OPERATIONS RESEARCH CALCULATIONS HANDBOOK

 $\beta_1 - \beta_2$

A

 $90-\alpha_2$

P₂

 α_{2}

 $90-\alpha_1$

P₁

 α_1

DENNIS BLUMENFELD

SECOND EDITION

OPERATIONS RESEARCH CALCULATIONS HANDBOOK

The Operations Research Series

Series Editor: A. Ravi Ravindran Dept. of Industrial & Manufacturing Engineering The Pennsylvania State University, USA

Integer Programming: Theory and Practice John K. Karlof

> Operations Research Applications A. Ravi Ravindran

Operations Research: A Practical Approach Michael W. Carter and Camille C. Price

Operations Research Calculations Handbook, Second Edition Dennis Blumenfeld

Operations Research and Management Science Handbook A. Ravi Ravindran

Forthcoming Titles

Applied Nonlinear Optimization in Modeling Environments Janos D. Pinter

> Probability Models in Operations Research Richard C. Cassady and Joel A. Nachlas

SECOND EDITION

OPERATIONS RESEARCH CALCULATIONS HANDBOOK

DENNIS BLUMENFELD

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2009 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-5240-4 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface to	o the Second Edition	xi
Preface to	o the First Edition	xiii
Acknowl	edgments	xv
Author	~	xvii
		_
1. Intro	oduction	1
2. Mea	ns and Variances	
2.1	Mean (Expectation) and Variance of a Random Variable .	
2.2	Covariance and Correlation Coefficient	
2.3	Mean and Variance of the Sum of Random Variables	5
2.4	Mean and Variance of the Product of Two	
	Random Variables	7
2.5	Mean and Variance of the Quotient of Two	
	Random Variables	8
2.6	Conditional Mean and Variance for Jointly	
	Distributed Random Variables	9
2.7	Conditional Mean of a Constrained Random Variable	9
2.8	Mean and Variance of the Sum of a Random Number	
	of Random Variables	11
2.9	Mean of a Function of a Random Variable	11
2.10	Approximations for the Mean and Variance of a	
	Function of a Random Variable	12
2.11	Mean and Variance of the Maximum of Exponentially	
	Distributed Random Variables	13
2.12	Mean and Variance of the Maximum of Normally	
	Distributed Random Variables	13
2 Dice	rate Brahahility Distributions	17
3.1 3.1	rete Probability Distributions Bernoulli Distribution	17
3.1 3.2	Binomial Distribution	
3.2 3.3	Geometric Distribution	
3.3 3.4	Negative Binomial Distribution	
3.4 3.5	Poisson Distribution	
3.5 3.6	Hypergeometric Distribution	
3.6 3.7	Multinomial Distribution	
5.7		

4.	Cont	inuous	Probability Distributions	31
	4.1		rm Distribution	
	4.2	Expor	ential Distribution	32
	4.3	Erlang	z Distribution	34
	4.4	Gamn	na Distribution	37
	4.5	Beta E	Distribution	41
	4.6	Norm	al Distribution	43
		4.6.1	Sum of Normally Distributed Random	
			Variables	44
		4.6.2	Standard Normal Distribution	45
		4.6.3	Partial Moments for the Normal Distribution	46
		4.6.4	Approximations for the Cumulative Normal	
			Distribution Function	47
	4.7		rmal Distribution	
	4.8	Weibu	Ill Distribution	51
	4.9	Logist	ic Distribution	53
	4.10	Gumb	el (Extreme Value) Distribution	54
	4.11	Pareto	Distribution	56
	4.12	Triang	gular Distribution	58
	4.13	Hypei	-Exponential and Hypo-Exponential Distributions	60
		4.13.1	Hyper-Exponential Distribution	
		4.13.2	Hypo-Exponential Distribution	63
		4.13.3		
			Hypo-Exponential Distributions	66
5.	Prob	ability	Relationships	69
	5.1	Distril	oution of the Sum of Independent	
			om Variables	69
	5.2		oution of the Maximum and Minimum of	
		Rando	om Variables	
		5.2.1	Example for the Uniform Distribution	
		5.2.2	Example for the Exponential Distribution	
	5.3	Chang	ge of Variable in a Probability Distribution	72
	5.4		tional Probability Distribution for a Constrained	
			om Variable	
	5.5		ination of Poisson and Gamma Distributions	
	5.6		Formula	
	5.7		al Limit Theorem	
	5.8		bility Generating Function (z-Transform)	
	5.9		ent Generating Function	
	5.10		cteristic Function	
	5.11	Laplac	e Transform	83

