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Introduction

A very interesting and important numerical invariant of a graded ideal (in a
polynomial ring) is its Hilbert function. It gives the sizes of the graded compo-
nents of the ideal. A case of particular importance is the Hilbert function of a
projective algebraic variety V ; this function gives the dimensions of the spaces
P(i) of forms of degree i vanishing on V (for all i). Important invariants (e.g.,
dimension, multiplicity) can be read off the Hilbert function.

A homological method for studying the structure of a finitely generated mod-
ule T (over a commutative Noetherian ring R) is to describe it by a resolution,
which is a sequence of maps between free modules. The idea to associate a
resolution to T was introduced in Hilbert’s famous 1890 and 1893 papers. He
proved that if R is a polynomial ring, then every finitely generated R-module
has a finite resolution. In the local and graded cases there exists a minimal free
resolution; it is unique up to an isomorphism. The invariants of T are closely
related to the properties of its minimal free resolution.

The studies of Hilbert functions and of resolutions are closely related. For
many years, Hilbert functions and resolutions have been both central objects
and fruitful tools in many fields, including algebraic geometry, combinatorics,
commutative algebra, and computational algebra. There has been a surge in
interest and research in this direction in recent years; a variety of new ideas and
techniques were introduced, and substantial progress was made.

This book contains expository chapters on Hilbert functions and resolutions.
The chapters point out highlights, conjectures, unsolved problems, and helpful
examples. Some of the chapters were written by participants in the conference
on resolutions held in October 2005 at Cornell University.

Irena Peeva
Cornell University
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Chapter 1

Some Results and Questions on
Castelnuovo–Mumford Regularity

Marc Chardin
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1.1 The Two Most Classical Definitions
of Castelnuovo–Mumford Regularity

Let R := k[X1, . . ., Xn] be a polynomial ring over a field k and M a finitely
generated graded R-module.

The two most popular definitions of Castelnuovo–Mumford regularity are
the one in terms of graded Betti numbers and the one using local cohomology.
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2 Some Results and Questions on Castelnuovo–Mumford Regularity

Local cohomology modules. Set m := (X1, . . ., Xn) = R>0, then H 0
m(M) :

= {x ∈ M | ∃N , mN x = 0} and the functors Hi
m(—) can be defined as right-

derived functors of H 0
m(—) in the category of R-modules. A more concrete way

of considering these modules is to see them as the cohomology modules of the
Čech complex C•

m:

0 �� M �� ⊕
i MXi

ψ ��
⊕

i< j MXi X j
�� · · · �� MX1···Xn

�� 0

C0
m(M) C1

m(M) C2
m(M) Cn

m(M)

.

This is how we will view them in this article.
Recall that, from a more geometric point of view, one has graded isomor-

phisms
�M := ker(ψ) 


⊕
µ

H 0(Proj(R), M̃(µ)),

where M̃ is the sheaf of modules associated to M , and

Hi
m(M) 


⊕
µ

Hi−1(Proj(R), M̃(µ)), ∀i ≥ 2.

There are two fundamental results. First, Grothendieck’s theorem asserts
the vanishing of Hi

m(M) for i > dim(M) and i < depth (M), as well as the
nonvanishing of these modules for i = dim(M) and i = depth (M). Second is
Serre’s vanishing theorem that implies the vanishing of graded pieces Hi

m(M)µ
for any i and µ big enough. The Castelnuovo–Mumford regularity is a measure
of this vanishing degree. Set

ai (M) := max{µ | Hi
m(M)µ �= 0},

if Hi
m(M) �= 0 and ai (M) := −∞ else. Then,

reg(M) = max
i

{ai (M) + i}.

The maximum over the positive i’s is also an interesting invariant:

greg(M) := max
i>0

{ai (M) + i} = reg(M/H 0
m(M)).

Graded Betti numbers. Let F• be a minimal graded free R-resolution of M ,

0 �� Fp �� Fp−1 �� · · · �� F1
�� F0

�� M

with Fi = ⊕ j R[− j]βi j . Notice that p = pdim(M) = n − depth (M). The maps
of F• ⊗R k being zero maps, TorR

i (M, k) = Hi (F• ⊗ k) = Fi ⊗ k and therefore
βi j = dimk TorR

i (M, k) j . Set

bi (M) := max{µ | TorR
i (M, k)µ �= 0}
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if TorR
i (M, k) �= 0 and bi (M) := −∞ else. By definition, bi (M) is the maximal

degree of a minimal generator of Fi and therefore of the module of i-th syzygies
of M .

The Castelnuovo–Mumford regularity is also a measure of the maximal
degrees of generators of the modules Fi :

reg(M) = max
i

{bi (M) − i}.

1.2 A Lemma from Homological Algebra
and the Equivalence of the Definitions

One way of proving the equality maxi {ai (M) + i} = maxi {bi (M) − i} is to
use a double complex relating the Tor modules to the local cohomology. We
will now give a lemma which is useful in this approach, and which has further
applications.

We will use the following notations:

� For F• (resp. F•), a bounded graded complex of finitely generated free
R-modules, we set b(F•) := maxq{b0(Fq ) + q} (resp. b(F•) := maxq

{b0(Fq ) − q}).
� If H is a graded module such that Hµ = 0 for µ � 0, we set end(H ) :=

max{µ | Hµ �= 0} if H �= 0, and end(0) := −∞.

A complex C of free R-modules is called minimal if the differentials of
C ⊗R k are zero.

