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Preface 

The word “fuzzy” is no longer fuzzy to many engineers today. Introduced in 
the earlier 1970s, fuzzy systems and fuzzy control methodologies as an 
emerging technology targeting industrial applications has added a promising 
new dimension to the existing domain of conventional control systems 
engineering. It is now a common belief that when a complex physical system 
does not provide a set of differential or difference equations as a precise or 
reasonably accurate mathematical model, particularly when the system 
description requires certain human experience in linguistic terms, fuzzy 
systems and fuzzy control theories have some salient features and 
distinguishing merits over many other approaches.  

Fuzzy control methods and algorithms, including many specialized software 
and hardware available on the markets, may be classified as one type of 
intelligent control. This is because fuzzy systems modeling, analysis, and 
control incorporate a certain amount of human knowledge into its components 
such as fuzzy sets, fuzzy logic, and fuzzy rule bases. Using human expertise in 
system modeling and controller design is not only advantageous but often 
necessary. Classical controllers design has already incorporated human 
knowledge and skills; for instance, what type of controller to use and how to 
determine the controller structure and parameters largely depend on the 
decision and preference of the designer, especially when multiple choices are 
possible. The fuzzy control technology provides just one more choice for this 
consideration; it has the intention to be an alternative, by no means a simple 
replacement, of the existing control techniques such as classical control and 
other intelligent control methods (e.g., neural networks, expert systems, etc.). 
Together, they supply systems and control engineers with a more complete 
toolbox to deal with the complex, dynamic, and uncertain real world. Fuzzy 
control technology is one of the many tools in this toolbox that is developed 
not only for elegant mathematical theories, but more importantly, for many 
practical problems with various technical challenges. 

Compared with various conventional approaches, fuzzy control utilizes more 
information from domain experts and yet relies less on mathematical 
modeling about a physical system.  

On the one hand, fuzzy control theory can be quite heuristic and somewhat ad 
hoc. This sometimes is preferable or even desirable, particularly when low-
cost and easy operations are required where mathematical rigor is not the main 
concern. There are many examples of this kind in industrial applications, for 
which fuzzy sets and fuzzy logic are easy to use. Within this context, 
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determining a fuzzy set or a fuzzy rule base seems to be somewhat subjective, 
where human knowledge about the underlying physical system comes into 
play. However, this may not require more human knowledge than selecting a 
suitable mathematical model in a deterministic control approach, where the 
following questions are often being asked beforehand: “Should one use a 
linear or a nonlinear model?” “If linear, what’s the order or dimension; if 
nonlinear, what type of nonlinearity?” “What kind of optimality criterion 
should be used to measure the performance?” “What kind of norm should be 
used to measure the robustness?” It is also not much more subjective than 
choosing a suitable distribution function in the stochastic control approach, 
where the following questions are frequently being asked: “Gaussian or non-
Gaussian noise?” “White noise or just unknown but bounded uncertainty?” 
Although some of these questions can be answered on the basis of statistical 
analysis of available empirical data in classical control systems, the same is 
true for establishing an initial fuzzy rule base in fuzzy control systems. 

On the other hand, fuzzy control theory can be rigorous and fuzzy controllers 
can have precise formulations with analytic structures and guaranteed closed-
loop system stability and performance specifications, if such characteristics 
are intended. In this direction, the ultimate objective of the current fuzzy 
systems and fuzzy control research is appealing: the fuzzy control system 
technology is moving toward a solid foundation as part of the modern control 
theory. The trend of a rigorous approach to fuzzy control, starting from the 
mid-1980s, has produced many exciting and promising results. For instance, 
some analytic structures of fuzzy controllers, particularly fuzzy PID 
controllers, and their relationship with corresponding conventional controllers 
are much better understood today. Numerous analysis and design methods 
have been well developed. As a consequence, the existing analytical control 
theory has made the fuzzy control systems practice safer, more efficient, and 
more cost-effective.  