6.	Stocl	hastic I	Processes	85
	6.1 Poisson Process and Exponential Distribution			85
		6.1.1	Properties of the Poisson Process	
		6.1.2	"Lack of Memory" Property of the Exponential	
			Distribution	85
		6.1.3	Competing Exponentials	86
		6.1.4	Superposition of Independent Poisson Processes	
		6.1.5	Splitting of a Poisson Process	86
		6.1.6	Arrivals from a Poisson Process in a Fixed	
			Interval	
	6.2			
		6.2.1	Mean and Variance of the Number of Arrivals	
			in a Renewal Process	
		6.2.2	Distribution of First Interval in a Renewal Process	
	6.3		ov Chain Results	
		6.3.1	Discrete-Time Markov Chains	
		6.3.2	Continuous-Time Markov Chains	89
7.	7. Queueing Theory Results			
	7.1 Notation for Queue Types			91
	7.2		itions of Queueing System Variables	
	7.3		's Law and General Queueing System Relationships	
	7.4		sion of Little's Law	
	7.5	Form	ulas for Average Queue Length, L _a	93
	7.6	Form	ulas for Average Time in Queue, W_a	94
	7.7	Refere	ulas for Average Time in Queue, W_q ences for the Formulas for Average Queue Length	
		and T	ïme in Queue	95
	7.8	Pollaczek–Khintchine Formula for Average Time		
			eue, <i>W</i> _{<i>q</i>}	
	7.9		ional Formulas for Average Time in Queue, <i>W</i> _q	96
	7.10		y Traffic Approximation for Distribution of	
			in Queue	
	7.11		e Departure Process	98
	7.12		bution Results for the Number of Customers	
			M/1 Queue	
	7.13		bution Results for Time in <i>M</i> / <i>M</i> /1 Queue	
	7.14	Other	Formulas in Queueing Theory	. 100
8.	Prod	uction	Systems Modeling	. 101
	8.1		itions and Notation for Workstations	
	8.2		Relationships between Workstation Parameters	
	8.3		bution of the Time to Produce a Fixed Lot Size	
		at a W	Vorkstation	. 102

	8.4	Throughput of a Serial Production Line with Failures	
		8.4.2 Line with Buffers	
	8.5	Throughput of a Two-Station Serial Production Line	9
	0.5	with Variable Processing Times	6
		8.5.1 Two Stations without a Buffer	
	0 (/
	8.6	Throughput of an <i>N</i> -Station Serial Production Line	-
		with Variable Processing Times 10	7
9.	Inver	ntory Control	
	9.1	Economic Order Quantity 10	9
	9.2	Economic Production Quantity11	1
	9.3	"Newsboy Problem": Optimal Inventory to Meet	
		Uncertain Demand in a Single Period	4
	9.4	Inventory Replenishment Policies11	
	9.5	(s, Q) Policy: Estimates of Reorder Point (s) and Order	
		Quantity (Q)	9
	9.6	(s, S) Policy: Estimates of Reorder Point (s) and	
		Order-Up-To Level (S)12	2
	9.7	(T, S) Policy: Estimates of Review Period (T) and	
		Order-Up-To Level (S) 12	4
	9.8	(<i>T</i> , <i>s</i> , <i>S</i>) Policy: Estimates of Review Period (<i>T</i>), Reorder	
		Point (s), and Order-Up-To Level (S)	6
	9.9	Summary of Results for Inventory Policies	
	9.10	Inventory in a Production/Distribution System	
	9.11	Note on Cumulative Plots	
	<i>)</i> .11		1
10	Dicto	nce Formulas for Logistics Analysis13	2
10.	10.1		
	10.1	"Traveling Salesman Problem" Tour Distance: Shortest	3
	10.2	Path through a Set of Points in a Region	6
	10.3	Distribution of Distance between Two Random Points	0
	10.5	in a Circle	~
	10.4		0
	10.4	Average Rectangular Grid Distance between Two	0
	10 5	Random Points in a Circle	
	10.5	Great Circle Distance	9
4.4	T (1		~
11.		ic Flow and Delay	
	11.1	Traffic Flow Parameters	
	11.2	Traffic Speeds	3
	11.3	Delay to Vehicle Merging with Traffic Stream	7

