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Preface

Digital signal processing (DSP) is concerned with the theoretical and practical aspects of representing
information-bearing signals in a digital form and with using computers, special-purpose hardware and
software, or similar platforms to extract information, process it, or transform it in useful ways. Areas
where DSP has made a significant impact include telecommunications, wireless and mobile communi-
cations, multimedia applications, user interfaces, medical technology, digital entertainment, radar and
sonar, seismic signal processing, and remote sensing, to name just a few.

Given the widespread use of DSP, a need developed for an authoritative reference, written by the top
experts in the world, that would provide information on both theoretical and practical aspects in a
manner that was suitable for a broad audience—ranging from professionals in electrical engineering,
computer science, and related engineering and scientific professions to managers involved in technical
marketing, and to graduate students and scholars in the field. Given the abundance of basic and
introductory texts on DSP, it was important to focus on topics that were useful to engineers and scholars
without overemphasizing those topics that were already widely accessible. In short, the DSP handbook
was created to be relevant to the needs of the engineering community.

A task of this magnitude could only be possible through the cooperation of some of the foremost DSP
researchers and practitioners. That collaboration, over 10 years ago, produced the first edition of the
successful DSP handbook that contained a comprehensive range of DSP topics presented with a clarity of
vision and a depth of coverage to inform, educate, and guide the reader. Indeed, many of the chapters,
written by leaders in their field, have guided readers through a unique vision and perception garnered by
the authors through years of experience.

The second edition of the DSP handbook consists of volumes on Digital Signal Processing Fundamen-
tals; Video, Speech, and Audio Signal Processing and Associated Standards; and Wireless, Networking,
Radar, Sensor Array Processing, and Nonlinear Signal Processing to ensure that each part is dealt with in
adequate detail, and that each part is then able to develop its own individual identity and role in terms of
its educational mission and audience. I expect each part to be frequently updated with chapters that reflect
the changes and new developments in the technology and in the field. The distribution model for the DSP
handbook also reflects the increasing need by professionals to access content in electronic form anywhere
and at anytime.

Digital Signal Processing Fundamentals, as the name implies, provides a comprehensive coverage of the
basic foundations of DSP and includes the following parts: Signals and Systems; Signal Representation
and Quantization; Fast Algorithms and Structures; Digital Filtering; Statistical Signal Processing;
Adaptive Filtering; Inverse Problems and Signal Reconstruction; and Time–Frequency and Multirate
Signal Processing.

ix



I look forward to suggestions on how this handbook can be improved to serve you better.
MATLAB1 is a registered trademark of The MathWorks, Inc. For product information, please

contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Signals and Systems
Vijay K. Madisetti
Georgia Institute of Technology

Douglas B. Williams
Georgia Institute of Technology

1 Fourier Methods for Signal Analysis and Processing W. Kenneth Jenkins ................. 1-1
Introduction . Classical Fourier Transform for Continuous-Time Signals . Fourier Series
Representation of Continuous Time Periodic Signals . Discrete-Time Fourier Transform .

Discrete Fourier Transform . Family Tree of Fourier Transforms . Selected Applications
of Fourier Methods . Summary . References

2 Ordinary Linear Differential and Difference Equations B.P. Lathi .............................. 2-1
Differential Equations . Difference Equations . References

3 Finite Wordlength Effects Bruce W. Bomar ......................................................................... 3-1
Introduction . Number Representation . Fixed-Point Quantization Errors .

Floating-Point Quantization Errors . Roundoff Noise . Limit Cycles . Overflow
Oscillations . Coefficient Quantization Error . Realization Considerations . References

T HE STUDY OF ‘‘SIGNALS AND SYSTEMS’’ has formed a cornerstone for the development
of digital signal processing and is crucial for all of the topics discussed in this book. While
the reader is assumed to be familiar with the basics of signals and systems, a small portion

is reviewed in this section with an emphasis on the transition from continuous time to discrete time.
The reader wishing more background may find in it any of the many fine textbooks in this area, for
example [1–6].

In Chapter 1, many important Fourier transform concepts in continuous and discrete time are
presented. The discrete Fourier transform, which forms the backbone of modern digital signal processing
as its most common signal analysis tool, is also described, together with an introduction to the fast
Fourier transform algorithms.

In Chapter 2, the author, B.P. Lathi, presents a detailed tutorial of differential and difference equations
and their solutions. Because these equations are the most common structures for both implementing and
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modeling systems, this background is necessary for the understanding of many of the later topics in this
book. Of particular interest are a number of solved examples that illustrate the solutions to these
formulations.

While most software based on workstations and PCs is executed in single or double precision
arithmetic, practical realizations for some high throughput digital signal processing applications must
be implemented in fixed point arithmetic. These low cost implementations are still of interest to a wide
community in the consumer electronics arena. Chapter 3 describes basic number representations, fixed
and floating point errors, roundoff noise, and practical considerations for realizations of digital signal
processing applications, with a special emphasis on filtering.

References

1. Jackson, L.B., Signals, Systems, and Transforms, Addison-Wesley, Reading, MA, 1991.
2. Kamen, E.W. and Heck, B.S., Fundamentals of Signals and Systems Using MATLAB, Prentice-

Hall, Upper Saddle River, NJ, 1997.
3. Oppenheim, A.V. and Willsky, A.S., with Nawab, S.H., Signals and Systems, 2nd ed., Prentice-Hall,

Upper Saddle River, NJ, 1997.
4. Strum, R.D. and Kirk, D.E., Contemporary Linear Systems Using MATLAB, PWS Publishing,

Boston, MA, 1994.
5. Proakis, J.G. and Manolakis, D.G., Introduction to Digital Signal Processing, Macmillan, New York;

Collier Macmillan, London, UK, 1988.
6. Oppenheim, A.V. and Schafer, R.W., Discrete Time Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1989.
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Fourier Methods

for Signal Analysis
and Processing

W. Kenneth Jenkins
The Pennsylvania State
University

1.1 Introduction........................................................................................... 1-1
1.2 Classical Fourier Transform for Continuous-Time Signals........ 1-2

Properties of the Continuous-Time Fourier Transform .

Sampling Models for Continuous- and Discrete-Time Signals .

Fourier Spectrum of a Continuous Time Sampled Signal .

Generalized Complex Fourier Transform

1.3 Fourier Series Representation of Continuous
Time Periodic Signals.......................................................................... 1-7
Exponential Fourier Series . Trigonometric Fourier Series .

Convergence of the Fourier Series . Fourier Transform of Periodic
Continuous Time Signals

1.4 Discrete-Time Fourier Transform.................................................. 1-11
Properties of the Discrete-Time Fourier Transform . Relationship
between the CT and DT Spectra

1.5 Discrete Fourier Transform ............................................................. 1-15
Properties of the DFT . Fast Fourier Transform Algorithms

1.6 Family Tree of Fourier Transforms ............................................... 1-19
Walsh–Hadamard Transform

1.7 Selected Applications of Fourier Methods ................................... 1-20
DFT (FFT) Spectral Analysis . FIR Digital Filter Design . Fourier
Block Processing in Real-Time Filtering Applications .

Fourier Domain Adaptive Filtering . Adaptive Fault Tolerance
via Fourier Domain Adaptive Filtering

1.8 Summary ..............................................................................................1-28
References ........................................................................................................1-29

1.1 Introduction

The Fourier transform is a mathematical tool that is used to expand signals into a spectrum of sinusoidal
components to facilitate signal representation and the analysis of system performance. In certain
applications the Fourier transform is used for spectral analysis, and while in others it is used for spectrum
shaping that adjusts the relative contributions of different frequency components in the filtered result.
In certain applications the Fourier transform is used for its ability to decompose the input signal into
uncorrelated components, so that signal processing can be more effectively implemented on the indi-
vidual spectral components. Different forms of the Fourier transform, such as the continuous-time (CT)
Fourier series, the CT Fourier transform, the discrete-time Fourier transform (DTFT), the discrete
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Fourier transform (DFT), and the fast Fourier transform (FFT) are applicable in different circumstances.
One goal of this chapter is to clearly define the various Fourier transforms, to discuss their properties, and
to illustrate how each form is related to the others in the context of a family tree of Fourier signal
processing methods.

Classical Fourier methods such as the Fourier series and the Fourier integral are used for CT signals
and systems, i.e., systems in which the signals are defined at all values of t on the continuum
�1 < t < 1. A more recently developed set of discrete Fourier methods, including the DTFT and
the DFT, are extensions of basic Fourier concepts for discrete-time (DT) signals and systems. A DT signal
is defined only for integer values of n in the range �1 < n < 1. The class of DT Fourier methods is
particularly useful as a basis for digital signal processing (DSP) because it extends the theory of classical
Fourier analysis to DT signals and leads to many effective algorithms that can be directly implemented on
general computers or special purpose DSP devices.

1.2 Classical Fourier Transform for Continuous-Time Signals

A CT signal s(t) and its Fourier transform S(jv) form a transform pair that are related by Equations 1.1a
and b for any s(t) for which the integral (Equation 1.1a) converges:

S( jv) ¼
ð1

�1
s(t)e�jvtdt (1:1a)

s(t) ¼ 1
2P

ð1
�1

S( jv)e jvtdv: (1:1b)

In most literature Equation 1.1a is simply called the Fourier transform, whereas Equation 1.1b is called
the Fourier integral. The relationship S(jv) ¼ Ffs(t)g denotes the Fourier transformation of s(t), where
Ff�g is a symbolic notation for the integral operator, and where v is the continuous frequency variable
expressed in rad/s. A transform pair s(t) $ S(jv) represents a one-to-one invertible mapping as long as
s(t) satisfies conditions which guarantee that the Fourier integral converges.

In the following discussion the symbol d(t) is used to denote a CT impulse function that is defined to
be zero for all t 6¼ 0, undefined for t ¼ 0, and has unit area when integrated over the range
�1 < t < 1. From Equation 1.1a it is found that Ffd(t � t0)g ¼ e�jvt0 due to the well known sifting
property of d(t). Similarly, from Equation 1.1b we find that F�1f2pd(v� v0)g ¼ e jv0t , so that
d(t � t0) $ e�jvt0 and e jv0 t $ 2pd(v� v0) are Fourier transform pairs. Using these relationships it is
easy to establish the Fourier transforms of cos (v0t) and sin (v0t), as well as many other useful
waveforms, many of which are listed in Table 1.1.

The CT Fourier transform is useful in the analysis and design of CT systems, i.e., systems that process
CT signals. Fourier analysis is particularly applicable to the design of CT filters which are characterized
by Fourier magnitude and phase spectra, i.e., by jH( jv)j and arg H( jv), where H( jv) is commonly called
the frequency response of the filter.

1.2.1 Properties of the Continuous-Time Fourier Transform

The CT Fourier transform has many properties that make it useful for the analysis and design of linear
CT systems. Some of the more useful properties are summarized in this section, while a more complete list of
the CT Fourier transform properties is given in Table 1.2. Proofs of these properties are found in Oppenheim
et al. (1983) and Bracewell (1986). Note that Ff�g denotes the Fourier transform operation, F�1f�g denotes
the inverse Fourier transform operation, and ‘‘*’’ denotes the linear convolution operation defined as
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TABLE 1.1 CT Fourier Transform Pairs

Single Fourier Transform Fourier Series Coefficients (If Periodic)

Pþ1

k¼�1
akeavd 2p

Pþ1

k¼�1
akd(vk � v0)

ak

e jv0 t 2pd(v� v0) a1 ¼ 1

ak ¼ 0, otherwise

cos v0t p[d(v� v0)þ d(vþ v0)] a1 ¼ a�1 ¼ 1=2

ak ¼ 0, otherwise

sin v0t
p

j
[d(v� v0)þ d(vþ v0)] a1 ¼ �a�1 ¼ 1=2j

ak ¼ 0, otherwise

x tð Þ ¼ 1 2pd(v) a0 ¼ 1, ak ¼ 0, k 6¼ 0

(has this Fourier series representation
for any choice of T0 > 0)

Periodic square wave

x tð ) ¼ 1, tj j < T1

0,T1 < tj j � T0
2

( Pþ1

k¼�1

2 sin kv0T1

k
d(vkv0)

v0T1

p
sin c

kv0T1

p

� �
¼ sin kv0T1

kp

and x(t þ T0) ¼ x(t)Pþ1

n¼�1
d(t � nT)

2p
T

Xþ1

k¼�1
k ¼ �1d v� 2pk

T

� �
ak ¼ 1

T
for all k

x(t) ¼ 1, tj j < T1

0, tj j > T1

�
2T1 sin c

vT1

p

� �
¼ 2 sinvT1

v
—

W
p

sin c
Wt
p

� �
¼ sinWt

pt
X vð Þ ¼ 1, vj j < W

0, vj j > W

�
—

d(t) 1 —

u(t)
1
jv

þ pd(v) —

d(t � t0) e�jvr0 —

e�aru(t), Re af g > 0
1

aþ jv
—

te�atu tð Þ, Refag > 0
1

(aþ jv)2
—

tn�1

n� 1ð Þe
�atu(t),

1
(aþ jv)n

—

Re af g > 0

Source: Oppenheim, A.V. et al., Signals and Systems, Prentice-Hall, Englewood Cliffs, NJ, 1983. With
permission.

f1(t) * f2(t) ¼
ð1

�1
f1(t)f2(t � t)dt:

1. Linearity (a and b are complex constants) Ffaf1(t)þ bf2(t)g ¼ aFf f1(t)g þ bFf f2(t)g
2. Time-shifting Ff f (t � t0)g ¼ e�jvt0Ff f (t)g
3. Frequency-shifting e jv0tF�1fFfj(v� v0)g
4. Time-domain convolution Ff f1(t) * f2(t)g ¼ Ff f1(t)g � Ff f2(t)g
5. Frequency-domain convolution Ff f1(t) � f2(t)g ¼ 1

2P Ff f1(t)g * Ff f2(t)g
6. Time-differentiation �jvF( jv) ¼ Ffd f (t)½ �=dtg
7. Time-integration F

Ðt
�1

f (t)dt

� �
¼ 1

jv F( jv)þ pF(0)d(v)
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The above properties are particularly useful in CT system analysis and design, especially when the system
characteristics are easily specified in the frequency domain, as in linear filtering. Note that properties 1, 6,
and 7 are useful for solving differential or integral equations. Property 4 (time-domain convolution)
provides the basis for many signal processing algorithms, since many systems can be specified directly by
their impulse or frequency response. Property 3 (frequency-shifting) is useful for analyzing the perform-
ance of communication systems where different modulation formats are commonly used to shift spectral
energy among different frequency bands.

TABLE 1.2 Properties of the CT Fourier Transform

Name If F f(t) ¼ F( jv), then:

Definition F( jv) ¼
ð1

�1
f (t)e�jvtdt

f (t) ¼ 1
2p

ð1
�1

F( jv)e jvtdv

Superposition F [af1(t) þ bf2(t)] ¼ aF1( jv) þ bF2( jv)

Simplification if:

(a) f(t) is even F( jv) ¼ 2
ð1
0

f (t) cosvt dt

(b) f(t) is odd F( jv) ¼ 2j
ð1
0

f (t) sinvt dt

Negative t F f(�t) ¼ F* ( jv)

Scaling:

(a) Time Ff (at) ¼ 1
jaj F

jv
a

� �
(b) Magnitude Faf(t) ¼ aF( jv)

Differentiation F dn

dtn
f (t)

� �
¼ ( jv)nF( jv)

Integration F
ðt

�1
f (x)dx

2
4

3
5 ¼ 1

jv
F( jv)þ pF(0)d(v)

Time shifting F f(t � a) ¼ F( jv)e�jva

Modulation F f(t)e jv0t ¼ F[ j(v � v0)]

F f (t) cosv0t ¼ 1
2
{F[ j(v� v0)]þ F[ j(vþ v0)]}

F f (t) sinv0t ¼ 1
2
j{F[ j(v� v0)]þ F[ j(vþ v0)]}

Time convolution F�1[F1( jv)F2( jv)] ¼
ð1

�1
f1(t)f2(t � t)dt

Frequency convolution F [ f1(t)f2(t)] ¼ 1
2p

ð1
�1

F1( jl)F2[ j(v� l)]dl

Source: Van Valkinburg, M.E., Network Analysis, 3rd ed., Prentice Hall,
Englewood Cliffs, NJ, 1974. With permission.
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1.2.2 Sampling Models for Continuous- and Discrete-Time Signals

The relationship between the CT and the DT domains is characterized by the operations of sampling and
reconstruction. If sa(t) denotes a signal s(t) that has been uniformly sampled every T seconds, then the
mathematical representation of sa(t) is given by

sa(t) ¼
Xn¼1

n¼�1
s(t)d(t � nT), (1:2a)

where d(t) is the CT impulse function defined previously. Since the only places where the product
s(t)d(t � nT) is not identically equal to zero are at the sampling instances, s(t) in Equation 1.2a can be
replaced with s(nT) without changing the overall meaning of the expression. Hence, an alternate
expression for sa(t) that is often useful in Fourier analysis is

sa(t) ¼
Xn¼1

n¼�1
s(nT)d(t � nT): (1:2b)

The CT sampling model sa(t) consists of a sequence of CT impulse functions uniformly spaced at
intervals of T seconds and weighted by the values of the signal s(t) at the sampling instants, as depicted in
Figure 1.1. Note that sa(t) is not defined at the sampling instants because the CT impulse function itself is
not defined at t ¼ 0. However, the values of s(t) at the sampling instants are imbedded as ‘‘area under the
curve’’ of sa(t), and as such represent a useful mathematical model of the sampling process. In the DT
domain, the sampling model is simply the sequence defined by taking the values of s(t) at the sampling
instants, i.e.,

s[n] ¼ s(t)jt¼nT : (1:3)

In contrast to sa(t), which is not defined at the sampling instants, s[n] is well defined at the sampling
instants, as illustrated in Figure 1.2. From this discussion it is now clear that sa(t) and s[n] are different
but equivalent models of the sampling process in the CT and DT domains, respectively. They are both
useful for signal analysis in their corresponding domains. It will be shown later that their equivalence is
established by the fact that they have equal spectra in the Fourier domain, and that the underlying CT
signal from which sa(t) and s[n] are derived can be recovered from either sampling representation
provided that a sufficiently high sampling rate is used in the sampling operation.

–2T –T 0 T 2T

s(–2T ) s(–T )

sa(t)

s(0) s(T ) s(2T )

FIGURE 1.1 CT model of a sampled CT signal.
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1.2.3 Fourier Spectrum of a Continuous Time Sampled Signal

The operation of uniformly sampling a CT signal s(t) at every T seconds is characterized by Equations
1.2a and b, where d(t) is the CT time impulse function defined earlier:

sa tð ) ¼
X1

n¼�1
sa(t)d(t � nT) ¼

X1
n¼�1

sa(nT)d(t � nT):

Since sa(t) is a CT signal it is appropriate to apply the CT Fourier transform to obtain an expression for
the spectrum of the sampled signal:

Ffsa(t)g ¼ F
X1

n¼�1
sa(nT)d(t � nT)

( )
¼

X1
n¼�1

sa(nT)[e
jvT ]

�n
: (1:4)

Since the expression on the right-hand side of Equation 1.4 is a function of e jvT it is customary to express
the transform as F(e jvT ) ¼ Ffsa(t)g. If v is replaced with a normalized frequency v0 ¼ v=T , so that
�p < v0 < p, then the right-hand side of Equation 1.4 becomes identical to the DTFT that is defined
directly for the sequence s[n] ¼ sa(nT).