Lemma 1.2.1 Let F• be a minimal graded complex of finitely generated free
R-modules, with Fi = 0 for i < 0; let M be a finitely generated graded
R-module and T • := C•

mM ⊗R F•.
Then H �(T •)µ = 0, for µ � 0 and any �. Moreover, for any �,

(i)
end(H �(T •)) ≤ max

p+q=�
{ap(Hq (F• ⊗R M))}

and equality holds if dim Hq (F• ⊗R M) ≤ 1 for all q or if there exists
q0 such that dim Hq (F• ⊗R M) ≤ 1 for q < q0 and Hq (F• ⊗R M) = 0
for q > q0.

(ii)
end(H �(T •)) ≤ max

p+q=�
{ap(M) + b0(Fq )}.
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If further, b(F•) = max{b0(F0), b0(F1) + 1}, then

max
j≤�

{end(H j (T •)) + j} = max
p+q≤�

{ap(M) + b0(Fq ) + p + q}.

The proof of this lemma is given in the technical appendix. Let us prove the
equivalence of the definitions, and a little more, as an application:

Corollary 1.2.2 If M is a finitely generated graded R-module, then for
any �

max
p≤�

{ap(M) + p} = max
q≥n−�

{bq (M) − q}.

As a consequence,

reg(M) = max
q

{bq (M) − q} = max
pdimM≥q≥codimM

{bq (M) − q}.

Proof Take F• := K •(X1, . . ., Xn; R). One has b(Fq ) = −q and dim
Hq (F• ⊗R M) ≤ 0 for all q. Therefore, by the lemma,

max
q≤�

{a0(Hq (F• ⊗R M)) + q} = max
p≤�

{ap(M) + p}

but Hq (F• ⊗R M) 
 Hn−q (K•(X1, . . ., Xn; M)[n]) 
 TorR
n−q (M, k)[n]. It

follows that a0(Hq (F• ⊗R M)) = bn−q (F M
• ) − n.

Setting q ′ := n − q the max on the left-hand side can be rewritten as
maxq ′≥n−� bq ′ (F M

• ) − n + (n − q ′).
The second claim follows from Grothendieck’s vanishing theorem.

1.3 Other Definitions and Further Applications
of the Lemma

By the definition of the regularity in terms of the Betti numbers, reg(M) =
indeg(M) if and only if M is generated in a single degree and the matrices of the
maps in its minimal free R-resolution have only linear forms as entries. Such
a resolution (generators in a single degree and maps given by linear forms) is
called a linear resolution.

A first application of the equivalence of the definitions above is the following
third definition:
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Proposition 1.3.1 For a finitely generated graded R-module,

reg(M) = min{µ | M≥µ has a linear resolution}.

Proof The modules M and M ′ := M≥µ coincide on the punctured spectrum,
therefore Hi

m(M) = Hi
m(M ′) for i > 1 and �M = �M ′. Moreover, the exact

sequence

0 �� H 0
m(M)ν �� Mν

�� �Mν
�� H 1

m(M)ν �� 0

compared to the corresponding one for M ′ shows that:

� a0(M ′) = a0(M) if µ ≤ a0(M) and a0(M ′) = −∞ else,
� a1(M ′) = max{a1(M), µ},

which implies that reg(M ′) = max{reg(M), µ} and the proposition.

We will see in Proposition 1.9.1 (v) and Proposition 1.9.5 that one also has:

Proposition 1.3.2 For a finitely generated graded R-module,

reg(M) = min{µ ≥ min{a0(M), b0(M)} | Hi
m(M)µ−i = 0, ∀i} − 1

and for a graded ideal I such that
√

I �= m,

reg(I ) = min{µ | Hi
m(R/I )µ−i = 0, ∀i}.

This proposition is a persistence theorem, in which the shift by i in the i-th
cohomology reveals its usefulness.

Also recall that, by local duality, ai (M) = −indeg(Extn−i
R (M, ωR)) = −indeg

(Extn−i
R (M, R)) − n and therefore

reg(M) = − min
i

{indeg(ExtiR(M, R)) + i}.

1.4 Regularity and Gröbner Bases

Remark 1.4.1 Taking F• = K •( f ; M) in Lemma 1.2.1, or applying directly
Theorem 1.5.1 with N := R/( f ), gives the well-known fact that

reg(M) = max{reg(0 :M ( f )), reg(M/( f )M) − deg f + 1}
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if dim(0 :M ( f )) ≤ 1. More generally, Theorem 1.5.1 shows that, if f :=
( f1, . . ., fs) is an s-tuple of forms and Hi := Hi (K•( f ; M)), one has

reg(M) = max
i

{reg(Hi )} −
∑

j

(deg f j − 1),

if dim Hi ≤ 1 for i > 0.

For a rev-lex order one has in(I : (Xn)) = in(I ) : (Xn) and in(I + (Xn)) =
in(I ) + (Xn), and this may be extended to graded modules (see for instance [E,
§15.7]). As a consequence, the modules I : (Xn)/I and in(I ) : (Xn)/in(I ) have
the same Hilbert function H . Therefore, if I : (Xn)/I has dimension zero these
two modules have the same regularity: the last degree where H is not 0 (or −∞
if I : (Xn) = I ). By the remark above, if dim(I : (Xn)/I ) ≤ 1

reg(R/I ) = max{reg(I : (Xn)/I ), reg(R/I + (Xn))}

and

reg(R/in(I )) = max{reg(in(I ) : (Xn)/in(I )), reg(R/in(I + (Xn))}.

It follows that if (I + (Xn, . . ., Xi+1)) : (Xi )/(I + (Xn, . . ., Xi+1)) has finite
length for i from n to 1, then by induction (for i = 1, I = in(I ) = m) we have
reg(R/I ) = reg(R/in(I )). After a general linear change of coordinates, these
modules are indeed all of finite length. This proves the first part of the following
theorem of Bayer and Stillman (that also extends to modules).