This textbook represents a continuing effort in the pursuit of analytic theory 
and rigorous design for fuzzy control systems. More specifically, the basic 
notion of fuzzy mathematics (Zadeh fuzzy set theory, fuzzy membership 
functions, interval and fuzzy number arithmetic operations) is first studied. 
Consequently, in a comparison with the classical two-valued logic, the 
fundamental concept of fuzzy logic is introduced. Some real-world 
applications of fuzzy logic will then be discussed, just after two chapters of 
studies, revealing some practical flavors of fuzzy logic. This is then followed 
by the basic fuzzy systems theory (Mamdani and Takagi-Sugeno modeling, 
along with parameter estimation and system identification) and fuzzy control 
theory. Here, fuzzy control theory is introduced, mainly based on the well-
known classical Proportional-Integral-Derivative (PID) controllers theory and 
design methods. In particular, fuzzy PID controllers are studied in greater 
detail. These controllers have precise analytic structures, with rigorous 
analysis and guaranteed closed-loop system stability; they are comparable and 



Preface vii 

 

also compatible with the classical PID controllers. To that end, a new notion 
of verb-based fuzzy-logic control theory is briefly described. 

The primary purpose of this course is to provide some rather systematic 
training for systems and control majors, both senior undergraduate and first-
year graduate students, and to familiarize them with some fundamental 
mathematical theory and design methodology in fuzzy control systems.  The 
authors have tried to make this book self-contained, so that no preliminary 
knowledge of fuzzy mathematics and fuzzy control systems theory is needed 
to understand the materials presented in this textbook. Although it is assumed 
that the students are aware of some very basic classical set theory and classical 
control systems theory, the fundamentals of these subjects are briefly 
reviewed throughout the text for their convenience. 

Some common terminology in the field of fuzzy control systems has become 
quite standard today. Therefore, as a textbook written in a classical style, the 
authors have taken the liberty to omit some personal and specialized names 
such as “TS fuzzy model” and “t-norm,” to name just a couple. One reason is 
that too many names have to be given to too many items in doing so, which 
will distract the readers’ attention in their reading. Nevertheless, closely 
related references are given at the end of the book for crediting and for one’s 
further searching. Also, an * in the Table of Contents indicates those relatively 
advanced materials that are beyond the basic scope of the present text; they 
are used only for the reader's further studies of the subject and can be omitted 
in regular teaching. 

This textbook is a significantly modified version of the authors’ book 
“Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems” (CRC 
Press, 2001), which has been used by the authors for a graduate course in the 
City University of Hong Kong since its publication, prior to which the 
authors’ Lecture Notes had been taught for several years in the University of 
Houston at Texas of USA. This new book differs from the original one in 
many aspects. First of all, two new chapters, Chapters 3 and 7, have been 
added, with emphasis on some real applications of fuzzy logic and some new 
development of the verb-based fuzzy control theory and methodology. To 
keep the book within a modest size and make it more readable to new comers, 
some advanced topics on adaptive fuzzy control and high-level applications of 
fuzzy logic, presented in Chapters 6 and 7 of the original book, have been 
removed. Secondly, almost all chapters in the original book have been 
simplified, keeping the most fundamental contents and aiming at a more 
elementary textbook that can be easily used for teaching of the subject. Last 
but not least, more practical examples and review problems have been added 
or revised, with problem solutions provided at the end of the book, which 
should benefit both class-room teaching and self-studying.  
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In the preparation of this new textbook, the authors received some suggestions 
and typo-corrections on the previous book from their students each year. In 
particular, Dr. Tao Yang provided the materials of Chapter 7 on verb-based 
fuzzy control theory, which has quite significantly enhanced the contents of 
the book.  

It is the authors’ hope that students will benefit from this textbook in obtaining 
some relatively comprehensive knowledge about fuzzy control systems theory 
which, together with their mathematical foundations, can in a way better 
prepare them for the rapidly developing applied control technologies emerging 
from the modern industries. 

 
The Authors 
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CHAPTER 1 

Fuzzy Set Theory 

The classical set theory is built on the fundamental concept of “set.” An 
individual is either a member or not a member of a specified set in question. A 
sharp, crisp, and unambiguous distinction exists between a member and a 
nonmember for any well-defined “set” in this classical theory of mathematics, 
and there is a very precise and clear boundary indicating whether or not an 
individual belongs to the set. When one is asked the question “Is this 
individual a member of that set?”  The answer is either “yes” or “no.”  