1.2.4 Generalized Complex Fourier Transform

The CT Fourier transform characterized by Equation 1.1 can be generalized by considering the variable
jv to be the special case of u ¼ sþ jv with s ¼ 0, writing Equation 1.1 in terms of u, and interpreting u
as a complex frequency variable. The resulting complex Fourier transform pair is given by Equations 1.5a
and b (Bracewell 1986):

s(t) ¼ 1
2Pj

ðsþj1

s�j1
S(u)e jutdu (1:5a)

S(u) ¼
ð1

�1
s(t)e�jutdt: (1:5b)

The set of all values of u for which the integral of Equation 1.5b converges is called the region of
convergence, denoted ROC. Since the transform S(u) is defined only for values of u within the ROC, the
path of integration in Equation 1.5a must be defined so the entire path lies within the ROC. In some

s[n]

s(0)
s(–T )

–2 –1 0 1

s(2T )

s(T )s(–2T )

2

FIGURE 1.2 DT model of a sampled CT signal.
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literature this transform pair is called the bilateral Laplace transform because it is the same result
obtained by including both the negative and positive portions of the time axis in the classical Laplace
transform integral. The complex Fourier transform (bilateral Laplace transform) is not often used in
solving practical problems, but its significance lies in the fact that it is the most general form that
represents the place where Fourier and Laplace transform concepts merge together. Identifying this
connection reinforces the observation that Fourier and Laplace transform concepts share common
properties because they result from placing different constraints on the same parent form.

1.3 Fourier Series Representation of Continuous
Time Periodic Signals

The classical Fourier series representation of a periodic time domain signal s(t) involves an expansion of
s(t) into an infinite series of terms that consist of sinusoidal basis functions, each weighted by a complex
constant (Fourier coefficient) that provides the proper contribution of that frequency component to the
complete waveform. The conditions under which a periodic signal s(t) can be expanded in a Fourier
series are known as the Dirichlet conditions. They require that in each period s(t) has a finite number of
discontinuities, a finite number of maxima and minima, and satisfies the absolute convergence criterion
of Equation 1.6 (VanValkenburg 1974):

ðT=2
�T=2

s(t)j jdt < 1: (1:6)

It is assumed throughout the following discussion that the Dirichlet conditions are satisfied by all
functions that will be represented by a Fourier series.

1.3.1 Exponential Fourier Series

If s(t) is a CT periodic signal with period T the exponential Fourier series expansion of s(t) is given by

s(t) ¼
X1

n¼�1
ane

jnv0t , (1:7a)

where v0 ¼ 2p=T . The an’s are the complex Fourier coefficients given by

an ¼ 1
T

ðT2
�T
2

s(t)e�jnv0tdt �1 < n < 1: (1:7b)

For every value of t where s(t) is continuous the right-hand side of Equation 1.7a converges to s(t). At
values of t where s(t) has a finite jump discontinuity, the right-hand side of Equation 1.7a converges to
the average of s(t�) and s(tþ), where s(t�) ¼ lime!0 (t � e) and s(tþ) ¼ lime!0 (t þ e).

For example, the Fourier series expansion of the sawtooth waveform illustrated in Figure 1.3 is
characterized by T ¼ 2p,v0 ¼ 1, a0 ¼ 0, and an ¼ a�n ¼ A cos(np)=( jnp) for n ¼ 1, 2, . . . . The coef-
ficients of the exponential Fourier series given by Equation 1.5b can be interpreted as a spectral
representation of s(t), since the anth coefficient represents the contribution of the (nv0)th frequency
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component to the complete waveform. Since the an’s are complex valued, the Fourier domain (spectral)
representation has both magnitude and phase spectra. For example, the magnitudes of the an’s are
plotted in Figure 1.4 for the saw tooth waveform of Figure 1.3 (Example 1). The fact that the an’s
constitute a discrete set is consistent with the fact that a periodic signal has a spectrum that contains
only integer multiples of the fundamental frequency v0. The equation pair given by Equations 1.5a
and b can be interpreted as a transform pair that is similar to the CT Fourier transform for periodic
signals. This leads to the observation that the classical Fourier series can be interpreted as a special
transform that provides a one-to-one invertible mapping between the discrete-spectral domain and the
CT domain.

1.3.2 Trigonometric Fourier Series

Although the complex form of the Fourier series expansion is useful for complex periodic signals, the
Fourier series can bemore easily expressed in terms of real-valued sine and cosine functions for real-valued
periodic signals. In the following discussion it is assumed that the signal s(t) is real-valued. When s(t)
is periodic and real-valued it is convenient to replace the complex exponential Fourier series with
a trigonometric expansion that contains sin (v0t) and cos (v0t) terms with corresponding real-valued
coefficients (VanValkenburg 1974). The trigonometric form of the Fourier series for a real-valued signal
s(t) is given by

s tð ) ¼
X1
n¼0

bn cos (nv0)þ
X1
n¼1

cn sin (nv0), (1:8a)

where v0 ¼ 2p=T . In Equation 1.8a the bn’s and cn’s are real-valued Fourier coefficients determined by

–2π –π π 2π

A

–A

0

s(t)

FIGURE 1.3 Periodic CT signal used in Fourier series Example 1.

–4 –3 –2 –1 0

A/2π

A/π

|an|

1 2 3 4 n

FIGURE 1.4 Magnitude of the Fourier coefficients for Example 1.
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b0 ¼ 1
T

ðT2
�T
2

s(t)dt

bn ¼ 2
T

ðT2
�T
2

s(t) cos (nv0t)dt, n ¼ 1, 2, . . .

and cn ¼ 2
T

ðT2
�T
2

s(t) sin (nv0t)dt, n ¼ 1, 2, . . . :

(1:8b)

An arbitrary real-valued signal s(t) can be expressed as a sum of even and odd components, s(t) ¼ seven(t)þ
sodd(t), where seven(t) ¼ seven(�t) and sodd(t) ¼ �sodd(�t), and where seven(t) ¼ [s(t)þ s(�t)]=2 and
sodd(t) ¼ [s(t)� s(�t)]=2. For the trigonometric Fourier series, it can be shown that seven(t) is represented
by the (even) cosine terms in the infinite series, sodd(t) is represented by the (odd) sine terms, and b0 is
the DC level of the signal. Therefore, if it can be determined by inspection that a signal has a DC level, or if
it is even or odd, then the correct form of the trigonometric series can be chosen to simplify the
analysis. For example, it is easily seen that the signal shown in Figure 1.5 (Example 2) is an even
signal with a zero DC level, and therefore, can be accurately represented by the cosine series with
bn ¼ 2A sin (pn=2)=(pn=2), n ¼ 1, 2, . . ., as shown in Figure 1.6. In contrast note that the sawtooth
waveform used in the previous example is an odd signal with zero DC level, so that it can be completely
specified by the sine terms of the trigonometric series. This result can be demonstrated by pairing
each positive frequency component from the exponential series with its conjugate partner, i.e.,
cn ¼ sin (nv0t) ¼ ane jnvot þ a�ne�jnvot , whereby it is found that cn ¼ 2A cos (np)=(np) for this example.
In general it is found that an ¼ (bn � jcn)=2 for n ¼ 1, 2, . . . , a0 ¼ b0, and a�n ¼ an*. The trigonometric

s(t)
A

0 π 2π–π–2π

FIGURE 1.5 Periodic CT signal used in Fourier series Example 2.

bn

4A

4A/π

–3 –2 –1 0 1 2 3 n

FIGURE 1.6 Fourier coefficients for example of Figure 1.5.
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Fourier series is common in the signal processing literature because it replaces complex coefficients with real
ones and often results in a simpler and more intuitive interpretation of the results.

1.3.3 Convergence of the Fourier Series

The Fourier series representation of a periodic signal is an approximation that exhibits mean squared
convergence to the true signal. If s(t) is a periodic signal of period T, and s0(t) denotes the Fourier series
approximation of s(t), then s(t) and s0(t) are equal in the mean square sense if

mse ¼
ðT2
�T
2

s(t)� s0(t)j j2dt ¼ 0: (1:9)

Even with Equation 1.9 is satisfied, mean square error convergence does not guarantee that s(t) ¼ s0(t) at
every value of t. In particular, it is known that at values of t where s(t) is discontinuous the Fourier series
converges to the average of the limiting values to the left and right of the discontinuity. For example if t0
is a point of discontinuity, then s0(t0) ¼ [s(t�0 )þ s(tþ0 )]=2, where s(t

�
0 ) and s(tþ0 ) were defined previously

(note that at points of continuity, this condition is also satisfied by the very definition of continuity).
Since the Dirichlet conditions require that s(t) have at most a finite number of points of discontinuity in
one period, the set St such that s(t) 6¼ s0(t) within one period contains a finite number of points, and St is
a set of measure zero in the formal mathematical sense. Therefore s(t) and its Fourier series expansion
s0(t) are equal almost everywhere, and s(t) can be considered identical to s0(t) for analysis in most
practical engineering problems.

The condition of convergence almost everywhere is satisfied only in the limit as an infinite number of
terms are included in the Fourier series expansion. If the infinite series expansion of the Fourier series is
truncated to a finite number of terms, as it must always be in practical applications, then the approxi-
mation will exhibit an oscillatory behavior around the discontinuity, known as the Gibbs phenomenon
(VanValkenburg 1974). Let s0N(t) denote a truncated Fourier series approximation of s(t), where only
the terms in Equation 1.7a from n ¼ �N to n ¼ N are included if the complex Fourier series represen-
tation is used, or where only the terms in Equation 1.8a from n ¼ 0 to n ¼ N are included if the
trigonometric form of the Fourier series is used. It is well known that in the vicinity of a discontinuity at
t0 the Gibbs phenomenon causes s0N (t) to be a poor approximation to s(t). The peak magnitude of the
Gibbs oscillation is 13% of the size of the jump discontinuity s(t�0 )� s(tþ0 ) regardless of the number of
terms used in the approximation. As N increases, the region that contains the oscillation becomes
more concentrated in the neighborhood of the discontinuity, until, in the limit as N approaches infinity,
the Gibbs oscillation is squeezed into a single point of mismatch at t0. The Gibbs phenomenon is
illustrated in Figure 1.7 where an ideal lowpass frequency response is approximated by impulse response

0

Truncated
filter

|H
(e

jω
)|

ωb

ω

FIGURE 1.7 Gibbs phenomenon in a lowpass digital filter caused by truncating the impulse response to N terms.
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function that has been limited to having only N nonzero coefficients, and hence the Fourier series
expansion contains only a finite number of terms.

An important property of the Fourier series is that the exponential basis functions e jnvot (or sin (nv0t)
and cos (nv0t) for the trigonometric form) for n ¼ 0, �1, �2, . . . (or n ¼ 0, 1, 2, . . . for the trigonometric
form) constitute an ‘‘orthonormal set,’’ i.e., tnk ¼ 1 for n ¼ k, and tnk ¼ 0 for n 6¼ k, where

tnk ¼ 1
T

ðT2
�T
2

(e�jnv0t)(e jkv0t)dt:

As terms are added to the Fourier series expansion, the orthogonality of the basis functions guarantees
that the approximation error decreases in the mean square sense, i.e., that mseN decreases monotonically
as N is increased, where

mseN ¼
ðT2
�T
2

s(t)� s0N (t)
�� ��2dt:

Therefore, when applying Fourier series analysis including more terms always improves the accuracy of
the signal representation.

1.3.4 Fourier Transform of Periodic Continuous Time Signals

For a periodic signal s(t) the CT Fourier transform can then be applied to the Fourier series expansion of
s(t) to produce a mathematical expression for the ‘‘line spectrum’’ that is characteristic of periodic signals:

Ffs(t)g ¼ F
X1

n¼�1
ane

jnv0t

( )
¼ 2p

X1
n¼�1

and(v� v0): (1:10)

The spectrum is shown in Figure 1.8. Note the similarity between the spectral representation of Figure 1.8
and the plots of the Fourier coefficients in Figures 1.4 and 1.6, which were heuristically interpreted as a
line spectrum. Figures 1.4 and 1.6 are different from Figure 1.8 but they are equivalent representations of
the Fourier line spectrum that is characteristic of periodic signals.

1.4 Discrete-Time Fourier Transform

The DTFT is obtained directly in terms of the sequence samples s[n] by taking the relationship obtained
in Equation 1.4 to be the definition of the DTFT. Letting T ¼ 1 so that the sampling period is removed
from the equations and the frequency variable is replaced with a normalized frequency v0 ¼ vT , the
DTFT pair is defined by Equation 1.11. In order to simplify notation it is not customary to distinguish

2πc–2

–2 –1 0 1 2 n

2πc–1 2πc0 2πc1 2πc2

F {s(t)}

FIGURE 1.8 Spectrum of the Fourier representation of a periodic signal.
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between v and v0, but rather to rely on the context of the discussion to determine whether v refers to the
normalized (T ¼ 1) or the un-normalized (T 6¼ 1) frequency variable:

S(e jv
0
) ¼

X1
n¼�1

s[n]e�jv0n
(1:11a)

s[n] ¼ 1
2P

ðP
�P

S(e jv
0
)e jnv

0
dv0: (1:11b)

The spectrum S(e jv
0
) is periodic inv0 with period 2p. The fundamental period in the range�p < v0 � p,

referred to as the baseband, is the useful frequency range of the DT system because frequency components
in this range can be represented unambiguously in sampled form (without aliasing error). In much of the
signal processing literature the explicit primed notation is omitted from the frequency variable. However,
the explicit primed notation will be used throughout this section because there is a potential for confusion
when so many related Fourier concepts are discussed within the same framework.

By comparing Equations 1.4 and 1.11a, and noting that v0 ¼ vT , it is seen that

Ffsa(t)g ¼ DTFTfs[n]g,

where s[n] ¼ sa(t)jt¼nT . This demonstrates that the spectrum of sa(t) as calculated by the CT Fourier
transform is identical to the spectrum of s[n] as calculated by the DTFT. Therefore although sa(t) and
s[n] are quite different sampling models, they are equivalent in the sense that they have the same Fourier
domain representation. A list of common DTFT pairs is presented in Table 1.3. Just as the CT Fourier

TABLE 1.3 Some Basic DTFT Pairs

Sequence Fourier Transform

1. d[n] 1

2. d[n� n0] e�jvn0

3. 1(�1 < n < 1)
P1

k¼�1
2pd(vþ 2pk)

4. anu[n] ( aj j < 1)
1

1� ae�jv

5. u[n]
1

1� e�jv
þ

X1
k¼�1

pd vþ 2pkð Þ

6. (nþ 1)anu[n] ( aj j < 1)
1

(1� ae�jv)2

7.
rn sinvp(nþ 1)

sinvp
u[n] ( rj j < 1)

1
1� 2r cosvpe�jv þ r2e�j2v

8.
sinvcn
pn

X(ejv) ¼ 1, vj j < vc,
0, vc < vj j � p

�

9. x[n] ¼ 1, 0 � n � M
0, otherwise

�
sin v(M þ 1)=2½ �

sin (v=2)
¼ e�jvM=2

10. e jv0n
P1

k¼�1
2pd(v� v0 þ 2pk)

11. cos (v0nþ w) p
P1

k¼�1
e jwd(v� v0 þ 2pk)þ e jwd vþ v0 þ 2pkð Þ	 


Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1989. With permission.
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transform is useful in CT signal system analysis and design, the DTFT is equally useful for DT system
analysis and design.

In the same way that the CT Fourier transform was found to be a special case of the complex Fourier
transform (or bilateral Laplace transform), the DTFT is a special case of the bilateral z-transform with
z ¼ e jv

0t . The more general bilateral z-transform is given by

S(z) ¼
X1

n¼�1
s[n]z�n (1:12a)

s[n] ¼ 1
2pj

þ
C

S(z)zn�1dz, (1:12b)

where C is a counterclockwise contour of integration which is a closed path completely contained within
the region of convergence of S(z). Recall that the DTFT was obtained by taking the CT Fourier transform
of the CT sampling model sa(t). Similarly, the bilateral z-transform results by taking the bilateral Laplace
transform of sa(t). If the lower limit on the summation of Equation 1.12a is taken to be n ¼ 0, then
Equations 1.12a and b become the one-sided z-transform, which is the DT equivalent of the one-sided
Laplace transform for CT signals.

1.4.1 Properties of the Discrete-Time Fourier Transform

Since the DTFT is a close relative of the classical CT Fourier transform, it should come as no surprise that
many properties of the DTFT are similar to those of the CT Fourier transform. In fact, for many of the
properties presented earlier there is an analogous property for the DTFT. The following list parallels
the list that was presented earlier for the CT Fourier transform, to the extent that the same properties
exist (a more complete list of DTFT properties is given in Table 1.4). Note that Ff�g denotes the DTFT

TABLE 1.4 Properties of the DTFT

Sequence Fourier
x[n] X(e jv)
y[n] Y(e jv)

1. ax[n]þ by[n] aX(e jv)þ bY(e jv)

2. x[n� nd] (nd an integer) e�jvndX(e jv)

3. e jv0nx[n] X e j v�v0ð Þ	 

4. x[�n] X(e�jv) if x[n] real

X*(e jv)

5. nx[n] j
dX(e jv)
dv

6. x[n] ¼ y[n] X(e jv)Y(e jv)

7. x[n]y[n] 1
2p

Ðx
�x

X(e ju)Y e j(v�u)
	 


du

Parseval’s theorem

8.
P1

n¼�1
jx[n]j2 ¼ 1

2p

Ðx
�x

jX(e jv)j2dv

9.
P1

n¼�1
x[n]y*[n] ¼ 1

2p

Ðx
�x

X(e jv)Y*(e jv) dv

Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989. With permission.
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operation, F�1f�g denotes the inverse DTFT operation, and ‘‘*’’ denotes the DT convolution operation
defined as

f1[n] * f2[n] ¼
Xþ1

k¼�1
f1[n]f2[n� k]:

1. Linearity (a and b are complex constants) DTFTfaf1[n]þ bf2[n]g ¼ a � DTFTf f1[n]g þ b � DTFTf f2[n]g
2. Index-shifting DTFTf f [n� n0]g ¼ e�jvn0DTFTf f [n]g
3. Frequency-shifting e jv0nf [n] ¼ DTFT�1fF( j(v� v0)g
4. Time-domain convolution DTFTf f1[n] * f2[n]g ¼ Ff f1[n]g � Ff f2[n]g
5. Frequency-domain convolution DTFTf f1[n] � f2[n]g ¼ 1

2PDTFTf f1[n]g *DTFTf f2[n]g
6. Frequency-differentiation nf [n] ¼ DTFT�1fdF( jv)=dvg

Note that the time-differentiation and time-integration properties of the CT Fourier transform do not
have analogous counterparts in the DTFT because time domain differentiation and integration are not
defined for DT signals. When working with DT systems practitioners must often manipulate difference
equations in the frequency domain. For this purpose the properties of linearity and index-shifting are
very important. As with the CT Fourier transform time-domain convolution is also important for DT
systems because it allows engineers to work with the frequency response of the system in order to achieve
proper shaping of the input spectrum, or to achieve frequency selective filtering for noise reduction or
signal detection.

1.4.2 Relationship between the CT and DT Spectra

Since DT signals often originate by sampling a CT signal, it is important to develop the relationship
between the original spectrum of the CT signal and the spectrum of the DT signal that results. First, the
CT Fourier transform is applied to the CT sampling model, and the properties are used to produce the
following result:

Ffsa(t)g ¼ F sa(t)
X1

n¼�1
d(t � nT)

( )
¼ 1

2p
Sa( jv)F

X1
n¼�1

d(t � nT)

( )
: (1:13)

Since the sampling function (summation of shifted impulses) on the right-hand side of Equation 1.13 is
periodic with period T it can be replaced with a CT Fourier series expansion and the frequency-domain
convolution property of the CT Fourier transform can be applied to yield two equivalent expressions for
the DT spectrum:

S(e jvT ) ¼ 1
T

X1
n¼�1

Sa( j[v� nvs]) or S(e jv
0
) ¼ 1

T

X1
n¼�1

Sa( j[v
0 � n2p=T]): (1:14)

In Equation 1.14 vs ¼ (2p=T) is the sampling frequency and v0 ¼ vT is the normalized DT frequency
axis expressed in radians. Note that S(e jvT ) ¼ S(e jv

0
) consists of an infinite number of replicas of the CT

spectrum S(jv), positioned at intervals of (2p=T) on the v-axis (or at intervals of 2p on the v0-axis),
as illustrated in Figure 1.9. Note that if S(jv) is band-limited with a bandwidth vc, and if T is chosen
sufficiently small so that vs > 2vc, then the DT spectrum is a copy of S(jv) (scaled by 1/T) in the
baseband. The limiting case of vs ¼ 2vc is called the Nyquist sampling frequency. Whenever a CT signal
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is sampled at or above the Nyquist rate, no aliasing distortion occurs (i.e., the baseband spectrum does
not overlap with the higher order replicas) and the CT signal can be exactly recovered from its samples
by extracting the baseband spectrum of S(e jv

0
) with an ideal lowpass filter that recovers the original

CT spectrum by removing all spectral replicas outside the baseband and scaling the baseband by a
factor of T.

