SECDND EDITIDN

OPERATIONS RESEARCH CALCULATIONS HANDBOOK

DENNIS BLUMENFELD

$S E \subset \square N D E D I T I D N$ OPERATIONS RESEARCH CALCULATIONS HANDBOOK

The Operations Research Series

Series Editor: A. Ravi Ravindran Dept. of Industrial \& Manufacturing Engineering The Pennsylvania State University, USA

Integer Programming: Theory and Practice John K. Karlof
Operations Research Applications
A. Ravi Ravindran
Operations Research: A Practical Approach Michael W. Carter and Camille C. Price
Operations Research Calculations Handbook, Second Edition Dennis Blumenfeld
Operations Research and Management Science Handbook A. Ravi Ravindran
\section*{Forthcoming Titles}
Applied Nonlinear Optimization in Modeling Environments Janos D. Pinter
Probability Models in Operations Research
Richard C. Cassady and Joel A. Nachlas

SECDNDEDITIDN OPERATIONS RESEARCH CALCULATIONS HANDBOOK

DENNIS BLUMENFELD

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2009 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321
International Standard Book Number: 978-1-4200-5240-4 (Paperback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface to the Second Edition xi
Preface to the First Edition xiii
Acknowledgments xv
Author xvii

1. Introduction 1
2. Means and Variances 3
2.1 Mean (Expectation) and Variance of a Random Variable 3
2.2 Covariance and Correlation Coefficient 5
2.3 Mean and Variance of the Sum of Random Variables 5
2.4 Mean and Variance of the Product of Two Random Variables 7
2.5 Mean and Variance of the Quotient of Two Random Variables 8
2.6 Conditional Mean and Variance for Jointly Distributed Random Variables 9
2.7 Conditional Mean of a Constrained Random Variable 9
2.8 Mean and Variance of the Sum of a Random Number of Random Variables 11
2.9 Mean of a Function of a Random Variable 11
2.10 Approximations for the Mean and Variance of a Function of a Random Variable 12
2.11 Mean and Variance of the Maximum of Exponentially Distributed Random Variables 13
2.12 Mean and Variance of the Maximum of Normally Distributed Random Variables 13
3. Discrete Probability Distributions 17
3.1 Bernoulli Distribution 17
3.2 Binomial Distribution 18
3.3 Geometric Distribution 20
3.4 Negative Binomial Distribution 22
3.5 Poisson Distribution 24
3.6 Hypergeometric Distribution 26
3.7 Multinomial Distribution 29
4. Continuous Probability Distributions 31
4.1 Uniform Distribution 31
4.2 Exponential Distribution 32
4.3 Erlang Distribution 34
4.4 Gamma Distribution 37
4.5 Beta Distribution 41
4.6 Normal Distribution 43
4.6.1 Sum of Normally Distributed Random Variables 44
4.6.2 Standard Normal Distribution 45
4.6.3 Partial Moments for the Normal Distribution. 46
4.6.4 Approximations for the Cumulative Normal Distribution Function 47
4.7 Lognormal Distribution 48
4.8 Weibull Distribution 51
4.9 Logistic Distribution. 53
4.10 Gumbel (Extreme Value) Distribution 54
4.11 Pareto Distribution 56
4.12 Triangular Distribution 58
4.13 Hyper-Exponential and Hypo-Exponential Distributions 60
4.13.1 Hyper-Exponential Distribution 60
4.13.2 Hypo-Exponential Distribution 63
4.13.3 Additional Comments on Hyper- and Hypo-Exponential Distributions. 66
5. Probability Relationships 69
5.1 Distribution of the Sum of Independent Random Variables 69
5.2 Distribution of the Maximum and Minimum of Random Variables 69
5.2.1 Example for the Uniform Distribution 70
5.2.2 Example for the Exponential Distribution 71
5.3 Change of Variable in a Probability Distribution. 72
5.4 Conditional Probability Distribution for a Constrained Random Variable 73
5.5 Combination of Poisson and Gamma Distributions 75
5.6 Bayes' Formula 76
5.7 Central Limit Theorem 77
5.8 Probability Generating Function (z-Transform) 78
5.9 Moment Generating Function 79
5.10 Characteristic Function 81
5.11 Laplace Transform 83
6. Stochastic Processes 85
6.1 Poisson Process and Exponential Distribution. 85
6.1.1 Properties of the Poisson Process 85
6.1.2 "Lack of Memory" Property of the Exponential Distribution 85
6.1.3 Competing Exponentials 86
6.1.4 Superposition of Independent Poisson Processes 86
6.1.5 Splitting of a Poisson Process. 86
6.1.6 Arrivals from a Poisson Process in a Fixed Interval 87
6.2 Renewal Process Results 87
6.2.1 Mean and Variance of the Number of Arrivals in a Renewal Process 87
6.2.2 Distribution of First Interval in a Renewal Process 87
6.3 Markov Chain Results 88
6.3.1 Discrete-Time Markov Chains 89
6.3.2 Continuous-Time Markov Chains 89
7. Queueing Theory Results 91
7.1 Notation for Queue Types 91
7.2 Definitions of Queueing System Variables 91
7.3 Little's Law and General Queueing System Relationships 92
7.4 Extension of Little's Law 93
7.5 Formulas for Average Queue Length, L_{q} 93
7.6 Formulas for Average Time in Queue, W_{q} 94
