DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

Chapman \& Hall/CRC

DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

DIOPHANTINE ANALYSIS

DISCRETE Mathenatics AND
 ITS APPLICATIONS

Kenneth H. Rosen, Ph.D.

Juergen Bierbrauer, Introduction to Coding Theory
Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems
Charalambos A. Charalambides, Enumerative Combinatorics
Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs
Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence

Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders
Jacob E. Goodman and Joseph O'Rourke, Handbook of Discrete and Computational Geometry, Second Edition

Jonathan Gross and Jay Yellen, Graph Theory and Its Applications
Jonathan Gross and Jay Yellen, Handbook of Graph Theory
Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression, Second Edition
Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment
Derek F. Holt with Bettina Eick and Eamonn A. O'Brien, Handbook of Computational Group Theory
David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces
Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple
Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering
William Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization
Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search
Charles C. Lindner and Christopher A. Rodgers, Design Theory
Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography

Continued Titles

Richard A. Mollin, Algebraic Number Theory
Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times
Richard A. Mollin, Fundamental Number Theory with Applications
Richard A. Mollin, An Introduction to Cryptography
Richard A. Mollin, Quadratics Richard A. Mollin, RSA and Public-Key Cryptography
Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics
Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach
Jörn Steuding, Diophantine Analysis
Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition
Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design
Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography

DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

DIOPHANTINE ANALYSIS

JöRN STEUDING

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2005 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20110713
International Standard Book Number-13: 978-1-4200-5720-1 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

[^0]
Contents

Preface
Chapter 1. Introduction: basic principles
1.1. Who was Diophantus? 1
1.2. Pythagorean triples 2
1.3. Fermat's last theorem 3
1.4. The method of infinite descent 4
1.5. Cantor's paradise 6
1.6. Irrationality of e 7
1.7. Irrationality of π 8
1.8. Approximating with rationals 10
1.9. Linear diophantine equations 12
Exercises 14
Chapter 2. Classical approximation theorems
2.1. Dirichlet's approximation theorem 17
2.2. A first irrationality criterion 19
2.3. The order of approximation 19
2.4. Kronecker's approximation theorem 21
2.5. Billiard 22
2.6. Uniform distribution 23
2.7. The Farey sequence 25
2.8. Mediants and Ford circles 26
2.9. Hurwitz' theorem 28
2.10. Padé approximation 30
Exercises 32
Chapter 3. Continued fractions
3.1. The Euclidean algorithm revisited and calendars 36
3.2. Finite continued fractions 37
3.3. Interlude: Egyptian fractions 39
3.4. Infinite continued fractions 42
3.5. Approximating with convergents 43
3.6. The law of best approximations 44
3.7. Consecutive convergents 45
3.8. The continued fraction for e 46
Exercises 49
Chapter 4. The irrationality of $\zeta(3)$
4.1. The Riemann zeta-function 52
4.2. Apéry's theorem 54
4.3. Approximating $\zeta(3)$ 54
4.4. A recursion formula 56
4.5. The speed of convergence 58
4.6. Final steps in the proof 60
4.7. An irrationality measure 62
4.8. A non-simple continued fraction 63
4.9. Beukers' proof 64
Notes on recent results 66
Exercises 66
Chapter 5. Quadratic irrationals
5.1. Fibonacci numbers and paper folding 71
5.2. Periodic continued fractions 73
5.3. Galois' theorem 75
5.4. Square roots 77
5.5. Equivalent numbers 78
5.6. Serret's theorem 79
5.7. The Markoff spectrum 80
5.8. Badly approximable numbers 82
Notes on the metric theory 82
Exercises 84
Chapter 6. The Pell equation
6.1. The cattle problem 88
6.2. Lattice points on hyperbolas 90
6.3. An infinitude of solutions 92
6.4. The minimal solution 94
6.5 . The group of solutions 95
6.6. The minus equation 96
6.7. The polynomial Pell equation 97
6.8. Nathanson's theorem 100
Notes for further reading 102
Exercises 103
Chapter 7. Factoring with continued fractions
7.1. The RSA cryptosystem 107
7.2. A diophantine attack on RSA 109
7.3. An old idea of Fermat 110
7.4. CFRAC 112
7.5. Examples of failures 115
7.6. Weighted mediants and a refinement 115
Notes on primality testing 117
Exercises 118
Chapter 8. Geometry of numbers
8.1. Minkowski's convex body theorem 120
8.2. General lattices 122
8.3. The lattice basis theorem 124
8.4. Sums of squares 125
8.5. Applications to linear and quadratic forms 128
8.6. The shortest lattice vector problem 129
8.7. Gram-Schmidt and consequences 131
8.8. Lattice reduction in higher dimensions 132
8.9. The LLL-algorithm 134
8.10. The small integer problem 136
Notes on sphere packings 136
Exercises 137
Chapter 9. Transcendental numbers
9.1. Algebraic vs. transcendental 141
9.2. Liouville's theorem 142
9.3. Liouville numbers 144
9.4. The transcendence of e 145
9.5. The transcendence of π 147
9.6. Squaring the circle? 149
Notes on transcendental numbers 151
Exercises 152
Chapter 10. The theorem of Roth
10.1. Roth's theorem 155
10.2. Thue equations 156
10.3. Finite vs. infinite 158
10.4. Differential operators and indices 160
10.5. Outline of Roth's method 162
10.6. Siegel's lemma 164
10.7. The index theorem 165
10.8. Wronskians and Roth's lemma 167
10.9. Final steps in Roth's proof 171
Notes for further reading 173
Exercises 174
Chapter 11. The $a b c$-conjecture
11.1. Hilbert's tenth problem 177
11.2. The $A B C$-theorem for polynomials 179
11.3. Fermat's last theorem for polynomials 181
11.4. The polynomial Pell equation revisited 182
11.5. The $a b c$-conjecture 183
11.6. LLL \& $a b c$ 184
11.7. The Erdös-Woods conjecture 186
11.8. Fermat, Catalan \& co. 187
11.9. Mordell's conjecture 189
Notes on $a b c$ 190
Exercises 192
Chapter 12. p-adic numbers
12.1. Non-Archimedean valuations 195
12.2. Ultrametric topology 196
12.3. Ostrowski's theorem 198
12.4. Curious convergence 200
12.5. Characterizing rationals 201
12.6. Completions of the rationals 203
12.7. p-adic numbers as power series 205
12.8. Error-free computing 206
Notes on the p-adic interpolation of the zeta-function 207
Exercises 208
Chapter 13. Hensel's lemma and applications
13.1. p-adic integers 213
13.2. Solving equations in p-adic numbers 214
13.3. Hensel's lemma 216
13.4. Units and squares 218
13.5. Roots of unity 219
13.6. Hensel's lemma revisited 220
13.7. Hensel lifting: factoring polynomials 221
Notes on p-adics: what we leave out 224
Exercises 224
Chapter 14. The local-global principle
14.1. One for all and all for one 227
14.2. The theorem of Hasse-Minkowski 228
14.3. Ternary quadratics 229
14.4. The theorems of Chevalley and Warning 232
14.5. Applications and limitations 234
14.6. The local Fermat problem 236
Exercises 237
Appendix A. Algebra and number theory
A.1. Groups, rings, and fields 239
A.2. Prime numbers 241
A.3. Riemann's hypothesis 242
A.4. Modular arithmetic 243
A.5. Quadratic residues 245
A.6. Polynomials 246
A.7. Algebraic number fields 247
A.8. Kummer's work on Fermat's last theorem 249
Bibliography 251
Index 258