The classical concept of “set” holds for both the deterministic and the 
stochastic cases. In probability and statistics, one may ask, “What is the 
probability of this individual being a member of that set?” Although an 
answer to this question could be like “The probability for this individual to be 
a member of that set is 90%,” the final outcome (i.e., conclusion) is still either 
“it is” or “it is not” a member of that set. Here, the chance for one to make a 
correct prediction as “it is a member of that set” is 90%, which does not mean 
that it has 90% membership in the set and, meanwhile, it possesses 10% non-
membership of the same set. In other words, in the classical set theory, it is 
not permissible for an individual to be partially in a set and also partially not 
in the same set at the same time. Thus, many real-world application problems 
cannot be described and, as a result, cannot be solved by the classical set 
theory, including all those involving elements with only partial membership of 
a set. On the contrary, fuzzy set theory accepts partial memberships; therefore, 
in a sense it generalizes the classical set theory to some extent. 

In order to introduce the concept of fuzzy sets, the elementary set theory in 
classical mathematics is first reviewed. It will be seen that the fuzzy set theory 
is a very natural extension of the classical set theory, and is also a rigorous 
mathematical notion. 

I. CLASSICAL SET THEORY 

Let S be a nonempty set, called the universe set below, consisting of all 
possible elements of interest within a particular context.   

Each of these elements is called a member, or an element, of S.  A union of 
some (finite or infinitely many) members of S is called a subset of S.   
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To indicate that a member s of S belongs to a subset S of S, one usually writes 

s ∈ S, 

but if s is not a member of S,  

s ∉ S. 

To indicate that S is a subset of S, one writes 

S ⊂ S. 

Usually, this notation implies that S is a strictly proper subset of S in the sense 
that there is at least one member x ∈ S but x ∉ S.  If it can be either S ⊂ S or S 
= S, then one writes 

S ⊆ S. 

An empty subset is denoted by ∅.  A subset of certain members that all have 
properties P1, ... , Pn will be denoted by a capital letter, say A, as 

A = { a | a has properties P1, ..., Pn }. 

A subset A ⊆ Rn is said to be convex if 

x = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

nx

x

M
1

 ∈ A and y = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ny

y

M
1

 ∈ A 

implies 

λx + (1 − λ)y ∈ A for any λ ∈ [0,1]. 

Let A and B be two subsets.  If every member of A is also a member of B, i.e., 
if a ∈ A implies a ∈ B, then A is said to be a subset of B, and is denoted A ⊂ 
B.   

If both A ⊂ B and B ⊂ A are true, then they are equal, for which it is indicated 
by A = B.  If it can be either A ⊂ B or A = B, then it is denoted A ⊆ B.  
Therefore, A ⊂ B is equivalent to both A ⊆ B and A ≠ B. 

The difference of two subsets A and B is defined by 
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A − B = { c | c ∈ A and c ∉ B }. 

In particular, if A = S is the universe set, then S − B is called the complement 
of B, and is denoted by B , namely, 

B  = S − B. 

Clearly, 

B  = B,  S  = ∅,  and  ∅  =  S. 

Let r ∈ R be a real number and A be a subset of R.  Then, the multiplication of 
r and A is defined to be the set 

r A = { r a |  a ∈ A }. 

The union of two subsets A and B is defined as 

A ∪ B = B ∪ A = { c | c ∈ A or c ∈ B }. 

Thus, one always has 

A ∪ S = S, A ∪ ∅ = A, and A ∪ A  = S. 

The intersection of two subsets A and B is defined by 

A ∩ B = B ∩ A = { c | c ∈ A and c ∈ B }.  

Clearly, 

A ∩ S = A, A ∩ ∅ = ∅, and A ∩ A  = ∅. 

Moreover, two subsets A and B are said to be disjoint if 

A ∩ B = ∅. 

Basic properties of the classical set theory are summarized in Table 1.1, where 
A ⊆ S and B ⊆ S. 

For any set A, the characteristic function of A is defined by 
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XA(x) = 
⎩
⎨
⎧

∈

∈

.if0

,if1

Ax

Ax
 (1.1) 

For any two sets A and B and for any element x ∈ S, one has 

XA∪B(x) = max{ XA(x), XB(x) }, 

XA∩B(x) = min{ XA(x), XB(x) }, 

AX (x) = 1 − XA(x). 

