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Preface

Digital signal processing (DSP) is concerned with the theoretical and practical aspects of representing
information-bearing signals in a digital form and with using computers, special-purpose hardware and
software, or similar platforms to extract information, process it, or transform it in useful ways. Areas
where DSP has made a significant impact include telecommunications, wireless and mobile communi-
cations, multimedia applications, user interfaces, medical technology, digital entertainment, radar and
sonar, seismic signal processing, and remote sensing, to name just a few.

Given the widespread use of DSP, a need developed for an authoritative reference, written by the top
experts in the world, that would provide information on both theoretical and practical aspects in a
manner that was suitable for a broad audience—ranging from professionals in electrical engineering,
computer science, and related engineering and scientific professions to managers involved in technical
marketing, and to graduate students and scholars in the field. Given the abundance of basic and
introductory texts on DSP, it was important to focus on topics that were useful to engineers and scholars
without overemphasizing those topics that were already widely accessible. In short, the DSP handbook
was created to be relevant to the needs of the engineering community.

A task of this magnitude could only be possible through the cooperation of some of the foremost DSP
researchers and practitioners. That collaboration, over 10 years ago, produced the first edition of the
successful DSP handbook that contained a comprehensive range of DSP topics presented with a clarity of
vision and a depth of coverage to inform, educate, and guide the reader. Indeed, many of the chapters,
written by leaders in their field, have guided readers through a unique vision and perception garnered by
the authors through years of experience.

The second edition of the DSP handbook consists of Digital Signal Processing Fundamentals; Video,
Speech, and Audio Signal Processing and Associated Standards; and Wireless, Networking, Radar, Sensor
Array Processing, and Nonlinear Signal Processing to ensure that each part is dealt with in adequate detail,
and that each part is then able to develop its own individual identity and role in terms of its educational
mission and audience. I expect each part to be frequently updated with chapters that reflect the changes
and new developments in the technology and in the field. The distribution model for the DSP handbook
also reflects the increasing need by professionals to access content in electronic form anywhere and at
anytime.

Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, as the name
implies, provides a comprehensive coverage of the foundations of signal processing related to wireless,
radar, space–time coding, and mobile communications, together with associated applications to network-
ing, storage, and communications.

This book needs to be continuously updated to include newer aspects of these technologies, and I look
forward to suggestions on how this handbook can be improved to serve you better.
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MATLAB1 is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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A SENSOR ARRAY SYSTEM CONSISTS OF a number of spatially distributed elements, such as
dipoles, hydrophones, geophones or microphones, followed by receivers and a processor. The
array samples propagate wavefields in time and space. The receivers and the processor vary

in mode of implementation and complexity according to the types of signals encountered, the desired
operation, and the adaptability of the array. For example, the array may be narrowband or wideband
and the processor may be for determining the directions of the sources of signals or for beamforming to
reject interfering signals and to enhance the quality of the desired signal in a communication system. The
broad range of applications and the multifaceted nature of technical challenges for modern array signal
processing have provided a fertile ground for contributions by and collaborations among researchers
and practitioners from many disciplines, particularly those from the signal processing, statistics, and
numerical linear algebra communities.

The following chapters present a sampling of the latest theory, algorithms, and applications related to
array signal processing. The range of topics and algorithms include some which have been in use for
more than a decade as well as some which are results of active current research. The sections on
applications give examples of current areas of significant research and development.

Modern array signal processing often requires the use of the formalism of complex variables in
modeling received signals and noise. Chapter 1 provides an introduction to complex random processes
which are useful for bandpass communication systems and arrays. A classical use for arrays of sensors is
to exploit the differences in the location (direction) of sources of transmitted signals to perform spatial
filtering. Such techniques are reviewed in Chapter 2.

Another common use of arrays is the estimation of informative parameters about the wavefields
impinging on the sensors. The most common parameter of interest is the direction of arrival (DOA) of a
wave. Subspace techniques have been advanced as a means of estimating the DOAs of sources, which are
very close to each other, with high accuracy. The large number of developments in such techniques is
reflected in the topics covered in Chapters 3 through 7. Chapter 3 gives a general overview of subspace
processing for direction finding, while Chapter 4 discusses a particular type of subspace algorithm that is
extended to sensing of azimuth and elevation angles with planar arrays. Most estimators assume

I-2 Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing



knowledge of the needed statistical characteristics of the measurement noise. This requirement is relaxed
in the approach given in Chapter 5. Chapter 6 extends the capabilities of traditional sensors to those
which can measure the complete electric and magnetic field components and provides estimators which
exploit such information. When signal sources move, or when computational requirements for real-time
processing prohibit batch estimation of the subspaces, computationally efficient adaptive subspace
updating techniques are called for. Chapter 7 presents many of the recent techniques that have been
developed for this purpose. Before subspace methods are used for estimating the parameters of the waves
received by an array, it is necessary to determine the number of sources which generate the waves. This
aspect of the problem, often termed detection, is discussed in Chapter 8.

An important area of application for arrays is in the field of communications, particularly as it pertains
to emerging mobile and cellular systems. Chapter 9 gives an overview of a number of techniques for
improving the reception of signals in mobile systems, while Chapter 10 considers problems that arise in
beamforming in the presence of multipath signals—a common occurrence in mobile communications.
Chapter 12 discusses radar systems that employ sensor arrays, thereby providing the opportunity for
space–time signal processing for improved resolution and target detection.
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1.1 Introduction

Much of modern digital signal processing is concerned with the extraction of information from signals
which are noisy, or which behave randomly while still revealing some attribute or parameter of a system
or environment under observation. The term in popular use now for this kind of computation is
‘‘statistical signal processing,’’ and much of this handbook is devoted to this very subject. Statistical
signal processing is classical statistical inference applied to problems of interest to electrical engineers,
with the added twist that answers are often required in ‘‘real time,’’ perhaps seconds or less. Thus,
computational algorithms are often studied hand-in-hand with statistics.

One thing that separates the phenomena electrical engineers study from that of agronomists, econo-
mists, or biologists, is that the data they process are very often complex; that is, the data points come in
pairs of the form xþ jy, where x is called the real part, y the imaginary part, and j ¼ ffiffiffiffiffiffiffi�1

p
. Complex

numbers are entirely a human intellectual creation: there are no complex physical measurable quantities
such as time, voltage, current, money, employment, crop yield, drug efficacy, or anything else. However,
it is possible to attribute to physical phenomena an underlying mathematical model that associates
complex causes with real results. Paradoxically, the introduction of a complex-number-based theory can
often simplify mathematical models.
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Beyond their use in the development of analytical models, complex numbers often appear as actual
data in some information processing systems. For representation and computation purposes, a complex
number is nothing more than an ordered pair of real numbers. One just mentally attaches the ‘‘j’’ to one
of the two numbers, then carries out the arithmetic or signal processing that this interpretation of
the data implies.

One of the most well-known systems in electrical engineering that generates complex data from real
measurements is the quadrature, or IQ, demodulator, shown in Figure 1.1. The theory behind this system
is as follows. A real bandpass signal, with bandwidth small compared to its center frequency, has the form

s(t) ¼ A(t) cos (vct þ f(t)), (1:1)

where
vc is the center frequency
A(t) and f(t) are the amplitude and angle modulation, respectively

By viewing A(t) and f(t) together as the polar coordinates for a complex function g(t), i.e.,

g(t) ¼ A(t)ejf(t), (1:2)

we imagine that there is an underlying ‘‘complex modulation’’ driving the generation of s(t), and thus

s(t) ¼ Re{g(t)ejvct}: (1:3)

Again, s(t) is physically measurable, while g(t) is a mathematical creation. However, the introduction of
g(t) does much to simplify and unify the theory of bandpass communication. It is often the case that
information to be transmitted via an electronic communication channel can be mapped directly into the
magnitude and phase, or the real and imaginary parts, of g(t). Likewise, it is possible to demodulate s(t),
and thus ‘‘retrieve’’ the complex function g(t) and the information it represents. This is the purpose of the
quadrature demodulator shown in Figure 1.1. In Section 1.2, we will examine in some detail the operation
of this demodulator, but for now note that it has one real input and two real outputs, which are
interpreted as the real and imaginary parts of an information-bearing complex signal.

Any application of statistical inference requires the development of a probabilistic model for the
received or measured data. This means that we imagine the data to be a ‘‘realization’’ of a multivariate
random variable, or a stochastic process, which is governed by some underlying probability space of
which we have incomplete knowledge. Thus, the purpose of this section is to give an introduction to
probabilistic models for complex data. The topics covered are second-order stochastic processes and their

s(t) x(t)

y(t)

2 cos ωc t

–2 sin ωc t

LPF

LPF

FIGURE 1.1 Quadrature demodulator.
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complex representations, the multivariate complex Gaussian distribution, and related distributions which
appear in statistical tests. Special attention will be paid to a particular class of random variables, called
‘‘circular’’ complex random variables. Circularity is a type of symmetry in the distributions of the real and
imaginary parts of complex random variables and stochastic processes, which can be physically motiv-
ated in many applications and is almost always assumed in the statistical signal processing literature.
Complex representations for signals and the assumption of circularity are particularly useful in the
processing of data or signals from an array of sensors, such as radar antennas. The reader will find them
used throughout this chapter of the handbook.

1.2 Complex Envelope Representations of Real Bandpass
Stochastic Processes

1.2.1 Representations of Deterministic Signals

The motivation for using complex numbers to represent real phenomena, such as radar or communi-
cation signals, may be best understood by first considering the complex envelope of a real deterministic
finite-energy signal.

Let s(t) be a real signal with a well-defined Fourier transform S(v). We say that s(t) is bandlimited if
the support of S(v) is finite, that is,

S(v)
¼ 0 v =2 B
6¼ 0 v =2 B

�
, (1:4)

where B is the frequency band of the signal, usually a finite union of intervals on the v-axis such as

B ¼ [�v2, �v1] [ [v1,v2]: (1:5)

The Fourier transform of such a signal is illustrated in Figure 1.2.
Since s(t) is real, the Fourier transform S(v) exhibits conjugate symmetry, i.e., S(�v)¼ S*(v). This

implies that knowledge of S(v), for v� 0 only, is sufficient to uniquely identify s(t).
The complex envelope of s(t), which we denote g(t), is a frequency-shifted version of the complex

signal whose Fourier transform is S(v) for positive v, and 0 for negative v. It is found by the operation
indicated graphically by the diagram in Figure 1.3, which could be written

g(t) ¼ LPF{2s(t)e�jvct}: (1:6)

vc is the center frequency of the band B
‘‘LPF’’ represents an ideal lowpass filter whose bandwidth is greater than half the bandwidth of s(t),

but much less than 2vc

S(ω)

–ωc ωc
ω

FIGURE 1.2 Fourier transform of a bandpass signal.
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The Fourier transform of g(t) is given by

G(v) ¼ 2S(v� vc) jvj < BW
0 otherwise

�
: (1:7)

The Fourier transform of g(t), for s(t) as given in Figure 1.2, is shown in Figure 1.4.
The inverse operation which gives s(t) from g(t) is

s(t) ¼ Re{g(t)ejvct}: (1:8)

Our interest in g(t) stems from the information it represents. Real bandpass processes can be written in
the form

s(t) ¼ A(t) cos (vct þ f(t)), (1:9)

where A(t) and f(t) are slowly varying functions relative to the unmodulated carrier cos(vct), and carry
information about the signal source. From the complex envelope representation (Equation 1.3), we know
that

g(t) ¼ A(t)ejf(t) (1:10)

and hence g(t), in its polar form, is a direct representation of the information-bearing part of the signal.
In what follows we will outline a basic theory of complex representations for real stochastic processes,

instead of the deterministic signals discussed above. We will consider representations of second-order
stochastic processes, those with finite variances and correlations and well-defined spectral properties.
Two classes of signals will be treated separately: those with finite energy (such as radar signals) and those
with finite power (such as radio communication signals).

s(t) x(t)

2e–jωct

LPF

FIGURE 1.3 Quadrature demodulator.

ω

LPF response

G(ω)

FIGURE 1.4 Fourier transform of the complex representation.
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1.2.2 Finite-Energy Second-Order Stochastic Processes

Let x(t) be a real, second-order stochastic process, with the defining property

E{x2(t)} < 1, all t: (1:11)

Furthermore, let x(t) be finite-energy, by which we mean

ð1

�1
E{x2(t)}dt < 1: (1:12)

The autocorrelation function for x(t) is defined as

Rxx(t1, t2) ¼ E{x(t1)x(t2)}, (1:13)

and from Equation 1.11 and the Cauchy–Schwartz inequality we know that Rxx is finite for all t1, t2.
The bifrequency energy spectral density function is

Sxx(v1,v2) ¼
ð1

�1

ð1

�1
Rxx(t1, t2)e

�jv1t1 eþjv2t2dt1dt2: (1:14)

It is assumed that Sxx(v1, v2) exists and is well defined. In an advanced treatment of stochastic processes
(e.g., Loeve [1]) it can be shown that Sxx(v1, v2) exists if and only if the Fourier transform of x(t) exists
with probability 1; in this case, the process is said to be ‘‘harmonizable.’’

If x(t) is the input to a linear time-invariant (LTI) systemH, and y(t) is the output process, as shown in
Figure 1.5, then y(t) is also a second-order finite-energy stochastic process. The bifrequency energy
spectral density of y(t) is

Syy(v1,v2) ¼ H(v1)H*(v2)Sxx(v1,v2): (1:15)

This last result aids in a natural interpretation of the function Sxx(v, v), which we denote as the ‘‘energy
spectral density.’’ For any process, the total energy Ex is given by

Ex ¼ 1
2p

ð1

�1
Sxx(v,v)dv: (1:16)

If we pass x(t) through an ideal filter whose frequency response is 1 in the band B and 0 elsewhere, then
the total energy in the output process is

Ey ¼ 1
2p

ð
B

Sxx(v,v)dv: (1:17)

x(t) y(t)
H

FIGURE 1.5 LTI system with stochastic input and output.
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This says that the energy in the stochastic process x(t) can be partitioned into different frequency bands,
and the energy in each band is found by integrating Sxx(v, v) over the band.

We can define a ‘‘bandpass’’ stochastic process, with band B, as one that passes undistorted through an
ideal filterH whose frequency response is 1 within the frequency band and 0 elsewhere. More precisely, if
x(t) is the input to an ideal filter H, and the output process y(t) is equivalent to x(t) in the mean-square
sense, that is,

E{(x(t)� y(t))2} ¼ 0, all t, (1:18)

then we say that x(t) is a bandpass process with frequency band equal to the passband of H. This is
equivalent to saying that the integral of Sxx(v1, v2) outside of the region v1, v2 2 B is 0.

1.2.3 Second-Order Complex Stochastic Processes

A ‘‘complex’’ stochastic process z(t) is one given by

z(t) ¼ x(t)þ jy(t) (1:19)

where the real and imaginary parts, x(t) and y(t), respectively, are any two stochastic processes defined on
a common probability space. A finite-energy, second-order complex stochastic process is one in which
x(t) and y(t) are both finite-energy, second-order processes, and thus have all the properties given
above. Furthermore, because the two processes have a joint distribution, we can define the ‘‘cross-
correlation function’’

Rxy(t1, t2) ¼ E{x(t1)y(t2)}: (1:20)

By far the most widely used class of second-order complex processes in signal processing is the class of
‘‘circular’’ complex processes. A circular complex stochastic process is one with the following two
defining properties:

Rxx(t1, t2) ¼ Ryy(t1, t2) (1:21)

and

Rxy(t1, t2) ¼ �Ryx(t1, t2), all t1, t2: (1:22)

From Equations 1.21 and 1.22 we have that

E{z(t1)z*(t2)} ¼ 2Rxx(t1, t2)þ 2jRyx(t1, t2) (1:23)

and furthermore

E{z(t1)z(t2)} ¼ 0, all t1, t2: (1:24)

This implies that all of the joint second-order statistics for the complex process z(t) are represented in the
function

Rzz(t1, t2) ¼ E{z(t1)z*(t2)} (1:25)
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which we define unambiguously as the autocorrelation function for z(t). Likewise, the bifrequency
spectral density function for z(t) is given by

Szz(v1,v2) ¼
ð1

�1

ð1

�1
Rzz(t1, t2)e

�jv1t1 eþjv2t2dt1dt2: (1:26)

The functions Rzz(t1, t2) and Szz(v1, v2) exhibit Hermitian symmetry, i.e.,

Rzz(t1, t2) ¼ Rzz* (t2, t1) (1:27)

and

Szz(v1,v2) ¼ Szz* (v2,v1): (1:28)

However, there is no requirement that Szz(v1, v2) exhibit the conjugate symmetry for positive and
negative frequencies, given in Equation 1.6, as is the case for real stochastic processes.

Other properties of real second-order stochastic processes given above carry over to complex pro-
cesses. Namely, if H is a LTI system with arbitrary complex impulse response h(t), frequency response
H(v), and complex input z(t), then the complex output w(t) satisfies

Sww(v1,v2) ¼ H(v1)H*(v2)Szz(v1,v2): (1:29)

A bandpass circular complex stochastic process is one with finite spectral support in some arbitrary
frequency band B.

Complex stochastic processes undergo a frequency translation when multiplied by a deterministic
complex exponential. If z(t) is circular, then

w(t) ¼ ejvctz(t) (1:30)

is also circular, and has bifrequency energy spectral density function

Sww(v1,v2) ¼ Szz(v1 � vc,v2 � vc): (1:31)

1.2.4 Complex Representations of Finite-Energy
Second-Order Stochastic Processes

Let s(t) be a bandpass finite-energy second-order stochastic process, as defined in Section 1.2.2. The
complex representation of s(t) is found by the same down-conversion and filtering operation described
for deterministic signals:

g(t) ¼ LPF{2s(t)e�jvct}: (1:32)

The lowpass filter (LPF) in Equation 1.32 is an ideal filter that passes the baseband components of the
frequency-shifted signal, and attenuates the components centered at frequency �2vc.

The inverse operation for Equation 1.32 is given by

ŝ(t) ¼ Re{g(t)ejvct}: (1:33)
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Because the operation in Equation 1.32 involves the integral of a stochastic process, which we define
using mean-square stochastic convergence, we cannot say that s(t) is identically equal to ŝ(t) in the
manner that we do for deterministic signals. However, it can be shown that s(t) and ŝ(t) are equivalent in
the mean-square sense, that is,

E{(s(t)� ŝ(t))2} ¼ 0, all t: (1:34)

With this interpretation, we say that g(t) is the unique complex envelope representation for s(t).
The assumption of circularity of the complex representation is widespread in many signal processing

applications. There is an equivalent condition which can be placed on the real bandpass signal that
guarantees its complex representation has this circularity property. This condition can be found
indirectly by starting with a circular g(t) and looking at the s(t) which results.