Preface

The book is devoted to the theory of diophantine approximations and the theory of diophantine equations with emphasis on interactions between these subjects. Many diophantine problems have simple formulations but are extremely hard to attack. For instance, consider the rather simple looking equation

$$
X^{n}+Y^{n}=Z^{n}
$$

where n is a positive integer and which has to be solved in integers x, y, z. Integer solutions x, y, z which satisfy $x y z=0$ are - for obvious reasons called trivial. In the case $n=2$ there are many other solutions, e.g.,

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}
$$

already known by the ancient Greeks. However, the situation becomes totally different when $n \geq 3$. For such exponents, Pierre de Fermat, a French lawyer and mathematician in the seventeenth century, claimed to be able to prove that there are no solutions other than trivial ones; however, he never published his proof. In Fermat's time publishing proofs was not very common; usually, mathematicians wrote letters to other mathematicians announcing what they could prove and asked whether the other could do the same. Fermat is famous for this method of doing math. But for more than three centuries no one succeeded in proving Fermat's statement, known as Fermat's last theorem (since it was the last of his statements to be proved).

In the twentieth century, diophantine analysis emerged from its very beginnings to an extraordinary modern and powerful theory (with three Fields medalists: Roth, Baker, Faltings); one example for this success story is Wiles' solution of Fermat's last theorem, the final proof that there are no solutions other than the trivial ones. However, there are still a lot of open problems and conjectures which turn diophantine analysis into an active and attractive field of interest for researchers and students.

The book's motivation is contained in its introduction. Here we present some basic principles of diophantine analysis. The second chapter deals with classical approximation theorems and the third chapter is devoted to the theory of continued fractions. Then we give a more detailed account on certain topics of the classic theory (Chapters 5 and 6) and present some of its applications (Chapters 4 and 7). Chapter 8 gives a short introduction to the geometry of numbers and its applications. The following two chapters deal with transcendental numbers and Roth's theorem with applications to Thue equations. In Chapter 11 we present the recent $a b c$-conjecture and discuss its importance. We conclude with a short introduction to p-adic numbers and their applications to diophantine equations (Chapters 12-14).

Certain topics like elliptic curves or the metric theory of continued fractions are touched but not entirely included because an appropriate presentation would be beyond the scope of this book. However, there exist many
excellent books describing these areas in detail and we refer to some of them for further reading.

Modern topics (which were only considered in a few earlier textbooks) are Apéry's celebrated proof of the irrationality of $\zeta(3)$ (Chapter 4), the polynomial Pell equation (parts of Chapters 6 and 11), and the $a b c$-conjecture with its plenty of applications (Chapter 11). Furthermore, we touch several topics which are of interest in related fields of discrete mathematics: factoring methods for large integers with continued fractions (Chapter 7), the LLL-lattice reduction algorithm (Chapter 8), error-free computing with p-adic numbers (Chapter 12), and factoring polynomials with Hensel lifting (Chapter 13).

This book primarily aims at advanced undergraduate students or graduates who may want to learn the fundamentals of this subject. In some sense, diophantine analysis may be regarded as algebraic geometry over the spectrum of a Dedekind domain. This modern point of view is much beyond the scope of this introduction but we shall keep in mind the idea of using the geometry of the objects under observation to learn something about their arithmetic nature. Our approach is elementary; with exception of the proof of Roth's theorem, only a small background in algebra and number theory is needed. Many of the results are presented with respect to their historical development. I believe that the best way to learn math is to look at how it was developed. However, only practice makes perfect. For this purpose, at the end of each chapter, several exercises and problems of different degrees of difficulty are posed, the advanced ones indicated by an asterisk $*$. Furthermore, I recommend using a computer algebra package like Mathematica or Maple; excellent introductions to experimental mathematics are Bressoud \& Wagon [29] and Vivaldi [165], respectively.

The concept of the book is based upon a course which I gave at Frankfurt University in the winter term 2002/2003. I am very grateful to the audience, in particular, Iqbal Lahseb, Thomas Müller, and Matthias Völz. I want to express my appreciation to my colleagues at the departments of the universities in Frankfurt, Vilnius, Šiauliai, and Madrid; and the many people from whom I learned this subject, in particular, my academic teachers Georg Johann Rieger, Wolfgang Schwarz, and Jürgen Wolfart. I am very much indebted to Jürgen Sander and Hessel Posthuma for inspiring conversations and careful reading of the manuscript. My thanks also go to Christian Beck, Artūras Dubickas, Carsten Elsner, Ernesto Girondo, and Harald König for their interest, help, and valuable remarks. Further, I want to thank Helena Redshaw, Bob Stern, and Kenneth Rosen from CRC Press for their encouragement, and the editorial staff at CRC Press for their support during the preparation of this book.

Finally, and most importantly, I want to thank Rasa.