1.5 Discrete Fourier Transform

To obtain the DFT the continuous-frequency domain of the DTFT is sampled at N points uniformly
spaced around the unit circle in the z-plane, i.e., at the points vk ¼ (2pk=N), k ¼ 0, 1, . . . ,N � 1. The
result is the DFT transform pair defined by Equations 1.15a and b:

S[k] ¼
XN�1

n¼0

s[n]e�j
2pkn
N , k ¼ 0, 1, . . . ,N � 1 (1:15a)

s[k] ¼ 1
N

XN�1

k¼0

S[k]e j
2pkn
N , n ¼ 0, 1, . . . ,N � 1, (1:15b)

The signal s[n] is either a finite length sequence of length N, or it is a periodic sequence with period N.
Regardless of whether s[n] is a finite length or periodic sequence, the DFT treats the N samples of s[n] as
though they are one period of a periodic sequence. This is a peculiar feature of the DFT, and one that
must be handled properly in signal processing to prevent the introduction of artifacts.

1.5.1 Properties of the DFT

Important properties of the DFT are summarized in Table 1.5. The notation [k]N denotes kmoduloN, and
RN [n] is a rectangular window such that RN [n] ¼ 1 for n ¼ 0, . . . ,N � 1, and RN [n] ¼ 0 for n < 0 and
n � N . The transform relationship given by Equations 1.15a and 1.15b is also valid when s[n] and S[k] are
periodic sequences, each of period N. In this case n and k are permitted to range over the complete set
of real integers, and S[k] is referred to as the discrete Fourier series (DFS). In some cases the DFS is
developed as a distinct transform pair in its own right (Jenkins and Desai 1986). Whether or not the DFT
and the DFS are considered identical or distinct is not important in this discussion. The important point to
be emphasized here is that the DFT treats s[n] as though it were a single period of a periodic sequence,
and all signal processing done with the DFT will inherit the consequences of this assumed periodicity.

Most of the properties listed in Table 1.5 for the DFT are similar to those of the z-transform and the
DTFT, although there are important differences. For example, Property 5 (time-shifting property), holds
for circular shifts of the finite length sequence s[n], which is consistent with the notion that the DFT
treats s[n] as one period of a periodic sequence. Also, the multiplication of two DFTs results in the
circular convolution of the corresponding DT sequences, as specified by Property 7. This later property is
quite different from the linear convolution property of the DTFT. Circular convolution is simply a linear

–2π –ώc ώc ώ2π0

S(e jώ )
ώ = ωT

T

Baseband spectrum
Sa(jω)

FIGURE 1.9 Relationship between the CT and DT spectra.
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convolution of the periodic extensions of the finite sequences being convolved, where each of the finite
sequences of length N defines the structure of one period of the periodic extensions.

For example, suppose it is desired to implement a digital filter with finite impulse response (FIR) h[n].
The output in response to s[n] is

y[n] ¼
XN�1

k¼0

h[k]s[n� k] (1:16)

which is obtained by transforming h[n] and s[n] into H[k] and S[k] using the DFT, multiplying the
transforms point-wise to obtain Y[k] ¼ H[k]S[k], and then using the inverse DFT to obtain
y[n] ¼ DFT�1fY[k]g. If s[n] is a finite sequence of length M, then the results of the circular convolution
implemented by the DFT will correspond to the desired linear convolution if and only if the block length
of the DFT, NDFT, is chosen sufficiently large so that NDFT > N þ (M � 1) and both h[n] and s[n] are
padded with zeros to form blocks of length NDFT.

1.5.2 Fast Fourier Transform Algorithms

The DFT is typically implemented in practice with one of the common forms of the FFT algorithm. The
FFT is not a Fourier transform in its own right, but rather it is simply a computationally efficient

TABLE 1.5 Properties of the DFT

Finite-Length Sequence (Length N) N-Point DFT (Length N)

1. x[n] X[k]

2. x1[n], x2[n] X1[k],X2[k]

3. ax1[n]þ bx2[n] aX1[k]þ bX2[k]

4. X[n] Nx[(�k)N ]

5. x[(n�m)N ] Wkm
N X[k]

6. W�‘n
N x[n] X[(k� ‘)N ]

7.
PN�1

m¼0
x1(m)x2[(n�m)N ] X1[k]X2[k]

8. x1[n]x2[n] 1
N

PN�1

‘¼0
X1(‘)X2[(k� ‘)N ]

9. x*[n] X*[(�k)N ]

10. x*[(�n)N ] X*[k]

11. Refx[n]g Xep[k] ¼ 1
2 fX[(k)N ]þ X*[(�k)N ]g

12. jImfx[n]g Xop[k] ¼ 1
2 fX[(k)N ]� X*[(�k)N ]g

13. xep[n] ¼ 1
2 fx[n]þ x*[(�n)N ]g RefX[k]g

14. xop[n] ¼ 1
2 fx[n]� x*[(�n)N ]g jImfX[k]g

Properties 15–17 apply only when x[n] is real

15. Symmetry properties

X[k] ¼ X*[(�k)N ]

RefX[k]g ¼ RefX[(�k)N ]g
ImfX[k]g ¼ �ImfX[(�k)N ]g

jX[k]j ¼ jX[(�k)N ]j
\X[k]g ¼ �\fX[(�k)N ]g:

8>>>>>><
>>>>>>:

16. xep[n] ¼ 1
2 fx[n]þ x[(�n)N ]g RefX[k]g

17. xop[n] ¼ 1
2 fx[n]� x[(�n)N ]g jImfX[k]g

Source: Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989. With permission.
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algorithm that reduces the complexity of the computing DFT from Order {N2} to Order {N log2 N}.
When N is large, the computational savings provided by the FFT algorithm is so great that the FFT makes
real-time DFT analysis practical in many situations which would be entirely impractical without it. There
are numerous FFT algorithms, including decimation-in-time (D-I-T) algorithms, decimation-in-
frequency (D-I-F) algorithms, bit-reversed algorithms, normally ordered algorithms, mixed-radix algo-
rithms (for block lengths that are not powers-of-2 [PO2]), prime factor algorithms, and Winograd
algorithms [Blahut 1985]. The D-I-T and the D-I-F radix-2 FFT algorithms are the most widely used in
practice. Detailed discussions of various FFT algorithms can be found in Brigham (1974) and Oppenheim
and Schafer (1975).

The FFT is easily understood by examining the simple example of N ¼ 8. There are numerous ways to
develop the FFT algorithm, all of which deal with a nested decomposition of the summation operator of
Equation 1.20a. The development presented here is called an algebraic development of the FFT because it
follows straightforward algebraic manipulation. First, each of the summation indices (k, n) in Equation
1.15a is expressed as explicit binary integers, k ¼ 4k2 þ 2k1 þ k0 and n ¼ 4n2 þ 2n1 þ n0, where ki and
ni are bits that take on the values of either 0 or 1. If these expressions are substituted into Equation 1.20a,
all terms in the exponent that contain the factor N ¼ 8 can be deleted because e�j2pl ¼ 1 for any integer l.
Upon deleting such terms and re-grouping the remaining terms, the product nk can be expressed in
either of two ways:

nk ¼ (4k0)n2 þ (4k1 þ 2k0)n1 þ (4k2 þ 2k1 þ k0)n0 (1:17a)

nk ¼ (4n0)k2 þ (4n1 þ 2n0)k1 þ (4n2 þ 2n1 þ n0)k0: (1:17b)

Substituting Equation 1.17a into Equation 1.15a leads to the D-I-T FFT, whereas substituting Equation
1.25b leads to the D-I-F FFT. Only the D-I-T FFT is discussed further here. The D-I-F and various related
forms are treated in detail in Oppenheim and Schafer (1975).

The D-I-T FFT decomposes into log2 N stages of computation, plus a stage of bit reversal,

x1[k0, n1, n0] ¼
Xn2¼1

n2¼0

s[n2, n1, n0]W
4k0n2
8 (stage 1) (1:18a)

x2[k0, k1, n0] ¼
Xn1¼1

n1¼0

x1[k0, n1, n0]W
(4k1þ2k0)n1
8 (stage 2) (1:18b)

x3[k0, k1, k2] ¼
Xn0¼1

n0¼0

x2[k0, k1, n0]W
(4k2þ2k1þk0)n0
8 (stage 3) (1:18c)

s(k2, k1, k0) ¼ x3(k0, k1, k2) (bit reversal): (1:18d)

In each summation above, one of the ni’s is summed out of the expression, while at the same time a new
ki is introduced. The notation is chosen to reflect this. For example, in stage 3, n0 is summed out, k2 is
introduced as a new variable, and n0 is replaced by k2 in the result. The last operation, called bit reversal,
is necessary to correctly locate the frequency samples X[k] in the memory. It is easy to show that if the
samples are paired correctly, an in-place computation can be done by a sequence of butterfly operations.
The term in-place means that each time a butterfly is to be computed, a pair of data samples is read from
memory, and the new data pair produced by the butterfly calculation is written back into the memory
locations where the original pair was stored, thereby overwriting the original data. An in-place algorithm
is designed so that each data pair is needed for only one butterfly, and so the new results can be
immediately stored on top of the old in order to minimize memory requirements.
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For example, in stage 3 the k ¼ 6 and k ¼ 7 samples should be paired, yielding a ‘‘butterfly’’
computation that requires one complex multiply, one complex add, and one subtract:

x3(1, 1, 0) ¼ x2(1, 1, 0)þW3
8x2(1, 1, 1) (1:19a)

x3(1, 1, 1) ¼ x2(1, 1, 0)�W3
8x2(1, 1, 1) (1:19b)

Samples x2(6) and x2(7) are read from the memory, the butterfly is executed on the pair, and x3(6)
and x3(7) are written back to the memory, overwriting the original values of x2(6) and x2(7). In
general, there are N/2 butterflies per stage and log2 N stages, so the total number of butterflies is
(N=2) log2 N . Since there is at most one complex multiplication per butterfly, the total number of
multiplications is bounded by (N=2) log2 N (some of the multiplies involve factors of unity and should
not be counted).

Figure 1.10 shows the signal flow graph of the D-I-T FFT for N ¼ 8. This algorithm is referred to as an
in-place FFT with normally ordered input samples and bit-reversed outputs. Minor variations that include
bit-reversed inputs and normally ordered outputs, and non-in-place algorithms with normally ordered
inputs and outputs are possible. Also, whenN is not a PO2, a mixed-radix algorithm can be used to reduce
computation. The mixed-radix FFT is most efficient when N is highly composite, i.e., N ¼ pr11 p

r2
2 � � � prLL ,

where the pi’s are small prime numbers and the ri’s are positive integers. It can be shown that the order
of complexity of the mixed-radix FFT is Order fN[r1(p1 � 1)þ r2(p2 � 1)þ � � � þ rL(pL � 1)]g. Because
of the lack of uniformity of structure among stages, this algorithm has not received much attention
for hardware implementation. However, the mixed-radix FFT is often used in software applications,
especially for processing data recorded in laboratory experiments where it is not convenient to restrict
the block lengths to be PO2. Many advanced FFT algorithms, such as higher radix forms, the mixed-radix
form, prime-factor algorithm, and the Winograd algorithm are described in Blahut (1985). Algorithms
specialized for real-valued data reduce the computational cost by a factor of 2.
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FIGURE 1.10 D-I-T FFT algorithm with normally ordered inputs and bit-reversed outputs.
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1.6 Family Tree of Fourier Transforms

Figure 1.11 illustrates the functional relationships among the various forms of CT Fourier transform
and DTFT that have been discussed in the previous sections. The family of CT Fourier transforms is
shown on the left side of Figure 1.11, whereas the right side of the figure shows the hierarchy of DTFTs.
Note that the most general, and consequently the most powerful, Fourier transform is the classical
complex Fourier transform (or equivalently, the bilateral Laplace transform). Note also that the complex
Fourier transform is identical to the bilateral Laplace transform, and it is at this level that the classical
Laplace transform techniques and Fourier transform techniques become identical. Each special member
of the CT Fourier family is obtained by impressing certain constraints on the general form, thereby
producing special transforms that are simpler and more useful in practical problems where the con-
straints are met. In Figure 1.11 it is seen that the bilateral z-transform is analogous to the complex Fourier
transform, the unilateral z-transform is analogous to the classical (one-sided) Laplace transform, the
DTFT is analogous to the classical Fourier (CT) transform, and the DFT is analogous to the classical (CT)
Fourier series.

1.6.1 Walsh–Hadamard Transform

The Walsh–Hadamard transform (WHT) is a computationally attractive orthogonal transform that is
structurally related to the DFT, and which can be implemented in practical applications without

Sampling

Reconstruction

CT domain

Complex Fourier transform
bilateral Laplace transform

u = σ + jω (complex frequency)

DT domain

Bilateral z-transform
z = euT

DTFT

DFTFourier series

CT
Fourier transform

Signal
with

period T

Signal
with

period N

z = e jωu = jω

FIGURE 1.11 Functional relationships among various forms of the Fourier transform.
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multiplication, and with a computational complexity for addition that is on the same order of complexity
as that of an FFT. The tmkth element of the WHT matrix TWHT is given by

tmk ¼ 1ffiffiffiffi
N

p
Yp�1

‘¼0

(�1)bl(m)bp�1�‘(k), m and k ¼ 0, . . . ,N � 1,

where b‘(m) is the ‘th order bit in the binary representation of m, and N ¼ 2p. The WHT is defined only
when N is a PO2. Note that the columns of TWHT form a set of orthogonal basis vectors whose elements
are all 1’s or �1’s, so that the calculation of the matrix-vector product TWHTX can be accomplished with
only additions and subtractions. It is well known that TWHT of dimension (N � N), for N a PO2, can be
computed recursively according to

Tk ¼
Tk=2 Tk=2

Tk=2 �Tk=2

" #
for K ¼ 4, . . . ,N (even) and T2 ¼

1 1

1 �1

� �
:

The above relationship provides a convenient way of quickly constructing the Walsh–Hadamard matrix
for any arbitrary (even) size N.

Due to structural similarities between the DFT and the WHT matrices, the WHT transform can be
implemented using a modified FFT algorithm. The core of any FFT program is a butterfly calculation that
is characterized by a pair of coupled equations that have the following form:

Xiþ1(‘,m) ¼ Xi(‘,m)þ e ju(‘,m,k,s)Xi(k, s)

Xiþ1(‘,m) ¼ Xi(‘,m)� e ju(‘,m,k,s)Xi(k, s):

If the exponential factor in the butterfly calculation is replaced by a ‘‘1,’’ so the ‘‘modified butterfly’’
calculation becomes

Xiþ1(‘,m) ¼ Xi(‘,m)þ Xi(k, s)

Xiþ1(‘,m) ¼ Xi(‘,m)� Xi(k, s),

the modified FFT program will in fact perform a WHT on the input vector. This property not only
provides a quick and convenient way to implement the WHT, but is also establishes clearly that in
addition to the WHT requiring no multiplication, the number of additions required has order of
complexity of (N=2) log2 N , i.e., the same as the that of the FFT.

The WHT is used in many applications that require signals to be decomposed in real time into a set of
orthogonal components. A typical application in which the WHT has been used in this manner is in code
division multiple access (CDMA) wireless communication systems. A CDMA system requires spreading
of each user’s signal spectrum using a PN sequence. In addition to the PN spreading codes, a set of
length-64 mutually orthogonal codes, called the Walsh codes, are used to ensure orthogonality among the
signals for users received from the same base station. The length N ¼ 64 Walsh codes can be thought of
as the orthogonal column vectors from a (64� 64) Walsh–Hadamard matrix, and the process of
demodulation in the receiver can be interpreted as performing a WHT on the complex input signal
containing all the modulated user’s signals so they can be separated for accurate detection.

1.7 Selected Applications of Fourier Methods

1.7.1 DFT (FFT) Spectral Analysis

An FFT program is often used to perform spectral analysis on signals that are sampled and recorded as
part of laboratory experiments, or in certain types of data acquisition systems. There are several issues to

1-20 Digital Signal Processing Fundamentals



be addressed when spectral analysis is performed on (sampled) analog waveforms that are observed over
a finite interval of time.

1.7.1.1 Windowing

The FFT treats the block of data as though it were one period of a periodic sequence. If the underlying
waveform is not periodic, then harmonic distortion may occur because the periodic waveform created by
the FFT may have sharp discontinuities at the boundaries of the blocks. This effect is minimized
by removing the mean of the data (it can always be reinserted) and by windowing the data so the ends
of the block are smoothly tapered to zero. A good rule of thumb is to taper 10% of the data on each end of
the block using either a cosine taper or one of the other common windows (e.g., Hamming, Von Hann,
Kaiser windows, etc.). An alternate interpretation of this phenomenon is that the finite length observa-
tion has already windowed the true waveform with a rectangular window that has large spectral sidelobes.
Hence, applying an additional window results in a more desirable window that minimizes frequency-
domain distortion.

1.7.1.2 Zero-Padding

An improved spectral analysis is achieved if the block length of the FFT is increased. This can be done by
(1) taking more samples within the observation interval, (2) increasing the length of the observation
interval, or (3) augmenting the original data set with zeros. First, it must be understood that the finite
observation interval results in a fundamental limit on the spectral resolution, even before the signals are
sampled. The CT rectangular window has a (sin x)=x spectrum, which is convolved with the true spectrum
of the analog signal. Therefore, the frequency resolution is limited by the width of the mainlobe in the
(sin x)=x spectrum, which is inversely proportional to the length of the observation interval. Sampling
causes a certain degree of aliasing, although this effect can be minimized by using a sufficiently high
sampling rate. Therefore, lengthening the observation interval increases the fundamental resolution limit,
while taking more samples within the observation interval minimizes aliasing distortion and provides a
better definition (more sample points) on the underlying spectrum.

Padding the data with zeros and computing a longer FFT does give more frequency domain points
(improved spectral resolution), but it does not improve the fundamental limit, nor does it alter the effects
of aliasing error. The resolution limits are established by the observation interval and the sampling rate.
No amount of zero padding can improve these basic limits. However, zero padding is a useful tool for
providing more spectral definition, i.e., it enables one to get a better look at the (distorted) spectrum that
results once the observation and sampling effects have occurred.

1.7.1.3 Leakage and the Picket-Fence Effect

An FFT with block length N can accurately resolve only frequencies wk ¼ (2p=N)k, k ¼ 0, . . . ,N � 1
that are integer multiples of the fundamental w1 ¼ (2p=N). An analog waveform that is sampled and
subjected to spectral analysis may have frequency components between the harmonics. For example, a
component at frequency wkþ1=2 ¼ (2p=N)(kþ 1=2) will appear scattered throughout the spectrum. The
effect is illustrated in Figure 1.12 for a sinusoid that is observed through a rectangular window and then
sampled a N points. The ‘‘picket-fence effect’’ means that not all frequencies can be seen by the FFT.
Harmonic components are seen accurately, but other components ‘‘slip through the picket fence’’ while
their energy is ‘‘leaked’’ into the harmonics. These effects produce artifacts in the spectral domain that
must be carefully monitored to assure that an accurate spectrum is obtained from FFT processing.