Let g(t) be an arbitrary lowpass circular complex finite-energy second-order stochastic process. The
frequency-shifted version of this process is

p(t) ¼ g(t)eþjvct (1:35)

and the real part of this is

s(t) ¼ 1
2
(p(t)þ p*(t)): (1:36)

By the definition of circularity, p(t) and p*(t) are orthogonal processes (E{p(t1)(p*(t2))* ¼ 0}) and from
this we have

Sss(v1,v2) ¼ 1
4
(Spp(v1,v2)þ Sp*p*(v1,v2))

¼ 1
4
(Sgg(v1 � vc,v2 � vc)þ Sgg* (�v1 � vc, �v2 � vc)): (1:37)

Since g(t) is a baseband signal, the first term in Equation 1.37 has spectral support in the first quadrant in
the (v1, v2) plane, where both v1 and v2 are positive, and the second term has spectral support only for
both frequencies negative. This situation is illustrated in Figure 1.6.

It has been shown that a necessary condition for s(t) to have a
circular complex envelope representation is that it have spectral sup-
port only in the first and third quadrants of the (v1, v2) plane. This
condition is also sufficient: if g(t) is not circular, then the s(t) which
results from the operation in Equation 1.33 will have nonzero spectral
components in the second and fourth quadrants of the (v1, v2) plane,
and this contradicts the mean-square equivalence of s(t) and ŝ(t).

An interesting class of processes with spectral support only in the
first and third quadrants is the class of processes whose autocorrela-
tion function is separable in the following way:

Rss(t1, t2) ¼ R1(t1 � t2)R2
t1 þ t2

2

� �
: (1:38)

For these processes, the bifrequency energy spectral density separates
in a like manner:

ω2

ω1

FIGURE 1.6 Spectral support
for bandpass process with circular
complex representation.
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Sss(v1,v2) ¼ S1(v1 � v2)S2
v1 þ v2

2

� �
: (1:39)

In fact, S1 is the Fourier transform of R2 and vice versa. If S1 is a lowpass function, and S2 is a bandpass
function, then the resulting product has spectral support illustrated in Figure 1.7.

The assumption of circularity in the complex representation can often be physically motivated. For
example, in a radar system, if the reflected electromagnetic wave undergoes a phase shift, or if the reflector
position cannot be resolved to less than a wavelength, or if the reflection is due to a sum of reflections at
slightly different path lengths, then the absolute phase of the return signal is considered random and
uniformly distributed. Usually it is not the absolute phase of the received signal which is of interest; rather,
it is the ‘‘relative phase’’ of the signal value at two different points in time, or of two different signals at the
same instance in time. In many radar systems, particularly those used for direction-of-arrival estimation or
delay-Doppler imaging, this relative phase is central to the signal processing objective.

1.2.5 Finite-Power Stochastic Processes

The second major class of second-order processes we wish to consider is the class of finite-power signals.
A finite-power signal x(t) as one whose mean-square value exists, as in Equation 1.4, but whose total
energy, as defined in Equation 1.12, is infinite. Furthermore, we require that the time-averaged mean-
square value, given by

Px ¼ lim
T!1

1
2T

ðT

�T

Rxx(t, t)dt, (1:40)

exist and be finite. Px is called the ‘‘power’’ of the process x(t).
The most commonly invoked stochastic process of this type in communications and signal

processing is the ‘‘wide-sense-stationary’’ (w.s.s.) process, one whose autocorrelation function Rxx(t1, t2)

ω2

ω1

FIGURE 1.7 Spectral support for bandpass process with separable autocorrelation.
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is a function of the time difference t1� t2 only. In this case, the mean-square value is constant and
is equal to the average power. Such a process is used to model a communication signal that transmits
for a long period of time, and for which the beginning and end of transmission are considered
unimportant.

A w.s.s. process may be considered to be the limiting case of a particular type of finite-energy
process, namely a process with separable autocorrelation as described by Equations 1.38 and 1.39.
If in Equation 1.38 the function R2

t1þt2
2

� �
is equal to a constant, then the process is w.s.s. with

second-order properties determined by the function R1(t1� t2). The bifrequency energy spectral density
function is

Sxx(v1,v2) ¼ 2pd(v1 � v2)S2
v1 þ v2

2

� �
(1:41)

where

S2(v) ¼
ð1

�1
R1(t)e

�jvtdt: (1:42)

This last pair of equations motivates us to describe the second-order properties of x(t) with functions of
one argument instead of two, namely the autocorrelation function Rxx(t) and its Fourier transform
Sxx(v), known as the power spectral density. From basic Fourier transform properties we have

Px ¼ 1
2p

ð1

�1
Sxx(v)dv: (1:43)

If w.s.s. x(t) is the input to a LTI system with frequency response H(v) and output y(t), then it is not
difficult to show that

1. y(t) is w.s.s.
2. Syy(v) ¼ H(v)j j2Sxx(v).

These last results, combined with Equation 1.43, lead to a natural interpretation of the power spectral
density function. If x(t) is the input to an ideal bandpass filter with passband B, then the total power of
the filter output is

Py ¼ 1
2p

ð
B

Sx(v)dv: (1:44)

This shows how the total power in the process x(t) can be attributed to components in different
spectral bands.

1.2.6 Complex Wide-Sense-Stationary Processes

Two real stochastic processes x(t) and y(t), defined on a common probability space, are said to be jointly
w.s.s. if:

1. Both x(t) and y(t) are w.s.s.
2. The cross-correlation Rxy(t1, t2) ¼ E{x(t1)y(t2)} is a function of t1� t2 only.
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For jointly w.s.s. processes, the cross-correlation function is normally written with a single argument, e.g.,
Rxy(t), with t¼ t1� t2. From the definition we see that

Rxy(t) ¼ Ryx(�t): (1:45)

A complex w.s.s. stochastic process z(t) is one that can be written

z(t) ¼ x(t)þ jy(t) (1:46)

where x(t) and y(t) are jointly w.s.s. A ‘‘circular’’ complex w.s.s. process is one in which

Rxx(t) ¼ Ryy(t) (1:47)

and

Rxy(t) ¼ �Ryx(t), all t: (1:48)

The reader is cautioned not to confuse the meanings of Equations 1.45 and 1.48.
For circular complex w.s.s. processes, it is easy to show that

E{z(t1)z(t2)} ¼ 0, all t1, t2, (1:49)

and therefore the function

Rzz(t1, t2) ¼ E{z(t1)z*(t2)}

¼ 2Rxx(t1, t2)þ 2jRyx(t1, t2) (1:50)

defines all the second-order properties of z(t). All the quantities involved in Equation 1.50 are functions
of t¼ t1� t2 only, and thus the single-argument function Rzz(t) is defined as the autocorrelation
function for z(t).

The power spectral density for z(t) is

Szz(v) ¼
ð1

�1
Rzz(t)e

�jvtdt: (1:51)

Rzz(t) exhibits conjugate symmetry (Rzz(t) ¼ Rzz* (�t)); Szz(v) is nonnegative but otherwise has no
symmetry constraints.

If z(t) is the input to a complex LTI system with frequency response H(v), then the output process
w(t) is wide-sense-stationarity with power spectral density

Sww(v) ¼ H(v)j j2Szz(v): (1:52)

A bandpass w.s.s. process is one with finite (possible asymmetric) support in frequency.
If z(t) is a circular w.s.s. process, then

w(t) ¼ ejvctz(t) (1:53)
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is also circular, and has power spectral density

Sww(v) ¼ Szz(v� vc): (1:54)

1.2.7 Complex Representations of Real Wide-Sense-Stationary Signals

Let s(t) be a real bandpass w.s.s. stochastic process. The complex representation for s(t) is given by the
now-familiar expression

g(t) ¼ LPF{2s(t)e�jvct} (1:55)

with inverse relationship

ŝ(t) ¼ Re{g(t)ejvct}: (1:56)

In Equations 1.55 and 1.56, vc is the center frequency for the passband of s(t), and the LPF has
bandwidth greater than that of s(t) but much less than 2vc. s(t) and ŝ(t) are equivalent in the mean-
square sense, implying that g(t) is the unique complex envelope representation for s(t).

For arbitrary real w.s.s. s(t), the circularity of the complex representation comes without any additional
conditions like the ones imposed for finite-energy signals. If w.s.s. s(t) is the input to a quadrature
demodulator, then the output signals x(t) and y(t) are jointly w.s.s., and the complex process

g(t) ¼ x(t)þ jy(t) (1:57)

is circular. There are various ways of showing this, with the simplest probably being a proof by
contradiction. If g(t) is a complex process that is not circular, then the process Re{g(t)ejvct} can be
shown to have an autocorrelation function with nonzero terms which are a function of t1þ t2, and thus it
cannot be w.s.s.

Communication signals are often modeled as w.s.s. stochastic processes. The stationarity results from
the fact that the carrier phase, as seen at the receiver, is unknown and considered random, due to lack of
knowledge about the transmitter and path length. This in turn leads to a circularity assumption on the
complex modulation.

In many communication and surveillance systems, the quadrature demodulator is an actual electronic
subsystem which generates a pair of signals interpreted directly as a complex representation of a bandpass
signal. Often these signals are sampled, providing complex digital data for further digital signal processing.
In array signal processing, there are multiple such receivers, one behind each sensor or antenna in a
multisensor system. Data from an array of receivers is then modeled as a ‘‘vector’’ of complex random
variables. In the next section, we consider multivariate distributions for such complex data.

1.3 The Multivariate Complex Gaussian Density Function

The discussions of Section 1.2 centered on the second-order (correlation) properties of real and complex
stochastic processes, but to this point nothing has been said about joint probability distributions for these
processes. In this section, we consider the distribution of samples from a complex process in which the
real and imaginary parts are Gaussian distributed. The key concept of this section is that the assumption
of circularity on a complex stochastic process (or any collection of complex random variables) leads to a
compact form of the density function which can be written directly as a function of a complex argument z
rather than its real and imaginary parts.

From a data processing point-of-view, a collection of N complex numbers is simply a collection of 2N
real numbers, with a certain mathematical significance attached to the N numbers we call the ‘‘real parts’’
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and the other N numbers we call the ‘‘imaginary parts.’’ Likewise, a collection of N complex random
variables is really just a collection of 2N real random variables with some joint distribution in R2N.
Because these random variables have an interpretation as real and imaginary parts of some complex
numbers, and because the 2N-dimensional distribution may have certain symmetries such as those
resulting from circularity, it is often natural and intuitive to express joint densities and distributions using
a notation which makes explicit the complex nature of the quantities involved. In this section we develop
such a density for the case where the random variables have a Gaussian distribution and are samples of a
circular complex stochastic process.

Let zi, i¼ 1, . . . ,N be a collection of complex numbers that we wish to model probabilistically. Write

zi ¼ xi þ jyi (1:58)

and consider the vector of numbers [x1, y1, . . . , xN, yN]
T as a set of 2N random variables with a

distribution over R
2N. Suppose further that the vector [x1, y1, . . . , xN, yN]

T is subject to the usual
multivariate Gaussian distribution with 2N3 1 mean vector m and 2N3 2N covariance matrix R. For
compactness, denote the entire random vector with the symbol x. The density function is

fx(x) ¼ (2p)
�2N
2 (detR)

�1
2 e�

xTR�1x
2 : (1:59)

We seek a way of expressing the density function of Equation 1.59 directly in terms of the complex
variable z, i.e., a density of the form fz(z). In so doing it is important to keep in mind what such a density
represents. fz(z) will be a nonnegative real-valued function f : CN ! R

þ, with the property that

ð
C

N

fz(z)dz ¼ 1: (1:60)

The probability that z 2 A, where A is some subset of CN, is given by

P(A) ¼
ð
A

fz(z)dz: (1:61)

The differential element dz is understood to be

dz ¼ dx1dy1dx2dy2 . . . dxNdyN : (1:62)

The most general form of the complex multivariate Gaussian density is in fact given by Equation
1.59, and further simplification requires further assumptions. Circularity of the underlying complex
process is one such key assumption, and it is now imposed. To keep the following development simple,
it is assumed that the mean vector m is 0. The results for nonzero m are not difficult to obtain by
extension.

Consider the four real random variables xi, yi, xk, yk. If these numbers represent the samples of a
circular complex stochastic process, then we can express the 43 4 covariance as

E

xi
yi
xk
yk

2
664

3
775[xiyixkyk]

8>><
>>:

9>>=
>>;

¼ 1
2

aii 0 j aik �bik

0 aii j bik aik

� � � � �
aki �bki j akk 0
bki aki j 0 akk

2
66664

3
77775, (1:63)
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where

aik ¼ 2E{xixk} ¼ 2E{yiyk} (1:64)

and

bik ¼ �2E{xiyk} ¼ þ2E{xkyi}: (1:65)

Extending this to the full 2N3 2N covariance matrix R, we have

R ¼ 1
2

a11 0 j a12 �b12 j � � � j a1N �b1N

0 a11 j b12 a12 j � � � j b1N a1N

� � � � � � � � � � � �
a21 �b21 j a22 0 j � � � j a2N �b2N

b21 a21 j 0 a22 j � � � j b2N a2N

� � � � � � � � � � � �
� � j � � j � j � �
� � j � � j � j � �
� � j � � j � j � �
� � � � � � � � � � � �
aN1 �bN1 j aN2 �bN2 j � � � j aNN 0
bN1 aN1 j bN2 aN2 j � � � j 0 aNN

2
666666666666666666664

3
777777777777777777775

: (1:66)

The key thing to notice about the matrix in Equation 1.66 is that, because of its special structure, it is
completely specified by N2 real quantities: one for each of the 23 2 diagonal blocks, and two for each of
the 23 2 upper off-diagonal blocks. This is in contrast to the N(2Nþ 1) free parameters one finds in an
unconstrained 2N3 2N real Hermitian matrix.

Consider now the complex random variables zi and zk. We have that

E{zizi*} ¼ E{(xi þ jyi)(xi � jyi)}

¼ E{x2i þ y2i } ¼ aii (1:67)

and

E{zizk*} ¼ E{(xi þ jyi)(xk � jyk)}

¼ E{xixk þ yiyk � jxkyi þ jxiyk}

¼ aik þ jbik: (1:68)

Similarly

E{zkzi*} ¼ aik � jbik (1:69)

and

E{zkzk*} ¼ akk: (1:70)
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Using Equations 1.66 through 1.70, it is possible to write the following N3N complex Hermitian
matrix:

E{zzH} ¼

a11 j a12 þ jb12 j � � � j a1N þ jb1N
--- � --- � --- � ---

a21 þ jb21 j a22 j � � � j a2N þ jb2N

--- � --- � --- � ---
� j � j � j �
� j � j � j �
� j � j � j �
--- � --- � --- � ---

aN1 þ jbN1 j aN2 þ jbN2 j � � � j aNN

2
6666666666664

3
7777777777775

: (1:71)

Note that this complex matrix has exactly the same N2 free parameters as did the 2N3 2N real matrix R
in Equation 1.66, and thus it tells us everything there is to know about the joint distribution of the real
and imaginary components of z. Under the symmetry constraints imposed on R, we can define

C ¼ E{zzH} (1:72)

and call this matrix the covariance matrix for z. In the 0-mean Gaussian case, this matrix parameter
uniquely identifies the multivariate distribution for z.

The derivation of the density function fz(z) rests on a set of relationships between the 2N3 1 real
vector x, and its N3 1 complex counterpart z. We say that x and z are ‘‘isomorphic’’ to one another, and
denote this with the symbol

z � x: (1:73)

Likewise we say that the 2N3 2N real matrix R, given in Equation 1.66, and the N3N complex matrix
C, given in Equation 1.71 are isomorphic to one another, or

C � R: (1:74)

The development of the complex Gaussian density function fz(z) is based on three claims based on these
isomorphisms.

Proposition 1.1. If z� x, and R�C, then

xT(2R)x ¼ zHCz: (1:75)

Proposition 1.2. If R�C, then

1
4
R�1 � C�1: (1:76)

Proposition 1.3. If R�C, then

detR ¼ jdetCj2 1
2

� 	2N

: (1:77)
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The density function fz(z) is found by substituting the results from Propositions 1.1 through 1.3 directly
into the density function fx(x). This is possible because the mapping from z to x is one-to-one and onto,
and the Jacobian is 1 [see Equation 1.62]. We have

fz(z) ¼ (2p)
�2N
2 (detR)

�1
2 e�

xTR�1x
2

¼ 1
2

� 	�N

(2p)�N (detC)�1e�zHC�1z (1:78)

¼ p�N (detC)�1e�zHC�1z: (1:79)

At this point it is straightforward to introduce a nonzero mean m, which is the complex vector
isomorphic to the mean of the real random vector x. The resulting density is

fz(z) ¼ p�N (detC)�1e�(z�m)HC�1(z�m): (1:80)

The density function in Equation 1.80 is commonly referred to as the ‘‘complex Gaussian density
function,’’ although in truth one could be more general and have an arbitrary 2N-dimension Gaussian
distribution on the real and imaginary components of z. It is important to recognize that the use of
Equation 1.80 implies those symmetries in the real covariance of x implied by circularity of the
underlying complex process. This symmetry is expressed by some authors in the equation

E{zzT} ¼ 0 (1:81)

where the superscript ‘‘T’’ indicates transposition without complex conjugation. This comes directly from
Equations 1.24 and 1.49.

For many, the functional form of the complex Gaussian density in Equation 1.80 is actually simpler
and cleaner than its N-dimensional real counterpart, due to elimination of the various factors of 2 which
complicate it. This density is the starting point for virtually all of the multivariate analysis of complex
data seen in the current signal and array processing literature.

1.4 Related Distributions

In many problems of interest in statistical signal processing, the raw data may be complex and subject to
a complex Gaussian distribution described in the density function in Equation 1.80. The processing may
take the form of the computation of a test statistic for use in a hypothesis test. The density functions for
these test statistics are then used to determine probabilities of false alarm and=or detection. Thus, it is
worthwhile to study certain distributions that are closely related to the complex Gaussian in this way.