	11.4	Critical Flow on Minor Road	. 148
	11.5	Delay to Traffic Queue on Minor Road Waiting to Merge	. 149
	11.6	Delay to Vehicle at Traffic Signal	. 150
12.	Linea	r Programming Formulations	.153
	12.1	General Formulation	
	12.2	Terminology	
	12.3	Example of a Feasible Region	
	12.4	Alternative Formulations	
		12.4.1 Minimization vs. Maximization	
		12.4.2 Equality Constraints	
		12.4.3 Reversed Inequality Constraints	
	12.5	Diet Problem	
	12.6	Duality	
	12.7	Special Cases of Linear Programming Problems	
		12.7.1 Transportation Problem	
		12.7.2 Transshipment Problem	
		12.7.3 Assignment Problem	
	12.8	Integer Linear Programming Formulations	. 165
		12.8.1 Knapsack Problem	. 166
		12.8.2 Traveling Salesman Problem	
	12.9	Solution Methods	
		12.9.1 Simplex Method	
		12.9.2 Interior-Point Methods	
		12.9.3 Network Flow Methods	. 170
		12.9.4 Cutting Planes	. 170
		12.9.5 Branch and Bound	
13.	Heur	istic Search Methods	. 173
	13.1	Overview of Heuristics	
	13.2	Local Search Methods	
	13.3	Simulated Annealing	
	13.4	Tabu Search	
	13.5	Genetic Algorithms	
	13.6	Other Heuristics	
14.	Orde	r Statistics	. 181
	14.1	General Distribution Order Statistics	
	14.2	Uniform Distribution Order Statistics	
	14.3	Exponential Distribution Order Statistics	
15.	Math	ematical Functions	. 187
	15.1	Gamma Function	
	15.2	Incomplete Gamma Function	

	15.3	Beta Function	188
	15.4	Incomplete Beta Function	188
	15.5	Unit Impulse Function	
	15.6	Modified Bessel Functions	
	15.7	Stirling's Formula	190
16.	Calcu	ılus Results	
	16.1	Basic Rules for Differentiation	191
	16.2	Integration by Parts	192
	16.3	Fundamental Theorem of Calculus	193
	16.4	Taylor Series	193
	16.5	Maclaurin Series	
	16.6	L'Hôpital's Rule	195
	16.7	Lagrange Multipliers	
	16.8	Differentiation under the Integral Sign (Leibnitz's Rule)	197
	16.9	Change of a Variable in an Integral	198
	16.10	Change of Variables in a Double Integral	199
		Changing the Order of Integration in a Double Integral	
	16.12	Changing the Order of Summation in a Double Sum	203
		Numerical Integration	
17.	Matri	ices	209
	17.1	Rules for Matrix Calculations	209
	17.2	Inverses of Matrices	210
		17.2.1 Inverse of 2×2 Matrix	210
		17.2.2 Inverse of 3×3 Matrix	210
	17.3	Series of Matrices	211
	17.4	Derivatives of Matrices	211
18.	Coml	binatorics	213
19.	Sumi	nations	
±/•	19.1	Finite Sums	
	19.2	Infinite Sums	
20.	Inter	est Formulas	217
		es	

The field of operations research encompasses a growing number of technical areas. The scope of the second edition has been expanded to cover several additional topics. These include new chapters on order statistics, heuristic search methods, and traffic flow and delay. Some chapters have also been updated with new material, and many new references have been added. As before, the focus is on presenting handy analytical results and formulas that allow quick calculations and provide the understanding of system models.

Dennis E. Blumenfeld

Preface to the First Edition

Operations research uses analyses and techniques from a variety of branches of mathematics, statistics, and other scientific disciplines. Certain analytical results arise repeatedly in applications of operations research to industrial and service operations. These results are scattered among many different textbooks and journal articles, sometimes in the midst of extensive derivations. The idea for a handbook of operations research results came from a need to have frequently used results to be readily available in one source of reference.