1.7.2 FIR Digital Filter Design

A common method for designing FIR digital filters is by use of windowing and FFT analysis. In general,
window designs can be carried out with the aid of a hand calculator and a table of well-known window
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functions. Let h[n] be the impulse response that corresponds to some desired frequency response, H(e jv).
If H(e jv) has sharp discontinuities then h[n] will represent an infinite impulse response function. The
objective is to time-limit h[n] in such a way as to not distort H(e jv) any more than necessary. If h[n] is
simply truncated, a ripple (Gibbs phenomenon) occurs around the discontinuities in the spectrum,
resulting in a distorted filter, as was earlier illustrated in Figure 1.7.

Suppose that w[n] is a window function that time-limits h[n] to create an FIR approximation, h0[n];
i.e., h0[n] ¼ w[n]h[n]. Then if W(e jv) is the DTFT of w[n], h0[n] will have a Fourier transform given
by H0(e jv) ¼ W(e jv) *H(e jv), where * denotes convolution. From this it can be seen that the ripples in
H0(e jv) result from the sidelobes of W(e jv). Ideally, W(e jv) should be similar to an impulse so
that H0(e jv) is approximately equal to H(e jv).

1.7.2.1 Special Case

Let h[n] ¼ cos nv0, for all n. Then h[n] ¼ w[n] cos nv0, and

H0(e jv) ¼ (1=2)W(e j(vþ~v))þ (1=2)W(e j(v�~v)) (1:20)

as illustrated in Figure 1.13. For this simple class, the center frequency of the passband is controlled by
v0, and both the shape of the passband and the sidelobe structure are strictly determined by the choice of
the window. While this simple class of FIRs does not allow for very flexible designs, it is a simple
technique for determining quite useful lowpass, bandpass, and highpass FIR filters.

Underlying spectrum

(a)

(b)

ωk–1 ωk ωk+1

ωk–1 ωk ωk+1/2
ωk+1

ω

ω

Underlying spectrum

FIGURE 1.12 Illustration of leakage and the picket fence effects. (a) FFT of a windowed sinusoid with frequency
vk ¼ 2pk=N and (b) leakage for a nonharmonic sinusoidal component.
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FIGURE 1.13 Design of a simple bandpass FIR filter by windowing.
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1.7.2.2 General Case

Specify an ideal frequency response, H(e jv), and choose samples at selected values of w. Use a long
inverse FFT of length N 0 to find h0[n], an approximation to h[n], where if N is the desired length of the
final filter, then N 0 	 N . Then use a carefully selected window to truncate h0[n] to obtain h[n] by letting
h[n] ¼ w[n]h0[n]. Finally, use an FFT of length N 0 to find H0(e jv). If H0(e jv) is a satisfactory approxi-
mation to H(e jv), the design is finished. If not, choose a new H(e jv), or a new w[n] and repeat.
Throughout the design procedure it is important to choose N 0 ¼ kN , with k an integer that is typically
in the range [4, . . . , 10]. Since this design technique is a trial-and-error procedure, the quality of the result
depends to some degree on the skill and experience of the designer.

1.7.3 Fourier Block Processing in Real-Time Filtering Applications

In some practical applications, either the value ofM is too large for the memory available, or s[n] may not
actually be finite in length, but rather a continual stream of data samples that must be processed by a filter
at real time rates. Two well-known algorithms are available that partition s[n] into smaller blocks and
process the individual blocks with a smaller-length DFT: (1) overlap-save partitioning and (2) overlap-
add partitioning. Each of these algorithms is summarized below (Burrus and Parks 1985, Jenkins 2002).

1.7.3.1 Overlap-Save Processing

In this algorithm, NDFT is chosen to be some convenient value with NDFT > N . The signal, s[n], is
partitioned into blocks which are of length NDFT and which overlap by N � 1 data points. Hence, the kth
block is sk[n] ¼ s[nþ k(NDFT � N þ 1)], n ¼ 0, . . . ,NDFT � 1. The filter impulse response h[n] is aug-
mented with NDFT � N zeros to produce

hpad[n] ¼ h[n], n ¼ 0, . . . ,N � 1

0, n ¼ N , . . . ,NDFT � 1

� �
: (1:21)

The DFT is then used to obtain Ypad[n] ¼ DFTfhpad[n]g � DFTfsk[n]g, and ypad[n] ¼ IDFTfYpad[n]g.
From the ypad[n] array the values that correctly correspond to the linear convolution are saved; values
that are erroneous due to wraparound error caused by the circular convolution of the DFT are discarded.
The kth block of the filtered output is obtained by

yk[n] ¼ ypad[n], n ¼ 0, . . . ,N � 1

0, n ¼ N , . . . ,NDFT � 1

� �
: (1:22)

For the overlap-save algorithm, each time a block is processed there are NDFT � N þ 1 points saved
and N � 1 points discarded. Each block moves forward by NDFT � N þ 1 data points and overlaps the
previous block by N � 1 points.

1.7.3.2 Overlap-Add Processing

This algorithm is similar to the previous one except that the kth input block is defined to be

sk[n] ¼ s[n], n ¼ 0, . . . , L� 1

0, n ¼ L, . . . ,NDFT � 1

� �
, (1:23)

where L ¼ NDFT � N þ 1. The filter function hpad[n] is augmented with zeros, as before, to create hpad[n],
and the DFT processing is executed as before. In each block ypad[n] that is obtained at the output, the first
N � 1 points are erroneous, the last N � 1 points are erroneous, and the middle NDFT � 2(N � 1) points
correctly correspond to the linear convolution. However, if the last N � 1 points from block k are
overlapped with the firstN � 1 points from block kþ 1 and added pairwise, correct results corresponding

Fourier Methods for Signal Analysis and Processing 1-23



to linear convolution are obtained from these positions, too. Hence, after this addition the number of
correct points produced per block is NDFT � N þ 1, which is the same as that for the overlap-save
algorithm. The overlap-add algorithm requires approximately the same amount of computation as
the overlap-save algorithm, although the addition of the overlapping portions of blocks is extra.
This feature, together with the extra delay of waiting for the next block to be finished before the previous
one is complete, has resulted in more popularity for the overlap-save algorithm in practical applications.

Block filtering algorithms make it possible to efficiently filter continual data streams in real time
because the FFT algorithm can be used to implement the DFT, thereby minimizing the total computation
time and permits reasonably high overall data rates. However, block filtering generates data in bursts, i.e.,
there is a delay during which no filtered data appears, and then suddenly an entire block is generated.
In real-time systems, buffering must be used. The block algorithms are particularly effective for filtering
very long sequences of data that are pre-recorded on magnetic tape or disk.

1.7.4 Fourier Domain Adaptive Filtering

A transform domain adaptive filter (TDAF) is a generalization of the well-known least mean square (LMS)
adaptive filter in which the input signal is passed through a linear transformation in order to decompose it
into a set of orthogonal components and to optimize the adaptive step size for each component and thereby
maximize the learning rate of the adaptive filter (Jenkins et al. 1996). The LMS algorithm is an approximation
to the steepest descent optimization strategy. For a length N FIR filter with the input expressed as a column
vector x(n) ¼ [x(n), x(n� 1), . . . , x(n� N þ 1)]T, the filter output y(n) is expressed as

y(n) ¼ wT(n)x(n),

where
w(n) ¼ [w0(n),w1(n), . . . ,wN�1(n)]

T is the time varying vector of filter coefficients (tap weights) and
superscript ‘‘T’’ denotes the vector transpose

The output error is formed as the difference between the filter output and a training signal d(n), i.e.
e(n) ¼ d(n)� y(n). Strategies for obtaining an appropriate d(n) vary from one application to another.
In many cases the availability of a suitable training signal determines whether an adaptive filtering
solution will be successful in a particular application. The ideal cost function is defined by the mean
squared error (MSE) criterion, Efje(n)j2g. The LMS algorithm is derived by approximating the ideal cost
function by the instantaneous squared error, resulting in JLMS(n) ¼ je(n)j2. While the LMS seems to
make a rather crude approximation at the very beginning, the approximation results in an unbiased
estimator. In many applications the LMS algorithm is quite robust and is able to converge rapidly to a
small neighborhood of the Wiener solution.

When a steepest descent optimization strategy is combined with a gradient approximation formed
using the LMS cost function JLMS(n) ¼ je(n)j2, the conventional LMS adaptive algorithm results

w(nþ 1) ¼ w(n)þ me(n)x(n),

e(n) ¼ d(n)� y(n),
(1:24)

and

y(n) ¼ x(n)Tw(n):

The convergence behavior of the LMS algorithm, as applied to a direct form FIR filter structure, is
controlled by the autocorrelation matrix Rx of the input process, where

Rx 
 E[x*(n)xT(n)]: (1:25)
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The autocorrelation matrix Rx is usually positive definite, which is one of the conditions necessary
to guarantee convergence to the Wiener solution. Another necessary condition for convergence is
0 < m < 1=lmax, where lmax is the largest eigenvalue of Rx . It is well established that the convergence of
this algorithm is directly related to the eigenvalue spread of Rx. The eigenvalue spread is measured by
the condition number of Rx , defined as k: ¼ lmax=lmin, where lmin is the minimum eigenvalue of Rx .
Ideal conditioning occurs when k: ¼ 1 (white noise); as this ratio increases, slower convergence results.
The eigenvalue spread (condition number) depends on the spectral distribution of the input signal, and
is related to the maximum and minimum values of the input power spectrum. From this line of
reasoning it becomes clear that white noise is the ideal input signal for rapidly training an LMS
adaptive filter. The adaptive process is slower and requires more computation for input signals that are
colored.

The TDAF structure is shown in Figure 1.14. The input x(n) and the desired signal d(n) are assumed to
be zero mean and jointly stationary. The input to the filter is a vector of N current and past input samples,
defined in the previous section and denoted as x(n). This vector is processed by a unitary transform, such
as the DFT. Once the filter order N is fixed, the transform is simply an N � N matrix T, which is in
general complex, with orthonormal rows. The transformed outputs form a vector v(n) which is given by

z(n) ¼ [v0(n), v1(n), . . . , vN�1(n)]
T ¼ Tx(n):

With an adaptive tap vector defined as w(n) ¼ [w0(n),w1(n), . . . ,wN�1(n)]
T, the filter output is given by

y(n) ¼ wT(n)v(n) ¼ WT(n)Tx(n): (1:26)

The instantaneous output error is then formed and used to update the adaptive filter taps using a
modified form of the LMS algorithm (Jenkins et al. 1996):

W(nþ 1) ¼ W(n)þ me(n)L�2v*(n)

L2 
 diag s2
1,s

2
2, . . . ,s

2
N

	 

,

(1:27)

where s2
i ¼ E[jvi(n)j2].

The power estimates s2
i can be developed on-line by computing an exponentially weighted average of

past samples according to

s2
i (n) ¼ as2

i (n� 1)þ vi(n)j j2, 0 < a < 1: (1:28)

x(n)

x(n – 1)

x(n – N + 1)

N × N
linear

transform

z0

z1

zN–1
WN – 1

W1

y(n)

d(n)

+
+

–

e(n)

W0

Σ

FIGURE 1.14 TDAF structure. (From Jenkins, W. K., Marshall, D. F., Kreidle, J. R., and Murphy, J. J., IEEE Trans.
Circuits Sys., 36(4), 474, 1989. With permission.)
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If s2
i becomes too small due to an insufficient amount of energy in the ith channel, the update

mechanism becomes ill-conditioned due to a very large effective step size. In some cases the process
will become unstable and register overflow will cause the adaptation to catastrophically fail. So the
algorithm given by Equation 1.27 should have the update mechanism disabled for the ith orthogonal
channel if s2

i falls below a critical threshold.
The motivation for using the TDAF adaptive system instead of a simpler LMS based system is to

achieve rapid convergence of the filters coefficients when the input signal is not white, while maintaining
a reasonably low computational complexity requirement. The optimal decorrelating transform is com-
posed of the orthonormal eigenvectors of the input autocorrelation matrix, and is known as the
Karhunen–Loéve transform (KLT). The KLT is signal dependent and usually cannot be easily computed
in real time. Throughout the literature the DFT, discrete cosine transform (DCT), and WHT have
received considerable attention as possible candidates for use in TDAF.

Figure 1.15 shows learning characteristics for computer generated TDAF examples using six different
orthogonal transforms to decorrelate the input signal. The examples presented are for system identifi-
cation experiments, where the desired signal was derived by passing the input through an 8-tap FIR filter
that is the ‘‘unknown system’’ to be identified. The filter input was generated by filtering white pseudo-
noise with a 32-tap linear phase FIR coloring filter to produce an input autocorrelation matrix with a
condition number (eigenvalue ratio) of 681. Examples were then produced using the DFT, DCT, WHT,
discrete Hartley transform (DHT), and a specially designed computationally efficient PO2 transform.
The condition numbers that result from transform processing with each of these transforms are also
shown in Figure 1.15. Note that all of the transforms used in this example are able to reduce the input
condition number and greatly improve convergence rates, although some transforms are seen to be more
effective than others for the coloring chosen for these examples.
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FIGURE 1.15 Comparison of (smoothed) learning curves for five different transforms operating on a colored noise
input signal with condition number 681 fault in any of the coefficients. When R redundant coefficients are added as
many as R coefficients can fail to adjust without any adverse effect on the filter’s ability to achieve the minimum MSE
condition. (From Jenkins, W. K., Marshall, D. F., Kreidle, J. R., and Murphy, J. J., IEEE Trans. Circuits Sys., 36(4), 474,
1989. With permission.)
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Transform
Effective Input Correlation
Matrix Eigenvalue Ratio

Identity (I) 681

DFT 210

DCT 200

WHT 216

DHT 218

PO2 transform 128

1.7.5 Adaptive Fault Tolerance via Fourier Domain Adaptive Filtering

Adaptive systems adjust their parameters to minimize a specified error criterion under normal operating
conditions. Fixed errors or Hardware faults would prevent the system to minimize the error criterion, but
at the same time the system will adapt the parameters such that the best possible solution is reached. In
adaptive fault tolerance the inherent learning ability of the adaptive system is used to compensate for
failure of the adaptive coefficients. This mechanism can be used with specially designed structures whose
redundant coefficients have the ability to compensate for the adjustment failures of other coefficients
[Jenkins et al. 1996].

The FFT-based transform domain fault tolerant adaptive filter (FTAF) is described by the following
equations:

x[n] ¼ xin[n], 0 0 � � � 0½ ]

xT[n] ¼ Tx[n]

y[n] ¼ wt
T[n]xT[n]

e[n] ¼ y[n]� d[n],

(1:29)

where
xin[n] ¼ x[n], x[n� 1], . . . , x[n� N þ 1]½ � is the vector of the current input and N � 1 past inputs
samples

x[n] is xin[n] zero-padded with R zeros
T is the M �M DFT matrix where M ¼ N þ R
wT[n] is the vector of M adaptive coefficients in the transform domain
d[n] is the desired response
e[n] is the output error

The FFT-based transform domain FTAF is similar to a standard TDAF except that the input data vector
is zero-padded with R zeros before it is multiplied by the transform matrix. Since the input data vector is
zero padded the transform domain FTAF maintains a length N impulse response and has R redundant
coefficients in the transform domain. When used with the zero padding strategy described above, this
structure possesses a property called full fault tolerance, where each redundant coefficient is sufficient to
compensate for a single ‘‘stuck at’’ fault condition in any of the coefficients. When R redundant
coefficients are added as many as R coefficients can fail without any adverse effect on the filter’s ability
to achieve the minimum MSE condition.

An example of a transform domain FTAF with one redundant filter tap (R ¼ 1) is demonstrated below
for the identification of a 64-tap FIR lowpass ‘‘unknown’’ system. The training signal is Gaussian white
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noise with a unit variance and a noise floor of �60 dB. A fixed fault is introduced at iteration 3000 by
setting an arbitrary filter coefficient to a random fixed value. Simulated learning curves are shown in
Figure 1.16 both demonstrated that the redundant tap allows the filter to re-converge after the occurrence
of the fault, although the post-fault convergence rate slowed somewhat due to an increased condition
number of the post-fault autocorrelation matrix [Jenkins et al. 1996].

1.8 Summary

Numerous Fourier transform concepts have been presented for both CT and DT signals and systems.
Emphasis was placed on illustrating how various forms of the Fourier transform relate to one another,
and how they are all derived from more general complex transforms, the complex Fourier (or bilateral
Laplace) transform for CT, and the bilateral z-transform for DT. It was shown that many of these
transforms have similar properties that are inherited from their parent forms, and that there is a parallel
hierarchy among Fourier transform concepts in the CT and DT domains. Both CT and DT sampling
models were introduced as a means of representing sampled signals in these two different domains and
it was shown that the models are equivalent by virtue of having the same Fourier spectra when
transformed into the Fourier domain with the appropriate Fourier transform. It was shown how Fourier
analysis properly characterizes the relationship between the spectra of a CT signal and its DT counterpart
obtained by sampling, and the classical reconstruction formula was obtained as a result of this analysis.
Finally, the DFT, the backbone for much of modern DSP, was obtained from more classical forms of the
Fourier transform by simultaneously discretizing the time and frequency domains. The DFT, together
with the remarkable computational efficiency provided by the FFT algorithm, has contributed to the
resounding success that engineers and scientists have had in applying DSP to many practical scientific
problems.
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2.1 Differential Equations

A function containing variables and their derivatives is called a differential expression, and an equation
involving differential expressions is called a differential equation. A differential equation is an ordinary
differential equation if it contains only one independent variable; it is a partial differential equation if
it contains more than one independent variable. We shall deal here only with ordinary differential
equations.

In the mathematical texts, the independent variable is generally x, which can be anything such as time,
distance, velocity, pressure, and so on. In most of the applications in control systems, the independent
variable is time. For this reason we shall use here independent variable t for time, although it can stand
for any other variable as well.

The following equation

d2y
dt2

� �4

þ 3
dy
dt

þ 5y2(t) ¼ sin t

is an ordinary differential equation of second order because the highest derivative is of the second order.
An nth-order differential equation is linear if it is of the form

an(t)
dny
dtn

þ an�1(t)
dn�1y
dtn�1

þ � � � þ a1(t)
dy
dt

þ a0(t)y(t) ¼ r(t) (2:1)

where the coefficients ai(t) are not functions of y(t). If these coefficients (ai) are constants, the equation is
linear with constant coefficients. Many engineering (as well as nonengineering) systems can be modeled
by these equations. Systems modeled by these equations are known as linear time-invariant (LTI)
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systems. In this chapter we shall deal exclusively with linear differential equations with constant
coefficients. Certain other forms of differential equations are dealt with elsewhere in this book.

2.1.1 Role of Auxiliary Conditions in Solution of Differential Equations

We now show that a differential equation does not, in general, have a unique solution unless some
additional constraints (or conditions) on the solution are known. This fact should not come as a surprise.
A function y(t) has a unique derivative dy=dt, but for a given derivative dy=dt there are infinite possible
functions y(t). If we are given dy=dt, it is impossible to determine y(t) uniquely unless an additional
piece of information about y(t) is given. For example, the solution of a differential equation

dy
dt

¼ 2 (2:2)

obtained by integrating both sides of the equation is

y(t) ¼ 2t þ c (2:3)

for any value of c. Equation 2.2 specifies a function whose slope is 2 for all t. Any straight line with a slope
of 2 satisfies this equation. Clearly the solution is not unique, but if we place an additional constraint on
the solution y(t), then we specify a unique solution.