Theorem 1.4.2 [BS1, 2.4 & 2.9] In general coordinates, for a rev-lex order,

reg(I ) = reg(in(I )),

and if furthermore k is of characteristic zero, reg(in(I )) = b0(I ).

The second part of the theorem can be deduced from the fact that in charac-
teristic zero, the generic initial ideal J of I is a strongly stable monomial ideal
(i.e., for any monomial M , Xi M ∈ J ⇒ X j M ∈ J, ∀ j ≤ i) and strongly
stable monomial ideals have regularity equal to their maximal degree of gen-
erator. More precisely, Eliahou and Kervaire provided in [EK] a minimal free
R-resolution of strongly stable monomial ideals, from which this is easy to de-
duce. One should also notice that for any monomial ideal K , using a resolution
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due to Diana Taylor, one has

bi (K ) ≤ max
m0,...,mi ∈S

deg(gcd(m0, . . ., mi )) ≤ (i + 1)b0(K ),

where S is a minimal set of monomial generators of K . In this sense, the
discrepancy between b0(K ) and reg(K ) is quite under control in the case of
monomial ideals, as compared with arbitrary ideals.

The equality reg(I ) = reg(in(I )) in the theorem has been refined by Bayer,
Charalambous, and Popescu, who proved in [BCP] that the so-called extremal
Betti numbers of I and in(I ) coincide. It is also part of folklore that these
coincide with what one can call extremal local cohomologies by analogy.
We will represent on a typical picture what this means and some compa-
rison between graded Betti numbers and dimensions of graded pieces of
local cohomology modules. For a finitely generated graded module M , we
set β ′

i, j := dimk TorR
i (M, k) j+i and α′

i, j := dimk Hi
m(M) j−i and put in a table,

indexed by i and j the numbers β ′
i, j and α′

i, j . Then the tables have the following
shapes for both M and its generic initial ideal:

Betti numbers:

c − 1 c c + 1 · · · · · · i · · · · · · p p + 1

...
...

...
...

...
...

...
...

...
...

· · · 0 0 0 0 0 0 0 0 0 0

reg + 1 · · · 0 0 0 0 0 0 0 0 0 0

reg · · · � � � 0 0 0 0 0 0 0

reg − 1 · · · ∗ ∗ � 0 0 0 0 0 0 0

· · · ∗ ∗ � 0 0 0 0 0 0 0

· · · ∗ ∗ � � � � 0 0 0 0

· · · ∗ ∗ ∗ ∗ ∗ � � � � 0

· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � 0

· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � 0
...

...
...

...
...

...
...

...
...

...

with p := pdim(M) and c := codim(M).
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Local cohomology:

q − 1 q · · · · · · i · · · · · · d − 1 d d + 1

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 · · ·
reg + 1 0 0 0 0 0 0 0 0 0 0 · · ·
reg 0 0 0 0 0 0 0 � � 0 · · ·
reg − 1 0 0 0 0 0 0 0 � ∗ 0 · · ·

0 0 0 0 0 0 0 � ∗ 0 · · ·
0 0 0 0 � � � � ∗ 0 · · ·
0 � � � � ∗ ∗ ∗ ∗ 0 · · ·
0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 · · ·
0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 · · ·
...

...
...

...
...

...
...

...
...

...

with q := depth (M) = n − p and d := dim(M) = n − c.
The numbers at the spots marked by � are not zero and called the corners of

the Betti diagram. Notice that i, j is a corner of the Betti diagram if and only if
n − i, j is a corner of the local cohomology diagram.

By the result of Bayer, Charalambous, and Popescu, they are unchanged
when passing to the initial ideal for the rev-lex order in general coordinates.

The numbers at the spots marked by �, �, �, or � in both diagrams are related
by α̃′

i, j ≤ β ′
i, j ≤ α̃′

i, j+
∑

�>0

(n
�

)
α′

i−�, j , where α̃′
i, j := dimk(Socle (Hi

m(M)) j−i ).
This shows that:

� at spots marked by �: α′
i, j = β ′

i, j �= 0,
� at spots marked by �: α′

i, j ≤ β ′
i, j ≤ ∑

�≥0

(n
�

)
α′

i, j−�,
� at spots marked by �: β ′

i, j = α̃′
i, j ,

� at spots marked by �: α̃′
i, j ≤ β ′

i, j ≤ α̃′
i, j + ∑

�>0

(n
�

)
α′

i−�, j .

These facts come from the study of the spectral sequence⊕ j TorR
i+ j (H j

m(M), k)
⇒ TorR

i (M, k). See the notes of Schenzel’s lectures in Barcelona in [Bar] for
more details.

In another direction, Bermejo and Gimenez discovered that the Castelnuovo–
Mumford regularity may also be computed from the initial ideal under weaker
conditions on the genericity of the coordinates (see [BG1] and [BG2]), and that
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this genericity condition can be checked on the initial ideal as well. An algo-
rithm based on this idea was implemented in singular to compute the regularity
following this approach. This idea also led to other developments by Caviglia
and Sbarra [CS].

The study of generic initial ideals for different orders is an active subject
of research. A good introduction to the subject is the notes of Green from the
summer school in Barcelona [Bar]. An important recent result is the determi-
nation by Conca and Sidman of the regularity of the generic initial ideal, for
the lexicographic order, of smooth complete intersection curves in P3:

Theorem 1.4.3 [CSi, 1.1] Consider a smooth complete intersection curve in
P3, intersection of two surfaces of degrees a and b with a, b > 1. Then the
regularity of its generic initial ideal for the lexicographic order is equal to
a(a−1)b(b−1)

2 + 1 unless a = b = 2, in which case it is equal to 4.