This handbook is a compilation of analytical results and formulas that have been found useful in various applications. The objective is to provide students, researchers, and practitioners with convenient access to wide range of operations research results in a concise format.

Given the extensive variety of applications of operations research, a collection of results cannot be exhaustive. The selection of results included in this handbook is based on experience in the manufacturing industry. Many of the results are basic to system modeling, and are likely to carry over to applications in other areas of operations research and management science.

This handbook focuses on areas of operations research that yield explicit analytical results and formulas. With the widespread availability of computer software for simulations and algorithms, many analyses can be easily performed numerically without knowledge of explicit formulas. However, formulas continue to play a significant role in system modeling. While software packages are useful for obtaining numerical results for given values of input parameters, formulas allow general conclusions to be drawn about system behavior as parameter values vary. Analytical results and formulas also help to provide an intuitive understanding of the underlying models for system performance. Such understanding is important in the implementation of operations research models as it allows analysts and decision makers to use models with confidence.

Dennis E. Blumenfeld

Happy is the man that findeth wisdom, and the man that getteth understanding.

—Proverbs 3:13

It is a pleasure to thank colleagues who have given me suggestions and ideas, and have shared their expertise. In particular, I wish to thank David Kim for his valuable contributions and discussions on the basic content and organization. My thanks also go to Jeffrey Alden, Robert Bordley, Debra Elkins, Randolph Hall, Ningjian Huang, William Jordan, Jonathan Owen, and Brian Tomlin for their willingness to review earlier versions and provide many helpful and constructive comments, and to Cindy Carelli and her colleagues at CRC Press for their careful and professional editorial work. I thank my wife, Sharon, for her patience and encouragement. She helped me to adhere to a deadline, with her repeated calls of "Author! Author!"

Author

Dennis E. Blumenfeld teaches on the adjunct faculty at the University of Michigan, Ann Arbor. He has spent most of his career as a staff research scientist at the General Motors Research and Development Center, Warren, Michigan. Before joining General Motors, he held faculty positions at Princeton University, New Jersey, and at University College London. He received his BSc in mathematics and his MSc in statistics and operations research from Imperial College London, and his PhD in civil engineering from University College London. He is a member of the Institute for Operations Research and the Management Sciences, and a fellow of the Royal Statistical Society. He has published articles on transportation models, traffic flow and queueing, logistics, inventory control, and production systems, and has served on the editorial advisory board of *Transportation Research*.

1

Introduction

Operations research can be considered as the science of decision making. It encompasses many scientific disciplines, such as mathematics, statistics, computer science, physics, engineering, economics, and social sciences, and has been successful in providing a systematic approach to complex decisions in manufacturing, service, military, and financial operations.

One of the reasons for the appeal and success of operations research is that it draws on basic mathematical principles and uses them in clever and novel ways to solve all kinds of real-world problems. Many of the applications make use of handy analytical results and formulas derived from system models, and can reveal how system performance varies with model parameters.

Often, these analytical results and formulas offer insight that numerical methods do not provide. Even though numerical solutions can now be easily obtained with the greatly increased speed and power of computers in recent years, there is still a need for analytical results to highlight trade-offs between the different parameters in a model, and to make the mathematical relationships between the parameters readily apparent.

Analytical results and formulas often require minimal data and allow quick "back-of-the-envelope" calculations that are very useful for initial analyses. This is important when an approximate estimate is all that is needed, or all there is time for, in the many real-world situations where decisions must be made quickly. In situations where there is more time, and many alternatives are to be evaluated, such initial analyses can provide focus as to where more detailed numerical analyses are warranted. Since formulas are not limited to any particular programming language, computer operating system, or user interface, they can be readily used on their own for system analyses or be included as components of comprehensive decision-making tools.

The objective of this handbook is to provide a concise collection of analytical results and formulas that arise in operations research applications. The material is organized into chapters based on the following topics.

The first few chapters are devoted to results on the stochastic modeling aspects of operations research. Chapter 2 covers a range of formulas that involve the mean and the variance of random variables. Chapters 3 and 4 list the main properties of widely used discrete and continuous probability distributions. Chapter 5 contains a collection of other analytical results

that frequently arise in probability. Chapters 6 and 7 present formulas that arise in stochastic processes and queueing theory.