Table 1.1  Properties of Classical Set Operations 

Involutive law A  = A 

Commutative law A ∪ B = B ∪ A 

 A ∩ B = B ∩ A 

Associative law ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) 

 ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) 

Distributive law A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) 

 A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) 

 A ∪ A = A 

 A ∩ A = A 

 A ∪ ( A ∩ B ) = A 

 A ∩ ( A ∪ B ) = A 

 A ∪ ( A  ∩ B ) = A ∪ B 

 A ∩ ( A  ∪ B ) = A ∩ B 

 A ∪ S = S 

 A ∩ ∅ = ∅ 

 A ∪ ∅ = A 

 A ∩ S = A 

 A ∩ A  = ∅ 

 A ∪ A  = S 

DeMorgan’s law BA∩  = A  ∪ B  

 BA∪  = A  ∩ B  
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II. FUZZY SET THEORY 

The following simple example serves as an introduction to the concept of 
fuzzy sets. 

Example 1.1. Let S be the set of all human beings and consider its subset  

Sf = { s ∈ S |  s  is old }. 

Then, Sf is a “fuzzy set” because the property “old” is not well defined in the 
sense of classical mathematics and cannot be precisely measured:  given a 
person who is 40-year old, it is not clear if this person belongs to the set Sf,, 
and even if so, it is still unclear whether or not a person of age 39 also belongs 
to the same set.  

In classical set theory, one may draw a line at the exact age of 40. As a result, 
a person who is exactly 40 years old belongs to the set and is considered to be 
“old,” but another person of one-day-less than 40 years old will not be 
considered “old.” This distinction is mathematically correct, but practically 
unreasonable. 

To do mathematics, one nevertheless has to precisely define the subset Sf . For 
this purpose, one needs to quantify the concept “old,” so as to characterize the 
subset Sf in a precise and rigorous way.   

Instead of a sharp cut at the exact age of 40, let’s say, one would like to 
describe the concept “old” by the curve shown in Figure 1.1 (a), using 
common sense, where the only ones who are considered to be “absolutely old” 
are those 120-year old or older, and the only people who are considered to be 
“absolutely young” are those newborns.  Meanwhile, all the other people are 
old as well as young at the same time, with different degrees of oldness and 
youngness depending on their actual ages.   

For example, a person 40 years old is considered to be “old” with “degree 0.5” 
and at the same time also “young” with “degree 0.5” according to the 
measuring curve that has been chosen for use. One cannot exclude this person 
from the subset Sf , nor include him completely.  

Thus, the curve in Figure 1.1 (a) establishes a mathematical measure for the 
oldness of a human being. The curve shown in Figure 1.1 (a) is called a 
membership function associated with the subset Sf. It is a generalization of the 
classical characteristic function XSf defined by (1.1), which can only be used 
to conclude that a person either “is” or “is not” a member of the subset Sf. 
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40 80 120 age

1.0

0.5

0.8

0  

Figure 1.1 (a) A fuzzy membership function for “oldness” 

 

40 80 120 age

1.0

0.5

0.8

0  

Figure 1.1 (b) Another fuzzy membership function for “oldness” 

One may also use the piecewise linear membership function shown in Figure 
1.1 (b) to describe the same concept of oldness for the same subset Sf, 
depending on whichever is more meaningful and more convenient for the 
application under consideration. Clearly, both membership functions are 
reasonable and acceptable in common sense.   

In general, a fuzzy membership function can have various shapes, as shown in 
Figure 1.2, chosen by the user based on the nature of the application in 
consideration. 

1 1 1

1
1 1

 

Figure 1.2 Various shapes of commonly used membership functions 
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Next, consider again the subset 

Sf = { s ∈ S | s is old }. 

Suppose that a membership function associated with it, say the one shown in 
Figure 1.1 (a), has been chosen for use. Then, this subset Sf , along with the 
chosen membership function, denoted by μSf(s) with s ∈ Sf, is called a fuzzy 
set. 

It is now clear that a fuzzy set consists of two components: a regular set and a 
membership function associated with it. This is different from the classical set 
theory, where all sets (and subsets) actually share the same (and the only) 
simple membership function: the two-valued characteristic function XSf  

defined by (1.1), which is not even being mentioned because in such simple 
cases it is not necessary to do so. 

To familiarize this new concept, consider one more example in the following. 

Example 1.2. Let S be the set of real numbers and let 

Sf = { s ∈ S |  s  is positive and large }. 

This set, Sf, is not well-defined in the sense of classical set theory because, 
although the statement “s is positive” is precise, the statement “s is large” is 
vague (“fuzzy”).   