For example, suppose we require that y(0)¼ 5; then out of all the possible solutions available, only one
function has a slope of 2 and an intercept with the vertical axis at 5. By setting t¼ 0 in Equation 2.3 and
substituting y(0)¼ 5 in the same equation, we obtain y(0)¼ 5¼ c and

y(t) ¼ 2t þ 5

which is the unique solution satisfying both Equation 2.2 and the constraint y(0)¼ 5.
In conclusion, differentiation is an irreversible operation during which certain information is lost. To

reverse this operation, one piece of information about y(t) must be provided to restore the original y(t).
Using a similar argument, we can show that, given d2y=dt2, we can determine y(t) uniquely only if two
additional pieces of information (constraints) about y(t) are given. In general, to determine y(t) uniquely
from its nth derivative, we need n additional pieces of information (constraints) about y(t). These
constraints are also called auxiliary conditions. When these conditions are given at t¼ 0, they are called
initial conditions.

We discuss here two systematic procedures for solving linear differential equations of the form in
Equation 2.1. The first method is the classical method, which is relatively simple, but restricted to a
certain class of inputs. The second method (the convolution method) is general and is applicable to all
types of inputs. A third method (Laplace transform) is discussed elsewhere in this book. Both the
methods discussed here are classified as time-domain methods because with these methods we are able
to solve the above equation directly, using t as the independent variable. The method of Laplace
transform (also known as the frequency-domain method), on the other hand, requires transformation
of variable t into a frequency variable s.

In engineering applications, the form of linear differential equation that occurs most commonly is
given by

dny
dtn

þ an�1
dn�1y
dtn�1

þ � � � þ a1
dy
dt

þ a0y(t)

¼ bm
dmf
dtm

þ bm�1
dm�1f
dtm�1

þ � � � þ b1
df
dt

þ b0f (t) (2:4a)
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where all the coefficients ai and bi are constants. Using operational notation D to represent d=dt, this
equation can be expressed as

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
y(t)

¼ bmD
m þ bm�1D

m�1 þ � � � þ b1Dþ b0
� �

f (t) (2:4b)

or

Q(D)y(t) ¼ P(D)f (t) (2:4c)

where the polynomials Q(D) and P(D), respectively, are

Q(D) ¼ Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

P(D) ¼ bmD
m þ bm�1D

m�1 þ � � � þ b1Dþ b0

Observe that this equation is of the form of Equation 2.1, where r(t) is in the form of a linear combination
of f(t) and its derivatives. In this equation, y(t) represents an output variable, and f(t) represents an input
variable of an LTI system. Theoretically, the powers m and n in the above equations can take on any
value. Practical noise considerations, however, require [1] m� n.

2.1.2 Classical Solution

When f(t) � 0, Equation 2.4 is known as the homogeneous (or complementary) equation. We shall first
solve the homogeneous equation. Let the solution of the homogeneous equation be yc(t), that is,

Q(D)yc(t) ¼ 0

or

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
yc(t) ¼ 0

We first show that if yp(t) is the solution of Equation 2.4, then yc(t)þ yP(t) is also its solution. This
follows from the fact that

Q(D)yc(t) ¼ 0

If yP(t) is the solution of Equation 2.4, then

Q(D)yP(t) ¼ P(D)f (t)

Addition of these two equations yields

Q(D) yc(t)þ yP(t)½ � ¼ P(D)f (t)

Thus, yc(t)þ yP(t) satisfies Equation 2.4 and therefore is the general solution of Equation 2.4. We call
yc(t) the complementary solution and yP(t) the particular solution. In system analysis parlance, these
components are called the natural response and the forced response, respectively.
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2.1.2.1 Complementary Solution (the Natural Response)

The complementary solution yc(t) is the solution of

Q(D)yc(t) ¼ 0 (2:5a)

or

Dn þ an�1D
n�1 þ � � � þ a1Dþ a0

� �
yc(t) ¼ 0 (2:5b)

A solution to this equation can be found in a systematic and formal way. However, we will take a short
cut by using heuristic reasoning. Equation 2.5b shows that a linear combination of yc(t) and its n
successive derivatives is zero, not at some values of t, but for all t. This is possible if and only if yc(t)
and all its n successive derivatives are of the same form. Otherwise their sum can never add to
zero for all values of t. We know that only an exponential function elt has this property. So let us
assume that

yc(t) ¼ celt

is a solution to Equation 2.5b. Now

Dyc(t) ¼ dyc
dt

¼ clelt

D2yc(t) ¼ d2yc
dt2

¼ cl2elt

..

.

Dnyc(t) ¼ dnyc
dtn

¼ clnelt

Substituting these results in Equation 2.5b, we obtain

c ln þ an�1l
n�1 þ � � � þ a1lþ a0

� �
elt ¼ 0

For a nontrivial solution of this equation,

ln þ an�1l
n�1 þ � � � þ a1lþ a0 ¼ 0 (2:6a)

This result means that celt is indeed a solution of Equation 2.5 provided that l satisfies Equation 2.6a.
Note that the polynomial in Equation 2.6a is identical to the polynomial Q(D) in Equation 2.5b, with l

replacing D. Therefore, Equation 2.6a can be expressed as

Q(l) ¼ 0 (2:6b)

When Q(l) is expressed in factorized form, Equation 2.6b can be represented as

Q(l) ¼ (l� l1)(l� l2) � � � (l� ln) ¼ 0 (2:6c)
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Clearly l has n solutions: l1, l2, . . . , ln. Consequently, Equation 2.5 has n possible solutions: c1e
l1t,

c2e
l2t, . . . , cne

lnt, with c1, c2, . . . , cn as arbitrary constants. We can readily show that a general solution is
given by the sum of these n solutions,* so that

yc(t) ¼ c1e
l1t þ c2e

l2t þ � � � þ cne
lnt (2:7)

where c1, c2, . . . , cn are arbitrary constants determined by n constraints (the auxiliary conditions) on
the solution.

The polynomial Q(l) is known as the characteristic polynomial. The equation

Q(l) ¼ 0 (2:8)

is called the characteristic or auxiliary equation. From Equation 2.6c, it is clear that l1, l2, . . . ,ln are the
roots of the characteristic equation; consequently, they are called the characteristic roots. The terms
characteristic values, eigenvalues, and natural frequencies are also used for characteristic roots.y The
expotentials el1t(i¼ 1, 2, . . . , n) in the complementary solution are the characteristic modes (also known
as modes or natural modes). There is a characteristic mode for each characteristic root, and the
complementary solution is a linear combination of the characteristic modes.

2.1.2.2 Repeated Roots

The solution of Equation 2.5 as given in Equation 2.7 assumes that the characteristic roots l1, l2, . . . ,ln
are distinct. If there are repeated roots (same root occurring more than once), the form of the solution is
modified slightly. By direct substitution we can show that the solution of the equation

(D� l)2yc(t) ¼ 0

is given by

yc(t) ¼ (c1 þ c2t)e
lt

In this case the root l repeats twice. Observe that the characteristic modes in this case are elt and telt.
Continuing this pattern, we can show that for the differential equation

(D� l)ryc(t) ¼ 0 (2:9)

the characteristic modes are elt, telt, t2elt, . . . , tr�1elt, and the solution is

yc(t) ¼ c1 þ c2t þ � � � þ crt
r�1

� �
elt (2:10)

* To prove this fact, assume that y1(t), y2(t), . . . , yn(t) are all solutions of Equation 2.5. Then

Q(D)y1(t) ¼ 0
Q(D)y2(t) ¼ 0

..

.

Q(D)yn(t) ¼ 0

Multiplying these equations by c1, c2, . . . , cn, respectively, and adding them together yields

Q(D)[c1y1(t)þ c2yn(t)]¼ 0

This result shows that c1y1(t)þ c2y2(t)þ � � �þ cnyn(t) is also a solution of the homogeneous equation (Equation 2.5).
y The term eigenvalue is German for characteristic value.
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Consequently, for a characteristic polynomial

Q(l) ¼ (l� l1)
r(l� lrþ1) . . . (l� ln)

the characteristic modes are el1t, tel1t, . . . , tr�1 elt, elrþ1t, . . . , elnt and the complementary solution is

yc(t) ¼ c1 þ c2t þ � � � þ crt
r�1

� �
elt þ crþ1e

lrþ1t þ � � � þ cne
lnt

2.1.2.3 Particular Solution (the Forced Response): Method of Undetermined Coefficients

The particular solution yp(t) is the solution of

Q(D)yp(t) ¼ P(D)f (t) (2:11)

It is a relatively simple task to determine yp(t) when the input f(t) is such that it yields only a finite
number of independent derivatives. Inputs having the form ezt or tr fall into this category. For example,
ezt has only one independent derivative; the repeated differentiation of ezt yields the same form, that is,
ezt. Similarly, the repeated differentiation of tr yields only r independent derivatives. The particular
solution to such an input can be expressed as a linear combination of the input and its independent
derivatives. Consider, for example, the input f(t)¼ at2þ btþ c. The successive derivatives of this input
are 2atþ b and 2a. In this case, the input has only two independent derivatives. Therefore the particular
solution can be assumed to be a linear combination of f(t) and its two derivatives. The suitable form for
yp(t) in this case is therefore

yp(t) ¼ b2t
2 þ b1t þ b0

The undetermined coefficients b0, b1, and b2 are determined by substituting this expression for yp(t) in
Equation 2.11 and then equating coefficients of similar terms on both sides of the resulting expression.

Although this method can be used only for inputs with a finite number of derivatives, this class of
inputs includes a wide variety of the most commonly encountered signals in practice. Table 2.1 shows a
variety of such inputs and the form of the particular solution corresponding to each input. We shall
demonstrate this procedure with an example.

Note: By definition, yp(t) cannot have any characteristic mode terms. If any term p(t) shown in the
right-hand column for the particular solution is also a characteristic mode, the correct form of the forced
response must be modified to tip(t), where i is the smallest possible integer that can be used and still can
prevent tip(t) from having characteristic mode term. For example, when the input is ezt, the forced
response (right-hand column) has the form bezt. But if ezt happens to be a characteristic mode, the
correct form of the particular solution is btezt (see Pair 2). If tezt also happens to be characteristic mode,
the correct form of the particular solution is bt2ezt, and so on.

TABLE 2.1 Inputs and Responses for Commonly Encountered Signals

No. Input f(t) Forced Response

1 ezt z 6¼ li(i¼ 1, 2, . . . , n) bezt

2 ezt z 6¼ li btezt

3 k (a constant) b (a constant)

4 cos(vtþ u) (b cos(vtþw)

5 (trþar�1t
r�1 þ � � �þ a1tþa0)e

zt (brt
rþbr�1t

r�1 þ � � �þ b1tþb0)e
zt
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Example 2.1

Solve the differential equation

(D2 þ 3Dþ 2)y(t) ¼ Df (t) (2:12)

if the input

f (t) ¼ t2 þ 5t þ 3

and the initial conditions are y(0þ)¼ 2 and _y(0þ)¼ 3.
The characteristic polynomial is

l2 þ 3lþ 2 ¼ (lþ 1)(lþ 2)

Therefore the characteristic modes are e�t and e�2t. The complementary solution is a linear combination
of these modes, so that

yc(t) ¼ c1e
�t þ c2e

�2t t � 0

Here the arbitrary constants c1 and c2 must be determined from the given initial conditions.
The particular solution to the input t2þ 5tþ 3 is found from Table 2.1 (Pair 5 with z¼ 0) to be

yp(t) ¼ b2t
2 þ b1t þ b0

Moreover, yp(t) satisfies Equation 2.11, that is,

(D2 þ 3Dþ 2)yp(t) ¼ Df (t) (2:13)

Now

Dyp(t) ¼ d
dt

b2t
2 þ b1t þ b0

� � ¼ 2b2t þ b1

D2yp(t) ¼ d2

dt2
b2t

2 þ b1t þ b0

� � ¼ 2b2

and

Df (t) ¼ d
dt

[t2 þ 5t þ 3] ¼ 2t þ 5

Substituting these results in Equation 2.13 yields

2b2 þ 3(2b2t þ b1)þ 2(b2t
2 þ b1t þ b0) ¼ 2t þ 5

or

2b2t
2 þ (2b1 þ 6b2)t þ (2b0 þ 3b1 þ 2b2) ¼ 2t þ 5
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Equating coefficients of similar powers on both sides of this expression yields

2b2 ¼ 0

2b1 þ 6b2 ¼ 2

2b0 þ 3b1 þ 2b2 ¼ 5

Solving these three equations for their unknowns, we obtain b0¼ 1, b1¼ 1, and b2¼ 0. Therefore,

yp(t) ¼ t þ 1 t > 0

The total solution y(t) is the sum of the complementary and particular solutions. Therefore,

y(t) ¼ yc(t)þ yp(t)

¼ c1e
�t þ c2e

�2t þ t þ 1 t > 0

so that

_y(t) ¼ �c1e
�t � 2c2e

�2t þ 1

Setting t¼ 0 and substituting the given initial conditions y(0)¼ 2 and _y(0)¼ 3 in these equations, we
have

2 ¼ c1 þ c2 þ 1

3 ¼ �c1 � 2c2 þ 1

The solution to these two simultaneous equations is c1¼ 4 and c2¼�3. Therefore,

y(t) ¼ 4e�t � 3e�2t þ t þ 1 t � 0

2.1.2.4 The Exponential Input ezt

The exponential signal is the most important signal in the study of LTI systems. Interestingly, the
particular solution for an exponential input signal turns out to be very simple. From Table 2.1 we see that
the particular solution for the input ezt has the form bezt. We now show that b¼Q(z)=P(z).*
To determine the constant b, we substitute yp(t)¼bezt in Equation 2.11, which gives us

Q(D) bezt
� � ¼ P(D)ezt (2:14a)

Now observe that

Dezt ¼ d
dt

(ezt) ¼ zezt

D2ezt ¼ d2

dt2
(ezt) ¼ z2ezt

..

.

Drezt ¼ zrezt

* This is true only if z is not a characteristic root.
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Consequently,

Q(D)ezt ¼ Q(z)ezt and P(D)ezt ¼ P(z)ezt

Therefore, Equation 2.14a becomes

bQ(z)ezt ¼ P(z)ezt (2:14b)

and

b ¼ P(z)
Q(z)

Thus, for the input f(t)¼ ezt, the particular solution is given by

yp(t) ¼ H(z)ezt t > 0 (2:15a)

where

H(z) ¼ P(z)
Q(z)

(2:15b)

This is an interesting and significant result. It states that for an exponential input ezt the particular
solution yp(t) is the same exponential multiplied by H(z)¼ P(z)=Q(z). The total solution y(t) to an
exponential input ezt is then given by

y(t) ¼
Xn
j¼1

cje
ljt þ H(z)ezt

where the arbitrary constants c1, c2, . . . , cn are determined from auxiliary conditions.
Recall that the exponential signal includes a large variety of signals, such as a constant (z¼ 0), a

sinusoid (z ¼ � jv), and an exponentially growing or decaying sinusoid (z¼s� jv). Let us consider the
forced response for some of these cases.

2.1.2.5 The Constant Input f (t)¼C

Because C¼Ce0t, the constant input is a special case of the exponential input Cezt with z¼ 0. The
particular solution to this input is then given by

yp(t) ¼ CH(z)ezt with z ¼ 0

¼ CH(0) (2:16)

2.1.2.6 The Complex Exponential Input ejvt

Here z¼ jv, and

yp(t) ¼ H( jv)ejvt (2:17)
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2.1.2.7 The Sinusoidal Input f (t)¼ cos v0t

We know that the particular solution for the input e�jvt is H(�jv)e�jvt. Since cos vt¼ (ejvtþ e�jvt)=2,
the particular solution to cos vt is

yp(t) ¼ 1
2

H( jv)ejvt þH(�jv)e�jvt
� �

Because the two terms on the right-hand side are conjugates,

yp(t) ¼ Re H( jv)ejvt
� �

But

H( jv) ¼ jH( jv)jejffH( jv)

so that

yp(t) ¼ Re jH( jv)jej vtþffH( jv)½ �
n o

¼ jH( jv)j cos vt þ ffH( jv)½ � (2:18)

This result can be generalized for the input f(t)¼ cos(vtþ u). The particular solution in this case is

yp(t) ¼ jH( jv)j cos vt þ uþ ffH( jv)½ � (2:19)

Example 2.2

Solve Equation 2.12 for the following inputs:

(a) 10e�3t (b) 5 (c) e�2t (d) 10 cos(3tþ 308).

The initial conditions are y(0þ)¼ 2, _y(0þ)¼ 3.
The complementary solution for this case is already found in Example 2.1 as

yc(t) ¼ c1e
�t þ c2e

�2t t � 0

For the exponential input f(t)¼ ezt, the particular solution, as found in Equation 2.15 is H(z)ezt, where

H(z) ¼ P(z)
Q(z)

¼ z

z2 þ 3zþ 2
(a) For input f(t)¼ 10e�3t, z¼�3, and

yp(t) ¼ 10H(�3)e�3t

¼ 10
�3

(�3)2 þ 3(�3)þ 2

� 	
e�3t

¼ �15e�3t t > 0

The total solution (the sum of the complementary and particular solutions) is

y(t) ¼ c1e
�t þ c2e

�2t � 15e�3t t � 0
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and

_y(t) ¼ �c1e
�t � 2c2e

�2t þ 45e�3t t � 0

The initial conditions are y(0þ)¼ 2 and _y(0þ)¼ 3. Setting t¼ 0 in the above equations and
substituting the initial conditions yields

c1 þ c2 � 15 ¼ 2 and �c1 � 2c2 þ 45 ¼ 3

Solution of these equations yields c1¼�8 and c2¼ 25. Therefore,

y(t) ¼ �8e�t þ 25e�2t � 15e�3t t � 0

(b) For input f(t)¼ 5¼ 5e0t, z¼ 0, and

yp(t) ¼ 5H(0) ¼ 0 t > 0

The complete solution is y(t)¼ yc(t)þ yp(t)¼ c1e
�tþ c2e

�2t. We then substitute the initial
conditions to determine c1 and c2 as explained in (a).

(c) Here z¼�2, which is also a characteristic root. Hence (see Pair 2, Table 2.1, or the comment at
the bottom of the table),

yp(t) ¼ bte�2t

To find b, we substitute yp(t) in Equation 2.11, giving us

(D2 þ 3Dþ 2)yp(t) ¼ Df (t)

or

(D2 þ 3Dþ 2) bte�2t
� � ¼ De�2t

But

D[bte�2t ] ¼ b(1� 2t)e�2t

D2[bte�2t ] ¼ 4b(t � 1)e�2t

De�2t ¼ �2e�2t

Consequently,

b(4t � 4þ 3� 6t þ 2t)e�2t ¼ �2e�2t

or

�be�2t ¼ �2e�2t

This means that b¼ 2, so that

yp(t) ¼ 2te�2t
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The complete solution is y(t) ¼ yc(t)þ yp(t) ¼ c1e�t þ c2e�2t þ 2te�2t . We then substitute
the initial conditions to determine c1 and c2 as explained in (a).

(d) For the input f(t)¼ 10 cos (3tþ 308), the particular solution (see Equation 2.19) is

yp(t) ¼ 10 H( j3)j j cos 3t þ 30
 þ ffH( j3)½ �

where

H( j3) ¼ P( j3)
Q( j3)

¼ j3

( j3)2 þ 3( j3)þ 2

¼ j3
�7þ j9

¼ 27� j21
130

¼ 0:263e�j37:9


Therefore,

H( j3)j j ¼ 0:263, ffH( j3) ¼ �37:9


and

yp(t) ¼ 10(0:263) cos (3t þ 30
 � 37:9
)
¼ 2:63 cos (3t � 7:9
)

The complete solution is y(t) ¼ yc(t)þ yp(t) ¼ c1e�t þ c2e�2t þ 2:63 cos (3t � 7:9
). We then
substitute the initial conditions to determine c1 and c2 as explained in (a).