CHAPTER 1

Introduction: basic principles

Diophantine analysis is devoted to diophantine approximations and diophantine equations. Here the word diophantine means that we are concerned about integral or rational solutions. The exact meaning will become clear in the sequel. In this introductory chapter we shall learn some of the basic principles of diophantine analysis. These are special methods (as Fermat's method of infinite descent) as well as building bridges to other fields (e.g., the use of real analysis or geometry for understanding underlying arithmetic structures). In order to present these principles we prove some fundamental historical results.

1.1. Who was Diophantus?

Diophantus of Alexandria was a mysterious mathematician who lived around 250 A.D.; it is not known whether Diophantus was Greek or Egyptian and there are even some rumors that his name stands for a collective of authors (like Bourbaki). Virtually nothing more about his life is known than the following conundrum:

> God granted him to be a boy for the sixth part of his life, and adding a twelfth part to this, He clothed his cheeks with down. He lit him the light of wedlock after a seventh part, and five years after his marriage He granted him a son. Alas! late-born wretched child; after attaining the measure of half his father's life, chill Fate took him. After consoling his grief by this science of numbers for four years he ended his life. (cf. Singh [153])

How old was Diophantus when he died? This riddle is an example for the kind of problems in which Diophantus was interested. Diophantus wrote the influential monography Arithmetica, but, unfortunately, only 10 of the 13 books of it survived. He was the first writer who made a systematic study of the solutions of polynomial equations in integers or rationals. The Arithmetica is a collection of isolated problems for each of which Diophantus gave a special solution, but in general, not all solutions. To some extent he was aware of some general methods; however, there was no algebraic formalism (as denoting unknowns by symbols) in Diophantus' time. With the rise of algebra around the tenth century in Arabia Diophantus' monography was translated into algebraic language and mathematicians asked for generalizations of diophantine problems. Thus Diophantus' epoch-making

Arithmetica might be viewed as the birth to number theory. The first translation in Europe, by Regiomantus, appeared only in the fifteenth century. Maybe the most important one is that of Bachet from 1621 which was edited with Pierre de Fermat's remarks by his son Samuel de Fermat in 1679 as part of Fermat's collected works. For more details we refer to Schappacher [140] and Weil [172].*

1.2. Pythagorean triples

We shall take a closer look at one of the problems discussed in Diophantus' book. Consider the so-called Pythagorean equation

$$
\begin{equation*}
X^{2}+Y^{2}=Z^{2} \tag{1.1}
\end{equation*}
$$

We are interested in solving this equation in integers and, of course, it suffices to consider non-negative integers. Such solutions (x, y, z) are called Pythagorean triples in honor of the contributions of Pythagoras (572-492 B.C.). With an integer solution (x, y, z) of (1.1) the triple ($a x, a y, a z$) is also an integer solution provided $a \in \mathbb{Z}$. If we want to get an overview over all Pythagorean triples, it thus makes sense to consider only integer solutions (x, y, z) which are coprime; such solutions are called primitive. Given a solution (x, y, z) of (1.1), it is easily seen that the greatest common divisor of x and y, denoted by $\operatorname{gcd}(x, y)$, must divide z. Clearly, the same holds if we interchange x or y and z. Hence, pairwise coprimality of a Pythagorean triple is necessary and sufficient for having a primitive one.

Any solution of the Pythagorean equation in positive real numbers corresponds to a right angular triangle; this is Pythagoras' famous theorem in geometry. Integer solutions of (1.1) were known for quite a long time before Pythagoras. The ancient Babylonians, four millennia ago, were aware of the solutions

$$
3^{2}+4^{2}=5^{2}, \quad 5^{2}+12^{2}=13^{2}, \quad 8^{2}+15^{2}=17^{2}
$$

and many more. It is assumed that the Babylonians used Pythagorean triples for constructing right angles.

Pythagoras not only gave a mathematical proof for what the Babylonians knew in practice, but also constructed an infinitude of primitive Pythagorean triples by the identity

$$
(2 n+1)^{2}+\left(2 n^{2}+2 n\right)^{2}=\left(2 n^{2}+2 n+1\right)^{2}
$$

In the third century B.c. Euclid solved the problem of finding all solutions.
Theorem 1.1. If a and b are positive coprime integers of opposite parity (i.e., a is even and b is odd, or vice versa) such that $a>b$, then the triple (x, y, z), given by

$$
\begin{equation*}
x=a^{2}-b^{2}, \quad y=2 a b, \quad z=a^{2}+b^{2}, \tag{1.2}
\end{equation*}
$$

[^1]is a primitive solution of (1.1). This establishes a bijection between the set of pairs (a, b) satisfying the above conditions and the set of primitive integer solutions of the Pythagorean equation (1.1).

Proof. It is easy to verify that any triple of the form (1.2) solves the Pythagorean equation (1.1):

$$
x^{2}+y^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}=a^{4}+2 a^{2} b^{2}+b^{4}=\left(a^{2}+b^{2}\right)^{2}=z^{2}
$$

Clearly, x, y, z are positive integers. If $d=\operatorname{gcd}(x, y, z)$, then d divides $x+z=2 a^{2}$ and $z-x=2 b^{2}$. Since a and b are coprime, it follows that either $d=1$ or $d=2$. Since a and b have opposite parity, x is odd and thus the case $d=2$ cannot occur. This shows that (x, y, z) is a primitive Pythagorean triple.

For the converse implication assume that (x, y, z) is a Pythagorean triple. Since x and y are coprime, and y is even, it follows that x and z are odd and coprime. Hence, $\frac{1}{2}(z+x)$ and $\frac{1}{2}(z-x)$ are coprime integers and, by (1.1),

$$
\left(\frac{1}{2} y\right)^{2}=\left(\frac{1}{2}(z+x)\right) \cdot\left(\frac{1}{2}(z-x)\right) .
$$

Since the factors on the right have no common divisor, both have to be squares; i.e., there are coprime positive integers a and b such that

$$
a^{2}=\frac{1}{2}(z+x) \quad \text { and } \quad b^{2}=\frac{1}{2}(z-x)
$$

(here we used the fundamental theorem of arithmetic). Further,

$$
a+b \equiv a^{2}+b^{2}=z \equiv 1 \bmod 2
$$

so a and b have opposite parity. Now it is easy to deduce the parametrization (1.2).