7.7 References for the Formulas for Average Queue Length and Time in Queue 95
7.8 Pollaczek-Khintchine Formula for Average Time in Queue, W_{q} 96
7.9 Additional Formulas for Average Time in Queue, W_{q} 96
7.10 Heavy Traffic Approximation for Distribution of Time in Queue 97
7.11 Queue Departure Process 98
7.12 Distribution Results for the Number of Customers in $M / M / 1$ Queue 99
7.13 Distribution Results for Time in $M / M / 1$ Queue. 99
7.14 Other Formulas in Queueing Theory 100
8. Production Systems Modeling 101
8.1 Definitions and Notation for Workstations 101
8.2 Basic Relationships between Workstation Parameters 101
8.3 Distribution of the Time to Produce a Fixed Lot Size at a Workstation 102
8.4 Throughput of a Serial Production Line with Failures 104
8.4.1 Line without Buffers 104
8.4.2 Line with Buffers 105
8.5 Throughput of a Two-Station Serial Production Line with Variable Processing Times 106
8.5.1 Two Stations without a Buffer 106
8.5.2 Two Stations with a Buffer 107
8.6 Throughput of an N-Station Serial Production Line with Variable Processing Times 107
9. Inventory Control 109
9.1 Economic Order Quantity 109
9.2 Economic Production Quantity 111
9.3 "Newsboy Problem": Optimal Inventory to Meet Uncertain Demand in a Single Period 114
9.4 Inventory Replenishment Policies 116
$9.5(s, Q)$ Policy: Estimates of Reorder Point (s) and Order Quantity (Q) 119
$9.6(s, S)$ Policy: Estimates of Reorder Point (s) and Order-Up-To Level (S) 122
$9.7(T, S)$ Policy: Estimates of Review Period (T) and Order-Up-To Level (S) 124
9.8 (T, s, S) Policy: Estimates of Review Period (T), Reorder Point (s), and Order-Up-To Level (S) 126
9.9 Summary of Results for Inventory Policies 128
9.10 Inventory in a Production/Distribution System 129
9.11 Note on Cumulative Plots 131
10. Distance Formulas for Logistics Analysis 133
10.1 Distance Norms 133
10.2 "Traveling Salesman Problem" Tour Distance: Shortest Path through a Set of Points in a Region 136
10.3 Distribution of Distance between Two Random Points in a Circle 136
10.4 Average Rectangular Grid Distance between Two Random Points in a Circle 139
10.5 Great Circle Distance 139
11. Traffic Flow and Delay 143
11.1 Traffic Flow Parameters 143
11.2 Traffic Speeds 143
11.3 Delay to Vehicle Merging with Traffic Stream 147
11.4 Critical Flow on Minor Road 148
11.5 Delay to Traffic Queue on Minor Road Waiting to Merge 149
11.6 Delay to Vehicle at Traffic Signal 150
12. Linear Programming Formulations 153
12.1 General Formulation 153
12.2 Terminology 154
12.3 Example of a Feasible Region 155
12.4 Alternative Formulations 156
12.4.1 Minimization vs. Maximization 156
12.4.2 Equality Constraints 156
12.4.3 Reversed Inequality Constraints 157
12.5 Diet Problem 157
12.6 Duality 158
12.7 Special Cases of Linear Programming Problems. 160
12.7.1 Transportation Problem 160
12.7.2 Transshipment Problem 163
12.7.3 Assignment Problem 164
12.8 Integer Linear Programming Formulations 165
12.8.1 Knapsack Problem 166
12.8.2 Traveling Salesman Problem 167
12.9 Solution Methods 169
12.9.1 Simplex Method 169
12.9.2 Interior-Point Methods 170
12.9.3 Network Flow Methods 170
12.9.4 Cutting Planes 170
12.9.5 Branch and Bound 171
13. Heuristic Search Methods 173
13.1 Overview of Heuristics 173
13.2 Local Search Methods 175
13.3 Simulated Annealing. 176
13.4 Tabu Search 178
13.5 Genetic Algorithms 179
13.6 Other Heuristics 180
14. Order Statistics 181
14.1 General Distribution Order Statistics. 181
14.2 Uniform Distribution Order Statistics 182
14.3 Exponential Distribution Order Statistics 184
15. Mathematical Functions 187
15.1 Gamma Function 187
15.2 Incomplete Gamma Function 187
15.3 Beta Function 188
15.4 Incomplete Beta Function 188
15.5 Unit Impulse Function 189
15.6 Modified Bessel Functions 189
15.7 Stirling's Formula 190
16. Calculus Results 191
16.1 Basic Rules for Differentiation 191
16.2 Integration by Parts 192
16.3 Fundamental Theorem of Calculus 193
16.4 Taylor Series 193
16.5 Maclaurin Series 194
16.6 L'Hôpital's Rule. 195
16.7 Lagrange Multipliers 196
16.8 Differentiation under the Integral Sign (Leibnitz's Rule). 197
16.9 Change of a Variable in an Integral 198
16.10 Change of Variables in a Double Integral. 199
16.11 Changing the Order of Integration in a Double Integral 201
16.12 Changing the Order of Summation in a Double Sum 203
16.13 Numerical Integration 204
17. Matrices 209
17.1 Rules for Matrix Calculations 209
17.2 Inverses of Matrices 210
17.2.1 Inverse of 2×2 Matrix 210
17.2.2 Inverse of 3×3 Matrix 210
17.3 Series of Matrices 211
17.4 Derivatives of Matrices 211
18. Combinatorics 213
19. Summations 215
19.1 Finite Sums. 215
19.2 Infinite Sums. 215
20. Interest Formulas 217
References 219
Index 231