However, if one introduces a membership function, reasonable and 
meaningful in the present discussion, to characterize or measure the property 
“large,” then the fuzzy set Sf, associated with this membership function μSf(s), 
is well defined. 

Here, the membership function shown in Figure 1.3 may be chosen to use. 

s

1

μ
S

f

(  )s

0 R

μ
S
f

(  ).

 

Figure 1.3 A membership function for a positive and large real number 
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-E E

1

μ
S

f

( ).~

R0
 

Figure 1.4 A membership function for a real number of small value 

This membership function is quantified by 

μSf(s) = 
⎩
⎨
⎧

>−

≤
− ,0if1

,0if0

se

s
s  

which is reasonable for describing a positive and “large” real number in 
common sense. Depending on how large is considered to be large in the 
application at hand, some other functions may be chosen instead. This is the 
user’s choice. It is similar to the case when one is doing least-squares data 
fitting; if he believes a straight-line is simple and reasonable to use for a 
particular data set, then he selects it to use.   

Similarly, a membership function for the set 

 fS
~

 = { s ∈ S |  |s| is small } 

may be chosen to be the one shown in Figure 1.4, where the cutting edge E is 
determined by the user according to his knowledge and preference about the 
concerned application. 

Summary of general features of fuzzy membership functions: 

All membership functions discussed above have been normalized to have 
maximum value 1, as usual, since 1 = 100% describes a full membership and 
is convenient to use. 

Although a membership function is a nonnegative-valued function, it differs 
from the probability density functions in that the area under the curve of a 
membership function does not have to be equal to unity (in fact, it can be any 
value between 0 and ∞, including 0 and ∞).  Moreover, a membership 
function does not have to be continuous, or integrable. 
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Figure 1.5  s = 0.1 is both “positive large” and “negative small” 

Another distinction between the fuzzy set theory and the classical one is that a 
member of a fuzzy set may assume two or more membership values, and these 
membership values can even be conflicting. For example, if the two 
membership functions shown in Figure 1.5 are used to measure “positive and 
large” and “negative and small,” respectively, then a member s = 0.1 has the 
first membership value 0.095 and the second 0.080:  they do not sum up to 
0.175, nor cancel out to be 0.015. Moreover, these two concepts are 
conflicting: s is positive and in the meantime also negative, with different 
degrees of correctness to be so. This situation is just like someone who is old 
and simultaneously young, which classical mathematics cannot accept. Such a 
vague and conflicting description of a fuzzy set is acceptable by fuzzy 
mathematics: in fact, it turns out to be very useful in describing and solving 
many real-world application problems where conflicting conditions are not 
uncommon. More importantly, the use of conflicting membership functions 
will not cause any logical or mathematical problems in the consequence, 
provided that a correct approach is taken carefully. Such a correct approach 
does exist; that is the fuzzy set theory to be further studied in the following 
sections of this chapter. 

 

III. INTERVAL ARITHMETIC 

Recall that a fuzzy set consists of two parts: a set defined in the ordinary sense 
and a membership function defined on the set, and this membership function is 
also defined in the ordinary sense.   

Now, some fundamental properties and operation rules pertaining to a special 
yet important kind of sets − intervals − are first studied, which will be needed 
in the sequel.  
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Figure 1.6 An interval of confidence in the two-dimensional case 

A. Some Fundamental Concepts 

The concern here is the situation where the value of a member s of a set is 
uncertain but bounded: 

s ≤ s ≤ s , 

where  [ s , s ] ⊂ R  is called the interval of confidence about the values of s. 
Only closed intervals in the form of [ s , s ] are considered in this text, not 
those like ( s , s ], [ s , s ), ( s , s ), except perhaps [ s , ∞) and (−∞, s ] in 
some special cases. 

A special case is, when s = s , it becomes [ s , s ] = [s , s ] = s.   

In the two-dimensional case, an interval of confidence is sometimes called a 
region of confidence, as shown in Figure 1.6. 