2.1.3 Method of Convolution

In this method, the input f(t) is expressed as a sum of impulses. The solution is then obtained as a sum of
the solutions to all the impulse components. The method exploits the superposition property of the linear
differential equations. From the sampling (or sifting) property of the impulse function, we have

f (t) ¼
ðt
0

f (x)d(t � x)dx t � 0 (2:20)

The right-hand side expresses f(t) as a sum (integral) of impulse components. Let the solution of
Equation 2.4 be y(t)¼ h(t) when f(t)¼ d(t) and all the initial conditions are zero. Then use of the
linearity property yields the solution of Equation 2.4 to input f(t) as

y(t) ¼
ðt
0

f (x)h(t � x)dx (2:21)

For this solution to be general, we must add a complementary solution. Thus, the general solution is
given by

y(t) ¼
Xn
j¼1

cje
ljt þ

ðt
0

f (x)h(t � x)dx (2:22)
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The first term on the right-hand side consists of a linear combination of natural modes and should be
appropriately modified for repeated roots. For the integral on the right-hand side, the lower limit 0 is
understood to be 0� in order to ensure that impulses, if any, in the input f(t) at the origin are accounted
for. The integral on the right-hand side of Equation 2.22 is well known in the literature as the convolution
integral. The function h(t) appearing in the integral is the solution of Equation 2.4 for the impulsive input
[ f(t)¼ d(t)]. It can be shown that [2]

h(t) ¼ P(D) yo(t)u(t)½ � (2:23)

where yo(t) is a linear combination of the characteristic modes subject to initial conditions

y(n�1)
o (0) ¼ 1

yo(0) ¼ y(1)o (0) ¼ � � � ¼ y(n�2)
o (0) ¼ 0

(2:24)

The function u(t) appearing on the right-hand side of Equation 2.23 represents the unit step function,
which is unity for t� 0 and is 0 for t< 0.

The right-hand side of Equation 2.23 is a linear combination of the derivatives of yo(t)u(t). Evaluating
these derivatives is clumsy and inconvenient because of the presence of u(t). The derivatives will generate
an impulse and its derivatives at the origin [recall that d

dt u(t) ¼ d(t)]. Fortunately when m� n in
Equation 2.4, the solution simplifies to

h(t) ¼ bnd(t)þ P(D)yo(t)½ �u(t) (2:25)

Example 2.3

Solve Example 2.2(a) using the method of convolution.
We first determine h(t). The characteristic modes for this case, as found in Example 2.1, are e�t and

e�2t. Since yo(t) is a linear combination of the characteristic modes

yo(t) ¼ K1e
�t þ K2e

�2t t � 0

Therefore,

_yo(t) ¼ �K1e
�t � 2K2e

�2t t � 0

The initial conditions according to Equation 2.24 are _yo(0)¼ 1 and yo(0)¼ 0. Setting t¼ 0 in the above
equations and using the initial conditions, we obtain

K1 þ K2 ¼ 0 and � K1 � 2K2 ¼ 1

Solution of these equations yields K1¼ 1 and K2¼�1. Therefore,

yo(t) ¼ e�t � e�2t

Also in this case the polynomial P(D)¼D is of the first-order, and b2¼ 0. Therefore, from Equation 2.25

h(t) ¼ P(D)yo(t)½ �u(t) ¼ Dyo(t)½ �u(t)

¼ d
dt

e�t � e�2t
� �� 	

u(t)

¼ (�e�t þ 2e�2t)u(t)
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and

ðt
0

f (x)h(t � x)dx ¼
ðt
0

10e�3x �e�(t�x)
� þ 2e�2(t�x)

�
dx

¼ �5e�t þ 20e�2t � 15e�3t

The total solution is obtained by adding the complementary solution yc(t)¼ c1e
�tþ c2e

�2t to this
component. Therefore,

y(t) ¼ c1e
�t þ c2e

�2t � 5e�t þ 20e�2t � 15e�3t

Setting the conditions y(0þ)¼ 2 and y(0þ)¼ 3 in this equation (and its derivative), we obtain c1¼�3,
c2¼ 5 so that

y(t) ¼ �8e�t þ 25e�2t � 15e�3t t � 0

which is identical to the solution found by the classical method.

2.1.3.1 Assessment of the Convolution Method

The convolutionmethod is more laborious compared to the classical method. However, in system analysis,
its advantages outweigh the extra work. The classical method has a serious drawback because it yields the
total response, which cannot be separated into components arising from the internal conditions and the
external input. In the study of systems it is important to be able to express the system response to an input
f(t) as an explicit function of f(t). This is not possible in the classical method. Moreover, the classical
method is restricted to a certain class of inputs; it cannot be applied to any input.*

If wemust solve a particular linear differential equation or find a response of a particular LTI system, the
classical methodmay be the best. In the theoretical study of linear systems, however, it is practically useless.
General discussion of differential equations can be found in numerous texts on the subject [1].

2.2 Difference Equations

The development of difference equations is parallel to that of differential equations. We consider here
only linear difference equations with constant coefficients. An n th-order difference equation can be
expressed in two different forms; the first form uses delay terms such as y[k� 1], y[k� 2], f[k� 1],
f[k� 2], etc., and the alternative form uses advance terms such as y[kþ 1], y[kþ 2], etc. Both forms are
useful. We start here with a general nth-order difference equation, using advance operator form.

y[kþ n]þ an�1y[kþ n� 1]þ � � � þ a1y[kþ 1]þ a0y[k]

¼ bmf [kþm]þ bm�1f [kþm� 1]þ � � � þ b1f [kþ 1]þ b0f [k] (2:26)

* Another minor problem is that because the classical method yields total response, the auxiliary conditions must be on the
total response, which exists only for t� 0þ. In practice we are most likely to know the conditions at t¼ 0� (before the input
is applied). Therefore, we need to derive a new set of auxiliary conditions at t¼ 0þ from the known conditions at t¼ 0�.
The convolution method can handle both kinds of initial conditions. If the conditions are given at t¼ 0�, we apply these
conditions only to yc(t) because by its definition the convolution integral is 0 at t¼ 0�.
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2.2.1 Causality Condition

The left-hand side of Equation 2.26 consists of values of y[k] at instants kþ n, kþ n� 1, kþ n� 2, and so
on. The right-hand side of Equation 2.26 consists of the input at instants kþm, kþm� 1, kþm� 2,
and so on. For a casual equation, the solution cannot depend on future input values. This show that when
the equation is in the advance operator form of Equation 2.26, casuality requires m� n. For a general
casual case, m¼ n, and Equation 2.26 becomes

y[kþ n]þ an�1y[kþ n� 1]þ � � � þ a1y[kþ 1]þ a0y[k]

¼ bnf [kþ n]þ bn�1f [kþ n� 1]þ � � � þ b1f [kþ 1]þ b0f [k] (2:27a)

where some of the coefficients on both sides can be zero. However, the coefficient of y[kþ n] is
normalized to unity. Equation 2.27a is valid for all values of k. Therefore, the equation is still valid if
we replace k by k� n throughout the equation. This yields the alternative form (the delay operator form)
of Equation 2.27a

y[k]þ an�1y[k� 1]þ � � � þ a1y[k� nþ 1]þ a0y[k� n]

¼ bnf [k]þ bn�1f [k� 1]þ � � � þ b1f [k� nþ 1]þ b0f [k� n] (2:27b)

We designate the form of Equation 2.27a the advance operator form, and the form of Equation 2.27b the
delay operator form.

2.2.2 Initial Conditions and Iterative Solution

Equation 2.27b can be expressed as

y[k] ¼� an�1y[k�1]� an�2y[k� 2]� � � � � a0y[k� n]þ bnf [k]

þ bn�1f [k� 1]þ � � � þ b0f [k� n] (2:27c)

This equation shows that y[k], the solution at the k th instant, is computed from 2nþ 1 pieces of
information. These are the past n values of y[k]: y[k� 1], y[k� 2], . . . , y[k� n] and the present and past
n values of the input: f [k], f [k� 1], f [k� 2], . . . , f [k� n]. If the input f [k] is known for k¼ 0, 1, 2, . . . , then
the values of y[k] for k¼ 0, 1, 2, . . . can be computed from the 2n initial conditions y[�1], y[�2], . . . , y[�n]
and f [�1], f [�2], . . . , f [�n]. If the input is causal, that is, if f [k]¼ 0 for k< 0, then f [�1]¼ f [�2] ¼ � � � ¼
f [�n]¼ 0, and we need only n initial conditions y[�1], y[�2], . . . , y[�n]. This allows us to compute
iteratively or recursively the values y[0], y[1], y[2], y[3], . . . , and so on.* For instance, to find y[0] we set
k¼ 0 in Equation 2.27c. The left-hand side is y[0], and the right-hand side contains terms y[�1], y[�2], . . . ,
y[�n], and the inputs f [0], f [�1], f [�2], . . . , f [�n].

Therefore, to begin with, we must know the n initial conditions y[�1], y[�2], . . . , y[�n]. Knowing
these conditions and the input f [k], we can iteratively find the response y[0], y[1], y[2], . . . , and so on.
The following example demonstrates this procedure. This method basically reflects the manner in which
a computer would solve a difference equation, given the input and initial conditions.

* For this reason Equation 2.27 is called a recursive difference equation. However, in Equation 2.27 if a0¼ a1¼
a2¼ � � � ¼ an�1¼ 0, then it follows from Equation 2.27c that determination of the present value of y[k] does not require
the past values y[k� 1], y [k� 2], etc. For this reason when ai¼ 0 (i¼ 0, 1, . . . , n� 1), the difference Equation 2.27 is
nonrecursive. This classification is important in designing and realizing digital filters. In this discussion, however, this
classification is not important. The analysis techniques developed here apply to general recursive and nonrecursive
equations. Observe that a nonrecursive equation is a special case of recursive equation with a0¼ a1¼ � � � ¼ an�1¼ 0.
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Example 2.4

Solve iteratively

y[k]� 0:5y[k � 1] ¼ f [k] (2:28a)

with initial condition y[�1]¼ 16 and the input f [k]¼ k2 (starting at k¼ 0). This equation can be expressed as

y[k] ¼ 0:5y[k � 1]þ f [k] (2:28b)

If we set k¼ 0 in this equation, we obtain

y[0] ¼ 0:5y[�1]þ f [0]

¼ 0:5(16)þ 0 ¼ 8

Now, setting k¼ 1 in Equation 2.28b and using the value y[0]¼ 8 (computed in the first step) and f [1]¼
(1)2¼ 1, we obtain

y[1] ¼ 0:5(8)þ (1)2 ¼ 5

Next, setting k¼ 2 in Equation 2.28b and using the value y[1]¼ 5 (computed in the previous step) and
f [2]¼ (2)2, we obtain

y[2] ¼ 0:5(5)þ (2)2 ¼ 6:5

Continuing in this way iteratively, we obtain

y[3] ¼ 0:5(6:5)þ (3)2 ¼ 12:25

y[4] ¼ 0:5(12:25)þ (4)2 ¼ 22:125

and so on.
This iterative solution procedure is available only for difference equations; it cannot be applied to

differential equations. Despite the many uses of this method, a closed-form solution of a difference
equation is far more useful in the study of system behavior and its dependence on the input and the
various system parameters. For this reason we shall develop a systematic procedure to obtain a closed-
form solution of Equation 2.27.

2.2.3 Operational Notation

In difference equations it is convenient to use operational notation similar to that used in differential
equations for the sake of compactness and convenience. For differential equations, we use the operator D
to denote the operation of differentiation. For difference equations, we use the operator E to denote the
operation for advancing the sequence by one time interval. Thus,

Ef [k] � f [kþ 1]

E2f [k] � f [kþ 2]

..

.

Enf [k] � f [kþ n]

(2:29)
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A general n th-order difference Equation 2.27a can be expressed as

En þ an�1E
n�1 þ � � � þ a1E þ a0

� �
y[k]

¼ bnE
n þ bn�1E

n�1 þ � � � þ b1E þ b0
� �

f [k] (2:30a)

or

Q[E]y[k] ¼ P[E]f [k] (2:30b)

where Q[E] and P[E] are n th-order polynomial operators, respectively,

Q[E] ¼ En þ an�1E
n�1 þ � � � þ a1E þ a0 (2:31a)

P[E] ¼ bnE
n þ bn�1E

n�1 þ � � � þ b1E þ b0 (2:31b)

2.2.4 Classical Solution

Following the discussion of differential equations, we can show that if yp[k] is a solution of Equation 2.27
or Equation 2.30, that is,

Q[E]yp[k] ¼ P[E]f [k] (2:32)

then yp[k]þ yc[k] is also a solution of Equation 2.30, where yc[k] is a solution of the homogeneous
equation

Q[E]yc[k] ¼ 0 (2:33)

As before, we call yp[k] the particular solution and yc[k] the complementary solution.

2.2.4.1 Complementary Solution (the Natural Response)

By definition

Q[E]yc[k] ¼ 0 (2:33a)

or

(En þ an�1E
n�1 þ � � � þ a1E þ a0)yc[k] ¼ 0 (2:33b)

or

yc[kþ n]þ an�1yc[kþ n� 1]þ � � � þ a1yc[kþ 1]þ a0yc[k] ¼ 0 (2:33c)

We can solve this equation systematically, but even a cursory examination of this equation points to its
solution. This equation states that a linear combination of yc[k] and delayed yc[k] is zero not for some
values of k, but for all k. This is possible if and only if yc[k] and delayed yc[k] have the same form. Only an
exponential function gk has this property as seen from the equation

gk�m ¼ g�mgk
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This shows that the delayed gk is a constant times gk. Therefore, the solution of Equation 2.33 must be of
the form

yc[k] ¼ cgk (2:34)

To determine c and g, we substitute this solution in Equation 2.33. From Equation 2.34, we have

Eyc[k] ¼ yc[kþ 1] ¼ cgkþ1 ¼ (cg)gk

E2yc[k] ¼ yc[kþ 2] ¼ cgkþ2 ¼ (cg2)gk

..

.

Enyc[k] ¼ yc[kþ n] ¼ cgkþn ¼ (cgn)gk

(2:35)

Substitution of this in Equation 2.33 yields

c gn þ an�1g
n�1 þ � � � þ a1gþ a0

� �
gk ¼ 0 (2:36)

For a nontrivial solution of this equation

gn þ an�1g
n�1 þ � � � þ a1gþ a0

� � ¼ 0 (2:37a)

or

Q[g] ¼ 0 (2:37b)

Our solution cgk (Equation 2.34) is correct, provided that g satisfies Equation 2.37. Now, Q[g] is an
nth-order polynomial and can be expressed in the factorized form (assuming all distinct roots):

(g� g1)(g� g2) � � � (g� gn) ¼ 0 (2:37c)

Clearly g has n solutions g1, g2, . . . ,gn and, therefore, Equation 2.33 also has n solutions
c1gk1, c2g

k
2, . . . , cng

k
n. In such a case we have shown that the general solution is a linear combination of

the n solutions. Thus,

yc[k] ¼ c1g
k
1 þ c2g

k
2 þ � � � þ cng

k
n (2:38)

where g1,g2, . . . , gn are the roots of Equation 2.37 and c1, c2, . . . , cn are arbitrary constants determined
from n auxiliary conditions. The polynomial Q[g] is called the characteristic polynomial, and

Q[g] ¼ 0 (2:39)

is the characteristic equation. Moreover, g1,g2, . . . ,gn the roots of the characteristic equation, are called
characteristic roots or characteristic values (also eigenvalues). The exponentials gki (i ¼ 1, 2, . . . , n) are
the characteristic modes or natural modes. A characteristic mode corresponds to each characteristic root,
and the complementary solution is a linear combination of the characteristic modes of the system.
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2.2.4.2 Repeated Roots

For repeated roots, the form of characteristic modes is modified. It can be shown by direct substitution
that if a root g repeats r times (root of multiplicity r), the characteristic modes corresponding to this root
are gk, kgk, k2gk, . . . , kr�1gk. Thus, if the characteristic equation is

Q[g] ¼ (g� g1)
r(g� grþ1)(g� grþ2) . . . (g� gn) (2:40)

the complementary solution is

yc[k] ¼ c1 þ c2kþ c3k
2 þ � � � þ crk

r�1
� �

gk1

þ crþ1g
k
rþ1 þ crþ2g

k
rþ2 þ � � � þ cng

k
n (2:41)

2.2.4.3 Particular Solution

The particular solution yp[k] is the solution of

Q[E]yp[k] ¼ p[E]f [k] (2:42)

We shall find the particular solution using the method of undetermined coefficients, the same method
used for differential equations. Table 2.2 lists the inputs and the corresponding forms of solution with
undetermined coefficients. These coefficients can be determined by substituting yp[k] in Equation 2.42
and equating the coefficients of similar terms.

Note: By definition, yp[k] cannot have any characteristic mode terms. If any term p[k] shown in the
right-hand column for the particular solution should also be a characteristic mode, the correct form of
the particular solution must be modified to kip[k], where i is the smallest integer that will prevent kip[k]
from having a characteristic mode term. For example, when the input is rk, the particular solution in the
right-hand column is of the form crk. But if rk happens to be a natural mode, the correct form of the
particular solution is bkrk (see Pair 2).

Example 2.5

Solve

(E2 � 5E þ 6)y[k] ¼ (E � 5)f [k] (2:43)

if the input f [k]¼ (3kþ 5)u[k] and the auxiliary conditions are y[0]¼ 4, y[1]¼ 13.
The characteristic equation is

g2 � 5gþ 6 ¼ (g� 2)(g� 3) ¼ 0

TABLE 2.2 Inputs and Forms of Solution

No. Input f [k] Forced Response yp[k]

1 rk r 6¼ gi (i¼ 1, 2, . . . , n) brk

2 rk r¼ gi bkrk

3 cos(Vkþ u) b cos(Vkþw)

4
Pm
i¼0

aiki
� �

rk
Pm
i¼0

bik
i

� �
rk
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Therefore, the complementary solution is

yc[k] ¼ c1(2)
k þ c2(3)

k

To find the form of yp[k] we use Table 2.2, Pair 4 with r¼ 1, m¼ 1. This yields

yp[k] ¼ b1k þ b0

Therefore,

yp[k þ 1] ¼ b1(k þ 1)þ b0 ¼ b1k þ b1 þ b0

yp[k þ 2] ¼ b1(k þ 2)þ b0 ¼ b1k þ 2b1 þ b0

Also,

f [k] ¼ 3k þ 5

and

f [k þ 1] ¼ 3(k þ 1)þ 5 ¼ 3k þ 8

Substitution of the above results in Equation 2.43 yields

b1k þ 2b1 þ b0 � 5(b1k þ b1 þ b0)þ 6(b1k þ b0)

¼ 3k þ 8� 5(3k þ 5)

or

2b1k � 3b1 þ 2b0 ¼ �12k � 17

Comparison of similar terms on two sides yields

2b1 ¼ �12

�3b1 þ 2b0 ¼ �17



) b1 ¼ �6

b2 ¼ � 35
2

This means

yp[k] ¼ �6k � 35
2

The total response is

y[k] ¼ yc[k]þ yp[k]

¼ c1(2)
k þ c2(3)

k � 6k � 35
2

k � 0 (2:44)

To determine arbitrary constants c1 and c2 we set k¼ 0 and 1 and substitute the auxiliary conditions
y[0]¼ 4, y[1]¼ 13, to obtain

4 ¼ c1 þ c2 � 35
2

13 ¼ 2c1 þ 3c2 � 47
2

)
) c1 ¼ 28

c2 ¼ �13
2
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Therefore,

yc[k] ¼ 28(2)k � 13
2
(3)k (2:45)

and

y[k] ¼ 28(2)k � 13
2
(3)k|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

yc[k]

� 6k � 35
2|fflfflfflffl{zfflfflfflffl}

yp[k]

(2:46)

2.2.4.4 A Comment on Auxiliary Conditions

This method requires auxiliary conditions y[0], y[1], . . . , y[n� 1], because the total solution is valid only
for k� 0. But if we are given the initial conditions y[�1], y[�2], . . . , y[�n], we can derive the conditions
y[0], y[1], . . . , y[n� 1], using the iterative procedure discussed earlier.