It is interesting to compare this value with the regularity of the lex-segment
ideal associated to the complete intersection ideal, which is a(a−1)b(b−1)

2 +ab. The
difference is (relatively) small. Their proof relies on the use of Green’s partial
elimination ideals. The value of the regularity is governed by the first partial
elimination ideal, which defines the singular points of a generic projection of
the curve. This singular loci consists of a(a−1)b(b−1)

2 nodes.
An interesting result that they prove on the way is the following proposition

for points:

Theorem 1.4.4 Let I be the defining ideal of a set of s points in sufficiently
general position. Then the generic initial ideal for the lexicographic order is
equal to the lex-segment ideal associated to I .

For a precise statement on the “general position” condition and a generaliza-
tion to other orders, see [CSi, 5.6].

The study of monomial ideals and their resolutions is a very active domain of
research, with many links to combinatorics and many interesting recent results.
We will not go further into this field in this short note.

1.5 On the Regularity of Tor Modules

A first important result is a theorem of Caviglia, who proved in [Cav]
that reg(M ⊗R N ) ≤ reg(M) + reg(N ) if dim TorR

1 (M, N ) ≤ 1. This work
was a continuation of previous results of Conca and Herzog [CH] and of
Sidman [Si].
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The regularity of Tor modules was subsequently studied in detail by Eisenbud,
Huneke, and Ulrich in [EHU], where they prove a result [EHU, 2.3] which is
quite comparable to the following one:

Theorem 1.5.1 Let M, N be two finitely generated graded R-modules, set
p := pdim(M) and p′ := pdim(N ). Assume that dim TorR

1 (M, N ) ≤ 1. Then,

max
i

{reg(TorR
i (M, N )) − i} ≤ reg(M) + reg(N ).

Moreover, equality holds if either reg(M) = maxi=p,p−1{bi (M)−i}or reg(N ) =
maxi=p′,p′−1{bi (N ) − i}. This is in particular the case if either pdimM ≤
codimM + 1 or pdimN ≤ codimN + 1.

Proof Let F N
• be a minimal graded free R-resolution of N . We apply

Lemma 1.2.1 to F• := F N
r−• and M . It follows from Lemma 1.2.1 (i) with

q0 := r and the first claim of Lemma 1.2.1 (ii) that

max
p,q

{ap(Torr−q (M, N )) + p + q} ≤ max
p,q

{ap(M) + br−q (N ) + p + q},

which is equivalent to

max
p,q

{ap(Torq (M, N ))) + p − q} ≤ max
p,q

{ap(M) + bq (N ) + p − q},

and the right-hand side is equal to reg(M) + reg(N ).
Let us assume that reg(N ) = maxi=p′,p′−1{bi (N ) − i}, that we can rewrite

b(F•) = max{b(F0), b(F1) + 1} (by Corollary 1.2.2, this equality holds if
pdimN ≤ codimN + 1). The second statement of Lemma 1.2.1 (ii) implies
the equality we claim.

If reg(M) = maxi=p,p−1{bi (M) − i}, we reverse the roles of M and N in the
above proof.

Caviglia was probably the first to give an example, in his thesis (see
[EHU, 4.4]), where reg(M ⊗R N ) > reg(M) + reg(N ) when dim(TorR

1 (M, N ))
= 2. We will explain this example in a more general context in Section 1.13.

Remark 1.4.1 applied to M = R gives bounds on the regularity of all Koszul
homology modules when dim R/( f1, . . ., fs) is at most 1. The same kind of
arguments are used in [Ch2, 3.1] to show the following:

Theorem 1.5.2 Let M, M1, . . ., Ms be finitely generated graded R-modules,
Ti := TorR

i (M, M1, . . ., Ms), d := dim M, and b� := maxi1+···+is=�{bi1 (M1) +
· · · + bis (Ms)}. If dim T1 ≤ 1, then
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(i) ap(T0) ≤ max0≤i≤d−p{ap+i (M) + bi } for p ≥ 0,

(ii) a0(Tq ) ≤ max0≤i≤d{ai (M) + bq+i } for q ≥ 0,

(iii) a1(Tq ) ≤ max0≤i≤d{ai (M) + bq+i−1} for q ≥ 1.

In particular, if dim(M1 ⊗ · · · ⊗ Ms) ≤ 1, then

reg(M1 ⊗ · · · ⊗ Ms) ≤ reg(M1) + · · · + reg(Ms).

The last inequality may be extended to all the higher multiple Tor modules,
and the condition may be weakened to dim(TorR

1 (M1, . . ., Ms)) ≤ 1. The van-
ishing of the latter module may be controlled by the following result, which is
the natural generalization for multiple Tor modules of a result of Serre (recall
that the formation of Tor commutes with localization):

Theorem 1.5.3 Let R be a regular local ring containing a field, M1, . . .; let
Ms be finitely generated R-modules. The following are equivalent,

(i) TorR
1 (M1, . . ., Ms) = 0 and M1 ⊗R · · · ⊗R Ms is Cohen–Macaulay,

(ii) the codimension of M1 ⊗R · · · ⊗R Ms is the sum of the projective dimen-
sions of the Mi ’s,

(iii) the intersection of the Mi ’s is proper and every Mi is Cohen–Macaulay.

The form of the bound in Theorem 1.5.2 is also important to notice. Let
us look at the case where we have two modules M and N . We then have, for
instance,

a0(M ⊗R N ) ≤ max
i

{ai (M) + bi (N )},
and this max can be reduced to the range depth (M) ≤ i ≤ min{dim(M),
pdim(N )}. Notice also that the roles of M and N may be reversed.