The next four chapters cover specific applications of operations research in the areas of stochastic modeling. Chapter 8 presents some results in production systems modeling and Chapter 9 covers the basic formulas in inventory control. Chapter 10 gives distance formulas that are useful in logistics and spatial analyses. Chapter 11 presents basic results in traffic flow and delay.

Chapters 12 and 13 cover the standard linear programming formulations and heuristic search methods. These subjects deal with the development of algorithms and methodologies in optimization. In keeping with the intent of this handbook, which is to focus on analytical results and formulas, these two chapters present the mathematical formulations and basic concepts, and give references for the solution methods.

The remaining chapters contain basic mathematical results that are relevant to operations research. Chapter 14 covers key results in order statistics, Chapter 15 lists some common mathematical functions that arise in applications, Chapter 16 presents useful results from elementary and more advanced calculus, Chapter 17 lists the standard properties of matrices, Chapter 18 gives the standard formulas for combinatorial calculations, Chapter 19 lists some common results for finite and infinite sums, and, finally, Chapter 20 gives basic interest formulas that are important in economic analysis.

To supplement the various results and formulas, references are given for derivations and additional details.

Means and Variances

2.1 Mean (Expectation) and Variance of a Random Variable

For a discrete random variable *X* that takes the values x_0 , x_1 , x_2 , ..., the mean of *X* is given by

$$E[X] = \sum_{i=0}^{\infty} x_i \cdot \Pr\{X = x_i\}$$
(2.1)

where

E[X] denotes the mean (expected value or expectation) of X Pr { $X=x_i$ } denotes the probability that X takes the value x_i (i=0, 1, 2, ...)

If *X* takes nonnegative integer values only (X=0, 1, 2, ...), then the mean of *X* is given by

$$E[X] = \sum_{n=0}^{\infty} n \cdot \Pr\{X = n\}$$
(2.2)

$$=\sum_{n=0}^{\infty}\Pr\left\{X>n\right\}$$
(2.3)

For a continuous random variable *X* ($-\infty < X < \infty$), the mean of *X* is given by

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
(2.4)

$$= \int_{0}^{\infty} \left[1 - F(x) \right] dx - \int_{-\infty}^{0} F(x) dx$$
 (2.5)

where

E[X] denotes the mean (expected value) of X

f(x) is the probability density function of X

and

$$F(x) = \Pr\left\{X \le x\right\} = \int_{-\infty}^{x} f(t) dt$$

denotes the cumulative distribution function of X.

If *X* is continuous and takes nonnegative values only $(0 \le X \le \infty)$, then the mean of *X* is given by

$$E[X] = \int_{0}^{\infty} x f(x) dx$$
 (2.6)

$$= \int_{0}^{\infty} \left[1 - F(x) \right] dx \tag{2.7}$$

Çinlar (1975, pp. 22, 25–26); Lefebvre (2006, pp. 96–97); Mood, Graybill, and Boes (1974, pp. 64–65).

For any random variable *X*, the variance is given by

$$Var[X] = E\left\{ \left(X - E[X] \right)^2 \right\}$$
(2.8)

$$= E\left[X^{2}\right] - \left(E\left[X\right]\right)^{2}$$
(2.9)

where *Var*[*X*] denotes the variance of *X* and

$$E\left[X^{2}\right] = \begin{cases} \sum_{x} x^{2} \cdot \Pr\left\{X = x\right\} & \text{if } X \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} x^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$
(2.10)

The standard deviation of *X*, *St Dev*[*X*], is given by

$$St \, Dev\left[X\right] = \sqrt{Var\left[X\right]} \tag{2.11}$$

Binmore (1983, pp. 268–269); Çinlar (1975, p. 31); Feller (1964, p. 213); Lefebvre (2006, pp. 99–100); Mood, Graybill, and Boes (1974, pp. 68, 70); Ross (2003, pp. 46–47).