In this section we will describe and give the functional form for four densities related to the complex
Gaussian: the complex x2, the complex F, the complex b, and the complex t. Only the ‘‘central’’ versions
of these distributions will be given, i.e., those based on 0-mean Gaussian data. The central distributions
are usually associated with the null hypothesis in a detection problem and are used to compute
probabilities of false alarm. The noncentral densities, used in computing probabilities of detection, do
not exist in closed form but can be easily tabulated.

1.4.1 Complex Chi-Squared Distribution

One very common type of detection problem in radar problems is the ‘‘signal present’’ vs. ‘‘signal absent’’
decision problem. Often under the ‘‘signal absent’’ hypothesis, the data is zero-mean complex Gaussian,
with known covariance, whereas under the ‘‘signal present’’ hypothesis the mean is nonzero, but perhaps
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unknown or subject to some uncertainty. A common test under these circumstances is to compute the
sum of squared magnitudes of the data points (after prewhitening, if appropriate) and compare this to a
threshold. The resulting test statistic has a x2-squared distribution.

Let z1 . . . zN be N complex Gaussian random variables, independent and identically distributed with
mean 0 and variance 1 (meaning that the covariance matrix for the z vector is I). Define the real
nonnegative random variable q according to

q ¼
XN
i

jzij2: (1:82)

Then the density function for q is given by

fq(q) ¼ 1
(N � 1)!

qN�1e�qU(q): (1:83)

To establish this result, show that the density function for jzij2 is a simple exponential. Equation 1.83 is
the N-fold convolution of this exponential density function with itself.

We often say that q is x2 with N complex degrees of freedom. A ‘‘complex degree of freedom’’ is like
two real degrees of freedom. Note, however, that Equation 1.83 is not the usual x2 density function with
2N degrees of freedom. Each of the real variables going into the computation of q has variance 1

2, not 1.
fq(q) is a gamma density with an integer parameter N, and, like the complex Gaussian density in Equation
1.60, it is cleaner and simpler than its real counterpart.

1.4.2 Complex F-Distribution

In some ‘‘signal present’’ vs. ‘‘signal absent’’ problems, the variance or covariance of the noise is not
known under the null hypothesis, and must be estimated from some auxiliary data. Then the test statistic
becomes the ratio of the sum of square magnitudes of the test data to the sum of square magnitudes of the
auxiliary data. The resulting test statistic is subject to a particular form of the F-distribution.

Let q1 and q2 be two independent random variables subject to the x2 distribution with N and M
complex degrees of freedom, respectively. Define the real, nonnegative random variable f according to

f ¼ q1
q2

: (1:84)

The density function for f is

ff (f ) ¼ (N þM � 1)!
(N � 1)!(M � 1)!

f N�1

(1þ f )NþM U(f ): (1:85)

We say that f is subject to an F-distribution with N and M complex degrees of freedom.

1.4.3 Complex Beta Distribution

An F-distributed random variable can be transformed in such a way that the resulting density has finite
support. The random variable b, defined by

b ¼ 1
(1þ f)

, (1:86)
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where f is an F-distributed random variable, has this property. The density function is given by

fb(b) ¼ (N þM � 1)!
(N � 1)!(M � 1)!

bM�1(1� b)N�1 (1:87)

on the interval 0� b� 1, and is 0 elsewhere.
The random variable b is said to be beta-distributed, with N and M complex degrees of freedom.

1.4.4 Complex Student-t Distribution

In the ‘‘signal present’’ vs. ‘‘signal absent’’ problem, if the signal is known exactly (including phase) then
the optimal detector is a prewhitener followed by a matched filter. The resulting test statistic is complex
Gaussian, and the detector partitions the complex plane into two half-planes which become the decision
regions for the two hypotheses. Now it may be that the signal is known, but the variance of the noise is
not. In this case, the Gaussian test statistic must be scaled by an estimate of the standard deviation,
obtained as before from zero-mean auxiliary data. In this case the test statistic is said to have a complex t
(or Student-t) distribution. Of the four distributions discussed in this section, this is the only one in
which the random variables themselves are complex: the x2, F, and b distributions all describe real
random variables functionally dependent on complex Gaussians.

Let z and q be independent scalar random variables. z is complex Gaussian with mean 0 and variance
1, and q is x2 with N complex degrees of freedom. Define the random variable t according to

t ¼ zffiffiffiffiffiffiffiffiffi
q=N

p : (1:88)

The density of t is then given by

ft(t) ¼ 1

p 1þ jtj2
N

� �Nþ1 : (1:89)

This density is said to be ‘‘heavy-tailed’’ relative to the Gaussian, and this is a result in the uncertainty in
the estimate of the standard deviation. Note that as N ! 1, the denominator Equation 1.88 approaches
1 (i.e., the estimate of the standard deviation approaches truth) and thus ft(t) approaches the Gaussian
density p�1e�jtj2 as expected.

1.5 Conclusion

In this chapter, we have outlined a basic theory of complex random variables and stochastic processes as
they most often appear in statistical signal and array processing problems. The properties of complex
representations for real bandpass signals were emphasized, since this is the most common application in
electrical engineering where complex data appear. Models for both finite-energy signals, such as radar
pulses, and finite-power signals, such as communication signals, were developed. The key notion of
circularity of complex stochastic processes was explored, along with the conditions that a real stochastic
process must satisfy in order for it to have a circular complex representation. The complex multivariate
Gaussian distribution was developed, again building on the circularity of the underlying complex
stochastic process. Finally, related distributions which often appear in statistical inference problems
with complex Gaussian data were introduced.

The general topic of random variables and stochastic processes is fundamental to modern signal
processing, and many good textbooks are available. Those by Papoulis [2], Leon-Garcia [3], and Melsa
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and Sage [4] are recommended. The original short paper deriving the complex multivariate Gaussian
density function is by Wooding [5]; another derivation and related statistical analysis is given in
Goodman [6], whose name is more often cited in connection with complex random variables. The
monograph by Miller [7] has a mathematical flavor, and covers complex stochastic processes, stochastic
differential equations, parameter estimation, and least-squares problems. The paper by Neeser and
Massey [8] treats circular (which they call ‘‘proper’’) complex stochastic processes and their application
in information theory. There is a good discussion of complex random variables in Kay [9], which
includes Cramer–Rao lower bounds and optimization of functions of complex variables. Kelly and
Forsythe [10] is an advanced treatment of inference problems for complex multivariate data, and
contains a number of appendices with valuable background information, including one on distributions
related to the complex Gaussian.
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2.1 Introduction

Systems designed to receive spatially propagating signals often encounter the presence of interference
signals. If the desired signal and interferers occupy the same temporal frequency band, then temporal
filtering cannot be used to separate signal from interference. However, desired and interfering signals
often originate from different spatial locations. This spatial separation can be exploited to separate signal
from interference using a spatial filter at the receiver.

A beamformer is a processor used in conjunction with an array of sensors to provide a versatile form of
spatial filtering. The term ‘‘beamforming’’ derives from the fact that early spatial filters were designed to
form pencil beams (see polar plot in Figure 2.5c) in order to receive a signal radiating from a specific
location and attenuate signals from other locations. ‘‘Forming beams’’ seems to indicate radiation of
energy; however, beamforming is applicable to either radiation or reception of energy. In this section we
discuss the formation of beams for reception, providing an overview of beamforming from a signal
processing perspective. Data-independent, statistically optimum, adaptive, and partially adaptive beam-
forming are discussed.

Implementing a temporal filter requires processing of data collected over a temporal aperture. Similarly,
implementing a spatial filter requires processing of data collected over a spatial aperture. A single sensor
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such as an antenna, sonar transducer, or microphone collects impinging energy over a continuous
aperture, providing spatial filtering by summing coherently waves that are in phase across the aperture
while destructively combining waves that are not. An array of sensors provides a discrete sampling across
its aperture. When the spatial sampling is discrete, the processor that performs the spatial filtering is
termed a beamformer. Typically a beamformer linearly combines the spatially sampled time series from
each sensor to obtain a scalar output time series in the same manner that an FIR filter linearly combines
temporally sampled data. Two principal advantages of spatial sampling with an array of sensors are
discussed in the following.

Spatial discrimination capability depends on the size of the spatial aperture; as the aperture increases,
discrimination improves. The absolute aperture size is not important, rather its size in wavelengths is
the critical parameter. A single physical antenna (continuous spatial aperture) capable of providing the
requisite discrimination is often practical for high-frequency signals because the wavelength is short.
However, when low-frequency signals are of interest, an array of sensors can often synthesize a much
larger spatial aperture than that practical with a single physical antenna.

A second very significant advantage of using an array of sensors, relevant at any wavelength, is the
spatial filtering versatility offered by discrete sampling. In many application areas, it is necessary to
change the spatial filtering function in real time to maintain effective suppression of interfering signals.
This change is easily implemented in a discretely sampled system by changing the way in which the
beamformer linearly combines the sensor data. Changing the spatial filtering function of a continuous
aperture antenna is impractical.

This section begins with the definition of basic terminology, notation, and concepts. Succeeding
sections cover data-independent, statistically optimum, adaptive, and partially adaptive beamforming.
We then conclude with a summary.

Throughout this section we use methods and techniques from FIR filtering to provide insight into
various aspects of spatial filtering with beamformer. However, in some ways beamforming differs
significantly from FIR filtering. For example, in beamforming a source of energy has several parameters
that can be of interest: range, azimuth and elevation angles, polarization, and temporal frequency
content. Different signals are often mutually correlated as a result of multipath propagation. The spatial
sampling is often nonuniform and multidimensional. Uncertainty must often be included in character-
ization of individual sensor response and location, motivating development of robust beamforming
techniques. These differences indicate that beamforming represents a more general problem than FIR
filtering and, as a result, more general design procedures and processing structures are common.

2.2 Basic Terminology and Concepts

In this section we introduce terminology and concepts employed throughout. We begin by defining
the beamforming operation and discussing spatial filtering. Next we introduce second-order statistics
of the array data, developing representations for the covariance of the data received at the array and
discussing distinctions between narrowband and broadband beamforming. Last, we define various types
of beamformers.

2.2.1 Beamforming and Spatial Filtering

Figure 2.1 depicts two beamformers. The first, which samples the propagating wave field in space, is
typically used for processing narrowband signals. The output at time k, y(k), is given by a linear
combination of the data at the J sensors at time k:

y(k) ¼
XJ

l¼1

wl*xl(k), (2:1)
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where * represents complex conjugate. It is conventional to multiply the data by conjugates of the weights
to simplify notation. We assume throughout that the data and weights are complex since in many
applications a quadrature receiver is used at each sensor to generate in phase and quadrature (I and Q)
data. Each sensor is assumed to have any necessary receiver electronics and an A=D converter if
beamforming is performed digitally.

The second beamformer in Figure 2.1 samples the propagating wave field in both space and time and is
often used when signals of significant frequency extent (broadband) are of interest. The output in this
case can be expressed as

y(k) ¼
XJ

l¼1

XK�1

p¼0

wl, p* xl(k� p), (2:2)

where K� 1 is the number of delays in each of the J sensor channels. If the signal at each sensor is viewed
as an input, then a beamformer represents a multi-input single output system.

It is convenient to develop notation that permits us to treat both beamformers in Figure 2.1
simultaneously. Note that Equations 2.1 and 2.2 can be written as

y(k) ¼ wHx(k), (2:3)

by appropriately defining a weight vector w and data vector x(k). We use lower and uppercase boldface to
denote vector and matrix quantities, respectively, and let superscript represent Hermitian (complex
conjugate) transpose. Vectors are assumed to be column vectors. Assume that w and x(k) are N
dimensional; this implies that N¼KJ when referring to Equation 2.2 and N¼ J when referring to
Equation 2.1. Except for Section 2.5 on adaptive algorithms, we will drop the time index and assume
that its presence is understood throughout the remainder of this chapter. Thus, Equation 2.3 is written as
y¼wHx. Many of the techniques described in this section are applicable to continuous time as well as
discrete time beamforming.

(a) (b)

Array elements

y(k)

x1 (k)
z–1

x1 (k)
w1*

w2*

wJ*

x2 (k)

xJ (k)

Σ

y(k)
Σ

w*1,0 w*1,1 w*1,l–1

z–1 z–1

x2 (k)
z–1

w*2,0 w*2,1 w*2,l–1

z–1 z–1

xJ (k)
z–1

w*J,0 w*J,1 w*J,l–1

z–1 z–1

FIGURE 2.1 A beamformer forms a linear combination of the sensor outputs. In (a), sensor outputs are multiplied
by complex weights and summed. This beamformer is typically used with narrowband signals. A common broadband
beamformer is illustrated in (b).
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The frequency response of an FIR filter with tap weights wp*, 1 � p � J and a tap delay of T seconds is
given by

r(v) ¼
XJ

p¼1

wp*e
�jvT(p�1): (2:4)

Alternatively

r(v) ¼ wHd(v), (2:5)

where
wH ¼ [w1* w2* . . .wJ*]
d(v) ¼ [1 e jvT e jv2T � � � e jv(J�1)T]H

r(v) represents the response of the filter* to a complex sinusoid of frequency v

d(v) is a vector describing the phase of the complex sinusoid at each tap in the FIR filter relative to the
tap associated with w1

Similarly, beamformer response is defined as the amplitude and phase presented to a complex plane
wave as a function of location and frequency. Location is, in general, a three-dimensional quantity, but
often we are only concerned with one- or two-dimensional direction of arrival (DOA). Throughout the
remainder of the section we do not consider range. Figure 2.2 illustrates the manner in which an array of
sensors samples a spatially propagating signal. Assume that the signal is a complex plane wave with DOA
u and frequency v. For convenience let the phase be zero at the first sensor. This implies x1(k)¼ e jvk and
xl(k)¼ e jv[k�Dl(u)], 2� l� J. Dl(u) represents the time delay due to propagation from the first to the lth
sensor. Substitution into Equation 2.2 results in the beamformer output

y(k) ¼ e jvk
XJ

l¼1

XK�1

p¼0

wl, p* e�jv Dl(u)þp½ � ¼ e jvk r(uv), (2:6)

where D1(u)¼ 0. r(u, v) is the beamformer response and can be expressed in vector form as

r(u,v) ¼ wHd(u,v): (2:7)

The elements of d(u, v) correspond to the complex exponentials e jv[Dl(u)þ p]. In general it can be
expressed as

d(u,v) ¼ [1 e jvt2(u) e jvt3(u) � � � e jvtN (u)]H (2:8)

where the ti(u), 2� i�N are the time delays due to propagation and any tap delays from the zero phase
reference to the point at which the ith weight is applied. We refer to d(u, v) as the array response vector.
It is also known as the steering vector, direction vector, or array manifold vector. Nonideal sensor
characteristics can be incorporated into d(u, v) by multiplying each phase shift by a function ai(u, v),
which describes the associated sensor response as a function of frequency and direction.

* An FIR filter is by definition linear, so an input sinusoid produces at the output a sinusoid of the same frequency. The
magnitude and argument of r(v) are, respectively, the magnitude and phase responses.
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The ‘‘beampattern’’ is defined as the magnitude squared of r(u, v). Note that each weight in w affects
both the temporal and spatial responses of the beamformer. Historically, use of FIR filters has been
viewed as providing frequency dependent weights in each channel. This interpretation is somewhat
incomplete since the coefficients in each filter also influence the spatial filtering characteristics of the
beamformer. As a multi-input single output system, the spatial and temporal filtering that occurs is a
result of mutual interaction between spatial and temporal sampling.

The correspondence between FIR filtering and beamforming is closest when the beamformer operates at
a single temporal frequency vo and the array geometry is linear and equispaced as illustrate in Figure 2.3.
Letting the sensor spacing be d, propagation velocity be c, and u represent DOA relative to broadside
(perpendicular to the array), we have ti(u)¼ (i� 1)(d=c)sin u. In this case we identify the relationship
between temporal frequencyv in d(v) (FIR filter) and direction u in d(u,vo) (beamformer) asv¼vo(d=c)
sin u. Thus, temporal frequency in an FIR filter corresponds to the sine of direction in a narrowband linear
equispaced beamformer. Complete interchange of beamforming and FIR filtering methods is possible for
this special case provided the mapping between frequency and direction is accounted for.

The vector notation introduced in Equation 2.3 suggests a vector space interpretation of beamforming.
This point of view is useful both in beamformer design and analysis.We use it here in consideration of spatial
sampling and array geometry. The weight vector w and the array response vectors d(u, v) are vectors in an

z–1

Sensor # 1 - Reference

t

s(t)

T (θ)

Δ2(θ) ΔJ (θ)

# 2

# J

z–1 z–1

z–1 z–1 z–1

z–1 z–1 z–1

FIGURE 2.2 An array with attached delay lines provides a spatial=temporal sampling of propagating sources. This
figure illustrates this sampling of a signal propagating in plane waves from a source located at DOA u. With J sensors
and K samples per sensor, at any instant in time the propagating source signal is sampled at JK nonuniformly spaced
points. T(u), the time duration from the first sample of the first sensor to the last sample of the last sensor, is termed
the temporal aperture of the observation of the source at u. As notation suggests, temporal aperture will be a function
of DOA u. Plane wave propagation implies that at any time k a propagating signal, received anywhere on a planar
front perpendicular to a line drawn from the source to a point on the plane, has equal intensity. Propagation of the
signal between two points in space is then characterized as pure delay. In this figure, Dl(u) represents the time delay
due to plane wave propagation from the first (reference) to the lth sensor.
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N-dimensional vector space. The angles betweenw and d(u,v) determine the response r(u, v). For example,
if for some (u, v) the angle betweenw and d(u,v) 908 (i.e., ifw is orthogonal to d(u, v)), then the response is
zero. If the angle is close to 08, then the responsemagnitude will be relatively large. The ability to discriminate
between sources at different locations and=or frequencies, say (u1,v1) and (u2,v2), is determined by the angle
between their array response vectors, d(u1,v1) and d(u2,v2).

The general effects of spatial sampling are similar to temporal sampling. Spatial aliasing corresponds to
an ambiguity in source locations. The implication is that sources at different locations have the same
array response vector, e.g., for narrowband sources d(u1,vo) and d(u2,vo). This can occur if the sensors
are spaced too far apart. If the sensors are too close together, spatial discrimination suffers as a result of
the smaller than necessary aperture; array response vectors are not well dispersed in the N-dimensional
vector space. Another type of ambiguity occurs with broadband signals when a source at one location and
frequency cannot be distinguished from a source at a different location and frequency, i.e., d(u1,v1)¼
d(u2,v2). For example, this occurs in a linear equispaced array whenever v1sin u1¼v2sinu2. (The
addition of temporal samples at one sensor prevents this particular ambiguity.)