2.2.4.5 Exponential Input

As in the case of differential equations, we can show that for the equation

Q[E]y[k] ¼ P[E]f [k] (2:47)

the particular solution for the exponential input f[k]¼ rk is given by

yp[k] ¼ H[r]rk r 6¼ gi (2:48)

where

H[r] ¼ P[r]
Q[r]

(2:49)

The proof follows from the fact that if the input f[k]¼ rk, then from Table 2.2 (Pair 4), yp[k]¼brk.
Therefore,

Eif [k] ¼ f [kþ i] ¼ rkþi ¼ rirk and P[E]f [k] ¼ P[r]rk

Ejyp[k] ¼ brkþj ¼ brjrk and Q[E]y[k] ¼ bQ[r]rk

so that Equation 2.47 reduces to

bQ[r]rk ¼ P[r]rk

which yields b¼P[r]=Q[r]¼H[r].
This result is valid only if r is not a characteristic root. If r is a characteristic root, the particular

solution is bkrk where b is determined by substituting yp[k] in Equation 2.47 and equating coefficients of
similar terms on the two sides. Observe that the exponential rk includes a wide variety of signals such as a
constant C, a sinusoid cos(Vkþ u), and an exponentially growing or decaying sinusoid jgjk cos(Vkþ u).
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2.2.4.6 A Constant Input f (k)¼C

This is a special case of exponential Crk with r¼ 1. Therefore, from Equation 2.48 we have

yp[k] ¼ C
P[1]
Q[1]

(1)k ¼ CH[1] (2:50)

2.2.4.7 A Sinusoidal Input

The input e jVk is an exponential rk with r¼ e jV. Hence,

yp[k] ¼ H[e jV]e jVk ¼ P[e jV]
Q[e jV]

e jVk

Similarly for the input e�jVk

yp[k] ¼ H[e�jV]e�jVk

Consequently, if the input

f [k] ¼ cosVk ¼ 1
2
(e jVk þ e�jVk)

yp[k] ¼ 1
2

H[e jV]e jVk þ H[e�jV]e�jVk
� 

Since the two terms on the right-hand side are conjugates

yp[k] ¼ Re H[e jV]e jVk
� 

If

H[e jV] ¼ H[e jV]
�� ��e jffH[ejV]

then

yp[k] ¼ Re H[e jV]
�� ��e j VkþffH[e jV]ð Þn o

¼ H[e jV]
�� �� cos Vkþ ffH[e jV]

� �
(2:51)

Using a similar argument, we can show that for the input

f [k] ¼ cos (Vkþ u)

yp[k] ¼ H[e jV]
�� �� cos Vkþ uþ ffH[e jV]

� � (2:52)

Example 2.6

Solve

(E2 � 3E þ 2)y[k] ¼ (E þ 2)f [k]

for f [k]¼ (3)ku[k] and the auxiliary conditions y[0]¼ 2, y[1]¼ 1.
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In this case

H[r] ¼ P[r]
Q[r]

¼ r þ 2
r2 � 3r þ 2

and the particular solution to input (3)ku[k] is H[3](3)k, that is,

yp[k] ¼ 3þ 2

(3)2 � 3(3)þ 2
(3)k ¼ 5

2
(3)k

The characteristic polynomial is (g2� 3gþ 2)¼ (g� 1)(g� 2). The characteristic roots are 1 and 2. Hence,
the complementary solution is yc[k]¼ c1þ c2(2)

k and the total solution is

y[k] ¼ c1(1)
k þ c2(2)

k þ 5
2
(3)k

Setting k¼ 0 and 1 in this equation and substituting auxiliary conditions yields

2 ¼ c1 þ c2 þ 5
2

and 1 ¼ c1 þ 2c2 þ 15
2

Solution of these two simultaneous equations yields c1¼ 5.5, c2¼�5. Therefore,

y[k] ¼ 5:5� 6(2)k þ 5
2
(3)k k � 0

2.2.5 Method of Convolution

In this method, the input f [k] is expressed as a sum of impulses. The solution is then obtained as a sum of
the solutions to all the impulse components. The method exploits the superposition property of the linear
difference equations. A discrete-time unit impulse function d[k] is defined as

d[k] ¼ 1 k ¼ 0(94)
0 k 6¼ 0

�
(2:53)

Hence, an arbitrary signal f [k] can be expressed in terms of impulse and delayed impulse functions as

f [k] ¼ f [0]d[k]þ f [1]d[k� 1]þ f [2]d[k� 2]þ � � � þ f [k]d[0]þ � � � k � 0 (2:54)

The right-hand side expresses f [k] as a sum of impulse components. If h[k] is the solution of Equation
2.30 to the impulse input f [k]¼ d[k], then the solution to input d[k�m] is h[k�m]. This follows from
the fact that because of constant coefficients, Equation 2.30 has time invariance property. Also, because
Equation 2.30 is linear, its solution is the sum of the solutions to each of the impulse components of f[k]
on the right-hand side of Equation 2.54 Therefore,

y[k] ¼ f [0]h[k]þ f [1]h[k� 1]þ f [2]h[k� 2]

þ � � � þ f [k]h[0]þ f [kþ 1]h[� 1]þ � � �
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All practical systems with time as the independent variable are causal, that is, h[k]¼ 0 for k< 0. Hence,
all the terms on the right-hand side beyond f[k]h[0] are zero. Thus,

y[k] ¼ f [0]h[k]þ f [1]h[k� 1]þ f [2]h[k� 2]þ � � � þ f [k]h[0]

¼
Xk

m¼0

f [m]h[k�m] (2:55)

The first term on the right-hand side consists of a linear combination of natural modes and should be
appropriately modified for repeated roots. The general solution is obtained by adding a complementary
solution to the above solution. Therefore, the general solution is given by

y[k] ¼
Xn
j¼1

cjg
k
j þ

Xk
m¼0

f [m]h[k�m] (2:56)

The last sum on the right-hand side is known as the convolution sum of f[k] and h[k].
The function h[k] appearing in Equation 2.56 is the solution of Equation 2.30 for the impulsive input

( f[k]¼ d[k]) when all initial conditions are zero, that is, h[�1]¼ h[�2]¼ � � � ¼ h[�n]¼ 0. It can be
shown that [2] h[k] contains an impulse and a linear combination of characteristic modes as

h[k] ¼ b0
a0

d[k]þ A1g
k
1 þ A2g

k
2 þ � � � þ Ang

k
n (2:57)

where the unknown constants Ai are determined from n values of h[k] obtained by solving the equation
Q[E]h[k]¼P[E]d[k] iteratively.

Example 2.7

Solve Example 2.5 using convolution method. In other words solve

(E2 � 3E þ 2)y[k] ¼ (E þ 2)f [k]

for f [k]¼ (3)ku[k] and the auxiliary conditions y[0]¼ 2, y [1]¼ 1.
The unit impulse solution h[k] is given by Equation 2.57. In this case a0¼ 2 and b0¼ 2. Therefore,

h[k] ¼ d[k]þ A1(1)
k þ A2(2)

k (2:58)

To determine the two unknown constants A1 and A2 in Equation 2.58, we need two values of h[k], for
instance h[0] and h[1]. These can be determined iteratively by observing that h[k] is the solution of
(E2� 3Eþ 2)h[k]¼ (Eþ 2)d[k], that is,

h[k þ 2]� 3h[k þ 1]þ 2h[k] ¼ d[k þ 1]þ 2d[k] (2:59)

subject to initial conditions h[�1]¼ h[�2]¼ 0. We now determine h[0] and h[1] iteratively from Equation
2.59. Setting k¼�2 in this equation yields

h[0]� 3(0)þ 2(0) ¼ 0þ 0 ) h[0] ¼ 0
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Next, setting k¼�1 in Equation 2.59 and using h[0]¼ 0, we obtain

h[1]� 3(0)þ 2(0) ¼ 1þ 0 ) h[1] ¼ 1

Setting k¼ 0 and 1 in Equation 2.58 and substituting h[0]¼ 0, h[1]¼ 1 yields

0 ¼ 1þ A1 þ A2 and 1 ¼ A1 þ 2A2

Solution of these two equations yields A1¼�3 and A2¼ 2. Therefore,

h[k] ¼ d[k]� 3þ 2(2)k

and from Equation 2.56

y[k] ¼ c1 þ c2(2)
k þ

Xk

m¼0

(3)m d[k �m]� 3þ 2(2)k�m
� �

¼ c1 þ c2(2)
k þ 1:5� 4(2)k þ 2:5(3)k

The sums in the above expression are found by using the geometric progression sum formula

Xk

m¼0

rm ¼ rkþ1 � 1
r � 1

r 6¼ 1

Setting k¼ 0 and 1 and substituting the given auxiliary conditions y[0]¼ 2, y[1]¼ 1, we obtain

2 ¼ c1 þ c2 þ 1:5� 4þ 2:5 and 1 ¼ c1 þ 2c2 þ 1:5� 8þ 7:5

Solution of these equations yields c1¼ 4 and c2¼�2. Therefore,

y[k] ¼ 5:5� 6(2)k þ 2:5(3)k

which confirms the result obtained by the classical method.

2.2.5.1 Assessment of the Classical Method

The earlier remarks concerning the classical method for solving differential equations also apply to
difference equations. General discussion of difference equations can be found in texts on the subject [3].
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3.1 Introduction

Practical digital filters must be implemented with finite precision numbers and arithmetic. As a result,
both the filter coefficients and the filter input and output signals are in discrete form. This leads to four
types of finite wordlength effects.

Discretization (quantization) of the filter coefficients has the effect of perturbing the location of the
filter poles and zeros. As a result, the actual filter response differs slightly from the ideal response. This
deterministic frequency response error is referred to as coefficient quantization error.

The use of finite precision arithmetic makes it necessary to quantize filter calculations by rounding
or truncation. Roundoff noise is that error in the filter output that results from rounding or truncating
calculations within the filter. As the name implies, this error looks like low-level noise at the filter
output.

Quantization of the filter calculations also renders the filter slightly nonlinear. For large signals this
nonlinearity is negligible and roundoff noise is the major concern. However, for recursive filters with a
zero or constant input, this nonlinearity can cause spurious oscillations called limit cycles.

With fixed-point arithmetic it is possible for filter calculations to overflow. The term overflow
oscillation, sometimes also called adder overflow limit cycle, refers to a high-level oscillation that can
exist in an otherwise stable filter due to the nonlinearity associated with the overflow of internal filter
calculations.

In this chapter, we examine each of these finite wordlength effects. Both fixed-point and floating-point
number representations are considered.
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3.2 Number Representation

In digital signal processing, (Bþ 1)-bit fixed-point numbers are usually represented as two’s-complement
signed fractions in the format

b0b�1b�2 . . . b�B

The number represented is then

X ¼ �b0 þ b�12
�1 þ b�22

�2 þ � � � þ b�B2
�B (3:1)

where b0 is the sign bit and the number range is�1�X< 1. The advantage of this representation is that
the product of two numbers in the range from �1 to 1 is another number in the same range.

Floating-point numbers are represented as

X ¼ (�1)sm2c (3:2)

where
s is the sign bit
m is the mantissa
c is the characteristic or exponent

To make the representation of a number unique, the mantissa is normalized so that 0.5�m< 1.
Although floating-point numbers are always represented in the form of Equation 3.2, the way in which

this representation is actually stored in a machine may differ. Since m� 0.5, it is not necessary to store
the 2�1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored as

X ¼ (�1)s(0:5þ f )2c (3:3)

where f is an unsigned fraction, 0� f< 0.5.
Most floating-point processors now use the IEEE Standard 754 32-bit floating-point format for storing

numbers. According to this standard the exponent is stored as an unsigned integer p where

p ¼ cþ 126 (3:4)

Therefore, a number is stored as

X ¼ (�1)s(0:5þ f )2p�126 (3:5)

where
s is the sign bit
f is a 23-bit unsigned fraction in the range 0� f< 0.5
p is an 8-bit unsigned integer in the range 0� p� 255

The total number of bits is 1þ 23þ 8¼ 32. For example, in IEEE format 3=4 is written (�1)0(0.5þ 0.25)20

so s¼ 0, p¼ 126, and f¼ 0.25. The valueX¼ 0 is a unique case and is represented by all bits zero (i.e., s¼ 0,
f¼ 0, and p¼ 0). Although the 2�1-weight mantissa bit is not actually stored, it does exist so the mantissa
has 24 bits plus a sign bit.
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3.3 Fixed-Point Quantization Errors

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example, the product of
the two 5-bit numbers 0.0011 and 0.1001 is the 10-bit number 00.00011011. The extra bit to the left of the
decimal point can be discarded without introducing any error. However, the least significant four of the
remaining bits must ultimately be discarded by some form of quantization so that the result can be stored
to 5 bits for use in other calculations. In the example above this results in 0.0010 (quantization by
rounding) or 0.0001 (quantization by truncating). When a sum of products calculation is performed, the
quantization can be performed either after each multiply or after all products have been summed with
double-length precision.

We will examine three types of fixed-point quantization: rounding, truncation, and magnitude trunca-
tion. If X is an exact value, then the rounded value will be denoted Qr(X), the truncated value Qt(X), and
themagnitude truncated valueQmt(X). If the quantized value hasB bits to the right of the decimal point, the
quantization step size is

D ¼ 2�B (3:6)

Since rounding selects the quantized value nearest the unquantized value, it gives a value which is never
more than �D=2 away from the exact value. If we denote the rounding error by �D=2 away from the
exact value. If we denote the rounding error by

er ¼ Qr(X)� X (3:7)

then

�D

2
� er

D

2
(3:8)

Truncation simply discards the low-order bits, giving a quantized value that is always less than or equal
to the exact value so

�D < et � 0 (3:9)

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal to the
exact value so

�D < emt � D (3:10)

The error resulting from quantization can be modeled as a random variable uniformly distributed over
the appropriate error range. Therefore, calculations with roundoff error can be considered error-free
calculations that have been corrupted by additive white noise. The mean of this noise for rounding is

mer ¼ E{er} ¼ 1
D

ðD=2
�D=2

erder ¼ 0 (3:11)
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where E{ } represents the operation of taking the expected value of a random variable. Similarly, the
variance of the noise for rounding is

s2
er ¼ E er �merð Þ2� � ¼ 1

D

ðD=2
�D=2

er �merð Þ2der ¼ D2

12
(3:12)

Likewise, for truncation,

met ¼ E{et} ¼ �D

2

s2
et ¼ E et �metð Þ2� � ¼ D2

12

(3:13)

and, for magnitude truncation,

met ¼ E emt �memtð Þ2� � ¼ D2

3
(3:14)

3.4 Floating-Point Quantization Errors

With floating-point arithmetic, it is necessary to quantize after both multiplications and additions. The
addition quantization arises because, prior to addition, the mantissa of the smaller number in the sum is
shifted right until the exponent of both numbers is the same. In general, this gives a sum mantissa that
is too long and so must be quantized.

We will assume that quantization in floating-point arithmetic is performed by rounding. Because of
the exponent in floating-point arithmetic, it is the relative error that is important. The relative error is
defined as

er ¼ Qr(X)� X
X

¼ er
X

(3:15)

Since X ¼ (�1)s m2c, Qr(X) ¼ (�1)sQr(m)2c and

er ¼ Qr(m)�m
m

¼ e
m

(3:16)

If the quantized mantissa has B bits to the right of the decimal point, jej<D=2 where, as before, D¼ 2�B.
Therefore, since 0.5�m< 1,

jerj < D (3:17)

If we assume that e is uniformly distributed over the range from �D=2 to D=2 and m is uniformly
distributed over 0.5–1, then

mer ¼ E
e
m

n o
¼ 0
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and

s2
er ¼ E

e
m

� �2� �
¼ 2

D

ð1
1=2

ðD=2
�D=2

e2

m2
dedm

¼ D2

6
¼ (0:167)2�2B (3:18)

In practice, the distribution of m is not exactly uniform. Actual measurements of roundoff noise in [1]
suggested that

s2
er � 0:23D2 (3:19)

while a detailed theoretical and experimental analysis in [2] determined

s2
er � 0:18D2 (3:20)

From Equation 3.15, we can represent a quantized floating-point value in terms of the unquantized value
and the random variable er using

Qr(X) ¼ X(1þ er) (3:21)

Therefore, the finite-precision product X1X2 and the sum X1þX2 can be written as

fl(X1X2) ¼ X1X2(1þ er) (3:22)

and

fl(X1 þ X2) ¼ (X1 þ X2)(1þ er) (3:23)

where er is zero-mean with the variance of Equation 3.20.

3.5 Roundoff Noise

To determine the roundoff noise at the output of a digital filter, we will assume that the noise due to a
quantization is stationary, white, and uncorrelated with the filter input, output, and internal variables.
This assumption is good if the filter input changes from sample to sample in a sufficiently complex
manner. It is not valid for zero or constant inputs for which the effects of rounding are analyzed from a
limit-cycle perspective.

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often
calculated for the case of a zero-mean white noise filter input signal x(n) of variance s2

x. This simplifies
calculation of the output roundoff noise because expected values of the form E{x(n)x(n� k)} are zero for
k 6¼ 0 and give s2

x when k¼ 0. This approach to analysis has been found to give estimates of the output
roundoff noise that are close to the noise actually observed for other input signals.

Another assumption that will be made in calculating roundoff noise is that the product of two
quantization errors is zero. To justify this assumption, consider the case of a 16-bit fixed-point processor.
In this case, a quantization error is of the order 2�15, while the product of two quantization errors is of
the order 2�30, which is negligible by comparison.
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If a linear system with impulse response g(n) is excited by white noise with mean mx and variance s2
x ,

the output is noise of mean [3, pp. 788–790]

my ¼ mx

X1
n¼�1

g(n) (3:24)

and variance

s2
y ¼ s2

x

X1
n¼�1

g2(n) (3:25)

Therefore, if g(n) is the impulse response from the point where a roundoff takes place to the filter output,
the contribution of that roundoff to the variance (mean-square value) of the output roundoff noise is
given by Equation 3.25 with s2

x replaced with the variance of the roundoff. If there is more than one
source of roundoff error in the filter, it is assumed that the errors are uncorrelated so the output noise
variance is simply the sum of the contributions from each source.

3.5.1 Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the convolution
summation

y(n) ¼
XN�1

k¼0

h(k)x(n� k) (3:26)

When fixed-point arithmetic is used and quantization is performed after each multiply, the result of the
N multiplies is N-times the quantization noise of a single multiply. For example, rounding after each
multiply gives, from Equations 3.6 and 3.12, an output noise variance of

s2
o ¼ N

2�2B

12
(3:27)

Virtually all digital signal processor integrated circuits contain one or more double-length accumulator
registers which permit the sum-of-products in Equation 3.26 to be accumulated without quantization. In
this case only a single quantization is necessary following the summation and

s2
o ¼

2�2B

12
(3:28)

For the floating-point roundoff noise case we will consider Equation 3.26 for N¼ 4 and then generalize
the result to other values of N. The finite-precision output can be written as the exact output plus an error
term e(n). Thus,

y(n)þ e(n) ¼ h(0)x(n) 1þ e1(n)½ �½fð
þ h(1)x(n� 1) 1þ e2(n)½ �� 1þ e3(n)½ �
þ h(2)x(n� 2) 1þ e4(n)½ �g 1þ e5(n)f g
þ h(3)x(n� 3) 1þ e6(n)½ �Þ 1þ e7(n)½ � (3:29)
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In Equation 3.29, e1(n) represents the error in the first product, e2(n) the error in the second product,
e3(n) the error in the first addition, etc. Notice that it has been assumed that the products are summed in
the order implied by the summation of Equation 3.26.