1.6 The Behavior of Regularity Relative to Sums, Products,
and Intersections of Ideals

The behavior relative to these three operations are all related to the study of
Tor modules. Indeed, for any pair I, J of ideals, R/(I + J ) = R/I ⊗R R/J =
TorR

0 (R/I, R/J ), and there are two exact sequences:

0 �� R/(I ∩ J ) �� R/I ⊕ R/J �� TorR
0 (R/I, R/J ) �� 0,

0 �� TorR
1 (R/I, R/J ) �� R/IJ �� R/(I ∩ J ) �� 0.
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It follows that:

� reg(I + J ) > max{reg(I ), reg(J )} if and only if reg(I ∩ J ) > max{reg(I ),
reg(J )} + 1, and in this case

reg(I ∩ J ) = reg(I + J ) + 1 = reg(TorR
0 (R/I, R/J )) + 2,

� one has

reg(R/IJ ) ≤ max{reg(R/(I ∩ J )), reg(TorR
1 (R/I, R/J ))}

≤ max{reg(R/I ), reg(R/J ), reg(TorR
0 (R/I, R/J )) + 1,

reg(TorR
1 (R/I, R/J ))}.

Using the results on Tor, it immediately follows that

Theorem 1.6.1 If (I ∩ J )/IJ is a module of dimension at most 1, then

(i) reg(I + J ) ≤ reg(I ) + reg(J ) − 1,

(ii) reg(I ∩ J ) ≤ reg(I ) + reg(J ),

(iii) reg(IJ ) ≤ reg(I ) + reg(J ).

More refined results in terms of Betti numbers can be found in [EHU, 2.2].
The possibility of extending the second and third inequalities to any number

of ideals is still unclear. For the first one, the previous results on multiple Tor
modules gives such an extension.

Notice that the condition dim(I ∩ J )/IJ ≤ 1 is implied by — and equivalent
to in some cases, for instance if dim(R/I + J ) = 2 — a more geometric one:
∀p ⊇ I + J such that dim(R/p) ≥ 2, (R/I )p and (R/J )p are Cohen–Macaulay
and codimRp

(Ip + Jp) = codimRp
(Ip) + codimRp

(Jp). In other terms: locally at
primes of dimension 2 containing I + J it corresponds to a proper intersection
of Cohen–Macaulay schemes.

Theorem 1.6.2 Let I1, . . ., Is be graded R-ideals and J be their sum. If
∀p ⊇ J such that dim(R/p) ≥ 2, (R/Ii )p is Cohen–Macaulay for all i and
codimRp

(Jp) = ∑
i codimRp

((Ii )p), then

reg(R/J ) ≤
∑

i

reg(R/Ii ).

Questions of this type were also studied in particular contexts.

� Conca and Herzog proved in [CH] that if ideals I1, . . ., Is are generated
by linear forms, then

reg(I1 · · · Is) =
∑

i

reg(Ii ) = s,
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� Derksen and Sidman proved in [DS] that if ideals I1, . . ., Is are generated
by linear forms, then

reg(I1 ∩ · · · ∩ Is) ≤
∑

i

reg(Ii ) = s.

In their article, Conca and Herzog ask if their result may be extended to an
inequality for complete intersection ideals. It is shown in [CMT, 3.3] that for
monomial complete intersection ideals one has

reg(I1 ∩ · · · ∩ Is) ≤
∑

i

reg(Ii ),

and the same holds for the product if s = 2 by [CMT, 1.1]. Also it follows from
a lemma from Hoa and Trung [HT, 3.1] that

reg(I1 · · · Is) ≤
∑

i

reg(Ii ) +
∑

i

codim(Ii ) − codim(I1 · · · Is) − s + 1,

which is close to the expected bound in this monomial case.
These bounds do not hold for general complete intersection ideals; a geomet-

ric approach for constructing counter-examples is given by the following result
[CMT, 1.2]:

Theorem 1.6.3 Let C in P3 be a curve which is defined by at most four
equations at the generic points of its irreducible components. Consider four
elements in IC , f1, f2, g1, g2 such that I := ( f1, f2) and J := (g1, g2) are
complete intersection ideals and IC is the unmixed part of I + J . Then, if
−η := min{µ | H 0(C,OC(µ)) �= 0} < 0, one has

reg(IJ ) = reg(I ) + reg(J ) + η − 1.

We will see that one can choose for C the locally complete intersection curve
with IC := (xmt − ym z)+(z, t)n for m, n > 1, in which case η = (m−1)(n−1),
and take, for instance, I := (zn, tn) and J := (xmt − ym z, f ) with f ∈ IC not
multiple of xmt − ym z (e.g., f = zn).

1.7 The Regularity of the Ordinary Powers of an Ideal

Applying Theorem 1.5.2 with M := R/I m and M1 := R/I , so that T1 =
TorR

1 (R/I, R/I m) 
 I m/I m+1 for a homogeneous ideal I with dim(R/I ) ≤ 1,
one gets the following estimate (see [Ch2, 0.4], or [EHU, 7.9] for a slightly
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different bound) that improves the estimate reg(I m) ≤ m reg(I ) proved by
Chandler in [Chan] and by Geramita, Gimigliano, and Pitteloud in [GGP]:

Theorem 1.7.1 Let I be a homogeneous ideal of R such that dim(R/I ) ≤ 1.
Then, for any m ≥ 1,

reg(I m) ≤ max{reg(I sat) + b1(I ) − 1, reg(I ) + b0(I )} + (m − 2)b0(I );

in particular, unless I is principal, reg(I m) ≤ reg(I )+b1(I )−1+(m −2)b0(I ).