Preface to the Second Edition

The field of operations research encompasses a growing number of technical areas. The scope of the second edition has been expanded to cover several additional topics. These include new chapters on order statistics, heuristic search methods, and traffic flow and delay. Some chapters have also been updated with new material, and many new references have been added. As before, the focus is on presenting handy analytical results and formulas that allow quick calculations and provide the understanding of system models.

Dennis E. Blumenfeld

Preface to the First Edition

Operations research uses analyses and techniques from a variety of branches of mathematics, statistics, and other scientific disciplines. Certain analytical results arise repeatedly in applications of operations research to industrial and service operations. These results are scattered among many different textbooks and journal articles, sometimes in the midst of extensive derivations. The idea for a handbook of operations research results came from a need to have frequently used results to be readily available in one source of reference.
This handbook is a compilation of analytical results and formulas that have been found useful in various applications. The objective is to provide students, researchers, and practitioners with convenient access to wide range of operations research results in a concise format.
Given the extensive variety of applications of operations research, a collection of results cannot be exhaustive. The selection of results included in this handbook is based on experience in the manufacturing industry. Many of the results are basic to system modeling, and are likely to carry over to applications in other areas of operations research and management science.

This handbook focuses on areas of operations research that yield explicit analytical results and formulas. With the widespread availability of computer software for simulations and algorithms, many analyses can be easily performed numerically without knowledge of explicit formulas. However, formulas continue to play a significant role in system modeling. While software packages are useful for obtaining numerical results for given values of input parameters, formulas allow general conclusions to be drawn about system behavior as parameter values vary. Analytical results and formulas also help to provide an intuitive understanding of the underlying models for system performance. Such understanding is important in the implementation of operations research models as it allows analysts and decision makers to use models with confidence.