A primary focus of this section is on designing response via weight selection; however, Equation 2.7
indicates that response is also a function of array geometry (and sensor characteristics if the ideal
omnidirectional sensor model is invalid). In contrast with single channel filtering where A=D converters
provide a uniform sampling in time, there is no compelling reason to space sensors regularly. Sensor
locations provide additional degrees of freedom in designing a desired response and can be selected
so that over the range of (u, v) of interest the array response vectors are unambiguous and well dispersed
in the N-dimensional vector space. Utilization of these degrees of freedom can become very complicated
due to the multidimensional nature of spatial sampling and the nonlinear relationship between r(u,v)
and sensor locations.

2.2.2 Second-Order Statistics

Evaluation of beamformer performance usually involves power or variance, so the second-order
statistics of the data play an important role. We assume the data received at the sensors are zero mean
throughout this section. The variance or expected power of the beamformer output is given by
E{jyj2} ¼ wHE{x xH}w. If the data are wide sense stationary, then Rx ¼ E{x xH}, the data covariance
matrix, is independent of time. Although we often encounter nonstationary data, the wide sense
stationary assumption is used in developing statistically optimal beamformers and in evaluating steady
state performance.

(a)

xJ(k) = x(k – (J – 1))

x3 (k) = x(k – 2)

x2 (k) = x(k – 1)

x1 (k) = x(k)

y (k)

w1*

w2*

wJ*

Σw3*

z–1

z–1

z–1

z–1

(b)

y (k)

x1 (k)

d

d

x2 (k)

x3 (k)

xJ (k)

w1*

w2*

wJ*

Σw3*

FIGURE 2.3 The analogy between (a) an equispaced omnidirectional narrowband line array and (b) a single-
channel FIR filter is illustrated in this figure.
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Suppose x represents samples from a uniformly sampled time series having a power spectral density
S(v) and no energy outside of the spectral band [va, vb]. Rx can be expressed in terms of the power
spectral density of the data using the Fourier transform relationship as

Rx ¼ 1
2p

ðvb

va

S(v) d(v) dH(v)dv, (2:9)

with d(v) as defined for Equation 2.5. Now assume the array data x is due to a source located at direction u.
In like manner to the time series case we can obtain the covariance matrix of the array data as

Rx ¼ 1
2p

ðvb

va

S(v) d(u,v) dH(u,v)dv: (2:10)

A source is said to be narrowband of frequency vo if Rx can be represented as the rank one outer product

Rx ¼ s2
s d(u,vo)d

H(u,vo), (2:11)

where s2
s is the source variance or power.

The conditions under which a source can be considered narrowband depend on both the source
bandwidth and the time over which the source is observed. To illustrate this, consider observing an
amplitude modulated sinusoid or the output of a narrowband filter driven by white noise on an
oscilloscope. If the signal bandwidth is small relative to the center frequency (i.e., if it has small fractional
bandwidth), and the time intervals over which the signal is observed are short relative to the inverse of
the signal bandwidth, then each observed waveform has the shape of a sinusoid. Note that as the
observation time interval is increased, the bandwidth must decrease for the signal to remain sinusoidal
in appearance. It turns out, based on statistical arguments, that the observation time bandwidth product
(TBWP) is the fundamental parameter that determines whether a source can be viewed as narrowband
(see Buckley [2]).

An array provides an effective temporal aperture over which a source is observed. Figure 2.2 illustrates
this temporal aperture T(u) for a source arriving from direction u. Clearly the TBWP is dependent on the
source DOA. An array is considered narrowband if the observation TBWP is much less than one for all
possible source directions.

Narrowband beamforming is conceptually simpler than broadband since one can ignore the temporal
frequency variable. This fact, coupled with interest in temporal frequency analysis for some applications,
has motivated implementation of broadband beamformers with a narrowband decomposition structure,
as illustrated in Figure 2.4. The narrowband decomposition is often performed by taking a discrete
Fourier transform (DFT) of the data in each sensor channel using an fast Fourier transform (FFT)
algorithm. The data across the array at each frequency of interest are processed by their own beamfor-
mer. This is usually termed frequency domain beamforming. The frequency domain beamformer outputs
can be made equivalent to the DFT of the broadband beamformer output depicted in Figure 2.1b with
proper selection of beamformer weights and careful data partitioning.

2.2.3 Beamformer Classification

Beamformers can be classified as either data independent or statistically optimum, depending on how the
weights are chosen. The weights in a data-independent beamformer do not depend on the array data and
are chosen to present a specified response for all signal=interference scenarios. The weights in a statistically
optimum beamformer are chosen based on the statistics of the array data to ‘‘optimize’’ the array response.
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In general, the statistically optimum beamformer places nulls in the directions of interfering sources in an
attempt to maximize the signal-to-noise ratio (SNR) at the beamformer output. A comparison between
data-independent and statistically optimum beamformers is illustrated in Figure 2.5.

Sections 2.3 through 2.6 cover data-independent, statistically optimum, adaptive, and partially adap-
tive beamforming. Data-independent beamformer design techniques are often used in statistically
optimum beamforming (e.g., constraint design in linearly constrained minimum variance (LCMV)
beamforming). The statistics of the array data are not usually known and may change over time so
adaptive algorithms are typically employed to determine the weights. The adaptive algorithm is designed
so the beamformer response converges to a statistically optimum solution. Partially adaptive beamfor-
mers reduce the adaptive algorithm computational load at the expense of a loss (designed to be small) in
statistical optimality.

2.3 Data-Independent Beamforming

The weights in a data-independent beamformer are designed so the beamformer response approximates a
desired response independent of the array data or data statistics. This design objective—approximating
a desired response—is the same as that for classical finite impulse response (FIR) filter design (see, e.g.,
Parks and Burrus [8]). We shall exploit the analogies between beamforming and FIR filtering where
possible in developing an understanding of the design problem. We also discuss aspects of the design
problem specific to beamforming.

The first part of this section discusses forming beams in a classical sense, i.e., approximating a desired
response of unity at a point of direction and zero elsewhere. Methods for designing beamformers having
more general forms of desired response are presented in the second part.

2.3.1 Classical Beamforming

Consider the problem of separating a single complex frequency component from other frequency
components using the J tap FIR filter illustrated in Figure 2.3. If frequency vo is of interest, then the
desired frequency response is unity at vo and zero elsewhere. A common solution to this problem is to
choose w as the vector d(vo). This choice can be shown to be optimal in terms of minimizing the squared

DFT Wl
y(f1)

Wr

WK

DFT

r th bin

r th bin

r th binDFT

y(fr)

IDFT
y

y(fK)

FIGURE 2.4 Beamforming is sometimes performed in the frequency domain when broadband signals are of
interest. This figure illustrates transformation of the data at each sensor into the frequency domain. Weighted
combinations of data at each frequency (bin) are performed. An inverse discrete Fourier transform produces the
output time series.
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error between the actual response and desired response. The actual response is characterized by a main
lobe (or beam) and many sidelobes. Since w¼ d(vo), each element of w has unit magnitude. Tapering
or windowing the amplitudes of the elements of w permits trading of main lobe or beam width
against sidelobe levels to form the response into a desired shape. Let T be a J by J diagonal matrix
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FIGURE 2.5 Beamformers come in both data-independent and statistically optimum varieties. In (a) through (e)
we consider an equispaced narrowband array of 16 sensors spaced at one-half wavelength. In (a), (b), and (c) the
magnitude of the weights, the beampattern, and the beampattern, in polar coordinates are shown, respectively, for a
Dolph–Chebyshev beamformer with �30 dB sidelobes.

(continued)
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with the real-valued taper weights as diagonal elements. The tapered FIR filter weight vector is given by
Td(vo). A detailed comparison of a large number of tapering functions is given in [5].

In spatial filtering one is often interested in receiving a signal arriving from a known location point uo.
Assuming the signal is narrowband (frequency vo), a common choice for the beamformer weight vector
is the array response vector d(uo, vo). The resulting array and beamformer is termed a phased array
because the output of each sensor is phase shifted prior to summation. Figure 2.5b depicts themagnitude of
the actual response when w¼Td(uo,vo), where T implements a common Dolph–Chebyshev
tapering function. As in the FIR filter discussed above, beam width and sidelobe levels are the important
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FIGURE 2.5 (continued) In (d) and (e) beampatterns are shown of statistically optimum beamformers which were
designed to minimize output power subject to a constraint that the response be unity for an arrival angle of 188.
Energy is assumed to arrive at the array from several interference sources. In (d) several interferers are located
between�208 and�238, each with power of 30 dB relative to the uncorrelated noise power at a single sensor. Deep
nulls are formed in the interferer directions. The interferers in (e) are located between 208 and 238, again with relative
power of 30 dB. Again deep nulls are formed at the interferer directions; however, the sidelobe levels are significantly
higher at other directions. (f) depicts the broadband LCMV beamformer magnitude response at eight frequencies on
the normalized frequency interval [2p=5, 4p=5] when two interferers arrive from directions�5.758 and�17.58 in the
presence of white noise. The interferers have a white spectrum on [2p=5, 4p=5] and have powers of 40 and 30 dB
relative to the white noise, respectively. The constraints are designed to present a unit gain and linear phase over
[2p=5, 4p=5] at a DOA of 188. The array is linear equispaced with 16 sensors spaced at one-half wavelength for
frequency 4p=5 and five tap FIR filters are used in each sensor channel.
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characteristics of the response. Amplitude tapering can be used to control the shape of the response, i.e., to
form the beam. The equivalence of the narrowband linear equispaced array and FIR filter (see Figure 2.3)
implies that the same techniques for choosing taper functions are applicable to either problem.Methods for
choosing tapering weights also exist for more general array configurations.

2.3.2 General Data-Independent Response Design

The methods discussed in this section apply to design of beamformers that approximate an arbitrary
desired response. This is of interest in several different applications. For example, we may wish to receive
any signal arriving from a range of directions, in which case the desired response is unity over the entire
range. As another example, we may know that there is a strong source of interference arriving from a
certain range of directions, in which case the desired response is zero in this range. These two examples
are analogous to bandpass and bandstop FIR filtering. Although we are no longer ‘‘forming beams,’’ it is
conventional to refer to this type of spatial filter as a beamformer.

Consider choosing w so the actual response r(u,v)¼wHd(u,v) approximates desired response
rd(u,v). Ad hoc techniques similar to those employed in FIR filter design can be used for selecting w.
Alternatively, formal optimization design methods can be employed (see, e.g., Parks and Burrus [8]).
Here, to illustrate the general optimization design approach, we only consider choosing w to minimize
the weighted averaged square of the difference between desired and actual response.

Consider minimizing the squared error between the actual and desired response at P points (ui,vi),
1< i< P. If P>N, then we obtain the overdetermined least squares problem

min
w

jAHw � rdj2, (2:12)

where

A ¼ d(u1,v1), d(u2,v2) . . . d(uP,vP)½ �; (2:13)

rd ¼ rd(u1,v1), rd(u2,v2) . . . rd(uP ,vP)½ �H: (2:14)

Provided AAH is invertible (i.e., A is full rank), then the solution to Equation 2.12 is given as

w ¼ Aþrd, (2:15)

where Aþ¼ (AAH)�1 A is the pseudoinverse of A.
A note of caution is in order at this point. The white noise gain of a beamformer is defined as the

output power due to unit variance white noise at the sensors. Thus, the norm squared of the weight
vector, wHw, represents the white noise gain. If the white noise gain is large, then the accuracy by which w
approximates the desired response is a moot point because the beamformer output will have a poor SNR
due to white noise contributions. If A is ill-conditioned, then w can have a very large norm and still
approximate the desired response. The matrix A is ill-conditioned when the effective numerical dimen-
sion of the space spanned by the d(ui,vi), 1� i� P, is less than N. For example, if only one source
direction is sampled, then the numerical rank of A is approximately given by the TBWP for that
direction. Low rank approximates of A and Aþ should be used whenever the numerical rank is less
than N. This ensures that the norm of w will not be unnecessarily large.

Specific directions and frequencies can be emphasized in Equation 2.12 by selection of the sample
points (ui, vi) and=or unequally weighting of the error at each (ui, vi). Parks and Burrus [8] discuss this in
the context of FIR filtering.
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2.4 Statistically Optimum Beamforming

In statistically optimum beamforming, the weights are chosen based on the statistics of the data received
at the array. Loosely speaking, the goal is to ‘‘optimize’’ the beamformer response so the output contains
minimal contributions due to noise and interfering signals. We discuss several different criteria for
choosing statistically optimum beamformer weights. Table 2.1 summarizes these different approaches.
Where possible, equations describing the criteria and weights are confined to Table 2.1. Throughout the
section we assume that the data is wide-sense stationary and that its second-order statistics are known.
Determination of weights when the data statistics are unknown or time varying is discussed in the
following section on adaptive algorithms.

2.4.1 Multiple Sidelobe Canceller

The multiple sidelobe canceller (MSC) is perhaps the earliest statistically optimum beamformer. An MSC
consists of a ‘‘main channel’’ and one or more ‘‘auxiliary channels’’ as depicted in Figure 2.6a. The main
channel can be either a single high gain antenna or a data-independent beamformer (see Section 2.3).
It has a highly directional response, which is pointed in the desired signal direction. Interfering signals
are assumed to enter through the main channel sidelobes. The auxiliary channels also receive the
interfering signals. The goal is to choose the auxiliary channel weights to cancel the main channel
interference component. This implies that the responses to interferers of the main channel and linear
combination of auxiliary channels must be identical. The overall system then has a response of zero as
illustrated in Figure 2.6b. In general, requiring zero response to all interfering signals is either not possible
or can result in significant white noise gain. Thus, the weights are usually chosen to trade off interference
suppression for white noise gain by minimizing the expected value of the total output power as indicated
in Table 2.1.

Choosing the weights to minimize output power can cause cancellation of the desired signal because it
also contributes to total output power. In fact, as the desired signal gets stronger it contributes to a larger
fraction of the total output power and the percentage cancellation increases. Clearly this is an undesirable
effect. The MSC is very effective in applications where the desired signal is very weak (relative to the
interference), since the optimum weights will not pay any attention to it, or when the desired signal is
known to be absent during certain time periods. The weights can then be adapted in the absence of the
desired signal and frozen when it is present.

2.4.2 Use of a Reference Signal

If the desired signal were known, then the weights could be chosen to minimize the error between
the beamformer output and the desired signal. Of course, knowledge of the desired signal eliminates the
need for beamforming. However, for some applications, enough may be known about the desired signal
to generate a signal that closely represents it. This signal is called a reference signal. As indicated in
Table 2.1, the weights are chosen to minimize the mean square error between the beamformer output and
the reference signal.

The weight vector depends on the cross covariance between the unknown desired signal present in x
and the reference signal. Acceptable performance is obtained provided this approximates the covariance
of the unknown desired signal with itself. For example, if the desired signal is amplitude modulated, then
acceptable performance is often obtained by setting the reference signal equal to the carrier. It is also
assumed that the reference signal is uncorrelated with interfering signals in x. The fact that the direction
of the desired signal does not need to be known is a distinguishing feature of the reference signal
approach. For this reason it is sometimes termed ‘‘blind’’ beamforming. Other closely related blind
beamforming techniques choose weights by exploiting properties of the desired signal such as constant
modulus, cyclostationarity, or third and higher order statistics.

2-12 Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing



T
A
B
LE

2.
1

Su
m
m
ar
y
of

O
pt
im

um
B
ea
m
fo
rm

er
s

T
yp
e

M
SC

R
ef
er
en
ce

Si
gn
al

M
ax

SN
R

LC
M
V

D
efi
ni
ti
on

s
x a
—
au
xi
lia
ry

da
ta

x—
ar
ra
y
da
ta

x
¼
sþ

x—
ar
ra
y
da
ta

x—
ar
ra
y
da
ta

y m
—
pr
im

ar
y
da
ta

y d
—
de
si
re
d
si
gn
al

s—
si
gn
al
co
m
po

ne
nt

C
—
co
ns
tr
ai
nt

m
at
ri
x

r m
a
¼

E
{x

ay
m*
}

r x
d
¼

E
{x
y d
* }

n
—
no

is
e
co
m
po

ne
nt

f—
re
sp
on

se
ve
ct
or

R
a
¼

E
x a
xH a

�
�

R
x
¼

E
{x
xH

}
R
s
¼

E
{s
sH
}

R
x
¼

E
xx

H
f

g
O
ut
pu

t:
y
¼

y m
�
w

H a
x a

O
ut
pu

t:
y
¼
w
H
x

R
n
¼
E
{n
n
H
}

O
ut
pu

t:
y
¼
w
H
x

O
ut
pu

t:
y
¼
w
H
x

C
ri
te
ri
on

m
in

w
a

E
y m

�
w

H a
x a

� �
� �2

n
o

m
in w
E

y
�
y d

� �
� �2

n
o

m
ax w

w
H
R
sw

w
H
R
n
w

m
in w

w
H
R
x
w

f
gs

:t
:C

H
w
¼

f

O
pt
im

um
w
ei
gh
ts

w
a
¼

R
�1 a
r m

a
w

a
¼

R
�1 x
r r
d

R
�1 n
R
sw

¼
l
m
ax
w

w
¼

R
�1 x
C

C
H
R
�1 x
C

�
� �1

f

A
dv
an
ta
ge
s

Si
m
pl
e

D
ir
ec
ti
on

of
de
si
re
d

si
gn
al
ca
n
be

un
kn

ow
n

T
ru
e
m
ax
im

iz
at
io
n
of

SN
R

Fl
ex
ib
le
an
d
ge
ne
ra
l
co
ns
tr
ai
nt
s

D
is
ad
va
nt
ag
es

R
eq
ui
re
s
ab
se
nc
e
of

de
si
re
d
si
gn
al

fr
om

au
xi
lia
ry

ch
an
ne
ls
fo
r
w
ei
gh
t

de
te
rm

in
at
io
n

M
us
t
ge
ne
ra
te

re
fe
re
nc
e
si
gn
al

M
us
t
kn

ow
R
s
an
d
R
n
So
lv
e

ge
ne
ra
liz
ed

ei
ge
np

ro
bl
em

fo
r
w
ei
gh
ts

C
om

pu
ta
ti
on

of
co
ns
tr
ai
ne
d

w
ei
gh
t
ve
ct
or

R
ef
er
en
ce
s

A
pp

le
ba
um

(1
97
6)

W
id
ro
w
(1
96
7)

M
on

zi
ng
o
an
d
M
ill
er

(1
98
0)

Fr
os
t
(1
97
2)

Beamforming Techniques for Spatial Filtering 2-13



2.4.3 Maximization of Signal-to-Noise Ratio

Here the weights are chosen to directly maximize the SNR as indicated in Table 2.1. A general solution
for the weights requires knowledge of both the desired signal, Rs, and noise, Rn, covariance matrices. The
attainability of this knowledge depends on the application. For example, in an active radar system Rn can
be estimated during the time that no signal is being transmitted and Rs can be obtained from knowledge
of the transmitted pulse and direction of interest. If the signal component is narrowband, of frequency v,
and direction u, then Rs¼s2d(u,v)dH(u,v) from the results in Section 2.2. In this case, the weights are
obtained as

w ¼ aR�1
n d(u,v), (2:16)

where the a is some nonzero complex constant. Substitution of Equation 2.16 into the SNR expression
shows that the SNR is independent of the value chosen for a.