2.2 Covariance and Correlation Coefficient

For any random variables *X* and *Y*, the covariance *Cov*[*X*, *Y*] is given by

$$Cov[X,Y] = E\left\{ (X - E[X])(Y - E[Y]) \right\}$$
(2.12)

$$=E[XY]-E[X]E[Y]$$
(2.13)

and the correlation coefficient *Corr*[*X*, *Y*] is given by

$$Corr[X,Y] = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$
(2.14)

The correlation coefficient is dimensionless and satisfies the condition $-1 \le Corr[X, Y] \le 1$.

If *X* and *Y* are independent, then the covariance, *Cov*[*X*, *Y*], and correlation coefficient, *Corr*[*X*, *Y*], are zero.

Feller (1964, pp. 215, 221); Mood, Graybill, and Boes (1974, pp. 155–156, 161); Ross (2003, p. 53).

2.3 Mean and Variance of the Sum of Random Variables

For any random variables *X* and *Y*, the mean of the sum X + Y is given by

$$E[X+Y] = E[X] + E[Y]$$
(2.15)

This result for the mean of a sum holds even if the random variables are not independent.

If the random variables *X* and *Y* are independent, then the variance of the sum X+Y is given by

$$Var[X+Y] = Var[X] + Var[Y]$$
(2.16)

If the random variables *X* and *Y* are not independent, then the variance of the sum X+Y is given by

$$Var[X+Y] = Var[X] + Var[Y] + 2Cov[X,Y]$$
(2.17)

where Cov[X, Y] is the covariance of X and Y given by Equation 2.12.

For any random variables *X* and *Y*, and any constants *a* and *b*, the mean and the variance of the linear combination aX+bY are given by

$$E[aX+bY] = aE[X]+bE[Y]$$
(2.18)

and

$$Var[aX+bY] = a^{2}Var[X]+b^{2}Var[Y]+2abCov[X,Y]$$
(2.19)

respectively.

In the special case a=1 and b=-1, Equations 2.18 and 2.19 give the mean and the variance of the *difference* between the two random variables. Thus, for any random variables X and Y, the mean of the difference X-Y is given by

$$E[X - Y] = E[X] - E[Y]$$
 (2.20)

and the variance of the difference X - Y is given by

$$Var[X - Y] = Var[X] + Var[Y] - 2Cov[X, Y]$$
(2.21)

If the random variables *X* and *Y* are independent, then Cov[X, Y]=0 and the variance of the difference X-Y is given by

$$Var[X - Y] = Var[X] + Var[Y]$$
(2.22)

Equation 2.20 for the mean of the difference X-Y holds even if the random variables are not independent. Note that the mean of the difference is simply the difference of the means (Equation 2.20), while the variance of the difference (for the case of independent random variables) is the *sum* of the variances (Equation 2.22), i.e., the same variance as for the sum X + Y (Equation 2.16).

The results in Equations 2.18 and 2.19 for a linear combination can be generalized to *n* random variables. For any random variables $X_1, X_2, ..., X_n$ and any constants $a_1, a_2, ..., a_n$, the mean and the variance of the linear combination $a_1X_1+a_2X_2+\cdots+a_nX_n$ are given by

$$E\left[\sum_{i=1}^{n} a_{i}X_{i}\right] = \sum_{i=1}^{n} a_{i}E[X_{i}]$$
(2.23)

and

$$Var\left[\sum_{i=1}^{n} a_{i}X_{i}\right] = \sum_{i=1}^{n} a_{i}^{2} Var\left[X_{i}\right] + \sum_{i \neq j} \sum_{a_{i}a_{j}} Cov\left[X_{i}, X_{j}\right]$$
(2.24)

respectively.

Bolch, Greiner, de Meer, and Trivedi (1998, pp. 23–24); Feller (1964, pp. 208, 214, 216); Mood, Graybill, and Boes (1974, pp. 178–179); Ross (2003, pp. 49, 53–54).

2.4 Mean and Variance of the Product of Two Random Variables

If *X* and *Y* are independent random variables, then the mean and the variance of the product *XY* are given by

$$E[XY] = E[X]E[Y]$$
(2.25)

and

$$Var[XY] = (E[Y])^{2} Var[X] + (E[X])^{2} Var[Y] + Var[X]Var[Y]$$
(2.26)

respectively.

If the random variables *X* and *Y* are not independent, then the mean and the variance of the product *XY* are given by

$$E[XY] = E[X]E[Y] + Cov[X,Y]$$
(2.27)