Dennis E. Blumenfeld
Happy is the man that findeth wisdom, and the man that getteth understanding.
-Proverbs 3:13

Acknowledgments

It is a pleasure to thank colleagues who have given me suggestions and ideas, and have shared their expertise. In particular, I wish to thank David Kim for his valuable contributions and discussions on the basic content and organization. My thanks also go to Jeffrey Alden, Robert Bordley, Debra Elkins, Randolph Hall, Ningjian Huang, William Jordan, Jonathan Owen, and Brian Tomlin for their willingness to review earlier versions and provide many helpful and constructive comments, and to Cindy Carelli and her colleagues at CRC Press for their careful and professional editorial work. I thank my wife, Sharon, for her patience and encouragement. She helped me to adhere to a deadline, with her repeated calls of "Author! Author!"

Author

Dennis E. Blumenfeld teaches on the adjunct faculty at the University of Michigan, Ann Arbor. He has spent most of his career as a staff research scientist at the General Motors Research and Development Center, Warren, Michigan. Before joining General Motors, he held faculty positions at Princeton University, New Jersey, and at University College London. He received his BSc in mathematics and his MSc in statistics and operations research from Imperial College London, and his PhD in civil engineering from University College London. He is a member of the Institute for Operations Research and the Management Sciences, and a fellow of the Royal Statistical Society. He has published articles on transportation models, traffic flow and queueing, logistics, inventory control, and production systems, and has served on the editorial advisory board of Transportation Research.

1

Introduction

Operations research can be considered as the science of decision making. It encompasses many scientific disciplines, such as mathematics, statistics, computer science, physics, engineering, economics, and social sciences, and has been successful in providing a systematic approach to complex decisions in manufacturing, service, military, and financial operations.

One of the reasons for the appeal and success of operations research is that it draws on basic mathematical principles and uses them in clever and novel ways to solve all kinds of real-world problems. Many of the applications make use of handy analytical results and formulas derived from system models, and can reveal how system performance varies with model parameters.

Often, these analytical results and formulas offer insight that numerical methods do not provide. Even though numerical solutions can now be easily obtained with the greatly increased speed and power of computers in recent years, there is still a need for analytical results to highlight trade-offs between the different parameters in a model, and to make the mathematical relationships between the parameters readily apparent.

Analytical results and formulas often require minimal data and allow quick "back-of-the-envelope" calculations that are very useful for initial analyses. This is important when an approximate estimate is all that is needed, or all there is time for, in the many real-world situations where decisions must be made quickly. In situations where there is more time, and many alternatives are to be evaluated, such initial analyses can provide focus as to where more detailed numerical analyses are warranted. Since formulas are not limited to any particular programming language, computer operating system, or user interface, they can be readily used on their own for system analyses or be included as components of comprehensive decision-making tools.

The objective of this handbook is to provide a concise collection of analytical results and formulas that arise in operations research applications. The material is organized into chapters based on the following topics.

The first few chapters are devoted to results on the stochastic modeling aspects of operations research. Chapter 2 covers a range of formulas that involve the mean and the variance of random variables. Chapters 3 and 4 list the main properties of widely used discrete and continuous probability distributions. Chapter 5 contains a collection of other analytical results
that frequently arise in probability. Chapters 6 and 7 present formulas that arise in stochastic processes and queueing theory.

The next four chapters cover specific applications of operations research in the areas of stochastic modeling. Chapter 8 presents some results in production systems modeling and Chapter 9 covers the basic formulas in inventory control. Chapter 10 gives distance formulas that are useful in logistics and spatial analyses. Chapter 11 presents basic results in traffic flow and delay.

Chapters 12 and 13 cover the standard linear programming formulations and heuristic search methods. These subjects deal with the development of algorithms and methodologies in optimization. In keeping with the intent of this handbook, which is to focus on analytical results and formulas, these two chapters present the mathematical formulations and basic concepts, and give references for the solution methods.