It remains to show the one-to-one correspondence between pairs (a, b) and triples (x, y, z). If x and z are given, a^{2} and b^{2}, and consequently a and b, are uniquely determined. Thus, different triples (x, y, z) correspond to different pairs (a, b). The theorem is proved.

One important invention of mathematics is considering numbers modulo m, so putting the infinitude of integers into a finite set of residues. We used this idea of modular arithmetic only a tiny bit in the proof just given (when we investigated the parity) but later on we shall meet it several times.

1.3. Fermat's last theorem

Pierre de Fermat (1607(?)-1665) was a lawyer and government official in Toulouse, and, last but not least, a hobby mathematician. Often his year of birth is dated to be 1601; however, recent investigations make the above given date more reasonable; see Barner [14]. When Fermat died, he was one of the most famous mathematicians in Europe although he never had published any mathematical work; his reputation simply grew out of his extensive correspondence with other scientists. Fermat made important contributions to the very beginnings of analytic geometry, probability
theory, and number theory. The reading of Diophantus' Arithmetica, in particular, the part on the Pythagorean equation, inspired Fermat to write in his copy of Diophantus' monograph:

It is impossible for a cube to be written as a sum of two cubes or a fourth power to be written as the sum of two fourth powers or, in general, for any number which is a power greater than the second to be written as a sum of two like powers. I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain. (cf. Singh [153])
In the modern language of algebra, he claimed to have a proof of
Fermat's last theorem. All solutions of the equation

$$
\begin{equation*}
X^{n}+Y^{n}=Z^{n} \tag{1.3}
\end{equation*}
$$

in integers x, y, z are trivial, i.e., $x y z=0$, whenever $n \geq 3$.
Fermat never published a proof and, by the unsuccessful quest for a solution of Fermat's last theorem, mathematicians started to believe that Fermat actually had no proof. However, no counterexample was found. In fact, the above statement is the only result stated by Fermat which could not be proved for quite a long time, and so it became Fermat's last theorem. Only recently Wiles [174], supported by Taylor and the earlier works of many others, found a proof for Fermat's last theorem. The proof relies on a link to the theory of modular forms. We refer to Edwards [52] for the prehistory of attempts to solve Fermat's last theorem, Singh [153] for the amazing story of this problem and its final solution, and Washington [169] for a brief mathematical discussion of Wiles' breakthrough.

One may ask why the ancient Greeks considered only the quadratic case of the Fermat equation but not the general one. Greek mathematics was inspired by at most three-dimensional geometry and only in the late works of Greek mathematics higher powers occur. They also had an advanced knowledge on divisibility and prime numbers but it seems that they had no idea about the unique prime factorization of the integers.

The exponent in Fermat's equation is crucial. By Theorem 1.1, there are infinitely many solutions when $n=2$, but by Wiles' proof there are only trivial solutions when $n \geq 3$. This observation due to Fermat is essential for the importance of Fermat's last theorem for diophantine analysis. It is the exponent n which defines the geometric character of the Fermat curve (1.3) and indeed, the corresponding geometric quantity called genus rules the solvability.

1.4. The method of infinite descent

The classification of the Pythagorean triples, Theorem 1.1, can be used to prove that the biquadratic case of Fermat's last theorem has only trivial solutions. However, we start with a slightly more general equation.

Theorem 1.2. There are no positive integer solutions of the equation

$$
X^{4}+Y^{4}=Z^{2}
$$

We give Fermat's original and marvelous
Proof. Suppose that z is the least positive integer for which the equation

$$
X^{4}+Y^{4}=z^{2}
$$

has a solution in positive integers x, y. It follows that x and y are coprime since otherwise we can divide through $\operatorname{gcd}(x, y)^{4}$, contradicting the minimality of z. Thus at least one of x and y is odd. Since the squares modulo 4 are 0 and 1 , it follows that

$$
z^{2}=x^{4}+y^{4} \equiv 1 \text { or } 2 \bmod 4
$$

A square cannot be congruent $2 \bmod 4$, so z is odd, and only one of x and y is odd; the other one is even. Without loss of generality we may assume that y is even. Then, by (1.2) of Theorem 1.1,

$$
x^{2}=a^{2}-b^{2}, \quad y^{2}=2 a b, \quad z=a^{2}+b^{2},
$$

where a and b are coprime positive integers of opposite parity. If a is even and b is odd, then $x^{2} \equiv-1 \bmod 4$, which is impossible. Thus, a is odd and b is even, say $b=2 c$ for some integer c. We observe that

$$
\left(\frac{1}{2} y\right)^{2}=a c
$$

where a and c are coprime. It follows that $a=u^{2}$ and $c=v^{2}$ with some positive coprime integers u, v, where u is odd (since a is odd). This leads to

$$
\left(2 v^{2}\right)^{2}+x^{2}=\left(u^{2}\right)^{2}
$$

where no two of the numbers $2 v^{2}, x, u^{2}$ have a common factor. Applying once more Theorem 1.1 we obtain

$$
2 v^{2}=2 A B \quad \text { and } \quad u^{2}=A^{2}+B^{2}
$$

where A and B are coprime positive integers. Dividing the v-equation by 2, we get (by the coprimality of A and B) the existence of some positive coprime integers \mathcal{X} and \mathcal{Y} such that $A=\mathcal{X}^{2}$ and $B=\mathcal{Y}^{2}$. Substituting this in the u-equation gives

$$
\mathcal{X}^{4}+\mathcal{Y}^{4}=u^{2}
$$

which is another non-trivial solution of the diophantine equation under consideration. However,

$$
u \leq u^{2}=a \leq a^{2}<a^{2}+b^{2}=z
$$

which contradicts the assumption that z was the least solution. This proves the assertion of the theorem. -

The method of proof is called method of infinite descent. The simple but ingenious idea of constructing a smaller solution out of a given one can often be used for proving that certain diophantine equations have no integer solutions.

