.

The first proof of the irrationality of π was given by Lambert in 1761, also
by using continued fractions. The proof which we shall give now, as all other
known proofs, is slightly more difficult than the one just given for e. This
holds true for other questions concerning these two fundamental numbers.
It seems that e has somehow more structure than π. Our short but tricky
proof is due to Niven [124].

Proof. We start with some preliminaries. For n ∈ N define the function

(1.4) fn(x) =
1
n!
xn(1− x)n.
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It is obvious that

(1.5) 0 < fn(x) <
1
n!

for 0 < x < 1.

By the binomial theorem,

(1− x)n =
n∑

j=0

(
n

j

)
(−x)j .

Since the binomial coefficients are integers (this follows immediately from
their combinatorial meaning), we have

fn(x) =
1
n!

2n∑

j=n

cjx
j ,

where the cj are integers (actually, they are equal to ±(nj ) but we do not
need this information). The functions fn(x) share a symmetry of type
f(x) = f(1− x). Differentiation of this functional equation leads to

f (k)
n (x) = (−1)kf (k)

n (1− x),
where f (k) denotes the kth derivative of f . Taking into account the Taylor
series expansion (or dumb computation) we deduce

(1.6) (−1)kf (k)
n (1) = f (k)

n (0) =
{

0 if 0 ≤ k < n,
k!
n!ck if n ≤ k ≤ 2n.

Note that the values in (1.6) are all integers.
Now we are in the position to prove the theorem. Obviously, it suffices

to show that π2 is irrational. Assume that π2 = a
b with positive integers a

and b. We consider the polynomial

Fn(x) := bn
(
π2nfn(x)− π2n−2f (2)

n (x)± . . .+ (−1)nf (2n)
n (x)

)
.

Since bnπ2k = bn−kak ∈ Z for 0 ≤ k ≤ n, it follows from (1.6) that
Fn(0), Fn(1) ∈ Z. A short calculation shows

(F ′n(x) sin(πx)− πFn(x) cos(πx))′ = π2anfn(x) sin(πx).

Taking into account sinπ = sin 0 = 0 this yields

In := πan
∫ 1

0

fn(x) sin(πx) dx = Fn(0) + Fn(1).

In view of our previous observation it follows that In is an integer. On the
other side with regard to (1.5) we get

0 < In < π
an

n!
.

Since the exponential series for exp(a) converges, n! grows faster than an

as n→∞, and thus the right-hand side is <1 for sufficiently large n. This
contradicts In ∈ Z and the theorem is proved. •
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Again this proof is very interesting: a problem concerning the arithmetic
nature of a given real number is solved by the construction of an appropriate
sequence of polynomials with respect to its analytic behavior!

This method of proof can also be applied to prove the irrationality of the
exponential function at any non-zero rational value (see Exercise 1.11).

1.8. Approximating with rationals

In 1682, the astronomer and mathematician Huygens (1629–1695) built
an automatic planetarium. In one year Earth covers 359o45′40′′30′′′ and
Saturn covers 12o13′34′′18′′′, which gives the ratio

77 708 431
2 640 858

= 29.42544 . . . .

Huygens had to construct a gear mechanism which materializes this ratio
well. It makes sense to search for approximations which allow a good ap-
proximation with only a few teeth for the gears. So Huygens was looking
for small integers whose ratio is sufficiently close to the preceding one. The
first idea for such an approximation might be 294

10 = 147
5 coming from the

decimal fraction expansion. However, this does not approximate sufficiently
good; the error is 0.02544 . . ., so more than two percent. Can we do better?
Huygens could; he found the rational approximation 206

7 . The error of this
approximation is

206
7
− 77 708 431

2 640 858
= 0.00312 . . . ,

which is less than 40′ in a century! How did Huygens find this excellent
approximation?

Almost all real numbers are irrational. If we have to deal with such
numbers, the situation is even worse than in Huygens’ case. Computers
cannot work with irrationals! In fact, a computer even has problems working
with rational numbers; however, there are several strategies to overcome this
problem (we will meet this theme in Section 12.8). Fortunately, for most
problems it is sufficient to have an approximate solution. Since Q is dense
in R, it is natural to search for rational approximations. However, Q has
the disadvantage of being very thin in R.

We return to the famous constant π. It is interesting to see which rational
approximations to π were used in ancient times:

• The Rhind Papyrus (≈ 1650 b.c.): π ≈ 4
(

8
9

)2 = 3.16 . . . ;
• Old Testament (≈ 1000 b.c.): π ≈ 3;
• Archimedes (287–212 b.c.): π ≈ 22

7 = 3.142 . . .;
• Tsu Chung Chi (≈ 500 a.d.): π ≈ 355

113 = 3.14159 29 . . . .
How could they find these approximations in those Dark Ages without com-
puters? Their approaches used the underlying geometry.