When dim(R/I ) ≥ 2, the inequality reg(I m) ≤ m reg(I ) does not hold in
general. A first counter-example was given by Terai, in characteristic differ-
ent from 2: the Stanley–Reisner ideal of the minimal triangulation of the real
projective plane. This ideal is a monomial ideal with 10 minimal generators of
degree 3. Further investigations by Sturmfels in [St] showed that any monomial
ideal M with at most 7 generators, that has a linear resolution, is such that M2

also has a linear resolution, which is equivalent to reg(M2) = 2 reg(M). On the
other hand, Sturmfels exhibited a monomial ideal with 8 generators for which
reg(M2) > 2 reg(M), in any characteristic.

Also, reasonable bounds for the regularity of the square of an ideal of
dimension 2 may be proved for generically complete intersection ideals:

Theorem 1.7.2 [Ch2, 0.5] Let I be a homogeneous R-ideal such that
dim(R/I ) = 2. Assume that Ip ⊂ Rp is a complete intersection for every
prime p ⊇ I such that dim R/p = 2. Then,

reg(I 2) ≤ max{reg(I ) + max{b0(I ), b1(I ) − 1, b2(I ) − 2}, a2(R/I )

+ 2b0(I ) + 1}
≤ reg(I ) + max{reg(I ), 2b0(I ) − 2}.

Question 1.7.3 Does the inequality

reg(I 2) ≤ reg(I ) + max{b0(I ), b1(I ) − 1, b2(I ) − 2}

hold under the hypotheses of the theorem?

By [Ch2, 4.3], this is equivalent to a2(Tor2(R/I, R/I )) ≤ reg(R/I ) +
max{b0(I ), b1(I ) − 1, b2(I ) − 2}. Of course one may ask if the weaker bound
reg(I 2) ≤ 2 reg(I ) holds, which is equivalent to a2(Tor2(R/I, R/I )) ≤ 2
reg(R/I ) + 1.

In arbitrary dimension, Swanson first proved in [Sw1] that for any graded
ideal I , there exists N such that reg(I m) ≤ m N for any m. Later, the asymptotic
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behavior of reg(I m) was proved to be a linear function of m by Kodiyalam in
[Ko] and by Cutkosky, Herzog, and Trung in [CHT]:

Theorem 1.7.4 Let Jd be a graded R-ideal. There exists indeg(Jd ) ≤ a ≤
b0(Jd ), b and c such that

reg(I m) = am + b, ∀m ≥ c.

The key point in the proof is the fact that the Rees algebra RI has bigraded
finite free resolution, which encodes the regularity of all the powers of I . The
same type of behavior also holds for the integral closures of the powers of I or
for the symmetric powers of an ideal.

The numbers b and c can be estimated from the shifts in the bigraded reso-
lution of the Rees algebra (see [CHT, 2.4]).

On the other hand, the regularity of saturations of the powers of an ideal
may have a very irregular behavior, as shown by examples in [CHT] based
on previous constructions of Cutkosky and Srinivas [CSr], and examples by
Cutkosky [Cu].

Example 1.7.5 [CHT, 4.4, Cu Thm. 10]

� For any prime p congruent to 2 mod 3, there exists a field of characteristic
p and an ideal I in k[x, y, z] such that greg(R/I 5m+1) = 29m + 6 if m
is not a power of p and greg(R/I 5m+1) = 29m + 7 else.

� In arbitrary characteristic, there exists a regular curve in P3 such that its
defining ideal I satisfies greg(R/I m) = [(9 + √

2)m] + σ (m), where
σ (m) is 1 unless m belongs to a sparse subsequence qn of the integers
defined recursively by q0 = 1, q1 = 2 and qn = 2qn−1 + qn−2, in which
case σ (m) = 0.

Further work by Cutkosky, Ein, and Lazarsfeld in [CEL] gives a geometric
approach to the understanding of the asymptotic behavior of greg(R/I m )

m and other
invariants of these powers (notably their arithmetic degree).

When the symbolic blowup is finitely generated, the asymptotic behavior is
given by a finite number of linear functions, each of them corresponding to a
congruence of the exponent. If the symbolic blowup is finite over the Rees ring,
the regularity is eventually linear.

A recent example due to Conca also shows a very interesting phenomenon:

Example 1.7.6 [Co, 3.1] Let d > 1 and Jd := (xzd , xtd , yzd−1t) + (z, t)d+1

⊂ k[x, y, z, t], for any field k. Then reg(I m) = m(d + 1) (i.e., I m has a linear
resolution) for m < d and b1(J d ) ≥ d(d + 2). It follows that reg(I d ) ≥
d(d + 2) − 1 > d(d + 1).
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Therefore, even for a monomial ideal in four variables, an arbitrary number of
powers may have a linear resolution without forcing all the powers to verify the
same property. The article of Conca [Co] contains in its Section 2 an interesting
collection of other examples from different sources.

1.8 Geometric Estimates on Castelnuovo–Mumford
Regularity

The first estimates for the Castelnuovo–Mumford regularity are probably:

� the bound for the regularity of smooth projective curves by Castelnuovo,
� the bound for the regularity of schemes in terms of their Hilbert polyno-

mial by Mumford.

Both results have been extended and better understood in later works, and
Mumford’s technique was adapted to prove regularity bounds in terms of degrees
of defining equations.

In the direction of Castelnuovo’s result, there is a famous conjecture that
suggests the following bound for reduced and irreducible schemes:

Conjecture 1.8.1 [Eisenbud and Goto] If S is a nondegenerate reduced and
irreducible projective scheme over an algebraically closed field, then

reg(S) ≤ degS − codimS.