Definition 1.1 

(a) Equality:  Two intervals [ s1, 1s ] and [ s2, 2s ] are said to be equal if and 
only if s1 = s2 and 1s  = 2s : 

[ s1, 1s ]  =  [ s2, 2s ] 

(b) Intersection:  The intersection of two intervals [ s1, 1s ] and [ s2, 2s ] is  

[ s1, 1s ]  ∩  [ s2, 2s ] = [ max{s1,s2} , min{ 1s , 2s } ] 

Note: [ s1, 1s ]  ∩  [ s2, 2s ] = ∅ if and only if s1 > 2s  or s2 > 1s . 
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(c) Union:  The union of two intervals [ s1, 1s ] and [ s2, 2s ] is  

[ s1, 1s ]  ∪  [ s2, 2s ] = [ min{s1,s2} , max{ 1s , 2s } ], 

provided that [ s1, 1s ]  ∩  [ s2, 2s ] ≠ ∅. Otherwise, it is undefined (since 
the result is not an interval). 

 (d) Inequality:  Interval [ s1, 1s ] is said to be less than (resp., greater than) 
interval [ s2, 2s ], denoted by 

[ s1, 1s ]  <  [ s2, 2s ] (resp., [ s1, 1s ]  >  [ s2, 2s ] ) 

if and only if 1s  < s2 (resp., s1 > 2s ).  Otherwise, they cannot be 
compared.  Note that the relations ≤ and ≥ are not defined for intervals. 

(e) Inclusion:  The interval [ s1, 1s ] is being included in the interval [ s2, 2s ] 
if and only if both s2 ≤ s1 and 1s  ≤ 2s : 

[ s1, 1s ] ⊆ [ s2, 2s ] 

Example 1.3. For three intervals, S1 = [−1,0], S2 = [−1,2], and S3 = [2,10]: 

S1 ∩ S2 = [−1,0] ∩ [−1,2] = [−1,0], 

S1 ∩ S3 = [−1,0] ∩ [2,10] = ∅, 

S2 ∩ S3 = [−1,2] ∩ [2,10] = [2,2] = 2, 

S1 ∪ S2 = [−1,0] ∪ [−1,2] = [−1,2], 

S1 ∪ S3 = [−1,0] ∪ [2,10] = undefined, 

S2 ∪ S3 = [−1,2] ∪ [2,10] = [−1,10], 

S1 = [−1,0] < [2,10] = S3, 

S1 = [−1,0] ⊂ [−1,2] = S2. 

B. Interval Arithmetic 

Let [ s , s ], [ 1s , 1s ], and [ 2s , 2s ] be intervals.   
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Definition 1.2 Interval Arithmetic 

(1) Addition: 

[ 1s , 1s ] + [ 2s , 2s ] = [ 1s  + 2s , 1s + 2s ]. 

(2) Subtraction: 

[ 1s , 1s ] − [ 2s , 2s ] = [ 1s  − 2s , 1s − 2s  ]. 

(3) Reciprocal: 

If 0 ∉ [ s , s ] then [ s , s ]–1 = [ 1/ s , 1/s ]; 

if 0 ∈ [ s , s ] then [ s , s ]–1 is undefined. 

(4) Multiplication: 

[ 1s , 1s ] . [ 2s , 2s ] = [ p , p ], 

where 

p  = min{ 1s 2s , 1s 2s , 1s 2s , 1s 2s  }, 

p  = max{ 1s 2s , 1s 2s , 1s 2s , 1s 2s  }. 

(5) Division: 

[ s1, 1s ] / [ 2s , 2s ] = [ 1s , 1s ] . [ 2s , 2s ]–1, 

provided that 0 ∉ [ 2s , 2s ]. 

(6) Maximum: 

max{ [ 1s , 1s ] , [ 2s , 2s ]} = [ p , p ] , 

where 

p  = max{ 1s  , 2s  }, 

p  = max{ 1s , 2s }. 
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(7) Minimum: 

min{ [ 1s , 1s ] , [ 2s , 2s ]} = [p , p ] , 

where 

p = min{ 1s  , 2s  }, 

p  = min{ 1s , 2s }. 