The remaining chapters contain basic mathematical results that are relevant to operations research. Chapter 14 covers key results in order statistics, Chapter 15 lists some common mathematical functions that arise in applications, Chapter 16 presents useful results from elementary and more advanced calculus, Chapter 17 lists the standard properties of matrices, Chapter 18 gives the standard formulas for combinatorial calculations, Chapter 19 lists some common results for finite and infinite sums, and, finally, Chapter 20 gives basic interest formulas that are important in economic analysis.

To supplement the various results and formulas, references are given for derivations and additional details.

2

Means and Variances

2.1 Mean (Expectation) and Variance of a Random Variable

For a discrete random variable X that takes the values $x_{0}, x_{1}, x_{2}, \ldots$, the mean of X is given by

$$
\begin{equation*}
E[X]=\sum_{i=0}^{\infty} x_{i} \cdot \operatorname{Pr}\left\{X=x_{i}\right\} \tag{2.1}
\end{equation*}
$$

where
$E[X]$ denotes the mean (expected value or expectation) of X
$\operatorname{Pr}\left\{X=x_{i}\right\}$ denotes the probability that X takes the value $x_{i}(i=0,1,2, \ldots)$
If X takes nonnegative integer values only $(X=0,1,2, \ldots)$, then the mean of X is given by

$$
\begin{align*}
E[X] & =\sum_{n=0}^{\infty} n \cdot \operatorname{Pr}\{X=n\} \tag{2.2}\\
& =\sum_{n=0}^{\infty} \operatorname{Pr}\{X>n\} \tag{2.3}
\end{align*}
$$

For a continuous random variable $X(-\infty<X<\infty)$, the mean of X is given by

$$
\begin{align*}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x \tag{2.4}\\
& =\int_{0}^{\infty}[1-F(x)] d x-\int_{-\infty}^{0} F(x) d x \tag{2.5}
\end{align*}
$$

where
$E[X]$ denotes the mean (expected value) of X $f(x)$ is the probability density function of X
and

$$
F(x)=\operatorname{Pr}\{X \leq x\}=\int_{-\infty}^{x} f(t) d t
$$

denotes the cumulative distribution function of X.
If X is continuous and takes nonnegative values only $(0 \leq X<\infty)$, then the mean of X is given by

$$
\begin{align*}
E[X] & =\int_{0}^{\infty} x f(x) d x \tag{2.6}\\
& =\int_{0}^{\infty}[1-F(x)] d x \tag{2.7}
\end{align*}
$$

Çinlar (1975, pp. 22, 25-26); Lefebvre (2006, pp. 96-97); Mood, Graybill, and Boes (1974, pp. 64-65).

For any random variable X, the variance is given by

$$
\begin{align*}
\operatorname{Var}[X] & =E\left\{(X-E[X])^{2}\right\} \tag{2.8}\\
& =E\left[X^{2}\right]-(E[X])^{2} \tag{2.9}
\end{align*}
$$

where $\operatorname{Var}[X]$ denotes the variance of X
and

$$
E\left[X^{2}\right]= \begin{cases}\sum_{x} x^{2} \cdot \operatorname{Pr}\{X=x\} & \text { if } X \text { is discrete } \tag{2.10}\\ \int_{-\infty}^{\infty} x^{2} f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

The standard deviation of $X, S t \operatorname{Dev}[X]$, is given by

$$
\begin{equation*}
\text { St } \operatorname{Dev}[X]=\sqrt{\operatorname{Var}[X]} \tag{2.11}
\end{equation*}
$$

Binmore (1983, pp. 268-269); Çinlar (1975, p. 31); Feller (1964, p. 213); Lefebvre (2006, pp. 99-100); Mood, Graybill, and Boes (1974, pp. 68, 70); Ross (2003, pp. 46-47).

2.2 Covariance and Correlation Coefficient

For any random variables X and Y, the covariance $\operatorname{Cov}[X, Y]$ is given by

$$
\begin{align*}
\operatorname{Cov}[X, Y] & =E\{(X-E[X])(Y-E[Y])\} \tag{2.12}\\
& =E[X Y]-E[X] E[Y] \tag{2.13}
\end{align*}
$$

and the correlation coefficient $\operatorname{Corr}[X, Y]$ is given by

$$
\begin{equation*}
\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}} \tag{2.14}
\end{equation*}
$$

The correlation coefficient is dimensionless and satisfies the condition $-1 \leq \operatorname{Corr}[X, Y] \leq 1$.