(Nondegenerate means S �⊂ H for any hyperplane H .)
We recall that if S = Proj(R/I ), reg(S) := reg(R/I sat) = greg(R/I ).
This result was known for curves when the conjecture was made. It was

first established for smooth curves by Castelnuovo [Cast] and then for reduced
curves with no degenerate component by Gruson, Lazarsfeld, and Peskine (over
a perfect field) in [GLP]. Recently, Noma improved the bound for curves of
sufficiently high genus in [No1] and [No2]. There has been a lot of work on
regularity of curves, in particular on monomial curves (for instance, L’vovsky’s
bound [Lv]) and on the cases where the bound is close to being reached (see
for instance [BSc]).

There is some evidence that the Eisenbud-Goto conjecture should be true at
least for smooth schemes in characteristic zero: it is true for smooth surfaces
(Pinkham and Lazarsfeld) and (up to adding small constants) in dimension at
most six, by the work of several people including Lazarsfeld, Ran, and Kwak
(see [Kw] and the articles it refers to).
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Theorem 1.8.2 [Kw] Let k be a field of characteristic zero and S a nonde-
generate smooth irreducible projective scheme over k of dimension D ≤ 6,
then

reg(S) ≤ degS − codimS + εD,

with ε1 = ε2 = 0, ε3 = 1, ε4 = 4, ε5 = 10 and ε6 = 20.

A key point in these proofs is the understanding of the singularities of the
fiber of a general projection of S to a linear space of dimension D + 1. The
fundamental results of J. Mather only give enough information on the fibers up
to dimension 6.

In any dimension, it was proved by Mumford ([BM]) — and it also follows
easily from a theorem of Bertram, Ein, and Lazarsfeld (Theorem 1.10.1) — that
in characteristic zero a smooth scheme S satisfies,

reg(S) ≤ (dimS + 1)(degS − 1).

In positive characteristic, one has by [Ch1, 4.5] reg(S) ≤ dimS(dimS +
1)(degS − 1) (Theorem 1.10.3 gives a slightly weaker result). There are also
quite reasonable results for schemes with isolated singularities (see [Ch1, §4]).

The conjecture is known for some classes of toric varieties. In codimension
two, the result was proved by Peeva and Sturmfels in [PS] and there are several
results in this direction for classes of toric varieties (see for instance [HS] for
the case of simplicial toric rings).

1.9 General Bounds on the Regularity in Terms of Degrees
of Defining Equations

A general bound in terms of degrees of defining equations and in terms of
the Hilbert polynomial (for saturated ideals) may be derived from the following
proposition that studies the behavior when adding a sufficiently general linear
form. This result goes back to Mumford ([Mu, Lect. 14]) for the essential key
points and has been used in several forms or variants since then. What Mumford
proved is very close to points (iv) and (v) below. Set hi

m(M)µ := dimk Hi
m(M)µ.

Proposition 1.9.1 Let M be a finitely generated graded R-module. For a
linear form l such that K := 0 :M (l) has finite length, set M := M/(l)M.
Then,

(i) greg(M) ≤ reg(M) ≤ reg(M),

(ii) for µ ≥ reg(M), h0
m(M)µ+1 ≤ h0

m(M)µ, and the inequality is strict if
h0

m(M)µ �= 0 and µ ≥ max{reg(M) + 1, b0(M), b1(M) − 1},
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(iii) for µ ≥ greg(M) + 2, (M ⊗R k)µ 
 (H 0
m(M) ⊗R k)µ, in particular

b0(H 0
m(M)) ≤ max{greg(M) + 1, b0(M)},

(iv) for µ ≥ max{greg(M), a0(M)}, h1
m(M)µ+1 ≤ h1

m(M)µ, and the inequal-
ity is strict if h1

m(M)µ �= 0 and µ ≥ max{greg(M) + 1, a0(M), b0(M)},
(v) forµ′ ≥ µ ≥ min{a0(M), b0(M)}, {Hi

m(M)µ−i = 0, ∀i} ⇒ {Hi
m(M)µ′−i

= 0, ∀i}.

The proof is given in the technical appendix, Section 1.14.

Corollary 1.9.2 Let I be a homogeneous ideal and l be a linear form such
that K := (I : (l))/I has finite length, then for µ ≥ max{b0(I )−1, reg(I +(l))},

reg(I ) ≤ µ + λ(H 0
m(R/I )µ) = µ + λ(K≥µ) ≤ µ + λ(K ).

Proof Let µ ≥ max{b0(I )−1, reg(I +(l))}. By (i), greg(R/I ) ≤ µ−1, and by
(ii), h0

m(R/I )µ+1 < h0
m(R/I )µ if h0

m(R/I )µ �= 0. It follows that h0
m(R/I )µ+i ≤

max{0, h0
m(R/I )µ − i}, hence a0(R/I ) ≤ µ + h0

m(R/I )µ. Finally notice that
λ(K≥µ) = ∑

µ′≥µ(h0
m(R/I )µ′ − h0

m(R/I )µ′+1) = h0
m(R/I )µ.

This corollary may be used directly to prove bounds on the regularity in terms
of defining equations, by recursion on the dimension. The point is then to bound
λ(H 0

m(R/I )µ), for which one may use that H 0
m(R/I )µ ⊆ (R/I )µ.

A more refined way for bounding λ(H 0
m(R/I )µ) was found by Caviglia and

Sbarra [CS]. The following lemma is a key ingredient of their proof:

Lemma 1.9.3 [CS, 2.2] If (I : (l))/I has finite length, for any j > 0,

λ

(
I : (l) j

I : (l) j−1

)
− λ

(
I : (l) j+1

I : (l) j

)
= λ

(
I : (l) j + (l)

I : (l) j−1 + (l)

)
.