2.4.4 Linearly Constrained Minimum Variance Beamforming

Inmany applications none of the above approaches are satisfactory. The desired signal may be of unknown
strength and may always be present, resulting in signal cancellation with the MSC and preventing
estimation of signal and noise covariance matrices in the maximum SNR processor. Lack of knowledge
about the desired signal may prevent utilization of the reference signal approach. These limitations
can be overcome through the application of linear constraints to the weight vector. Use of linear constraints
is a very general approach that permits extensive control over the adapted response of the beamformer.
In this section we illustrate how linear constraints can be employed to control beamformer response,
discuss the optimum linearly constrained beamforming problem, and present the generalized sidelobe
canceller (GSC) structure.

The basic idea behind LCMV beamforming is to constrain the response of the beamformer so signals
from the direction of interest are passed with specified gain and phase. The weights are chosen to

(a)

Auxiliary channels

Main channel

Auxiliary branch response

Net response

θd θI

θd θI

θd θI
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wa
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ym +

–
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(b)

FIGURE 2.6 The multiple sidelobe canceller consists of a main channel and several auxiliary channels as illustrated
in (a). The auxiliary channel weights are chosen to ‘‘cancel’’ interference entering through sidelobes of the main
channel. (b) Depicts the main channel, auxiliary branch, and overall system response when an interferer arrives from
direction uI.
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minimize output variance or power subject to the response constraint. This has the effect of preserving
the desired signal while minimizing contributions to the output due to interfering signals and noise
arriving from directions other than the direction of interest. The analogous FIR filter has the weights
chosen to minimize the filter output power subject to the constraint that the filter response to signals of
frequency vo be unity.

In Section 2.2, we saw that the beamformer response to a source at angle u and temporal frequency v
is given by wHd(u,v). Thus, by linearly constraining the weights to satisfy wHd(u,v)¼ g where g is a
complex constant, we ensure that any signal from angle u and frequency v is passed to the output with
response g. Minimization of contributions to the output from interference (signals not arriving from u

with frequency v) is accomplished by choosing the weights to minimize the output power or variance
E{jyj2} ¼ wHRxw. The LCMV problem for choosing the weights is thus written

min
w

wHRxw subject to dH(u,v)w ¼ g*: (2:17)

The method of Lagrange multipliers can be used to solve Equation 2.17 resulting in

w ¼ g*
R�1
x d(u,v)

dH(u,v)R�1
x d(u,v)

: (2:18)

Note that, in practice, the presence of uncorrelated noise will ensure that Rx is invertible. If g¼ 1, then
Equation 2.18 is often termed the minimum variance distortionless response (MVDR) beamformer. It
can be shown that Equation 2.18 is equivalent to the maximum SNR solution given in Equation 2.16 by
substituting s2d(u,v)dH(u, v)þRn for Rx in Equation 2.18 and applying the matrix inversion lemma.

The single linear constraint in Equation 2.17 is easily generalized to multiple linear constraints for
added control over the beampattern. For example, if there is fixed interference source at a known
direction f, then it may be desirable to force zero gain in that direction in addition to maintaining the
response g to the desired signal. This is expressed as

dH(u,v)

dH(f,v)

" #
w ¼ g*

0

� �
: (2:19)

If there are L<N linear constraints on w, we write them in the form CHw¼ f where the N by L matrix C
and L-dimensional vector f are termed the constraint matrix and response vector. The constraints are
assumed to be linearly independent so C has rank L. The LCMV problem and solution with this more
general constraint equation are given in Table 2.1.

Several different philosophies can be employed for choosing the constraint matrix and response vector.
Specifically point, derivative, and eigenvector constraint approaches are popular. Each linear constraint
uses one degree of freedom in the weight vector so with L constraints there are only N� L degrees of
freedom available for minimizing variance. See Van Veen and Buckley [11] or Van Veen [12] for a more
in-depth discussion on this topic.

Generalized sidelobe canceller. The GSC represents an alternative formulation of the LCMV problem,
which provides insight, is useful for analysis, and can simplify LCMV beamformer implementation. It also
illustrates the relationship betweenMSC and LCMVbeamforming. Essentially, the GSC is amechanism for
changing a constrained minimization problem into unconstrained form.

Suppose we decompose the weight vector w into two orthogonal components wo and�v (i.e., w¼
wo� v) that lie in the range and null spaces of C, respectively. The range and null spaces of a matrix span
the entire space so this decomposition can be used to represent any w. Since CHv¼ 0, we must have

wo ¼ C(CHC)�1f , (2:20)
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if w is to satisfy the constraints. Equation 2.20 is the minimum L2 norm solution to the under-
determined equivalent of Equation 2.12. The vector v is a linear combination of the columns of an N
by M (M¼N� L) matrix Cn (i.e., v¼CnwM) provided the columns of Cn form a basis for the null space
of C. Cn can be obtained from C using any of several orthogonalization procedures such as Gram–
Schmidt, QR decomposition, or singular value decomposition. The weight vector w¼wo�CnwM is
depicted in block diagram form in Figure 2.7. The choice for wo and Cn implies that w satisfies the
constraints independent of wM and reduces the LCMV problem to the unconstrained problem

min
wM

[wo � CnwM]
HRx[wo � CnwM]: (2:21)

The solution is

wM ¼ CH
n RxCn

	 
�1
CH
n Rxwo: (2:22)

The primary implementation advantages of this alternate but equivalent formulation stem from the facts
that the weights wM are unconstrained and a data-independent beamformer wo is implemented as an
integral part of the optimum beamformer. The unconstrained nature of the adaptive weights permits
much simpler adaptive algorithms to be employed and the data-independent beamformer is useful
in situations where adaptive signal cancellation occurs (see Section 2.4.5).

As an example, assume the constraints are as given in Equation 2.17. Equation 2.20 implies
wo ¼ g*d(u,v)= dH(u,v)d(u,v)

� �
. Cn satisfies dH(u, v)Cn¼ 0 so each column [Cn]i; 1< i<N� L, can

be viewed as a data-independent beamformer with a null in direction u at frequency v: dH(u, v)[Cn]j¼ 0.
Thus, a signal of frequency v and direction u arriving at the array will be blocked or nulled by the matrix
Cn. In general, if the constraints are designed to present a specified response to signals from a set of
directions and frequencies, then the columns of Cn will block those directions and frequencies. This
characteristic has led to the term ‘‘blocking matrix’’ for describing Cn. These signals are only processed by
wo and since wo satisfies the constraints, they are presented with the desired response independent of wM.
Signals from directions and frequencies over which the response is not constrained will pass through the
upper branch in Figure 2.7 with some response determined by wo. The lower branch chooses wM to
estimate the signals at the output of wo as a linear combination of the data at the output of the blocking
matrix. This is similar to the operation of the MSC, in which weights are applied to the output of auxiliary
sensors in order to estimate the primary channel output (see Figure 2.6).

2.4.5 Signal Cancellation in Statistically Optimum Beamforming

Optimum beamforming requires some knowledge of the desired signal characteristics, either its
statistics (for maximum SNR or reference signal methods), its direction (for the MSC), or its response

wo

Cn wM
N – L

+

–

N

x

y

FIGURE 2.7 The generalized sidelobe canceller represents an implementation of the LCMV beamformer in which
the adaptive weights are unconstrained. It consists of a preprocessor composed of a fixed beamformer wo and a
blocking matrix Cn, and a standard adaptive filter with unconstrained weight vector wM.
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vector d(u, v) (for the LCMV beamformer). If the required knowledge is inaccurate, the optimum
beamformer will attenuate the desired signal as if it were interference. Cancellation of the desired signal is
often significant, especially if the SNR of the desired signal is large. Several approaches have been
suggested to reduce this degradation (e.g., Cox et al. [3]).

A second cause of signal cancellation is correlation between the desired signal and one or more
interference signals. This can result either from multipath propagation of a desired signal or from smart
(correlated) jamming. When interference and desired signals are uncorrelated, the beamformer attenu-
ates interferers to minimize output power. However, with a correlated interferer the beamformer
minimizes output power by processing the interfering signal in such a way as to cancel the desired
signal. If the interferer is partially correlated with the desired signal, then the beamformer will cancel the
portion of the desired signal that is correlated with the interferer. Methods for reducing signal cancel-
lation due to correlated interference have been suggested (e.g., Widrow et al. [13], Shan and Kailath [10]).

2.5 Adaptive Algorithms for Beamforming

The optimum beamformer weight vector equations listed in Table 2.1 require knowledge of second-order
statistics. These statistics are usually not known, but with the assumption of ergodicity, they (and
therefore the optimum weights) can be estimated from available data. Statistics may also change over
time, e.g., due to moving interferers. To solve these problems, weights are typically determined by
adaptive algorithms.

There are two basic adaptive approaches: (1) block adaptation, where statistics are estimated from a
temporal block of array data and used in an optimum weight equation; and (2) continuous adaptation,
where the weights are adjusted as the data is sampled such that the resulting weight vector sequence
converges to the optimum solution. If a nonstationary environment is anticipated, block adaptation can
be used, provided that the weights are recomputed periodically. Continuous adaptation is usually
preferred when statistics are time-varying or, for computational reasons, when the number of adaptive
weights M is moderate to large; values of M> 50 are common.

Among notable adaptive algorithms proposed for beamforming are the Howells–Applebaum adaptive
loop developed in the late 1950s and reported by Howells [7] and Applebaum [1], and the Frost LCMV
algorithm [4]. Rather than recapitulating adaptive algorithms for each optimum beamformer listed in
Table 2.1, we take a unifying approach using the standard adaptive filter configuration illustrated on the
right side of Figure 2.7.

In Figure 2.7 the weight vector wM is chosen to estimate the desired signal yd as linear combination of
the elements of the data vector u. We select wM to minimize the mean squared error (MSE)

J(wM) ¼ E yd � wH
Mu

�� ��2n o
¼ s2

d � wH
Mrud � rHudwM þ wH

MRuwM , (2:23)

where
s2
d ¼ E jydj2

� �
rud ¼ E{u yd*}
Ru ¼ E{u uH}

J(wM) is minimized by

wopt ¼ R�1
u rud: (2:24)

Comparison of Equation 2.23 and the criteria listed in Table 2.1 indicates that this standard adaptive
filter problem is equivalent to both the MSC beamformer problem (with yd¼ ym and u¼ xa) and the
reference signal beamformer problem (with u¼ x). The LCMV problem is apparently different. However
closer examination of Figure 2.7 and Equations 2.22 and 2.24 reveals that the standard adaptive filter
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problem is equivalent to the LCMV problem implemented with the GSC structure. Setting u ¼ CH
n x

and yd ¼ wH
o x implies Ru ¼ CH

n RxCn and rud ¼ CH
n Rxwo. The maximum SNR beamformer cannot in

general be represented by Figure 2.7 and Equation 2.24. However, it was noted after Equation 2.18 that
if the desired signal is narrowband, then the maximum SNR and the LCMV beamformers are equivalent.

The block adaptation approach solves Equation 2.24 using estimates of Ru and rud formed from K
samples of u and yd: u(k), yd(k); 0< k<K� 1. The most common are the sample covariance matrix

R̂u ¼ 1
K

XK�1

k¼0

u(k)uH(k), (2:25)

and sample cross-covariance vector

r̂ud ¼ 1
K

XK�1

k¼0

u(k)yd*(k): (2:26)

Performance analysis and guidelines for selecting the block size K are provided in Reed et al. [9].
Continuous adaptation algorithms are easily developed in terms of Figure 2.7 and Equation 2.23. Note

that J(wM) is a quadratic error surface. Since the quadratic surface’s ‘‘Hessian’’ Ru is the covariance matrix
of noisy data, it is positive definite. This implies that the error surface is a ‘‘bowl.’’ The shape of the bowl is
determined by the eigenstructure of Ru. The optimum weight vector wopt corresponds to the bottom of
the bowl.

One approach to adaptive filtering is to envision a point on the error surface that corresponds to the
present weight vector wM(k). We select a new weight vector wM(kþ 1) so as to descend on the error
surface. The gradient vector

rwM (k) ¼ q
qwM

J(wM)

����
wM¼wm(k)

¼ �2rud þ 2RuwM(k), (2:27)

tells us the direction in which to adjust the weight vector. Steepest descent, i.e., adjustment in the negative
gradient direction, leads to the popular least mean-square (LMS) adaptive algorithm. The LMS algorithm
replaces rwM(k) with the instantaneous gradient estimate r̂wM(k) ¼ �2 u(k)yd*(k)� u(k)uH(k)wM(k)½ �.
Denoting y(k) ¼ yd(k)� wH

Mu(k), we have

wM(kþ 1) ¼ wM(k)þ mu(k)y*(k): (2:28)

The gain constant m controls convergence characteristics of the random vector sequence wM(k). Table 2.2
provides guidelines for its selection.

The primary virtue of the LMS algorithm is its simplicity. Its performance is acceptable in many
applications; however, its convergence characteristics depend on the shape of the error surface and
therefore the eigenstructure of Ru. When the eigenvalues are widely spread, convergence can be slow and
other adaptive algorithms with better convergence characteristics should be considered. Alternative
procedures for searching the error surface have been proposed in addition to algorithms based on least
squares and Kalman filtering. Roughly speaking, these algorithms trade off computational requirements
with speed of convergence to wopt. We refer you to texts on adaptive filtering for detailed descriptions and
analysis (Widrow and Stearns [14], Haykin [6], and others).

One alternative to LMS is the exponentially weighted recursive least squares (RLS) algorithm. At the
Kth time step, wM(K) is chosen to minimize a weighted sum of past squared errors

min
wM(K)

XK
k¼0

lK�k yd(k)� wH
M(K)u(k)

�� ��2: (2:29)

2-18 Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing



l is a positive constant less than one which determines how quickly previous data are de-emphasized.
The RLS algorithm is obtained from Equation 2.29 by expanding the magnitude squared and applying
the matrix inversion lemma. Table 2.2 summarizes both the LMS and RLS algorithms.

2.6 Interference Cancellation and Partially
Adaptive Beamforming

The computational requirements of each update in adaptive algorithms are proportional to either the
weight vector dimension M (e.g., LMS) or dimension squared M2 (e.g., RLS). If M is large, this
requirement is quite severe and for practical real time implementation it is often necessary to reduce
M. Furthermore, the rate at which an adaptive algorithm converges to the optimum solution may be very
slow for large M. Adaptive algorithm convergence properties can be improved by reducing M.

The concept of ‘‘degrees of freedom’’ is much more relevant to this discussion than the number of
weights. The expression degrees of freedom refers to the number of unconstrained or ‘‘free’’ weights in an
implementation. For example, an LCMV beamformer with L constraints on N weights has N� L degrees
of freedom; the GSC implementation separates these as the unconstrained weight vector wM. There areM
degrees of freedom in the structure of Figure 2.7. A fully adaptive beamformer uses all available degrees of
freedom and a partially adaptive beamformer uses a reduced set of degrees of freedom. Reducing degrees
of freedom lowers computational requirements and often improves adaptive response time. However,
there is a performance penalty associated with reducing degrees of freedom. A partially adaptive
beamformer cannot generally converge to the same optimum solution as the fully adaptive beamformer.
The goal of partially adaptive beamformer design is to reduce degrees of freedom without significant
degradation in performance.

The discussion in this section is general, applying to different types of beamformers although we
borrow much of the notation from the GSC. We assume the beamformer is described by the adaptive
structure of Figure 2.7 where the desired signal yd is obtained as yd ¼ wH

o x and the data vector u as
u¼THx. Thus, the beamformer output is y¼wHx where w¼wo�TwM. In order to distinguish between
fully and partially adaptive implementations, we decompose T into a product of two matrices CnTM.

TABLE 2.2 Comparison of the LMS and RLS Weight Adaptation Algorithms

Algorithm LMS RLS

Initialization wM(0)¼ 0 wM(0)¼ 0

y(0)¼ yd(0) P(0)¼ d�1I

0 < m < 1
Trace[Ru]

d small, I identity matrix

Update wM(k) ¼ wM(k� 1)þ mu(k� 1)y*(k� 1) v(k) ¼ P(k� 1)u(k)

Equations y(k) ¼ yd(k)� wH
M(k)u(k) k(k) ¼ l�1v(k)

1þl�1uH(k)v(k)

a(k) ¼ yd(k)� wH
M(k� 1)u(k)

wM(k) ¼ wM(k� 1)þ k(k)a*(k)

P(k) ¼ l�1P(k� 1)� l�1k(k)vH(k)

Multiplies per update 2M 4M2þ 4Mþ 2

Performance
Characteristics

Under certain conditions, convergence of
wM(k) to the statistically optimum weight
vector wopt in the mean-square sense is
guaranteed if m is chosen as indicated
above. The convergence rate is governed by
the eigenvalue spread of Ru. For large
eigenvalue spread, convergence can be
very slow.

The wM(k) represents the least squares
solution at each instant k and are optimum
in a deterministic sense. Convergence to the
statistically optimum weight vector wopt is
often faster than that obtained using the
LMS algorithm because it is independent of
the eigenvalue spread of Ru.
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The definition of Cn depends on the particular beamformer and TM represents the mapping which
reduces degrees of freedom. The MSC and GSC are obtained as special cases of this representation. In the
MSC wo is an N vector that selects the primary sensor, Cn is an N by N� 1 matrix that selects the N� 1
possible auxiliary sensors from the complete set of N sensors, and TM is an N� 1 byMmatrix that selects
the M auxiliary sensors actually utilized. In terms of the GSC, wo and Cn are defined as in Section 2.4.4
and TM is an N� L by M matrix that reduces degrees of freedom (M<N� L).