Remarks:  

(a) Interval arithmetic intends to obtain an interval as the result of an 
operation such that the resulting interval contains all possible solutions. 
Therefore, these kinds of operational rules are defined in a conservative 
way, in the sense that they intend to make the resulting interval as large as 
necessary so as to avoid losing any true solution. For example, 

[0,2][0,1][1,2] =−  means that for any [1,2]∈a  and any [0,1]∈b , it is 
guaranteed that .[0,2]∈− ba  

(b) This conservatism may produce some unusual results that could seem to 
be inconsistent with the ordinary numerical solutions. For instance, 
according to the subtraction rule (2), one has [1,2] – [1,2] = [–1,1] ≠ [0,0] 
= 0. The result [–1,1] here contains 0, but not only 0. The reason is that 
there can be other possible solutions: if one takes 1.5 from the first 
interval and 1.0 from the second, then the result is 0.5 rather than 0; and 
0.5 is indeed in [–1,1]. Thus, an interval subtract itself is equal to zero (a 
point) only if this interval is itself a point (a trivial interval).  

 (c) Some general rules for the interval arithmetic: 

For any interval Z, 

Z − Z = 0   and  Z / Z = I = [1,1]      (0 ∉ Z) 

only if Z = [z,z] is a point. 

For any intervals X, Y, and Z, 

X + Z = Y + Z ⇒ X = Y. 

For any interval Z, with 0 ∈ Z, 
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Z2 = Z . Z = [ z, z ] . [ z, z ] = [ p, p ], 

where 

p =  min{ z2,  z z , z 2 } = z z , 

p  =  max{ z2,  z z , z 2 } = max{ z2, z 2}. 

(d) Every computational system has restrictions (e.g., the ordinary arithmetic 
does not allow dividing by zero). Interval arithmetic is no exception. 
Fortunately, not much interval arithmetic will be involved in fuzzy 
systems, fuzzy-logic-based decision making, and fuzzy control 
applications, at least not much are needed within the context of this text, 
therefore generally no confusion would arise about such “unusual” 
phenomena and rules. Although many more details exist in the 
mathematical literature about special interval arithmetic rules, so that 
conflicts can be avoided in a way similar to the problems caused by 
“dividing by zero” in classical mathematics, this issue will not be further 
discussed here. 

Note that the interval operations of addition (+), subtraction (–), multiplication 
(⋅), and division (/) are all (set-variable and set-valued) functions: for three 
intervals, X = [ x, x  ], Y = [ y, y  ], and Z = [ z, z ], 

Z = f(X,Y) = X * Y, * ∈ {+, −, ., / } 

are continuous functions defined on intervals. 

C. Algebraic Properties of Interval Arithmetic 

Theorem 1.1 The addition and multiplication operations of intervals are 
commutatitve and associative but not distributive: 

(1) X + Y = Y + X; 

(2) Z + ( X + Y ) = ( Z + X ) + Y; 

(3) Z ( X Y ) = ( Z X ) Y; 

(4) X Y = Y X; 

(5) Z + 0 = 0 + Z = Z  and  Z0 = 0Z = 0, where 0 = [0,0]; 
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(6) ZI = IZ = Z, where I = [1,1]; 

(7) Z ( X + Y ) ≠ ZX + ZY, except when: 

(a) Z = [z,z] is a point; or 

(b) X = Y = 0; or 

(c) xy ≥ 0 for all x ∈ X and y ∈ Y. 

In general, only the subdistributive law holds: 

Z ( X + Y ) ⊆ ZX + ZY. 

Example 1.4. Let  

Z = [1,2], X = I = [1,1], Y = −I = [−1,−1].   

Then  

Z ( X + Y ) = [1,2] ( I − I ) = [1,2].0 = 0; 

Z X + Z Y  = [1,2] . [1,1] + [1,2] . [−1,−1] = [−1,1] ⊃ 0. 

A more general rule for interval arithmetic operations is the following 
fundamental law of monotonic inclusion, established in the mathematical 
literature. 

Theorem 1.2 Let X1, X2, Y1, and Y2 be intervals such that 

X1 ⊆ Y1   and   X2 ⊆ Y2. 

Then, for all operations * ∈ { +, −, ., / },  

X1 * X2 ⊆ Y1 * Y2. 

Corollary 1.1 Let X and Y be intervals with x ∈ X and y ∈ Y.  Then, for any 
operation * ∈ { +, −, ., / }, 

x * y ∈ X * Y 

Finally, consider the problem of solving the interval equation 

AX = B, 
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where A and B are both given intervals with 0 ∉ A, and X is to be determined.  

Theorem 1.3 Let X be a solution of the interval equation 

AX = B, 0 ∉ A . 

Then, X ⊆ B / A. 