It is obvious how Theorem 1.2 solves Fermat's last theorem in the case $n=4$. It might be possible that Fermat had this argument in mind when he made his statement of having a proof for the general case. However, the case $n=4$ in Fermat's last theorem is the only easy one. Odd exponents cannot be treated as above.

1.5. Cantor's paradise

Usually, the set of positive integers \mathbb{N} is introduced by the Peano axioms. Adding the neutral element zero and the inverse elements with respect to addition, we obtain the set of integers \mathbb{Z}. Further, incorporating the inverse elements with respect to multiplication we get the field of rational numbers \mathbb{Q}. Hence, a number is said to be rational if it can be represented as a quotient of two integers, the denominator being non-zero; all other numbers (in the set \mathbb{R} of real and the set \mathbb{C} of complex numbers, respectively) are called irrational.

It is believed that we are living in a finite universe: there are about 10^{80} atoms in our universe. So our world can be described using only rational numbers. However, we cannot understand our world without a larger set of numbers. The Pythagorean equation (1.1) led to one of the great breakthroughs in ancient Greek mathematics. Hippasus, a pupil of Pythagoras, discovered that the set of rational numbers is too small for the simple geometry of triangles and squares. In fact, he proved that the length of the diagonal of a unit square is irrational:

$$
\sqrt{2}=\sqrt{1^{2}+1^{2}} \notin \mathbb{Q}
$$

Nowadays this is taught at school and so we may omit a proof (a rather new and simple proof of this fact was given by Estermann; see Exercise 1.7). But for the Pythagoras school it was the death of its philosophy that all natural phenomena could be explained in integers. It is said that Pythagoras sentenced Hippasus to death by drowning (cf. Singh [153]). This unkind act could not stop the mathematical progress. In order to solve polynomial equations and to determine the merits in analysis, mathematicians invented various types of new numbers:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

In fact, this is only the top of an iceberg; we shall learn about another type of numbers in Chapter 12. We refer the interested reader to the collection [51] of excellent surveys on numbers of all kinds. However, to begin with we shall only consider the set \mathbb{R} of real numbers.

An infinite set is called countable if there exists a bijection onto \mathbb{N}; otherwise the set is said to be uncountable. It is easy to see that any union of countably many countable sets is again countable. \mathbb{Q} is countable as shown by the following one-to-one mapping from \mathbb{N} to the set of positive rationals:

$$
\mathbb{Q}^{+} \ni \frac{m}{n} \quad \longleftrightarrow \quad n+\frac{1}{2}(m+n-1)(m+n-2) \quad \text { for } m, n \in \mathbb{N} .
$$

The real numbers represent a quite different type of infinite set than \mathbb{Q}.
Theorem 1.3. The set \mathbb{R} of real numbers is uncountable.
This is a famous result of Cantor and it simply shows that almost all real numbers are irrational. Its proof relies on his marvelous diagonalization argument.

Proof. It suffices to prove the assertion for the subset of real numbers lying in the interval $(0,1]$.

Suppose the contrary, that is, \mathbb{R} is countable. Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be a listing of all real numbers in $(0,1]$. Using the decimal fraction expansion, every r_{n} can be written as

$$
r_{n}=0 . a_{n 1} a_{n 2} a_{n 3} \ldots,
$$

where the digits $a_{n k}$ are integers satisfying $0 \leq a_{n k} \leq 9$. If we assume additionally that we do not allow any infinite sequence of zeros at the end, this decimal expansion is unique (e.g., $0.1=0.09999 \ldots$... Now define some $r=0 . b_{1} b_{2} b_{3} \ldots$ by choosing $b_{n} \in\{1, \ldots, 8\}$ different from $a_{n n}$ (the diagonal entry in our list) for each n. Then, r is a real number in $(0,1)$ which does not appear in the list of the r_{n} (since r differs in the nth entry: $b_{n} \neq a_{n n}$). This is the desired contradiction.

Theorem 1.3 marks the beginning of modern set theory. Hilbert once said in tribute to Cantor that no one will drive us from the paradise that Cantor has created.

1.6. Irrationality of e

One of the most fundamental functions in analysis (and natural sciences) is the exponential function given by the infinite series

$$
\exp (x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

as usual, we will sometimes also write e^{x} for $\exp (x)$. A special role plays Euler's number

$$
\mathrm{e}:=\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=2.7182818284 \ldots
$$

The exponential series converges very fast. For instance, taking into account the first 15 terms gives the approximation above.

Theorem 1.4. e is irrational.
This result dates back to Euler in 1737, resp. Lambert in 1760; however, their approach via continued fractions is rather difficult (we will return to this subject later). The following simple proof would easily have been possible in Euler's time.

Proof. Suppose the contrary; then there exist positive integers a, b such that $\mathrm{e}=\frac{a}{b}$. Let m be an integer $\geq b$. Then b divides m ! and the number

$$
\alpha:=m!\left(\mathrm{e}-\sum_{n=0}^{m} \frac{1}{n!}\right)=a \frac{m!}{b}-\sum_{n=0}^{m} \frac{m!}{n!}
$$

is an integer (term by term). We have

$$
\alpha=\sum_{n=m+1}^{\infty} \frac{m!}{n!}<\frac{1}{m+1} \sum_{k=0}^{\infty}\left(\frac{1}{m+1}\right)^{k} .
$$

By the formula for the infinite geometric series, we can easily bound the right-hand side and find

$$
0<\alpha<\frac{1}{m+1} \cdot \frac{1}{1-\frac{1}{m+1}}=\frac{1}{m} \leq 1
$$

Since the interval $(0,1)$ is free of integers, this contradicts the fact that α is integral. The theorem is proved.

This proof reveals an important principle in the diophantine toolbox: the series converges so fast that the limit cannot be of a restricted arithmetic nature!