The goal of partially adaptive beamformer design is to choose TM (or T) such that good interference
cancellation properties are retained even though M is small. To see that this is possible in principle,
consider the problem of simultaneously canceling two narrowband sources from direction u1 and u2 at
frequency vo. Perfect cancellation of these sources requires wHd(u1,vo)¼ 0 and wHd(u2,vo)¼ 0 so we
must choose wM to satisfy

wH
M THd(u1,vo)T

Hd(u2,vo)
� � ¼ [g1, g2], (2:30)

where gi ¼ wH
o d(ui,vo) is the response of the wo branch to the ith interferer. Assuming THd(u1,vo) and

THd(u2,vo) are linearly independent and nonzero, and provided M� 2, then at least one wM exists that
satisfies Equation 2.30. Extending this reasoning, we see that wM can be chosen to cancel M narrowband
interferers (assuming the THd(ui,vo) are linearly independent and nonzero), independent of T. Total
cancellation occurs if wM is chosen so the response of T wM perfectly matches the wo branch response to
the interferers. In general, M narrowband interferers can be canceled using M adaptive degrees of
freedom with relatively mild restrictions on T.

No such rule exists in the broadband case. Here complete cancellation of a single interferer requires
choosing TwM so that the response of the adaptive branch, wH

MT
Hd(u1,v), matches the response of the

wo branch, wH
o d(u1,v), over the entire frequency band of the interferer. In this case, the degree of

cancellation depends on how well these two responses match and is critically dependent on the interferer
direction, frequency content, and T. Good cancellation can be obtained in some situations when M¼ 1,
while in others even large values of M result in poor cancellation.

A variety of intuitive and optimization-based techniques have been proposed for designing TM that
achieve good interference cancellation with relatively small degrees of freedom. See Van Veen and
Buckley [11] and Van Veen [12] for further review and discussion.

2.7 Summary

A beamformer forms a scalar output signal as a weighted combination of the data received at an array of
sensors. The weights determine the spatial filtering characteristics of the beamformer and enable
separation of signals having overlapping frequency content if they originate from different locations.
The weights in a data-independent beamformer are chosen to provide a fixed response independent to
the received data. Statistically optimum beamformers select the weights to optimize the beamformer
response based on the statistics of the data. The data statistics are often unknown and may change with
time so adaptive algorithms are used to obtain weights that converge to the statistically optimum
solution. Computational and response time considerations dictate the use of partially adaptive beamfor-
mers with arrays composed of large numbers of sensors.

Defining Terms

Array response vector: Vector describing the amplitude and phase relationships between propagating
wave components at each sensor as a function of spatial direction and temporal frequency.
Forms the basis for determining the beamformer response.

2-20 Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing



Beamformer: A device used in conjunction with an array of sensors to separate signals and interference
on the basis of their spatial characteristics. The beamformer output is usually given by a
weighted combination of the sensor outputs.

Beampattern: The magnitude squared of the beamformer’s spatial filtering response as a function of
spatial direction and possibly temporal frequency.

Data-independent, statistically optimum, adaptive, and partially adaptive beamformers: The weights
in a data-independent beamformer are chosen independent of the statistics of the data.
A statistically optimum beamformer chooses its weights to optimize some statistical function
of the beamformer output, such as SNR. An adaptive beamformer adjusts its weights in
response to the data to accommodate unknown or time varying statistics. A partially adaptive
beamformer uses only a subset of the available adaptive degrees of freedom to reduce the
computational burden or improve the adaptive convergence rate.

Generalized sidelobe canceller: Structure for implementing LCMV beamformers that separates the
constrained and unconstrained components of the adaptive weight vector. The unconstrained
components adaptively cancel interference that leaks through the sidelobes of a data-independent
beamformer designed to satisfy the constraints.

LCMV beamformer: Beamformer in which the weights are chosen to minimize the output power
subject to a linear response constraint. The constraint preserves the signal of interest while
power minimization optimally attenuates noise and interference.

Multiple sidelobe canceller: Adaptive beamformer structure in which the data received at low gain
auxiliary sensors is used to adaptively cancel the interference arriving in the mainlobe or
sidelobes of a spatially high gain sensor.

MVDR beamformer: A form of LCMV beamformer employing a single constraint designed to pass a
signal of given direction and frequency with unit gain.
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3.1 Introduction

Estimating bearings of multiple narrowband signals from measurements collected by an array of
sensors has been a very active research problem for the last two decades. Typical applications of this
problem are radar, communication, and underwater acoustics. Many algorithms have been proposed to
solve the bearing estimation problem. One of the first techniques that appeared was beamforming
which has a resolution limited by the array structure. Spectral estimation techniques were also applied
to the problem. However, these techniques fail to resolve closely spaced arrival angles for low signal-
to-noise ratios (SNRs). Another approach is the maximum-likelihood (ML) solution. This approach has
been well documented in the literature. In the stochastic ML method [29], the sbgv signals are assumed
to be Gaussian whereas they are regarded as arbitrary and deterministic in the deterministic ML
method [37]. The sensor noise is modeled as Gaussian in both methods, which is a reasonable
assumption due to the central limit theorem. The stochastic ML estimates of the bearings achieve the
Cramer–Rao bound (CRB). On the other hand, this does not hold for deterministic ML estimates [32].
The common problem with the ML methods in general is the necessity of solving a nonlinear
multidimensional (MD) optimization problem which has a high computational cost and for which
there is no guarantee of global convergence. ‘‘Subspace-based’’ (or, super-resolution) approaches have
attracted much attention, after the work of Schmidt [29], due to their computational simplicity as
compared to the ML approach, and their possibility of overcoming the Rayleigh bound on the
resolution power of classical direction-finding methods. Subspace-based direction-finding methods
are summarized in this section.
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3.2 Formulation of the Problem

Consider an array of M antenna elements receiving a set of plane waves emitted by P(P<M) sources in
the far field of the array. We assume a narrowband propagation model, i.e., the signal envelopes do not
change during the time it takes for the wave fronts to travel from one sensor to another. Suppose that the
signals have a common frequency of f0; then, the wavelength l ¼ c=f0 where c is the speed of propaga-
tion. The received M-vector r(t) at time t is

r(t) ¼ As(t)þ n(t), (3:1)

where
s(t) ¼ [s1(t), . . . , sP(t)]

T is the P-vector of sources
A ¼ [a(u1), . . . , a(uP)] is the M3 P steering matrix in which a(ui), the ith steering vector, is the

response of the array to the ith source arriving from ui
n(t) ¼ [n1(t), . . . , nM(t)]

T is an additive noise process

We assume (1) the source signals may be statistically independent, partially correlated, or completely
correlated (i.e., coherent); the distributions are unknown; (2) the array may have an arbitrary shape and
response; and (3) the noise process is independent of the sources, zero-mean, and it may be either
partially white or colored; its distribution is unknown. These assumptions will be relaxed, as required by
specific methods, as we proceed.

The direction finding problem is to estimate the bearings [i.e., directions of arrival (DOA)] {ui}
P
i¼1 of

the sources from the snapshots r(t), t ¼ 1, . . . ,N .
In applications, the Rayleigh criterion sets a bound on the resolution power of classical direction-finding

methods. In the next sections we summarize some of the so-called super-resolution direction-
finding methods which may overcome the Rayleigh bound. We divide these methods into two classes,
those that use second-order and those that use second- and higher-order statistics.

3.3 Second-Order Statistics-Based Methods

The second-order methods use the sample estimate of the array spatial covariance matrix
R ¼ E{r(t)r(t)H} ¼ ARsAH þ Rn, where Rs ¼ E{s(t)s(t)H} is the P3P signal covariance matrix and
Rn ¼ E{n(t)n(t)H} is theM3M noise covariance matrix. For the time being, let us assume that the noise
is spatially white, i.e., Rn ¼ s2I. If the noise is colored and its covariance matrix is known or can be
estimated, the measurements can be ‘‘whitened’’ by multiplying the measurements from the left by
the matrix L�1=2EH

n obtained by the orthogonal eigendecomposition Rn ¼ EnLEH
n . The array spatial

covariance matrix is estimated as R̂ ¼PN
t¼1 r(t)r(t)

H=N .
Some spectral estimation approaches to the direction finding problem are based on optimization.

Consider the ‘‘minimum variance’’ (MV) algorithm, for example. The received signal is processed by a
beamforming vector wo which is designed such that the output power is minimized subject to the
constraint that a signal from a desired direction is passed to the output with unit gain. Solving this
optimization problem, we obtain the array output power as a function of the arrival angle u as

Pmv(u) ¼ 1
aH(u)R�1a(u)

:

The arrival angles are obtained by scanning the range [�90�, 90�] of u and locating the peaks of Pmv(u).
At low SNRs the conventional methods, such as MV, fail to resolve closely spaced arrival angles. The
resolution of conventional methods are limited by SNR even if exact R is used, whereas in subspace
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methods, there is no resolution limit; hence, the latter are also referred to as ‘‘super-resolution’’ methods.
The limit comes from the sample estimate of R.

The subspace-based methods exploit the eigendecomposition of the estimated array covariance
matrix R̂. To see the implications of the eigendecomposition of R̂, let us first state the properties of R:
(1) If the source signals are independent or partially correlated, rank(Rs) ¼ P. If there are coherent
sources, rank(Rs) < P. In the methods explained in Sections 3.3.1 and 3.3.2, except for the
weighted subspace fitting (WSF) method (see Section 3.3.1.1), it will be assumed that there are no
coherent sources. The coherent signals case is described in Section 3.3.2. (2) If the columns of A are
independent, which is generally true when the source bearings are different, then A is of full-rank P.
(3) Properties 1 and 2 imply rank(ARsAH) ¼ P; therefore, ARsAH must have P nonzero eigenvalues and
M � P zero eigenvalues. Let the eigendecomposition of ARsAH be ARsAH ¼PM

i¼1 aieieHi ; then
a1 � a2 � � � � � aP � aPþ1 ¼ � � � ¼ aM ¼ 0 are the rank-ordered eigenvalues, and {ei}

M
i¼1 are the corre-

sponding eigenvectors. (4) BecauseRn ¼ s2I, the eigenvectors ofR are the same as those ofARsAH, and its
eigenvalues are li ¼ ai þ s2, if 1� i� P, or li ¼ s2, if P þ 1 � i � M. The eigenvectors can be parti-
tioned into two sets: Es ¼D [e1, . . . , eP] forms the ‘‘signal subspace,’’ whereas En ¼D [ePþ1, . . . , eM] forms
the ‘‘noise subspace.’’ These subspaces are orthogonal. The signal eigenvalues Ls ¼D diag{l1, . . . ,lP}, and
the noise eigenvalues Ln ¼D diag{lPþ1, . . . ,lM}. (5) The eigenvectors corresponding to zero eigenvalues
satisfy ARsAHei ¼ 0, i ¼ P þ 1, . . . ,M; hence, AHei ¼ 0, i ¼ P þ 1, . . . ,M, because A and Rs are full
rank. This last equation means that steering vectors are orthogonal to noise subspace eigenvectors. It
further implies that because of the orthogonality of signal and noise subspaces, spans of signal eigenvectors
and steering vectors are equal. Consequently there exists a nonsingular P3Pmatrix T such that Es ¼ AT.

Alternatively, the signal and noise subspaces can also be obtained by performing a singular value
decomposition (SVD) directly on the received data without having to calculate the array covariance
matrix. Li and Vaccaro [17] state that the properties of the bearing estimates do not depend on which
method is used; however, SVD must then deal with a data matrix that increases in size as the new
snapshots are received. In the sequel, we assume that the array covariance matrix is estimated from the
data and an eigendecomposition is performed on the estimated covariance matrix.

The eigenvalue decomposition of the spatial array covariance matrix, and the eigenvector partition-
ment into signal and noise subspaces, leads to a number of subspace-based direction-finding methods.
The signal subspace contains information about where the signals are whereas the noise subspace
informs us where they are not. Use of either subspace results in better resolution performance than
conventional methods. In practice, the performance of the subspace-based methods is limited funda-
mentally by the accuracy of separating the two subspaces when the measurements are noisy [18]. These
methods can be broadly classified into signal subspace and noise subspace methods. A summary of
direction-finding methods based on both approaches is discussed in the following.

3.3.1 Signal Subspace Methods

In these methods, only the signal subspace information is retained. Their rationale is that by discarding
the noise subspace we effectively enhance the SNR because the contribution of the noise power to the
covariance matrix is eliminated. Signal subspace methods are divided into search-based and algebraic
methods, which are explained in Sections 3.3.1.1 and 3.3.1.2.

3.3.1.1 Search-Based Methods

In search-based methods, it is assumed that the response of the array to a single source, ‘‘the array
manifold’’ a(u), is either known analytically as a function of arrival angle, or is obtained through the
calibration of the array. For example, for an M-element uniform linear array, the array response to a
signal from angle u is analytically known and is given by

a(u) ¼ 1, e�j2pdlsin(u), . . . , e�j2p(M�1)dlsin(u)

h iT
,
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where
d is the separation between the elements
l is the wavelength

In search-based methods to follow (except for the subspace fitting [SSF] methods), which are spatial
versions of widely known power spectral density estimators, the estimated array covariance matrix is
approximated by its signal subspace eigenvectors, or its ‘‘principal components,’’ as R̂ �PP

i¼1 lieie
H
i .

Then the arrival angles are estimated by locating the peaks of a function, S(u) (�90� � u � 90�), which
depends on the particular method. Some of these methods and the associated function S(u) are
summarized in the following [13,18,20]:

Correlogram method: In this method, S(u) ¼ a(u)HR̂a(u). The resolution obtained from the Correlogram
method is lower than that obtained from the MV and autoregressive (AR) methods.

Minimum variance [1] method: In this method, S(u) ¼ 1=a(u)HR̂�1a(u). The MV method is known to
have a higher resolution than the correlogram method, but lower resolution and variance than the AR
method.

Autoregressive method: In this method, S(u) ¼ 1=juTR̂�1a(u)j2 where u ¼ [1, 0, . . . , 0]T. This method is
known to have a better resolution than the previous ones.

Subspace fitting and weighted subspace fitting methods: In Section 3.2 we saw that the spans of
signal eigenvectors and steering vectors are equal; therefore, bearings can be solved from the best least-
squares (LS) fit of the two spanning sets when the array is calibrated [35]. In the SSF method the
criterion [û, T̂] ¼ argmin EsW1=2 � A(u)T

�� ��2 is used, where k:k denotes the Frobenius norm, W is a
positive definite weighting matrix, Es is the matrix of signal subspace eigenvectors, and the notation
for the steering matrix is changed to show its dependence on the bearing vector u. This criterion
can be minimized directly with respect to T, and the result for T can then be substituted back into it,
so that

û ¼ argmin Tr (I� A(u)A(u)#)EsWEH
s

n o
,

where A# ¼ (AHA)�1AH.
Viberg and Ottersten have shown that a class of direction finding algorithms can be approximated by

this SSF formulation for appropriate choices of the weighting matrix W. For example, for the determin-
istic ML method W ¼ Ls � s2I, which is implemented using the empirical values of the signal eigen-
values, Ls, and the noise eigenvalue s2. Total least square (TLS)-estimation of signal parameters via
rotational invariance techniques (ESPRIT), which is explained in the next section, can also be formulated
in a similar but more involved way. Viberg and Ottersten have also derived an optimal WSF method,
which yields the smallest estimation error variance among the class of SSF methods. In WSF,
W ¼ (Ls � s2I)2L�1

s . The WSF method works regardless of the source covariance (including coherence)
and has been shown to have the same asymptotic properties as the stochastic ML method; hence, it is
asymptotically efficient for Gaussian signals (i.e., it achieves the stochastic CRB). Its behavior in the finite
sample case may be different from the asymptotic case [34]. Viberg and Ottersten have also shown
that the asymptotic properties of the WSF estimates are identical for both cases of Gaussian and
non-Gaussian sources. They have also developed a consistent detection method for arbitrary signal
correlation, and an algorithm for minimizing the WSF criterion. They do point out several practical
implementation problems of their method, such as the need for accurate calibrations of the array
manifold and knowledge of the derivative of the steering vectors w.r.t. u. For nonlinear and nonuniform
arrays, MD search methods are required for SSF, hence it is computationally expensive.
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3.3.1.2 Algebraic Methods

Algebraic methods do not require a search procedure and yield DOA estimates directly.
ESPRIT [23]: The ESPRIT algorithm requires ‘‘translationally invariant’’ arrays, i.e., an array with its

‘‘identical copy’’ displaced in space. The geometry and response of the arrays do not have to be known;
only the measurements from these arrays and the displacement between the identical arrays are required.
The computational complexity of ESPRIT is less than that of the search-based methods.

Let r1(t) and r2(t) be the measurements from these arrays. Due to the displacement of the arrays the
following holds

r1(t) ¼ As(t)þ n1(t) and r2(t) ¼ AFs(t)þ n2(t),

where F ¼ diag e�j2pdlsinu1 , . . . , e�j2pdlsinuP

n o
in which d is the separation between the identical arrays,

and the angles {ui}
P
i¼1 are measured with respect to the normal to the displacement vector between the

identical arrays. Note that the auto covariance of r1(t), R11, and the cross-covariance between r1(t) and
r2(t), R21, are given by

R11 ¼ ADAH þ Rn1 ,

and

R21 ¼ AFDAH þ Rn2n1 ,

where
D is the covariance matrix of the sources
Rn1 and Rn2n1 are the noise auto- and cross-covariance matrices

The ESPRIT algorithm solves for F, which then gives the bearing estimates. Although the subspace
separation concept is not used in ESPRIT, its LS and TLS versions are based on a signal subspace
formulation. The LS and TLS versions are more complicated, but are more accurate than the original
ESPRIT, and are summarized in the next subsection. Here we summarize the original ESPRIT:

1. Estimate the autocovariance of r1(t) and cross covariance between r1(t) and r2(t), as

R11 ¼ 1
N

XN
t¼1

r1(t)r1(t)H,

and

R21 ¼ 1
N

XN
t¼1

r2(t)r1(t)H:

2. Calculate R̂11 ¼ R11 � Rn1 and R̂21 ¼ R21 � Rn2n1 , where Rn1 and Rn2n1 are the estimated noise
covariance matrices.

3. Find the singular values li of the matrix pencil R̂11 � liR̂21, i ¼ 1, . . . ,P.
4. The bearings, ui (i ¼ 1, . . . , P), are readily obtained by solving the equation

li ¼ ej2p
d
lsin ui ,

for ui. In the above steps, it is assumed that the noise is spatially and temporally white or the
covariance matrices Rn1 and Rn2n1 are known.
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LS and TLS-ESPRIT [28]:

1. Follow Steps 1 and 2 of ESPRIT.
2. Stack R̂11 and R̂21 into a 2M3Mmatrix R, as R¼D [R̂11T R̂21T ]T, and perform an SVD of R, keeping

the first 2M3 P submatrix of the left singular vectors of R. Let this submatrix be Es.
3. Partition Es into two M3P matrices Es1 and Es2 such that

Es ¼ ET
s1E

T
s2

� �T
:

4. For LS-ESPRIT, calculate the eigendecomposition of EH
s1Es1

� ��1
EH
s1Es2. The eigenvalue matrix gives

F ¼ diag e�j2pdlsinu1 , . . . , e�j2pdlsinuP

n o
,

from which the arrival angles are readily obtained. For TLS-ESPRIT, proceed as follows.
5. Perform an SVD of the M3 2P matrix [Es1,Es2], and stack the last P right singular vectors of

[Es1,Es2] into a 2P3 P matrix denoted F.
6. Partition F as

F¼D FTxF
T
y

h iT
,

where Fx and Fy are P3P.
7. Perform the eigendecomposition of �FxF�1

y . The eigenvalue matrix gives

F ¼ diag e�j2pdlsinu1 , . . . , e�j2pdlsinuP

n o
,

from which the arrival angles are readily obtained.