Example 1.5  

Consider the interval equation AX=B, with 

A =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

2

1

2

1
2

1

2

1

 and B = ⎥
⎦

⎤
⎢
⎣

⎡
]1,0[

]1,0[
. 

Then 

B/A =

1

2

1

2

1
2

1

2

1
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
]1,0[

]1,0[
= ⎥

⎦

⎤
⎢
⎣

⎡
− 11

11
⎥
⎦

⎤
⎢
⎣

⎡
]1,0[

]1,0[
= ⎥

⎦

⎤
⎢
⎣

⎡
− ]1,1[

]2,0[
. 

It is clear that AB /
1

0
∈⎥

⎦

⎤
⎢
⎣

⎡
but it is not a solution of the interval  

equation AX=B, namely,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

2

1

2

1
2

1

2

1

≠⎥
⎦

⎤
⎢
⎣

⎡
1

0
⎥
⎦

⎤
⎢
⎣

⎡
]1,0[

]1,0[
. 

Therefore, ABX /⊂  but ABX /≠ . 

All the above basic theoretical results are standard in interval mathematics. 
Hence, only the conclusions, but not their proofs, are provided here, as 
preliminaries.  
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D. Interval Evaluation 

An ordinary real-variable and real-valued functions f: R→R can easily be 
extended to an interval-variable and interval-valued function  f: I→I, where I 
is the family of intervals defined on R.  Such extended functions include the 
following arithmetic functions: 

Z = f(X,Y) = X * Y,      * ∈ { +, −, ⋅, / }, 

where X, Y, Z ∈ I. 

Note that for any ordinary continuous function f: R→R and any interval X ∈ I, 
the interval-variable and interval-valued function 

fI(X) = ⎥⎦
⎤

⎢⎣
⎡

∈∈
)(max),(min xfxf

XxXx
 

is also a continuous function.   

Now, let A1, ..., Am be intervals in I. For any interval X ∈ I, one can further 
define a function, f(x;a1,...,am), ,Xx∈ which depends on m parameters ak ∈ 
Ak, k = 1, 2,...,m, by 

fI(X;A1,...,Am) = {  f(x;a1,...,am) | x ∈ X, ak ∈ Ak, 1 ≤ k ≤ m } 

 = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

≤≤∈
∈

≤≤∈
∈

),...,,(max),,...,,(min 1

1,

1

1,

m

mkAa
Xx

m

mkAa
Xx

aaxfaaxf

kk

  

Example 1.6  

Consider the real-variable and real-valued function 

f(x;a) = 
x

xa

−1
, x ≠ 1, x ≠ 0 . 

If X = [2, 3] and A = [0, 2] are intervals, with x ∈ X and a ∈ A, then the 
interval expression of f is given by 

fI(X;A) = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤≤≤≤
−

20,32
1

ax
x

xa
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 = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
≤≤
≤≤

≤≤
≤≤ x

ax

x

ax

a
x

a
x 1

max,
1

min

20
32

20
32

 

 = [−4, 0]. 

The following result is important and useful. It states that all common interval 
arithmetic expressions have the inclusion monotonic property. 

Theorem 1.4 Let f : Rn+m→R be a real-variable and real-valued continuous 
function with an arithmetic interval expression fI(X1,...,Xn,A1,...,Am).  Then, for 
all 

Xk ⊆ Yk,   k = 1,2,...,n    and    Al ⊆ Bl,    l = 1,2, ... , m, 

one has 

fI(X1,...,Xn,A1,...,Am) ⊆ fI(Y1,...,Yn,B1,...,Bm) . 

Example 1.7  

Let X = [0.2, 0.4] and Y = [0.1, 0.5].  Then X ⊂ Y.  

(a) X–1 = 
]4.0,2.0[

1
 = [2.5, 5.0], 

 Y–1 = 
]5.0,1.0[

1
 = [2.0, 10.0], 

 X–1 ⊂ Y–1. 

 (b) 1 – X = [1.0, 1.0] – [0.2, 0.4] = [0.6, 0.8], 

 1 – Y = [1.0, 1.0] – [0.1, 0.5] = [0.5, 0.9], 

       1 – X ⊂ 1 – Y. 

(c) 
X−1

1
 = 

]8.0,6.0[

1
 = [5/4, 5/3], 

 
Y−1

1
 = 

]9.0,5.0[

1
 = [10/9, 2.0], 