The question whether a given real number is irrational might seem to be simple at first glance. Actually, this is a rather difficult problem. For instance, it is unknown whether the Euler-Mascheroni constant is irrational:

$$
\gamma:=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)=0.57721 \ldots \notin \mathbb{Q} ?
$$

1.7. Irrationality of π

Another important constant is the ratio π of the circumference to the diameter of a circle. We define

$$
\pi=3.141592653589793 \ldots
$$

to be the least positive root of the sine function. Our next aim is
Theorem 1.5. π and π^{2} are irrational.
The first proof of the irrationality of π was given by Lambert in 1761, also by using continued fractions. The proof which we shall give now, as all other known proofs, is slightly more difficult than the one just given for e. This holds true for other questions concerning these two fundamental numbers. It seems that e has somehow more structure than π. Our short but tricky proof is due to Niven [124].
Proof. We start with some preliminaries. For $n \in \mathbb{N}$ define the function

$$
\begin{equation*}
f_{n}(x)=\frac{1}{n!} x^{n}(1-x)^{n} \tag{1.4}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
0<f_{n}(x)<\frac{1}{n!} \quad \text { for } \quad 0<x<1 \tag{1.5}
\end{equation*}
$$

By the binomial theorem,

$$
(1-x)^{n}=\sum_{j=0}^{n}\binom{n}{j}(-x)^{j} .
$$

Since the binomial coefficients are integers (this follows immediately from their combinatorial meaning), we have

$$
f_{n}(x)=\frac{1}{n!} \sum_{j=n}^{2 n} c_{j} x^{j}
$$

where the c_{j} are integers (actually, they are equal to $\pm\binom{ n}{j}$ but we do not need this information). The functions $f_{n}(x)$ share a symmetry of type $f(x)=f(1-x)$. Differentiation of this functional equation leads to

$$
f_{n}^{(k)}(x)=(-1)^{k} f_{n}^{(k)}(1-x),
$$

where $f^{(k)}$ denotes the k th derivative of f. Taking into account the Taylor series expansion (or dumb computation) we deduce

$$
(-1)^{k} f_{n}^{(k)}(1)=f_{n}^{(k)}(0)=\left\{\begin{array}{lll}
0 & \text { if } \quad 0 \leq k<n \tag{1.6}\\
\frac{k!}{n!} c_{k} & \text { if } \quad n \leq k \leq 2 n
\end{array}\right.
$$

Note that the values in (1.6) are all integers.
Now we are in the position to prove the theorem. Obviously, it suffices to show that π^{2} is irrational. Assume that $\pi^{2}=\frac{a}{b}$ with positive integers a and b. We consider the polynomial

$$
F_{n}(x):=b^{n}\left(\pi^{2 n} f_{n}(x)-\pi^{2 n-2} f_{n}^{(2)}(x) \pm \ldots+(-1)^{n} f_{n}^{(2 n)}(x)\right)
$$

Since $b^{n} \pi^{2 k}=b^{n-k} a^{k} \in \mathbb{Z}$ for $0 \leq k \leq n$, it follows from (1.6) that $F_{n}(0), F_{n}(1) \in \mathbb{Z}$. A short calculation shows

$$
\left(F_{n}^{\prime}(x) \sin (\pi x)-\pi F_{n}(x) \cos (\pi x)\right)^{\prime}=\pi^{2} a^{n} f_{n}(x) \sin (\pi x) .
$$

Taking into account $\sin \pi=\sin 0=0$ this yields

$$
\mathcal{I}_{n}:=\pi a^{n} \int_{0}^{1} f_{n}(x) \sin (\pi x) \mathrm{d} x=F_{n}(0)+F_{n}(1)
$$

In view of our previous observation it follows that \mathcal{I}_{n} is an integer. On the other side with regard to (1.5) we get

$$
0<\mathcal{I}_{n}<\pi \frac{a^{n}}{n!}
$$

Since the exponential series for $\exp (a)$ converges, $n!$ grows faster than a^{n} as $n \rightarrow \infty$, and thus the right-hand side is <1 for sufficiently large n. This contradicts $\mathcal{I}_{n} \in \mathbb{Z}$ and the theorem is proved. •

Again this proof is very interesting: a problem concerning the arithmetic nature of a given real number is solved by the construction of an appropriate sequence of polynomials with respect to its analytic behavior!

This method of proof can also be applied to prove the irrationality of the exponential function at any non-zero rational value (see Exercise 1.11).

1.8. Approximating with rationals

In 1682, the astronomer and mathematician Huygens (1629-1695) built an automatic planetarium. In one year Earth covers $359^{\circ} 45^{\prime} 40^{\prime \prime} 30^{\prime \prime \prime}$ and Saturn covers $12^{\circ} 13^{\prime} 34^{\prime \prime} 18^{\prime \prime \prime}$, which gives the ratio

$$
\frac{77708431}{2640858}=29.42544 \ldots
$$

Huygens had to construct a gear mechanism which materializes this ratio well. It makes sense to search for approximations which allow a good approximation with only a few teeth for the gears. So Huygens was looking for small integers whose ratio is sufficiently close to the preceding one. The first idea for such an approximation might be $\frac{294}{10}=\frac{147}{5}$ coming from the decimal fraction expansion. However, this does not approximate sufficiently good; the error is $0.02544 \ldots$, so more than two percent. Can we do better? Huygens could; he found the rational approximation $\frac{206}{7}$. The error of this approximation is

$$
\frac{206}{7}-\frac{77708431}{2640858}=0.00312 \ldots
$$

which is less than 40^{\prime} in a century! How did Huygens find this excellent approximation?

Almost all real numbers are irrational. If we have to deal with such numbers, the situation is even worse than in Huygens' case. Computers cannot work with irrationals! In fact, a computer even has problems working with rational numbers; however, there are several strategies to overcome this problem (we will meet this theme in Section 12.8). Fortunately, for most problems it is sufficient to have an approximate solution. Since \mathbb{Q} is dense in \mathbb{R}, it is natural to search for rational approximations. However, \mathbb{Q} has the disadvantage of being very thin in \mathbb{R}.

We return to the famous constant π. It is interesting to see which rational approximations to π were used in ancient times:

- The Rhind Papyrus (≈ 1650 в.c.): $\pi \approx 4\left(\frac{8}{9}\right)^{2}=3.16 \ldots$;
- Old Testament (≈ 1000 в.с.): $\pi \approx 3$;
- Archimedes ($287-212$ в.c.): $\pi \approx \frac{22}{7}=3.142 \ldots$;
- Tsu Chung Chi (≈ 500 A.D.): $\pi \approx \frac{355}{113}=3.1415929 \ldots$.