We shall briefly sketch how Archimedes came to his approximation. He
considered a circle of radius one, in which he inscribed a regular polygon
of 96 sides, and circumscribed a regular polygon with the same number of
sides, such that the first polygon has its vertices on the circle; the second
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Figure 1.1. The pentagon inscribed in the unit circle has
area 5

2 sin 2π
5 = 2.37764 . . ., which gives a poor lower bound

for π.

one, the midpoints of its edges. Comparing the perimeters led him to the
inequality

(1.7)
223
71

< π <
22
7
.

Alternatively, one can also consider the areas. This method of exhaustion
can be used to find as good rational approximations to π as we please;
however, this algorithm is not very efficient. Recently, Kanada & Takahashi
computed π up to more than 206 billion digits, based on fast converging
series, so calculus replaces geometry. Such a precision is beyond any use
in applications (the Planck constant 10−33 is the smallest unit in quantum
mechanics) but interesting from a mathematical point of view. To remember
the first decimals, we recommend the rhyme

Now I want a drink, alcoholic of course, after the heavy
lectures involving quantum mechanics!

Since Q is dense in R, for any real number there exist infinitely many
rational approximations and we can approximate with any assigned degree
of accuracy. But what are good and what are bad approximations among
them? Thinking back to Huygens’ gears, we find that a natural measure for
a rational approximation is its denominator.

Let α be any real number; then we say that p
q ∈ Q with q ≥ 1 is a best

approximation to α if

(1.8) |qα− p| < |Qα− P | for all Q < q,

where P,Q ∈ Z. Necessarily a best approximation p
q is a reduced fraction

(that is, p and q are coprime). Dividing inequality (1.8) by q shows
∣
∣
∣
∣α−

p

q

∣
∣
∣
∣ <

Q

q

∣
∣
∣
∣α−

P

Q

∣
∣
∣
∣ <
∣
∣
∣
∣α−

P

Q

∣
∣
∣
∣

(since Q < q). Consequently, a best approximation p
q to α is the nearest

rational number with denominator ≤ q. However, the converse does not
hold as we shall see in the following section.



12 Chapter 1 Introduction: basic principles

The first best approximations to π are

(1.9)
3
1
,

22
7
,

333
106

,
355
113

,
1 03993
33102

, . . . → π.

It is remarkable that the fractions given by Archimedes and Tsu Chung Chi
are best approximations. This means that they could not do better than
they did. Given a real number we want to approximate, there is usually
no geometric information which we can use to find an appropriate rational
approximation (as we did in the case of π). So we are faced with the
problem of finding an efficient and universal algorithm which provides the
best approximations to any given real number.

1.9. Linear diophantine equations

In honor of Diophantus we speak about

• Diophantine approximations when we search for rational ap-
proximations to rational or irrational numbers;
• Diophantine equations when we investigate polynomial equa-

tions for solutions in integers (or rationals).

As we shall show now these areas are linked in both directions.
We consider linear diophantine equations in two variables. For instance,

we may ask for solutions of the equation

(1.10) 106X − 333Y = 1

in integers; here and in the sequel we denote variables by capitals and
corresponding solutions by small letters. One approach to answering this
question offers Euclid’s algorithm.

We recall some facts from elementary number theory. By division with
remainder, for any positive integers a, b with b ≤ a there exist integers q, r
such that

a = bq + r with 0 ≤ r < b.

Now define r−1 := a, r0 := b. Then, successive application of division with
remainder yields the Euclidean algorithm:

For n = 0, 1, . . . do

rn−1 = qn+1rn + rn+1 with 0 ≤ rn+1 < rn.(1.11)

Since the sequence of remainders is strictly decreasing, the algorithm ter-
minates, and by simplest divisibility properties the last non-vanishing re-
mainder rm is equal to the greatest common divisor of a and b,

rm = gcd(a, b).

It should be noted that the Euclidean algorithm is very fast; more precisely,
the number of steps m is bounded by a polynomial in the input length.

Reading the Euclidean algorithm backwards, we can substitute any rn+1

in terms of rn−1 and rn one after the other down to n = 0. This yields a
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representation of rm as a linear combination of r−1 = a and r0 = b. Thus
we get an explicit integral solution of the linear equation

(1.12) bX − aY = gcd(a, b),

say x0, y0. It is easily seen that then all integral solutions to the latter
diophantine equation are given by

(1.13)
(
x

y

)
=
(
x0

y0

)
+ k

1
gcd(a, b)

(a
b

)
for k ∈ Z.

From here it is only a small step to Bezout’s theorem:

Theorem 1.6. The linear diophantine equation

(1.14) bX − aY = c

with integers a, b, c is solvable if and only if gcd(a, b) divides c; in the case
of solvability, the set of solutions is given by (1.13).

Proof. Given any integer solution x, y of (1.12), if gcd(a, b) divides c, then
the numbers

X =
c

gcd(a, b)
x and Y =

c

gcd(a, b)
y

solve (1.14). For the converse implication simply note that, for any integers
x, y, the number ax+ by is divisible by gcd(a, b). The theorem is proved. •

We return to our example (1.10). Applying the Euclidean algorithm
shows

22 · 106− 7 · 333 = 1.
With regard to our observations above we find that the set of integer solu-
tions to (1.10) is given by

(
x

y

)
=
(

22
7

)
+ k

(
333
106

)
for k ∈ Z.