Let us now sketch a variant of their proof and of their result.
They first remark that I sat = I : (l)N for N ≥ a0(R/I ) and that by the lemma

above, K has the same length as (I sat + (l))/(I + (l)) (sum up the equalities in
the lemma for j from 1 to N ).

The lemma also gives λ
(

I :(l) j+1

I :(l) j

)
≤ λ

( I :(l)
I

)
for any j > 0, and therefore

λ
(

I sat/I
) =

a0(R/I )∑
j=1

λ

(
I : (l) j

I : (l) j−1

)
≤ a0(R/I )λ

(
I : (l)

I

)
.
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Also, for a linear form l ′ such that (I + (l)) : (l ′)/(I + (l)) has finite length,

λ

(
I : (l)

I

)
= λ

(
I sat + (l)

I + (l)

)
≤ λ

(
(I + (l))sat

I + (l)

)
≤ a0(R/I

+ (l))λ

(
(I + (l)) : (l ′)

(I + (l))

)
.

Therefore, setting Ii := I +(l1, . . ., li ) and Ki := Ii : (li+1)/Ii for a sequence
of linear forms li such that λ(Ki ) < ∞ for every i , one has dim(R/Ii ) =
max{0, dim(R/I ) − i} and:

� reg(R/Ii ) ≤ max{reg(R/Ii+1), d − 2} + λ(Ki ),
� λ(Ki ) ≤ reg(R/Ii+1)λ(Ki+1),

which gives a way to bound reg(R/Ii ) by recursion on i from δ := dim(R/I )
to 0. Indeed for I generated in degree at most d:

� for i = δ, dim(R/Iδ) = 0 and therefore reg(R/Iδ) ≤ (n − δ)(d − 1) by
Theorem 1.12.4 (this is well known and goes back to Macaulay, at least)
and λ(Kδ) = λ(R/Iδ+1) ≤ dn−δ−1,

� if δ ≥ 1, for i = δ−1, dim(R/Iδ−1) = 1, reg(R/Iδ−1) ≤ (n−δ+1)(d−1)
by Theorem 1.12.4 and λ(Kδ−1) = λ(R/Iδ) − deg(R/Iδ−1) ≤ dn−δ − 1.

And then by recursion it follows:

Theorem 1.9.4 If I is a graded R-ideal generated in degree at most d,

(i) reg(R/I ) ≤ n(d − 1) if dim(R/I ) ≤ 1,

(ii) if δ := dim(R/I ) ≥ 2,

reg(R/I ) ≤ ((n − δ + 1)(d − 1)d (n−δ))2δ−2
< (3

1
3 d)(n−δ+1)2δ−2

.

The bound for ideals can be extended to modules, essentially along the same
lines (see [CFN]) or using some other variations (see [BGö]).

Point (iv) of Proposition 1.9.1 can be used to bound greg(R/I ) in terms of
the Hilbert polynomial P of R/I (this was the motivation of Mumford), as for
µ ≥ greg(R/I ) one has P(µ) = h1

m(R/I )µ + dimk(R/I )µ. This last formula
follows from the equality (see for instance [BH, 4.3.5]):

dimk Mµ = PM (µ) +
∑
i≥0

(−1)i hi
m(M)µ

which is valid for any graded R-module M of finite type and any µ.
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Another way of proving bounds in terms of the Hilbert polynomial is to
remark that the regularity of the Hilbert function of R/I sat is strictly smaller
than the one of the lex-segment ideal associated to I sat; as a corollary, the
regularity of this lex-segment ideal only depends on the Hilbert polynomial. The
corresponding bound can be computed from the standard writing of the Hilbert
polynomial by formulas first proved by Blancafort in her thesis (see [Bl]).

A bound on the regularity of lex-segment ideals associated to complete in-
tersection ideals was proved in [CM], and improved and extended by Hoa and
Hyry in [HoHy2], as an ingredient for proving bounds for the degrees of gener-
ators of Gröbner bases of an ideal in terms of the degrees of its generators, for
any admissible order (see [CM, 3.6]).

Point (v) of Proposition 1.9.1 may be used to prove that:

Proposition 1.9.5 If I is a graded ideal which is not m-primary, then

reg(I ) = min{µ | Hi
m(R/I )µ−i = 0, ∀i}.

Proof Recall that if d := dim(R/I ) > 0, one has H d
m(R/I )i �= 0 for any

i ≤ d (see [Ho] or [BH, 9.2.4 (b)]), hence the minimum on the right is positive,
and the claim follows from (v).

One of the motivations for looking at regularity of ideals was the theorem
of Bayer and Stillman, which asserts that for the rev-lex order and in general,
coordinates reg(I ) = reg(in(I )), where in(I ) is the initial ideal of I (generated
by the leading monomials of the elements in the Gröbner basis).

Bounds in terms of the maximal degree of the generators were expected to
be of much smaller order than the ones known at that time, which were of the
same magnitude as the bound we proved above (at least in characteristic zero).

A big surprise came with the example of Mayr and Meyer, who provided
an ideal in a polynomial ring in 10n + 2 variables generated by polynomials
of degrees at most d + 2 with a minimal first syzygy of degree at least d2n

(see [BS2]).
A very interesting study of the ideals of Mayr and Meyer, and of some

closely related ideals, was done by Irena Swanson in [Sw2] and [Sw3]. It
shows that these ideals have minimal primes and embedded primes in different
codimensions and points to some embedded ideals that might be at the origin
of their high regularity.

It is interesting to notice that these types of binomial ideals are still the
unique source of examples of ideals with very high regularity. We will see
in Section 1.13 examples with a much more geometric construction, but not
with such a high regularity. It would be very interesting to provide a geomet-
ric construction of ideals with huge multiplicity as compared to degrees of
generators.