Different versions of ESPRIT have different statistical properties. The Toeplitz approximation method
(TAM) [16], in which the array measurement model is represented as a state-variable model, although
different in implementation from LS-ESPRIT, is equivalent to LS-ESPRIT; hence, it has the same error
variance as LS-ESPRIT.

Generalized eigenvalues utilizing signal subspace eigenvectors (GEESE) [24]

1. Follow Steps 1 through 3 of TLS-ESPRIT.
2. Find the singular values li of the pencil

Es1 � liEs2, i ¼ 1, . . . ,P:

3. The bearings, ui (i ¼ 1, . . . , P), are readily obtained from

li ¼ ej2p
d
lsinui :

The GEESE method is claimed to be better than ESPRIT [24].

3.3.2 Noise Subspace Methods

These methods, in which only the noise subspace information is retained, are based on the property that
the steering vectors are orthogonal to any linear combination of the noise subspace eigenvectors. Noise
subspace methods are also divided into search-based and algebraic methods, which are explained next.
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3.3.2.1 Search-Based Methods

In search-based methods, the array manifold is assumed to be known, and the arrival angles are
estimated by locating the peaks of the function S(u) ¼ 1=a(u)HNa(u), where N is a matrix formed
using the noise space eigenvectors.

Pisarenko method: In this method,N ¼ eMeHM , where eM is the eigenvector corresponding to the minimum
eigenvalue of R. If the minimum eigenvalue is repeated, any unit-norm vector which is a linear combin-
ation of the eigenvectors corresponding to the minimum eigenvalue can be used as eM. The basis of
this method is that when the search angle u corresponds to an actual arrival angle, the denominator of S(u)
in the Pisarenko method, a(u)HeM

�� ��2, becomes small due to orthogonality of steering vectors and noise
subspace eigenvectors; hence, S(u) will peak at an arrival angle.

Multiple signal classification (MUSIC) [29] method: In this method, N ¼PM
i¼Pþ1 eie

H
i . The idea is similar

to that of the Pisarenko method; the inner product a(u)H
PM

i¼Pþ1 ei
�� ��2 is small when u is an actual arrival

angle. An obvious signal-subspace formulation of MUSIC is also possible. The MUSIC spectrum is
equivalent to the MV method using the exact covariance matrix when SNR is infinite, and therefore
performs better than the MV method.

Asymptotic properties of MUSIC are well established [32,33], e.g., MUSIC is known to have the same
asymptotic variance as the deterministic ML method for uncorrelated sources. It is shown by Xu and
Buckley [38] that although, asymptotically, bias is insignificant compared to standard deviation, it is an
important factor limiting the performance for resolving closely spaced sources when they are correlated.

In order to overcome the problems due to finite sample effects and source correlation, a MD version of
MUSIC has been proposed [28,29]; however, this approach involves a computationally involved search,
as in the ML method. MD MUSIC can be interpreted as a norm minimization problem, as shown in
Ephraim et al. [8]; using this interpretation, strong consistency of MD MUSIC has been demonstrated.
An optimally weighted version of MD MUSIC, which outperforms the deterministic ML method, has
also been proposed in Viberg and Ottersten [35].

Eigenvector (EV) method: In this method,

N ¼
XM
i¼Pþ1

1
li
eie

H
i :

The only difference between the EV method and MUSIC is the use of inverse eigenvalue (the li are the
noise subspace eigenvalues of R) weighting in eigenvector and unity weighting in MUSIC, which causes
eigenvector to yield fewer spurious peaks than MUSIC [13]. The EV method is also claimed to shape the
noise spectrum better than MUSIC.

Method of direction estimation (MODE): MODE is equivalent to WSF when there are no coherent sources.
Viberg andOttersten [35] claim that, for coherent sources, onlyWSF is asymptotically efficient. Aminimum-
norm interpretation and proof of strong consistency of MODE for ergodic and stationary signals, has also
been reported [8]. The normmeasure used in that work involves the source covariancematrix. By contrasting
this normwith the Frobenius norm that is used inMDMUSIC, Ephraim et al. relateMODEandMDMUSIC.

Minimum-norm [15] method: In this method, the matrix N is obtained as follows [12]:

1. Form En ¼ [ePþ1, . . . , eM].
2. Partition En as En ¼ [cCT]T, to establish c and C.
3. Compute d ¼ [1( (cHc)�1C*c)T]T, and, finally, N ¼ ddH.

For two closely spaced, equal power signals, the minimum-norm method has been shown to have a
lower SNR threshold (i.e., the minimum SNR required to separate the two sources) than MUSIC [14].
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Li and Vaccaro [17] derive and compare the mean-squared errors of the DOA estimates from minimum-
norm and MUSIC algorithms due to finite sample effects, calibration errors, and noise modeling errors
for the case of finite samples and high SNR. They show that mean-squared errors for DOA estimates
produced by the MUSIC algorithm are always lower than the corresponding mean-squared errors for the
minimum-norm algorithm.

3.3.2.2 Algebraic Methods

When the array is uniform linear, so that

a(u) ¼ 1, e�j2pdlsin(u), . . . , e�j2p(M�1)dlsin(u)
h iT

,

the search in S(u) ¼ 1=a(u)HNa(u) for the peaks can be replaced by a root-finding procedure which
yields the arrival angles. So doing results in better resolution than the search-based alternative because
the root-finding procedure can give distinct roots corresponding to each source whereas the search
function may not have distinct maxima for closely spaced sources. In addition, the computational
complexity of algebraic methods is lower than that of the search-based ones. The algebraic version of
MUSIC (root-MUSIC) is given next; for algebraic versions of Pisarenko, EV, and minimum-norm, the
matrix N in root-MUSIC is replaced by the corresponding N in each of these methods.

Root-MUSIC method: In root-MUSIC, the array is required to be uniform linear, and the search
procedure in MUSIC is converted into the following root-finding approach:

1. Form the M3M matrix N ¼PM
i¼Pþ1 eie

H
i .

2. Form a polynomial p(z) of degree 2M � 1 which has for its ith coefficient ci ¼ tri[N], where
tri denotes the trace of the ith diagonal, and i ¼ �(M � 1), . . . , 0, . . . ,M � 1. Note that tr0
denotes the main diagonal, tr1 denotes the first super-diagonal, and tr�1 denotes the first sub-
diagonal.

3. The roots of p(z) exhibit inverse symmetry with respect to the unit circle in the z-plane. Express
p(z) as the product of two polynomials p(z) ¼ h(z)h*(z�1).

4. Find the roots zi (i ¼ 1, . . . ,M) of h(z). The angles of roots that are very close to (or, ideally on) the
unit circle yield the DOA estimates, as

ui ¼ sin�1 l

2pd
ffzi

� 	
, where i ¼ 1, . . . ,P:

The root-MUSIC algorithm has been shown to have better resolution power than MUSIC [27]; however,
as mentioned previously, root-MUSIC is restricted to uniform linear arrays (ULA). Steps 2 through 4
make use of this knowledge. Li and Vaccaro show that algebraic versions of the MUSIC and minimum-
norm algorithms have the same mean-squared errors as their search-based versions for finite samples
and high SNR case. The advantages of root-MUSIC over search-based MUSIC is increased resolution of
closely spaced sources and reduced computations.

3.3.3 Spatial Smoothing

When there are coherent (completely correlated) sources, rank(Rs), and consequently rank(R), is less
than P, and hence the above described subspace methods fail. If the array is uniform linear, then by
applying the spatial smoothing method, described below, a new rank-P matrix is obtained which can be
used in place of R in any of the subspace methods described earlier.
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Spatial smoothing [9,31] starts by dividing the M-vector r(t) of the ULA into K ¼ M � Sþ 1
overlapping subvectors of size S, rfS, k(k ¼ 1, . . . ,K), with elements {rk, . . . , rkþS�1}, and
rbS,k(k ¼ 1, . . . ,K), with elements rM�kþ1* , . . . , rM�S�kþ2*f g. Then, a forward and backward spatially
smoothed matrix Rfb is calculated as

Rfb ¼
XN
t¼1

XK
k¼1

rfS, k(t)r
f
S,k

H(t)þ rbS,k(t)r
b
S,k

H(t)
� �

=KN:

The rank of Rfb is P if there are at most 2M=3 coherent sources. S must be selected such that

Pc þ 1 � S � M � Pc=2þ 1,

in which Pc is the number of coherent sources. Then, any subspace-based method can be applied to Rfb to
determine the DOA. It is also possible to do spatial smoothing based only on rfS,k or r

b
S,k, but in this case at

most M=2 coherent sources can be handled.

3.3.4 Discussion

The application of all the subspace-based methods requires exact knowledge of the number of signals, in
order to separate the signal and noise subspaces. The number of signals can be estimated from the data
using either the Akaike information criterion (AIC) [36] or minimum descriptive length (MDL) [37]
methods. The effect of underestimating the number of sources is analyzed by Radich and Buckley [26],
whereas the case of overestimating the number of signals can be treated as a special case of the analysis in
Stoica and Nehorai [32].

The second-order methods described above have the following disadvantages:

1. Except for ESPRIT (which requires a special array structure), all of the above methods require
calibration of the array which means that the response of the array for every possible combination
of the source parameters should be measured and stored; or, analytical knowledge of the array
response is required. However, at any time, the antenna response can be different from when it was
last calibrated due to environmental effects such as weather conditions for radar, or water waves
for sonar. Even if the analytical response of the array elements is known, it may be impossible to
know or track the precise locations of the elements in some applications (e.g., towed array).
Consequently, these methods are sensitive to errors and perturbations in the array response. In
addition, physically identical sensors may not respond identically in practice due to lack of
synchronization or imbalances in the associated electronic circuitry.

2. In deriving the above methods, it was assumed that the noise covariance structure is known;
however, it is often unrealistic to assume that the noise statistics are known due to several reasons.
In practice, the noise is not isolated; it is often observed along with the signals. Moreover, as
Swindlehurst and Kailath [33] state, there are noise phenomena effects that cannot be modeled
accurately, e.g., channel crosstalk, reverberation, near-field, wideband, and distributed sources.

3. None of the methods in Sections 3.3.1 and 3.3.2, except for the WSF method and other MD
search-based approaches, which are computationally very expensive, work when there are
coherent (completely correlated) sources. Only if the array is uniform linear, can the spatial
smoothing method in Section 3.3.2 be used. On the other hand, higher-order statistics of the
received signals can be exploited to develop direction-finding methods which have less restrictive
requirements.
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3.4 Higher-Order Statistics-Based Methods

The higher-order statistical direction-finding methods use the spatial cumulant matrices of the array.
They require that the source signals be non-Gaussian so that their higher than second-order statistics
convey extra information. Most communication signals (e.g., Quadrature Amplitude Modulation
(QAM)) are ‘‘complex circular’’ (a signal is complex circular if its real and imaginary parts are
independent and symmetrically distributed with equal variances) and hence their third-order cumulants
vanish; therefore, even-order cumulants are used, and usually fourth-order cumulants are employed. The
fourth-order cumulant of the source signals must be nonzero in order to use these methods. One
important feature of cumulant-based methods is that they can suppress Gaussian noise regardless of
its coloring. Consequently, the requirement of having to estimate the noise covariance, as in second-order
statistical processing methods, is avoided in cumulant-based methods. It is also possible to suppress non-
Gaussian noise [6], and, when properly applied, cumulants extend the aperture of an array [5,30], which
means that more sources than sensors can be detected. As in the second-order statistics-based methods,
it is assumed that the number of sources is known or is estimated from the data.

The fourth-order moments of the signal s(t) are

E{sisj*sksl*}, 1 � i, j, k, l � P,

and the fourth-order cumulants are defined as

c4, s(i, j, k, l) ¼ cum(si, sj*, sk, sl*)

¼ E{sisj*sksl*}� E{sisj*}E{sksl*}� E{sisl*}E{sksj*}� E{sisj}E{sk*sl*},

where 1 � i, j, k, l � P. Note that two arguments in the above fourth-order moments and cumulants are
conjugated and the other two are unconjugated. For circularly symmetric signals, which is often the case
in communication applications, the last term in c4,s(i, j, k, l) is zero.

In practice, sample estimates of the cumulants are used in place of the theoretical cumulants, and these
sample estimates are obtained from the received signal vector r(t) (t ¼ 1, . . . ,N), as

ĉ4,r(i, j, k, l) ¼
XN
t¼1

ri(t)rj*(t)rk(t)rl*(t)=N �
XN
t¼1

ri(t)rj*(t)
XN
t¼1

rk(t)rl*(t)=N
2

�
XN
t¼1

ri(t)rl*(t)
XN
t¼1

rk(t)rj*(t)=N
2,

where 1 � i, j, k, l � M. Note that the last term in c4,r(i, j, k, l) is zero and, therefore, it is omitted.
Higher-order statistical subspace methods use fourth-order spatial cumulant matrices of the array

output, which can be obtained in a number of ways by suitably selecting the arguments i, j, k, l of
c4,r(i, j, k, l). Existing methods for the selection of the cumulant matrix, and their associated processing
schemes are summarized next.

Pan–Nikias [22] and Cardoso–Moulines [2] method: In this method, the array needs to be calibrated,
or its response must be known in analytical form. The source signals are assumed to be independent or
partially correlated (i.e., there are no coherent signals). The method is as follows:

1. An estimate of an M3M fourth-order cumulant matrix C is obtained from the data. The
following two selections for C are possible [2,22]:

cij ¼ c4,r(i, j, j, j), 1 � i, j � M,

3-10 Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing



or

cij ¼
XM
m¼1

c4,r(i, j,m,m), 1 � i, j � M:

Using cumulant properties [19], and Equation 3.1, and aij for the ijth element of A, it is easy to
verify that

c4,r(i, j, j, j) ¼
XP
p¼1

aip
XP
q,r,s¼1

ajq*ajrajs*c4,s(p, q, r, s),

which, in matrix format, is C ¼ AB where A is the steering matrix and B is a P3M matrix with
elements

bij ¼
XP
q,r,s¼1

aiq*ajrajs*c4,s(i, q, r, s):

Similarly,

XM
m¼1

c4,r(i, j,m,m) ¼
XP
p,q¼1

aip
XP
r,s¼1

XM
m¼1

amrams* c4,s(p, q, r, s)

 !
ajq*, 1 � i, j � M,

which, in matrix form, can be expressed as C ¼ ADAH, where D is a P3 P matrix with elements

dij ¼
XP
r,s¼1

XM
m¼1

amrams* c4, s(i, j, r, s):

Note that additive Gaussian noise is suppressed in both C matrices because higher than second-
order statistics of a Gaussian process are zero.

2. The P left singular vectors of C ¼ AB, corresponding to nonzero singular values or the P
eigenvectors of C ¼ ADAH corresponding to nonzero eigenvalues form the signal subspace. The
orthogonal complement of the signal subspace gives the noise subspace. Any of the Section 3.3
covariance-based search and algebraic direction finding (DF) methods (except for the EV method
and ESPRIT) can now be applied (in exactly the same way as described in Section 3.3) either by
replacing the signal and noise subspace eigenvectors and eigenvalues of the array covariance matrix
by the corresponding subspace eigenvectors and eigenvalues of ADAH, or by the corresponding
subspace singular vectors and singular values of AB. A cumulant-based analog of the EV method
does not exist because the eigenvalues and singular values of ADAH and AB corresponding to the
noise subspace are theoretically zero. The cumulant-based analog of ESPRIT is explained later.

The same assumptions and restrictions for the covariance-based methods apply to their analogs in the
cumulant domain. The advantage of using the cumulant-based analogs of these methods is that there is
no need to know or estimate the noise-covariance matrix.

The asymptotic covariance of the DOA estimates obtained by MUSIC based on the above fourth-order
cumulant matrices are derived in Cardoso and Moulines [2] for the case of Gaussian measurement noise
with arbitrary spatial covariance, and are compared to the asymptotic covariance of the DOA estimates
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from the covariance-based MUSIC algorithm. Cardoso and Moulines show that covariance- and fourth-
order cumulant-based MUSIC have similar performance for the high SNR case, and as SNR decreases
below a certain SNR threshold, the variances of the fourth-order cumulant-based MUSIC DOA estimates
increase with the fourth power of the reciprocal of the SNR, whereas the variances of covariance-based
MUSIC DOA estimates increase with the square of the reciprocal of the SNR. They also observe that for
high SNR and uncorrelated sources, the covariance-based MUSIC DOA estimates are uncorrelated, and
the asymptotic variance of any particular source depends only on the power of that source (i.e., it is
independent of the powers of the other sources). They observe, on the other hand, that DOA estimates
from cumulant-based MUSIC, for the same case, are correlated, and the variance of the DOA estimate of
a weak source increases in the presence of strong sources. This observation limits the use of cumulant-
based MUSIC when the sources have a high dynamic range, even for the case of high SNR. Cardoso and
Moulines state that this problem may be alleviated when the source of interest has a large fourth-order
cumulant.