How could they find these approximations in those Dark Ages without computers? Their approaches used the underlying geometry.

We shall briefly sketch how Archimedes came to his approximation. He considered a circle of radius one, in which he inscribed a regular polygon of 96 sides, and circumscribed a regular polygon with the same number of sides, such that the first polygon has its vertices on the circle; the second

Figure 1.1. The pentagon inscribed in the unit circle has area $\frac{5}{2} \sin \frac{2 \pi}{5}=2.37764 \ldots$, which gives a poor lower bound for π.
one, the midpoints of its edges. Comparing the perimeters led him to the inequality

$$
\begin{equation*}
\frac{223}{71}<\pi<\frac{22}{7} \tag{1.7}
\end{equation*}
$$

Alternatively, one can also consider the areas. This method of exhaustion can be used to find as good rational approximations to π as we please; however, this algorithm is not very efficient. Recently, Kanada \& Takahashi computed π up to more than 206 billion digits, based on fast converging series, so calculus replaces geometry. Such a precision is beyond any use in applications (the Planck constant 10^{-33} is the smallest unit in quantum mechanics) but interesting from a mathematical point of view. To remember the first decimals, we recommend the rhyme

Now I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics!
Since \mathbb{Q} is dense in \mathbb{R}, for any real number there exist infinitely many rational approximations and we can approximate with any assigned degree of accuracy. But what are good and what are bad approximations among them? Thinking back to Huygens' gears, we find that a natural measure for a rational approximation is its denominator.

Let α be any real number; then we say that $\frac{p}{q} \in \mathbb{Q}$ with $q \geq 1$ is a best approximation to α if

$$
\begin{equation*}
|q \alpha-p|<|Q \alpha-P| \quad \text { for all } \quad Q<q \tag{1.8}
\end{equation*}
$$

where $P, Q \in \mathbb{Z}$. Necessarily a best approximation $\frac{p}{q}$ is a reduced fraction (that is, p and q are coprime). Dividing inequality (1.8) by q shows

$$
\left|\alpha-\frac{p}{q}\right|<\frac{Q}{q}\left|\alpha-\frac{P}{Q}\right|<\left|\alpha-\frac{P}{Q}\right|
$$

(since $Q<q$). Consequently, a best approximation $\frac{p}{q}$ to α is the nearest rational number with denominator $\leq q$. However, the converse does not hold as we shall see in the following section.

The first best approximations to π are

$$
\begin{equation*}
\frac{3}{1}, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \frac{103993}{33102}, \ldots \quad \rightarrow \quad \pi . \tag{1.9}
\end{equation*}
$$

It is remarkable that the fractions given by Archimedes and Tsu Chung Chi are best approximations. This means that they could not do better than they did. Given a real number we want to approximate, there is usually no geometric information which we can use to find an appropriate rational approximation (as we did in the case of π). So we are faced with the problem of finding an efficient and universal algorithm which provides the best approximations to any given real number.

1.9. Linear diophantine equations

In honor of Diophantus we speak about

- Diophantine approximations when we search for rational approximations to rational or irrational numbers;
- Diophantine equations when we investigate polynomial equations for solutions in integers (or rationals).
As we shall show now these areas are linked in both directions.
We consider linear diophantine equations in two variables. For instance, we may ask for solutions of the equation

$$
\begin{equation*}
106 X-333 Y=1 \tag{1.10}
\end{equation*}
$$

in integers; here and in the sequel we denote variables by capitals and corresponding solutions by small letters. One approach to answering this question offers Euclid's algorithm.

We recall some facts from elementary number theory. By division with remainder, for any positive integers a, b with $b \leq a$ there exist integers q, r such that

$$
a=b q+r \quad \text { with } \quad 0 \leq r<b .
$$

Now define $r_{-1}:=a, r_{0}:=b$. Then, successive application of division with remainder yields the Euclidean algorithm:

$$
\begin{align*}
\text { For } & n=0,1, \ldots \quad \text { do } \\
r_{n-1} & =q_{n+1} r_{n}+r_{n+1} \quad \text { with } \quad 0 \leq r_{n+1}<r_{n} . \tag{1.11}
\end{align*}
$$

Since the sequence of remainders is strictly decreasing, the algorithm terminates, and by simplest divisibility properties the last non-vanishing remainder r_{m} is equal to the greatest common divisor of a and b,

$$
r_{m}=\operatorname{gcd}(a, b)
$$

It should be noted that the Euclidean algorithm is very fast; more precisely, the number of steps m is bounded by a polynomial in the input length.

Reading the Euclidean algorithm backwards, we can substitute any r_{n+1} in terms of r_{n-1} and r_{n} one after the other down to $n=0$. This yields a
representation of r_{m} as a linear combination of $r_{-1}=a$ and $r_{0}=b$. Thus we get an explicit integral solution of the linear equation

$$
\begin{equation*}
b X-a Y=\operatorname{gcd}(a, b) \tag{1.12}
\end{equation*}
$$

say x_{0}, y_{0}. It is easily seen that then all integral solutions to the latter diophantine equation are given by

$$
\begin{equation*}
\binom{x}{y}=\binom{x_{0}}{y_{0}}+k \frac{1}{\operatorname{gcd}(a, b)}\binom{a}{b} \quad \text { for } \quad k \in \mathbb{Z} \tag{1.13}
\end{equation*}
$$

From here it is only a small step to Bezout's theorem:
Theorem 1.6. The linear diophantine equation

$$
\begin{equation*}
b X-a Y=c \tag{1.14}
\end{equation*}
$$

with integers a, b, c is solvable if and only if $\operatorname{gcd}(a, b)$ divides c; in the case of solvability, the set of solutions is given by (1.13).
Proof. Given any integer solution x, y of (1.12), if $\operatorname{gcd}(a, b)$ divides c, then the numbers

$$
\mathcal{X}=\frac{c}{\operatorname{gcd}(a, b)} x \quad \text { and } \quad \mathcal{Y}=\frac{c}{\operatorname{gcd}(a, b)} y
$$

solve (1.14). For the converse implication simply note that, for any integers x, y, the number $a x+b y$ is divisible by $\operatorname{gcd}(a, b)$. The theorem is proved.