It might be a little surprising to see that the solutions x, y of (1.10) yield
good approximations x

y to 333
106 . We may rewrite each solution as

(1.15)
x

y
=

333
106

+
1

106y
,

and since the second term is rather small, tending to zero as |y| → ∞,
the solutions x, y to (1.10) yield better and better approximations to 333

106 ;
of course, having Huygens’ approximation problem in mind, we are only
interested in approximations with a denominator less than 106. Any fraction
P
Q with 1 ≤ Q < 106 satisfies

∣
∣
∣
∣Q

333
106
− P

∣
∣
∣
∣ = Q

∣
∣
∣
∣
333
106
− P

Q

∣
∣
∣
∣ = Q

|106P − 333Q|
106Q

≥ 1
106

,

equality holding if and only if P,Q is a solution of (1.10). Thus, we can-
not approximate 333

106 better than with a fraction coming from a solution of
(1.10). Moreover, the solution x, y with minimal |y| yields a best approxi-
mation x

y to 333
106 , here 22

7 (notice that both rationals are best approximations



14 Chapter 1 Introduction: basic principles

to π). Of course, this holds more generally for linear diophantine equations
of the form (1.12).

5 10 15 20 25 30

2

4

6

8

10

Figure 1.2. Integer lattice points (x, y) on the straight
line 106X−333Y = 1 provide good rational approximations
x
y to 333

106 .

In some sense, we have replaced the diophantine equation by an appro-
priate diophantine inequality. So in place of using the Euclidean algorithm
backwards, we can also solve the linear diophantine equation (1.12) by
searching for best approximations to a

b . This was first discovered by In-
dian mathematicians, namely, Aryabhata around 550 a.d. and Bhaskara
around 1150. However, this example marks only the very beginning of the
interplay between diophantine approximations and diophantine equations:
certain diophantine equations can be investigated by studying a related prob-
lem in the theory of diophantine approximations!

Exercises

1.1. How old was Diophantus when he died?

1.2. For a Pythagorean triple (x, y, z), show that xyz is divisible by 60.

1.3.* Consider the recursion defined by a1 = 3, c1 = 5,

an+1 = 3an + 2cn + 1 and cn+1 = 4an + 3cn + 2.

Prove that (an, an + 1, cn) is a Pythagorean triple. Show that this recursion
yields all Pythagorean triples of the form (a, a+ 1, c).
The first assertion is due to Ryden and the second one was found by Hering;
for a more general recursion which constructs all primitive Pythagorean
triples out of (3, 4, 5), see Gollnick et al. [67].

1.4. Show that it suffices to prove Fermat’s last theorem for exponents n
being prime and n = 4.
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1.5.* i) Show that the equation

X4 − 4Y 4 = ±Z2

has no solutions in positive integers.
Hint: Use Fermat’s method of infinite descent.
ii) Deduce from i) that the area of a Pythagorean triangle is not the square
of an integer.

1.6.* Show that x = y = z = 0 is the only integral solution of the equation

X3 + 2Y 3 + 4Z3 − 34XY Z = 0.

1.7. Let S be the set of those positive integers n for which n
√

2 is an integer.
If
√

2 were rational, S would be not empty. For the least element of S, say
k, consider the number (

√
2− 1)k. Deduce from

(
√

2− 1)k
√

2 = 2k − k
√

2

that the set S is empty and that
√

2 is irrational. Generalize this argument!
This idea for proving the irrationality of

√
2 is due to Estermann.

1.8. Prove that Q is dense in R.

1.9.* Using Archimedes’ exhaustion method, improve inequality (1.7).
Prove that the area of the regular n-gon with vertices on the unit circle
is equal to n

2 sin 2π
n and show that this tends to π as n→∞.

1.10.* For computation of the first digits of π it is convenient to make use
of analysis. Machin’s formula states

π

4
= 4 arctan

(
1
5

)
− arctan

(
1

239

)
,

where arcus tangent is given by the power series

arctan(x) = x− x3

3
+
x5

5
∓ . . . =

∞∑

n=0

(−1)n
x2n+1

2n+ 1
.

Deduce Machin’s formula from the addition formula of the tangent,

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
and compute the first ten digits of the decimal fraction of π.

1.11.* With the same notation as in the proof of Theorem 1.5 let q be a
positive integer and define

Gn(x) = q2nfn(x)− q2n−1f ′n(x)± . . .+ f (2n)
n (x).

Prove that (exp(qx)Gn(x))
′ = q2n+1 exp(qx)fn(x), and deduce

∫ 1

0

q2n+1fn(x) exp(qx) dx = exp(q)Gn(1)−Gn(0).

Following the proof of Theorem 1.5, use the above identities to prove that
exp(q) is irrational for any 0 �= q ∈ Q.