Expanding Equation 3.29, ignoring products of error terms, and recognizing y(n) gives

e(n) ¼ h(0)x(n) e1(n)þ e3(n)þ e5(n)þ e7(n)½ �
þ h(1)x(n� 1) e2(n)þ e3(n)þ e5(n)þ e7(n)½ �
þ h(2)x(n� 2) e4(n)þ e5(n)þ e7(n)½ �
þ h(3)x(n� 3) e6(n)þ e7(n)½ � (3:30)

Assuming that the input is white noise of variance s2
x so that E{x(n)x(n� k)} is zero for k 6¼ 0, and

assuming that the errors are uncorrelated,

E e2(n)
� � ¼ 4h2(0)þ 4h2(1)þ 3h2(2)þ 2h2(3)

� 	
s2
xs

2
er (3:31)

In general, for any N,

s2
o ¼ E e2(n)

� � ¼ Nh2(0)þ
XN�1

k¼1

(N þ 1� k)h2(k)

" #
s2
xs

2
er (3:32)

Notice that if the order of summation of the product terms in the convolution summation is changed,
then the order in which the h(k)’s appear in Equation 3.32 changes. If the order is changed so that
the h(k) with smallest magnitude is first, followed by the next smallest, etc., then the roundoff noise
variance is minimized. However, performing the convolution summation in nonsequential order greatly
complicates data indexing and so may not be worth the reduction obtained in roundoff noise.

3.5.2 Roundoff Noise in Fixed-Point IIR Filters

To determine the roundoff noise of a fixed-point infinite impulse response (IIR) filter realization,
consider a causal first-order filter with impulse response

h(n) ¼ anu(n) (3:33)

realized by the difference equation

y(n) ¼ ay(n� 1)þ x(n) (3:34)

Due to roundoff error, the output actually obtained is

ŷ(n) ¼ Q ay(n� 1)þ x(n)f g ¼ ay(n� 1)þ x(n)þ e(n) (3:35)

where e(n) is a random roundoff noise sequence. Since e(n) is injected at the same point as the input, it
propagates through a system with impulse response h(n). Therefore, for fixed-point arithmetic with
rounding, the output roundoff noise variance from Equations 3.6, 3.12, 3.25, and 3.33 is

s2
o ¼

D2

12

X1
n¼�1

h2(n) ¼ D2

12

X1
n¼0

a2n ¼ 2�2B

12
1

1� a2
(3:36)
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With fixed-point arithmetic there is the possibility of overflow following addition. To avoid overflow it is
necessary to restrict the input signal amplitude. This can be accomplished by either placing a scaling
multiplier at the filter input or by simply limiting the maximum input signal amplitude. Consider the
case of the first-order filter of Equation 3.34. The transfer function of this filter is

H(e jv) ¼ Y(e jv)
X(e jv)

¼ 1
e jv � a

(3:37)

so

H(e jv)


 

2¼ 1

1þ a2 � 2a cos(v)
(3:38)

and

H(e jv)


 



max
¼ 1

1� jaj (3:39)

The peak gain of the filter is 1= 1� jajð Þ so limiting input signal amplitudes to x(n)j j � 1� jaj will make
overflows unlikely.

An expression for the output roundoff noise-to-signal ratio can easily be obtained for the case where
the filter input is white noise, uniformly distributed over the interval from � 1� jajð Þ to 1� jajð Þ [4,5].
In this case,

s2
x ¼

1
2 1� jajð Þ

ð1�jaj

� 1�jajð Þ

x2dx ¼ 1
3

1� jajð Þ2 (3:40)

so, from Equation 3.25,

s2
y ¼

1
3

1� jajð Þ2
1� a2

(3:41)

Combining Equations 3.36 and 3.41 then gives

s2
o

s2
y
¼ 2�2B

12
1

1� a2

� �
3

1� a2

1� jajð Þ2
 !

¼ 2�2B

12
3

1� jajð Þ2 (3:42)

Notice that the noise-to-signal ratio increases without bound as jaj ! 1.
Similar results can be obtained for the case of the causal second-order filter realized by the difference

equation

y(n) ¼ 2r cos(u)y(n� 1)� r2y(n� 2)þ x(n) (3:43)

This filter has complex-conjugate poles at re�ju and impulse response

h(n) ¼ 1
sin(u)

rnsin (nþ 1)u½ �u(n) (3:44)
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Due to roundoff error, the output actually obtained is

ŷ(n) ¼ 2rcos(u)y(n� 1)� r2y(n� 2)þ x(n)þ e(n) (3:45)

There are two noise sources contributing to e(n) if quantization is performed after each multiply, and
there is one noise source if quantization is performed after summation. Since

X1
n¼�1

h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:46)

the output roundoff noise is

s2
o ¼ n

2�2B

12
1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:47)

where n¼ 1 for quantization after summation, and n¼ 2 for quantization after each multiply.
To obtain an output noise-to-signal ratio we note that

H(ejv) ¼ 1
1� 2rcos(u)e�jv þ r2e�j2v

(3:48)

and, using the approach of [6],

H(e jv)


 

2

max¼
1

4r2 sat 1þr2
2r cos(u)

 �� 1þr2
2r cos(u)

� 	2 þ 1�r2
2r sin(u)

� 	2n o (3:49)

where

sat(m) ¼
1 m > 1
m �1 � m � 1
�1 m < �1

8<
: (3:50)

Following the same approach as for the first-order case then gives

s2
o

s2
y
¼ n

2�2B

12
1þ r2

1� r2
3

(1þ r2)2 � 4r2cos2(u)

	 1

4r2 sat 1þr2
2r cos(u)

 �� 1þr2
2r cos(u)

� 	2 þ 1�r2
2r sin(u)

� 	2n o (3:51)

Figure 3.1 is a contour plot showing the noise-to-signal ratio of Equation 3.51 for n¼ 1 in units of the
noise variance of a single quantization, 2�2B=12. The plot is symmetrical about u¼ 908, so only the range
from 08 to 908 is shown. Notice that as r ! 1, the roundoff noise increases without bound. Also notice
that the noise increases as u ! 08.

It is possible to design state-space filter realizations that minimize fixed-point roundoff noise [7–10].
Depending on the transfer function being realized, these structures may provide a roundoff noise level
that is orders-of-magnitude lower than for a nonoptimal realization. The price paid for this reduction in
roundoff noise is an increase in the number of computations required to implement the filter. For an
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Nth-order filter the increase is from roughly 2N multiplies for a direct form realization to roughly
(Nþ 1)2 for an optimal realization. However, if the filter is realized by the parallel or cascade connection
of first- and second-order optimal subfilters, the increase is only to about 4N multiplies. Furthermore,
near-optimal realizations exist that increase the number of multiplies to only about 3N [10].

3.5.3 Roundoff Noise in Floating-Point IIR Filters

For floating-point arithmetic it is first necessary to determine the injected noise variance of each
quantization. For the first-order filter this is done by writing the computed output as

y(n)þ e(n) ¼ ay(n� 1) 1þ e1(n)ð Þ þ x(n)½ � 1þ e2(n)ð Þ (3:52)

where
e1(n) represents the error due to the multiplication
e2(n) represents the error due to the addition

Neglecting the product of errors, Equation 3.52 becomes

y(n)þ e(n) � ay(n� 1)þ x(n)þ ay(n� 1)e1(n)þ ay(n� 1)e2(n)þ x(n)e2(n) (3:53)

Comparing Equations 3.34 and 3.53, it is clear that

e(n) ¼ ay(n� 1)e1(n)þ ay(n� 1)e2(n)þ x(n)e2(n) (3:54)

Taking the expected value of e2(n) to obtain the injected noise variance then gives

E e2(n)
� � ¼ a2E y2(n� 1)

� �
E e21(n)
� �þ a2E y2(n� 1)

� �
E e22(n)
� �

þ E x2(n)
� �

E e22(n)
� �þ E x(n)y(n� 1)f gE e22(n)

� �
(3:55)
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FIGURE 3.1 Normalized fixed-point roundoff noise variance.
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To carry this further it is necessary to know something about the input. If we assume the input is zero-mean
white noise with variance s2

x , then E x2(n)f g ¼ s2
x and the input is uncorrelated with past values of the

output so E{x(n)y(n� 1)}¼ 0 giving

E e2(n)
� � ¼ 2a2s2

ys
2
er þ s2

xs
2
er (3:56)

and

s2
o ¼ 2a2s2

ys
2
er þ s2

xs
2
er

� � X1
n¼�1

h2(n) ¼ 2a2s2
y þ s2

x

1� a2
s2
er (3:57)

However,

s2
y ¼ s2

x

X1
n¼�1

h2(n) ¼ s2
x

1� a2
(3:58)

so

s2
o ¼

1þ a2

(1� a2)2
s2
ers

2
x ¼

1þ a2

1� a2
s2
ers

2
y (3:59)

and the output roundoff noise-to-signal ratio is

s2
o

s2
y
¼ 1þ a2

1� a2
s2
er (3:60)

Similar results can be obtained for the second-order filter of Equation 3.43 by writing

y(n)þ e(n) ¼ 2rcos(u)y(n� 1) 1þ e1(n)ð Þ � r2y(n� 2) 1þ e2(n)ð Þ� 		 1þ e3(n)½ � þ x(n)
 �

1þ e4(n)ð Þ
(3:61)

Expanding with the same assumptions as before gives

e(n) � 2rcos(u)y(n� 1) e1(n)þ e3(n)þ e4(n)½ �
� r2y(n� 2) e2(n)þ e3(n)þ e4(n)½ � þ x(n)e4(n) (3:62)

and

E e2(n)
� � ¼ 4r2cos2(u)s2

y3s
2
er þ r2s2

y3s
2
er

þ s2
xs

2
er � 8r3cos(u)s2

erE y(n� 1)y(n� 2)f g (3:63)

However,

E y(n� 1)y(n� 2)f g ¼ E 2r cos(u)y(n� 2)� r2y(n� 3)þ x(n� 1)
� 	

y(n� 2)
� �

¼ 2r cos(u)E y2(n� 2)
� �� r2E y(n� 2)y(n� 3)f g

¼ 2r cos(u)E y2(n� 2)
� �� r2E y(n� 1)y(n� 2)f g

¼ 2r cos(u)
1þ r2

s2
y (3:64)
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so

E e2(n)
� � ¼ s2

ers
2
x þ 3r2 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �
s2
ers

2
y (3:65)

and

s2
o ¼ E e2(n)

� � X1
n¼�1

h2(n)j s2
ers

2
x þ 3r4 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �
s2
ers

2
y

� �
(3:66)

where from Equation 3.46,

j ¼
X1

n¼�1
h2(n) ¼ 1þ r2

1� r2
1

(1þ r2)2 � 4r2cos2(u)
(3:67)

Since s2
y ¼ js2

x , the output roundoff noise-to-signal ratio is then

s2
o

s2
y
¼ j 1þ j 3r2 þ 12r2cos2(u)� 16r4cos2(u)

1þ r2

� �� �
s2
er (3:68)

Figure 3.2 is a contour plot showing the noise-to-signal ratio of Equation 3.68 in units of the noise
variance of a single quantization s2

er . The plot is symmetrical about u¼ 908, so only the range from 08 to
908 is shown. Notice the similarity of this plot to that of Figure 3.1 for the fixed-point case. It has been
observed that filter structures generally have very similar fixed-point and floating-point roundoff
characteristics [2]. Therefore, the techniques of [7–10], which were developed for the fixed-point case,
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FIGURE 3.2 Normalized floating-point roundoff noise variance.
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can also be used to design low-noise floating-point filter realizations. Furthermore, since it is not
necessary to scale the floating-point realization, the low-noise realizations need not require significantly
more computation than the direct form realization.

3.6 Limit Cycles

A limit cycle, sometimes referred to as a multiplier roundoff limit cycle, is a low-level oscillation that
can exist in an otherwise stable filter as a result of the nonlinearity associated with rounding (or
truncating) internal filter calculations [11]. Limit cycles require recursion to exist and do not occur in
nonrecursive FIR filters.

As an example of a limit cycle, consider the second-order filter realized by

y(n) ¼ Qr
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �
(3:69)

where Qr{ } represents quantization by rounding. This is stable filter with poles at 0.4375� j0.6585.
Consider the implementation of this filter with 4-bit (3-bit and a sign bit) two’s complement fixed-point
arithmetic, zero initial conditions (y(�1)¼ y(�2)¼ 0), and an input sequence x(n) ¼ 3

8 d(n), where d(n)
is the unit impulse or unit sample. The following sequence is obtained:

y(0) ¼ Qr
3
8

� �
¼ 3

8

y(1) ¼ Qr
21
64

� �
¼ 3

8

y(2) ¼ Qr
3
32

� �
¼ 1

8

y(3) ¼ Qr � 1
8

� �
¼ � 1

8

y(4) ¼ Qr � 3
16

� �
¼ � 1

8

y(5) ¼ Qr � 1
32

� �
¼ 0

y(6) ¼ Qr
5
64

� �
¼ 1

8

y(7) ¼ Qr
7
64

� �
¼ 1

8

y(8) ¼ Qr
1
32

� �
¼ 0

y(9) ¼ Qr � 5
64

� �
¼ � 1

8

y(10) ¼ Qr � 7
64

� �
¼ � 1

8

y(11) ¼ Qr � 1
32

� �
¼ 0

y(12) ¼ Qr
5
64

� �
¼ 1

8

(3:70)
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Notice that while the input is zero except for the first sample, the output oscillates with amplitude 1=8 and
period 6.

Limit cycles are primarily of concern in fixed-point recursive filters. As long as floating-point filters are
realized as the parallel or cascade connection of first- and second-order subfilters, limit cycles will
generally not be a problem since limit cycles are practically not observable in first- and second-order
systems implemented with 32-bit floating-point arithmetic [12]. It has been shown that such systems
must have an extremely small margin of stability for limit cycles to exist at anything other than underflow
levels, which are at an amplitude of less than 10�38 [12].

There are at least three ways of dealing with limit cycles when fixed-point arithmetic is used. One is to
determine a bound on the maximum limit cycle amplitude, expressed as an integral number of
quantization steps [13]. It is then possible to choose a wordlength that makes the limit cycle amplitude
acceptably low. Alternately, limit cycles can be prevented by randomly rounding calculations up or down
[14]. However, this approach is complicated to implement. The third approach is to properly choose the
filter realization structure and then quantize the filter calculations using magnitude truncation [15,16].
This approach has the disadvantage of producing more roundoff noise than truncation or rounding (see
Equations 3.12 through 3.14).

3.7 Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when two
numbers of the same sign add to give a value having magnitude greater than one. Since numbers
with magnitude greater than one are not representable, the result overflows. For example, the two’s
complement numbers 0.101 (5=8) and 0.100 (4=8) add to give 1.001 which is the two’s complement
representation of �7=8.

The overflow characteristic of two’s complement arithmetic can be represented as R{ } where

R{X} ¼
X � 2 X � 1
X �1 � X < 1

X þ 2 X < �1

8<
: (3:71)

For the example just considered, R{9=8}¼� 7=8.
An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high-level

oscillation that can exist in an otherwise stable fixed-point filter due to the gross nonlinearity associated
with the overflow of internal filter calculations [17]. Like limit cycles, overflow oscillations require
recursion to exist and do not occur in nonrecursive FIR filters. Overflow oscillations also do not occur
with floating-point arithmetic due to the virtual impossibility of overflow.

As an example of an overflow oscillation, once again consider the filter of Equation 3.69 with 4-bit
fixed-point two’s complement arithmetic and with the two’s complement overflow characteristic of
Equation 3.71:

y(n) ¼ Qr R
7
8
y(n� 1)� 5

8
y(n� 2)þ x(n)

� �� �
(3:72)

In this case, we apply the input

x(n) ¼ � 3
4
d(n)� 5

8
d(n� 1)

¼ � 3
4
,� 5

8
, 0, 0, . . .

� �
(3:73)

3-14 Digital Signal Processing Fundamentals



giving the output sequence

y(0) ¼ Qr R � 3
4

� �� �
¼ Qr � 3

4

� �
¼ � 3

4

y(1) ¼ Qr R � 41
32

� �� �
¼ Qr

23
32

� �
¼ 3

4

y(2) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

y(3) ¼ Qr R � 79
64

� �� �
¼ Qr

49
64

� �
¼ 3

4

y(4) ¼ Qr R
77
64

� �� �
¼ Qr � 51

64

� �
¼ � 3

4

y(5) ¼ Qr R � 9
8

� �� �
¼ Qr

7
8

� �
¼ 7

8

y(6) ¼ Qr R
79
64

� �� �
¼ Qr � 49

64

� �
¼ � 3

4

y(7) ¼ Qr R � 77
64

� �� �
¼ Qr

51
64

� �
¼ 3

4

y(8) ¼ Qr R
9
8

� �� �
¼ Qr � 7

8

� �
¼ � 7

8

(3:74)

This is a large-scale oscillation with nearly full-scale amplitude.
There are several ways to prevent overflow oscillations in fixed-point filter realizations. The most

obvious is to scale the filter calculations so as to render overflow impossible. However, this may
unacceptably restrict the filter dynamic range. Another method is to force completed sums-of-products
to saturate at �1, rather than overflowing [18,19]. It is important to saturate only the completed sum,
since intermediate overflows in two’s complement arithmetic do not affect the accuracy of the final
result. Most fixed-point digital signal processors provide for automatic saturation of completed sums if
their saturation arithmetic feature is enabled. Yet another way to avoid overflow oscillations is to use a
filter structure for which any internal filter transient is guaranteed to decay to zero [20]. Such structures
are desirable anyway, since they tend to have low roundoff noise and be insensitive to coefficient
quantization [21].

3.8 Coefficient Quantization Error

Each filter structure has its own finite, generally nonuniform grids of realizable pole and zero locations when
the filter coefficients are quantized to a finite wordlength. In general the pole and zero locations desired in
filter do not correspond exactly to the realizable locations. The error in filter performance (usually measured
in terms of a frequency response error) resulting from the placement of the poles and zeros at the nonideal but
realizable locations is referred to as coefficient quantization error.

Consider the second-order filter with complex-conjugate poles

l ¼ re�ju

¼ lr � jli
¼ r cos(u)� jr sin(u) (3:75)
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and transfer function

H(z) ¼ 1
1� 2r cos(u)z�1 þ r2z�2

(3:76)

realized by the difference equation

y(n) ¼ 2r cos(u)y(n� 1)� r2y(n� 2)þ x(n) (3:77)

Figure 3.3 from [5] shows that quantizing the difference equation coefficients results in a nonuniform
grid of realizable pole locations in the z-plane. The grid is defined by the intersection of vertical lines
corresponding to quantization of 2lr and concentric circles corresponding to quantization of �r2. The
sparseness of realizable pole locations near Z¼�1 will result in a large coefficient quantization error for
poles in this region.

Figure 3.4 gives an alternative structure to Equation 3.77 for realizing the transfer function of Equation
3.76. Notice that quantizing the coefficients of this structure corresponds to quantizing lr and li. As
shown in Figure 3.5 from [5], this results in a uniform grid of realizable pole locations. Therefore, large
coefficient quantization errors are avoided for all pole locations.

It is well established that filter structures with low roundoff noise tend to be robust to coefficient
quantization, and visa versa [22–24]. For this reason, the uniform grid structure of Figure 3.4 is also
popular because of its low roundoff noise. Likewise, the low-noise realizations of [7–10] can be expected
to be relatively insensitive to coefficient quantization, and digital wave filters and lattice filters that are
derived from low-sensitivity analog structures tend to have not only low coefficient sensitivity, but also
low roundoff noise [25,26].
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FIGURE 3.3 Realizable pole locations for the difference equation of Equation 3.76.
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