We return to our example (1.10). Applying the Euclidean algorithm shows

$$
22 \cdot 106-7 \cdot 333=1
$$

With regard to our observations above we find that the set of integer solutions to (1.10) is given by

$$
\binom{x}{y}=\binom{22}{7}+k\binom{333}{106} \quad \text { for } \quad k \in \mathbb{Z}
$$

It might be a little surprising to see that the solutions x, y of (1.10) yield good approximations $\frac{x}{y}$ to $\frac{333}{106}$. We may rewrite each solution as

$$
\begin{equation*}
\frac{x}{y}=\frac{333}{106}+\frac{1}{106 y} \tag{1.15}
\end{equation*}
$$

and since the second term is rather small, tending to zero as $|y| \rightarrow \infty$, the solutions x, y to (1.10) yield better and better approximations to $\frac{333}{106}$; of course, having Huygens' approximation problem in mind, we are only interested in approximations with a denominator less than 106. Any fraction $\frac{P}{Q}$ with $1 \leq Q<106$ satisfies

$$
\left|Q \frac{333}{106}-P\right|=Q\left|\frac{333}{106}-\frac{P}{Q}\right|=Q \frac{|106 P-333 Q|}{106 Q} \geq \frac{1}{106},
$$

equality holding if and only if P, Q is a solution of (1.10). Thus, we cannot approximate $\frac{333}{106}$ better than with a fraction coming from a solution of (1.10). Moreover, the solution x, y with minimal $|y|$ yields a best approximation $\frac{x}{y}$ to $\frac{333}{106}$, here $\frac{22}{7}$ (notice that both rationals are best approximations
to π). Of course, this holds more generally for linear diophantine equations of the form (1.12).

Figure 1.2. Integer lattice points (x, y) on the straight line $106 X-333 Y=1$ provide good rational approximations $\frac{x}{y}$ to $\frac{333}{106}$.

In some sense, we have replaced the diophantine equation by an appropriate diophantine inequality. So in place of using the Euclidean algorithm backwards, we can also solve the linear diophantine equation (1.12) by searching for best approximations to $\frac{a}{b}$. This was first discovered by Indian mathematicians, namely, Aryabhata around 550 A.D. and Bhaskara around 1150. However, this example marks only the very beginning of the interplay between diophantine approximations and diophantine equations: certain diophantine equations can be investigated by studying a related problem in the theory of diophantine approximations!

Exercises

1.1. How old was Diophantus when he died?

1.2. For a Pythagorean triple (x, y, z), show that $x y z$ is divisible by 60 .
1.3.* Consider the recursion defined by $a_{1}=3, c_{1}=5$,

$$
a_{n+1}=3 a_{n}+2 c_{n}+1 \quad \text { and } \quad c_{n+1}=4 a_{n}+3 c_{n}+2
$$

Prove that $\left(a_{n}, a_{n}+1, c_{n}\right)$ is a Pythagorean triple. Show that this recursion yields all Pythagorean triples of the form $(a, a+1, c)$.
The first assertion is due to Ryden and the second one was found by Hering; for a more general recursion which constructs all primitive Pythagorean triples out of $(3,4,5)$, see Gollnick et al. $[\mathbf{6 7}]$.
1.4. Show that it suffices to prove Fermat's last theorem for exponents n being prime and $n=4$.
1.5.* i) Show that the equation

$$
X^{4}-4 Y^{4}= \pm Z^{2}
$$

has no solutions in positive integers.
Hint: Use Fermat's method of infinite descent.
ii) Deduce from i) that the area of a Pythagorean triangle is not the square of an integer.
1.6.* Show that $x=y=z=0$ is the only integral solution of the equation

$$
X^{3}+2 Y^{3}+4 Z^{3}-34 X Y Z=0
$$

1.7. Let \mathcal{S} be the set of those positive integers n for which $n \sqrt{2}$ is an integer. If $\sqrt{2}$ were rational, \mathcal{S} would be not empty. For the least element of \mathcal{S}, say k, consider the number $(\sqrt{2}-1) k$. Deduce from

$$
(\sqrt{2}-1) k \sqrt{2}=2 k-k \sqrt{2}
$$

that the set \mathcal{S} is empty and that $\sqrt{2}$ is irrational. Generalize this argument! This idea for proving the irrationality of $\sqrt{2}$ is due to Estermann.
1.8. Prove that \mathbb{Q} is dense in \mathbb{R}.
1.9.* Using Archimedes' exhaustion method, improve inequality (1.7). Prove that the area of the regular n-gon with vertices on the unit circle is equal to $\frac{n}{2} \sin \frac{2 \pi}{n}$ and show that this tends to π as $n \rightarrow \infty$.
1.10.* For computation of the first digits of π it is convenient to make use of analysis. Machin's formula states

$$
\frac{\pi}{4}=4 \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right)
$$

where arcus tangent is given by the power series

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \mp \ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} .
$$

Deduce Machin's formula from the addition formula of the tangent,

$$
\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}
$$

and compute the first ten digits of the decimal fraction of π.
1.11.* With the same notation as in the proof of Theorem 1.5 let q be a positive integer and define

$$
G_{n}(x)=q^{2 n} f_{n}(x)-q^{2 n-1} f_{n}^{\prime}(x) \pm \ldots+f_{n}^{(2 n)}(x) .
$$

Prove that $\left(\exp (q x) G_{n}(x)\right)^{\prime}=q^{2 n+1} \exp (q x) f_{n}(x)$, and deduce

$$
\int_{0}^{1} q^{2 n+1} f_{n}(x) \exp (q x) \mathrm{d} x=\exp (q) G_{n}(1)-G_{n}(0)
$$

Following the proof of Theorem 1.5, use the above identities to prove that $\exp (q)$ is irrational for any $0 \neq q \in \mathbb{Q}$.

[^0]: Visit the Taylor \& Francis Web site at http://www.taylorandfrancis.com
 and the CRC Press Web site at http://www.crcpress.com

[^1]: *Of course, MacTutor's Web page http://www-groups.dcs.st-and.ac.uk/~history/ also gives plenty of information on the history of mathematics.