If X and Y are independent, then the covariance, $\operatorname{Cov}[X, Y]$, and correlation coefficient, $\operatorname{Corr}[X, Y$], are zero.
Feller (1964, pp. 215, 221); Mood, Graybill, and Boes (1974, pp. 155-156, 161); Ross (2003, p. 53).

2.3 Mean and Variance of the Sum of Random Variables

For any random variables X and Y, the mean of the sum $X+Y$ is given by

$$
\begin{equation*}
E[X+Y]=E[X]+E[Y] \tag{2.15}
\end{equation*}
$$

This result for the mean of a sum holds even if the random variables are not independent.

If the random variables X and Y are independent, then the variance of the sum $X+Y$ is given by

$$
\begin{equation*}
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] \tag{2.1}
\end{equation*}
$$

If the random variables X and Y are not independent, then the variance of the sum $X+Y$ is given by

$$
\begin{equation*}
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y] \tag{2.17}
\end{equation*}
$$

where $\operatorname{Cov}[X, Y]$ is the covariance of X and Y given by Equation 2.12.
For any random variables X and Y, and any constants a and b, the mean and the variance of the linear combination $a X+b Y$ are given by

$$
\begin{equation*}
E[a X+b Y]=a E[X]+b E[Y] \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}[a X+b Y]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}[X, Y] \tag{2.19}
\end{equation*}
$$

respectively.
In the special case $a=1$ and $b=-1$, Equations 2.18 and 2.19 give the mean and the variance of the difference between the two random variables. Thus, for any random variables X and Y, the mean of the difference $X-Y$ is given by

$$
\begin{equation*}
E[X-Y]=E[X]-E[Y] \tag{2.20}
\end{equation*}
$$

and the variance of the difference $X-Y$ is given by

$$
\begin{equation*}
\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]-2 \operatorname{Cov}[X, Y] \tag{2.21}
\end{equation*}
$$

If the random variables X and Y are independent, then $\operatorname{Cov}[X, Y]=0$ and the variance of the difference $X-Y$ is given by

$$
\begin{equation*}
\operatorname{Var}[X-Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] \tag{2.2}
\end{equation*}
$$

Equation 2.20 for the mean of the difference $X-Y$ holds even if the random variables are not independent. Note that the mean of the difference is simply the difference of the means (Equation 2.20), while the variance of the difference (for the case of independent random variables) is the sum
of the variances (Equation 2.22), i.e., the same variance as for the sum $X+Y$ (Equation 2.16).

The results in Equations 2.18 and 2.19 for a linear combination can be generalized to n random variables. For any random variables X_{1}, X_{2}, \ldots, X_{n} and any constants $a_{1}, a_{2}, \ldots, a_{n}$, the mean and the variance of the linear combination $a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ are given by

$$
\begin{equation*}
E\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i} E\left[X_{i}\right] \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \sum_{i} a_{i} a_{j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \tag{2.24}
\end{equation*}
$$

respectively.
Bolch, Greiner, de Meer, and Trivedi (1998, pp. 23-24); Feller (1964, pp. 208, 214, 216); Mood, Graybill, and Boes (1974, pp. 178-179); Ross (2003, pp. 49, 53-54).

2.4 Mean and Variance of the Product of Two Random Variables

If X and Y are independent random variables, then the mean and the variance of the product $X Y$ are given by

$$
\begin{equation*}
E[X Y]=E[X] E[Y] \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}[X Y]=(E[Y])^{2} \operatorname{Var}[X]+(E[X])^{2} \operatorname{Var}[Y]+\operatorname{Var}[X] \operatorname{Var}[Y] \tag{2.26}
\end{equation*}
$$

respectively.
If the random variables X and Y are not independent, then the mean and the variance of the product $X Y$ are given by

$$
\begin{equation*}
E[X Y]=E[X] E[Y]+\operatorname{Cov}[X, Y] \tag{2.27}
\end{equation*}
$$