Porat and Friedlander [25]method: In this method, the array also needs to be calibrated, or its response is
required in analytical form. The model used in this method divides the sources into groups that are
partially correlated (but not coherent) within each group, but are statistically independent across the
groups, i.e.,

r(t) ¼
XG
g¼1

Agsg þ n(t),

where G is the number of groups each having pg sources
PG

g¼1 pg ¼ P

 �

. In this model, the pg sources in
the gth group are partially correlated, and they are received from different directions. The method is as
follows:

1. Estimate the fourth-order cumulant matrix, Cr, of r(t)	 r(t)*, where 	 denotes the Kronecker
product. It can be verified that

Cr ¼
XG
g¼1

(Ag 	 Ag*)Csg (Ag 	 Ag*)
H,

where Csg is the fourth-order cumulant matrix of sg. The rank of Cr is
PG

g¼1 p
2
g , and since Cr

is M2 
M2, it has M2 �PG
g¼1 p

2
g zero eigenvalues which correspond to the noise subspace. The

other eigenvalues correspond to the signal subspace.
2. Compute the SVD of Cr and identify the signal and noise subspace singular vectors. Now, second-

order subspace-based search methods can be applied, using the signal or noise subspaces, by
replacing the array response vector a(u) by a(u)	 a*(u).

The eigendecomposition in this method has computational complexity O(M6) due to the Kronecker
product, whereas the second-order statistics-based methods (e.g., MUSIC) have complexity O(M3).

Chiang–Nikias [4] method: This method uses the ESPRIT algorithm and requires an array with its entire
identical copy displaced in space by distance d; however, no calibration of the array is required. The signals

r1(t) ¼ As(t)þ n1(t),

and

r2(t) ¼ AFs(t)þ n2(t):
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Two M3M matrices C1 and C2 are generated as follows:

c1ij ¼ cum r1i , r
1
j *, r

1
k , r

1
k*


 �
, 1 � i, j, k � M,

and

c2ij ¼ cum r2i , r
1
j *, r

1
k , r

1
k*


 �
, 1 � i, j, k � M:

It can be shown that C1 ¼ AEAH and C2 ¼ AFEAH, where

F ¼ diag e�j2pdlsinu1 , . . . , e�j2pdlsinuP

n o
,

in which d is the separation between the identical arrays, and E is a P3 P matrix with elements

eij ¼
XP
q,r¼1

akqakr*c4, s(i, q, r, j):

Note that these equations are in the same form as those for covariance-based ESPRIT (the noise
cumulants do not appear in C1 and C2 because the fourth-order cumulants of Gaussian noises are
zero); therefore, any version of ESPRIT or GEESE can be used to solve for F by replacing R11 and R21 by
C1 and C2, respectively.

Virtual cross-correlation computer (VC3) [5]: In VC3, the source signals are assumed to be statistically
independent. The idea of VC3 can be demonstrated as follows: Suppose we have three identical sensors as
in Figure 3.1, where r1(t), r2(t), and r3(t) are measurements, and ~d1, ~d2, and ~d3 (~d3 ¼~d1 þ~d2) are the
vectors joining these sensors. Let the response of each sensor to a signal from u be a(u). A ‘‘virtual’’ sensor
is one at which no measurement is actually made. Suppose that we wish to compute the correlation
between the virtual sensor v1(t) and r2(t), which (using the plane wave assumption) is

E{r2*(t)v1(t)} ¼
XP
p¼1

ja(up)j2s2
pe

�j~kp:~d3 :

r2 (t)

r1(t)

. . .

r3 (t)

v1(t)

d2

d3

d1

k1 kP

FIGURE 3.1 Demonstration of VC3.
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Consider the following cumulant

cum(r2*(t), r1(t), r2*(t), r3(t)) ¼
XP
p¼1

ja(up)j4gpe�j~kp:~d1e�j~kp:~d2

¼
XP
p¼1

ja(up)j4gpe�j~kp:~d3 :

This cumulant carries the same angular information as the cross correlation E{r2*(t)v1(t)}, but for sources
having different powers.

The fact that we are interested only in the directional information carried by correlations between
the sensors therefore let us interpret a cross correlation as a vector (e.g., ~d3), and a fourth-order
cumulant as the addition of two vectors (e.g., ~d1 þ~d2). This interpretation leads to the idea of
decomposing the computation of a cross correlation into that of computing a cumulant. Doing
this means that the directional information that would be obtained from the cross correlation between
nonexisting sensors (or between an actual sensor and a nonexisting sensor) at certain virtual
locations in the space can be obtained from a suitably defined cumulant that uses the real sensor
measurements.

One advantage of virtual cross-correlation computation is that it is possible to obtain a larger aperture
than would be obtained by using only second-order statistics. This means that more sources than sensors
can be detected using cumulants. For example, given an M element ULA, VC3 lets its aperture be
extended from M to 2M � 1 sensors, so that 2M � 2 targets can be detected (rather than M � 1) just by
using the array covariance matrix obtained by VC3 in any of the subspace-based search methods
explained earlier. This use of VC3 requires the array to be calibrated. Another advantage of VC3 is a
fault tolerance capability. If sensors at certain locations in a given array fail to operate properly, these
sensors can be replaced using VC3.

Virtual ESPRIT (VESPA) [5]: For VESPA, the array only needs two identical sensors; the rest of the array
may have arbitrary and unknown geometry and response. The sources are assumed to be statistically
independent. VESPA uses the ESPRIT solution applied to cumulant matrices. By choosing a suitable pair
of cumulants in VESPA, the need for a copy of the entire array, as required in ESPRIT, is totally
eliminated. VESPA preserves the computational advantage of ESPRIT over search-based algorithms.
An example array configuration is given in Figure 3.2.

Without loss of generality, let the signals received by the identical sensor pair be r1 and r2. The sensors
r1 and r2 are collectively referred to as the ‘‘guiding sensor pair.’’ The VESPA algorithm is

Main array

Virtual copy

vM (t)

v1(t)

r1(t), v2 (t)

r2 (t)
rM (t)

d

d

FIGURE 3.2 The main array and its virtual copy.
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1. Two M3M matrices, C1 and C2, are generated as follows:

c1ij ¼ cum(r1, r1*, ri, rj*), 1 � i, j � M,

c2ij ¼ cum(r2, r1*, ri, rj*), 1 � i, j � M:

It can be shown that these relations can be expressed as C1 ¼ AFAH and C2 ¼ AFFAH, where the
P3 P matrix

F ¼ diag g4, s1 ja11j2, . . . , g4, sP ja1Pj2
� 


,{g4, sP }
P
p¼1,

and F has been defined before.
2. Note that these equations are in the same form as ESPRIT and Chiang and Nikias’s ESPRIT-like

method; however, as opposed to these methods, there is no need for an identical copy of the array;
only an identical response sensor pair is necessary for VESPA. Consequently, any version of
ESPRIT or GEESE can be used to solve for F by replacing R11 and R21 by C1 and C2, respectively.

Note, also, that there exists a very close link between VC3 and VESPA. Although the way we chose C1 and
C2 above seems to be not very obvious, there is a unique geometric interpretation to it. According to VC3,
as far as the bearing information is concerned, C1 is equivalent to the autocorrelation matrix of the array,
and C2 is equivalent to the cross-correlation matrix between the array and its virtual copy (which is
created by displacing the array by the vector that connects the second and the first sensors).

If the noise component of the signal received by one of the guiding sensor pair elements is independent
of the noises at the other sensors, VESPA suppresses the noise regardless of its distribution [6]. In
practice, the noise does affect the standard deviations of results obtained from VESPA.

An iterative version of VESPA has also been developed for cases where the source powers have a high
dynamic range [11]. Iterative VESPA has the same hardware requirements and assumptions as in VESPA.

Extended VESPA [10]: When there are coherent (or completely correlated) sources, all of the above
second- and higher-order statistics methods, except for the WSF method and other MD search-based
approaches, fail. For the WSF and other MD methods, however, the array must be calibrated accurately
and the computational load is expensive. The coherent signals case arises in practice when there are
multipaths. Porat and Friedlander present a modified version of their algorithm to handle the case of
coherent signals; however, their method is not practical because it requires selection of a highly
redundant subset of fourth-order cumulants that contains O(N4) elements, and no guidelines exist for
its selection and second-, fourth-, sixth-, and eighth-order moments of the data are required. If the array
is ‘‘uniform linear,’’ coherence can be handled using spatial smoothing as a preprocessor to the usual
second- or higher-order [3,39] methods; however, the array aperture is reduced. Extended VESPA can
handle coherence and provides increased aperture. Additionally, the array does not have to be completely
uniform linear or calibrated; however, a uniform linear subarray is still needed. An example array
configuration is shown in Figure 3.3.

Consider a scenario in which there are G statistically independent narrowband sources, {ug(t)}
G
i¼1.

These source signals undergo multipath propagation, and each produces pi coherent wave fronts

{s1, 1, . . . , s1, p1 , . . . , sG, 1, . . . , sG, pG }
XG
i¼1

pi ¼ P

 !
,

that impinge on an M element sensor array from directions

{u1, 1, . . . , u1, p1 , . . . , uG, 1, . . . ,uG, pG },
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(M–L) Element arbitrary and
            unknown subarray

L Element linear subarray

r2 (t)

rM (t)

rL (t)

rL+1(t)

r1 (t)

FIGURE 3.3 An example array configuration. There are M sensors, L of which are uniform linearly positioned; r1(t)
and r2(t) are identical guiding sensors. Linear subarray elements are separated by D.
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A MD-search
for higher accuracy

DOA estimates

Any one of the
fourth-order
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FIGURE 3.4 Second- or higher-order statistics-based subspace DF algorithm. Independent sources and ULA.
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where um, p represents the angle-of-arrival of the wave front sg, p that is the pth coherent signal in the gth
group. The collection of pi coherent wave fronts, which are scaled and delayed replicas of the ith source,
are referred to as the ith group. The wave fronts are represented by the P-vector s(t). The problem is to
estimate the DOAs {u1, 1, . . . , u1, p1 , . . . , uG, 1, . . . , uG, pG }.

When the multipath delays are insignificant compared to the bit durations of signals, then the signals
received from different paths differ by only amplitude and phase shifts, thus the coherence among the
received wave fronts can be expressed by the following equation:

s(t) ¼

s1(t)

s2(t)

..

.

sG(t)

2
66664

3
77775 ¼

c1 0 � � � 0

0 c2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cG

2
66664

3
77775

u1(t)

u2(t)

..

.

uG(t)

2
66664

3
77775 ¼ Qu(t), (3:2)

where
si(t) is a pi3 1 signal vector representing the coherent wave fronts from the ith independent

source ui(t)
ci is a pi3 1 complex attenuation vector for the ith source (1� i�G)
Q is P3G

Independent sources?

Array
NL/mixed?

White/known
noise covariance

Covariance
whitening

Calibrate
the array

Apply
non-Gaussian

noise suppression

Zero noise
cumulants?

Nonzero
source cumulants

HOSSOS

Tried
HOS?

Tried
SOS?

Try
SOS

Try
HOS

STOP
STOP

Go to Figure 3.6

Go to Figure 3.4

N

N

N

N

N

HOS1 HOS2

N

N
N

Y

Y

Y
YY

Y

Y

Y

Calibrate
the array

Pan–Nikias &
Cardoso–Moulines

Porat &
Friedlander VC3 VESPA Iterative

VESPA

Add
a doublet

Array contains
a doublet?

A second-order
search method

FIGURE 3.5 Second- or higher-order statistics-based subspace DF algorithm. Independent sources and NL=mixed
array.
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The elements of ci account for the attenuation and phase differences among the multipaths due to
different arrival times. The received signal can then be written in terms of the independent sources
as follows:

r(t) ¼ As(t)þ n(t) ¼ AQu(t)þ n(t) ¼ Bu(t)þ n(t), (3:3)

where B¼D AQ. The columns of M3G matrix B are known as the ‘‘generalized steering vectors.’’
Extended VESPA has three major steps:

Step 1: Use Step (1) of VESPA by choosing r1(t) and r2(t) as any two sensor measurements. In this case
C1 ¼ BGBH and C2 ¼ BCGBH, where

G ¼ diag g4,u1 jb11j2, . . . ,g4,uG jb1Gj2
� �

, g4,ug
� 
G

g¼1
,

C ¼ diag
b21
b11

, . . . ,
b2G
b1G

� 	
:

Due to the coherence, the DOAs cannot be obtained at this step from just C1 and C2 because the columns
of B depend on a vector of DOAs (all those within a group). In the independent sources case, the
columns of A depend only on a single DOA. Fortunately, the columns of B can be solved for as follows:

Coherent and correlated
sources?

Array
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noise covariance

Covariance
whitening

Spatial
smoothing

Apply
non-Gaussian

noise suppression

Zero noise
cumulants?

Nonzero
source cumulants
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SOS?
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STOP

Go to Figure 3.4

Go to Figure 3.7

N

N

N

N

N

N

N
N

Y

Y

Y
YY

Y

Y

Y

Porat &
Friedlander

Yuen &
Friedlander

Chen &
Lin

Iterative
extended
VESPA

A second-order
algebraic method

Extended
VESPA

Coherent
sources?

FIGURE 3.6 Second- or higher-order statistics-based subspace DF algorithms. Coherent and correlated sources
and ULA.
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(1) follow Steps 2 through 5 of TLS-ESPRIT by replacing R11 and R21 by C1 and C2, respectively, and
using appropriate matrix dimensions; (2) determine the eigenvectors and eigenvalues of �FxF�1

y ; let the
eigenvector and eigenvalue matrices of �FxF�1

y be E and D, respectively; and (3) obtain an estimate of B
to within a diagonal matrix, as B ¼ (U11Eþ U12ED�1)=2, for use in Step 2.

Step 2: Partition the matrices B and A as B ¼ [b1, . . . , bG] and A ¼ [A1, . . . ,AG], where the steering
vector for the ith group bi isM3 1, Ai ¼D [a(ui, 1), . . . , a(ui, pi )] isM3 pi, and ui,m is the angle-of-arrival of
the mth source in the ith coherent group (1�m� pi). Using the fact that the ith column of Q has pi
nonzero elements, express B as B ¼ AQ ¼ [A1c1, . . . ,AGcG]; therefore, the ith column of B, bi is
bi ¼ Aici where i ¼ 1, . . . ,G. Now, the problem of solving for the steering vectors is transformed into
the problem of solving for the steering vectors from each coherent group separately. To solve this new
problem, each generalized steering vector bi can be interpreted as a received signal for an array
illuminated by pi coherent signals having a steering matrix Ai, and covariance matrix cicHi . The DOAs
could then be solved for by using a second-order-statistics-based high-resolution method such as
MUSIC, if the array was calibrated, and the rank of cicHi was pi; however, the array is not calibrated
and rank cicHi

� � ¼ 1. The solution is to keep the portion of each bi that corresponds to the uniform linear
part of the array, bL,i, and to then apply the Section 3.3.3 spatial smoothing technique to a pseudo-
covariance matrix bL,ib

H
L,i for i ¼ 1, . . . ,G. Doing this ‘‘restores’’ the rank of cicHi to pi. In Section 3.3.3,

we must replace r(t) by bL, i and set N¼ 1.
The conditions on the length of the linear subarray and the parameter S under which the rank of

bS,ib
H
S,i is restored to pi are [11]: (a) L � 3pi=2, which means that the linear subarray must have at least
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FIGURE 3.7 Second- or higher-order statistics-based subspace DF algorithms. Coherent and correlated sources and
NL=mixed array.
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3pmax=2 elements, where pmax is the maximum number of multipaths in anyone of the G groups; and (b)
given L and pmax, the parameter S must be selected such that pmax þ 1 � S � L� pmax=2þ 1.

Step 3: Apply any second-order-statistics-based subspace technique (e.g., root-MUSIC, etc.) to Rfb
i

(i ¼ 1, . . . ,G) to estimate DOAs of up to 2L=3 coherent signals in each group.
Note that the matrices C and G in C1 and C2 are not used; however, if the received signals are

independent, choosing r1(t) and r2(t) from the linear subarray lets DOA estimates be obtained from C in
Step 1 because, in that case,

C ¼ diag e�j2pdlsinu1 , . . . , e�j2pdlsinuP

n o
;

hence, extended VESPA can also be applied to the case of independent sources.

Second-Order Statistics based Subspace Methods for Direction Finding

Signal Subspace Methods Noise Subspace Methods

> SNR is enhanced effectively by retaining
the signal subspace only

> Methods are based on the orthogonality of steering
vectors and noise subspace eigenvectors

Search Based Methods Algebraic Methods Search Based Methods Algebraic Methods

> Select if array is
calibrated or response is
known analytically

Correlogram
> Lower resolution than
MV and AR

Minimum Variance (MV)
> Narrower mainlobe and
smoother sidelobes than
conventional
beamformers

> Higher resolution than
Correlogram

> Lower resolution than AR
> Lower variance than AR

Autoregressive (AR)
> Higher resolution than
MV and Correlogram

Subspace Fitting (SF)
> Weighted SF works
regardless of source
correlation, and has the
same asymptotic
properties as the
stochastic ML method,
i.e., it achieves CRB.

> Requires accurate
calibration of the
manifold and its
derivative with respect
to arrival angle

> Select if the array is ULA
or its identical copy exists

> Computationally simpler
than search-based
methods.

ESPRIT
> Select if the array has an
identical copy

> Computationally simple
as compared to search-
based methods

> Sensitive to perturbations
in the sensor response and
array geometry

> LS and TLS versions are
best. They have the same
asymptotic performance,
but TLS converges faster
and is better than LS for
low SNR and short data
lengths

Toeplitz Approximation
Method (TAM)
> Equivalent to LS-ESPRIT

GEESE
> Better than ESPRIT

> Select if array is
calibrated or response is
known analytically

Eigenvector (EV)
> Produces fewer spurious
peaks than MUSIC

> Shapes the noise spectrum
better than MUSIC

Pisarenko
> Performance with short
data is poor

MUSIC
> Better than MV
> Same asymptotic
performance as the
deterministic ML for
uncorrelated sources

Minimum Norm
> Select if the array is ULA
> Lower SNR threshold
than MUSIC for
resolution of closely
spaced sources

Method of Direction
Estimation (MODE)
> Consistent for ergodic and
stationary signals

> Select if the array is ULA
> Algebraic versions of EV,
Pisarenko, MUSIC, and
Minimum Norm are
possible

> Better resolution than
search-based versions

Root MUSIC
> Lower SNR threshold
than MUSIC for
resolution of closely
spaced sources

> Simple root-finding
procedure

FIGURE 3.8 Pros and cons of all the methods considered.
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3.4.1 Discussion

One advantage of using higher-order statistics-based methods over second-order methods is that the
covariance matrix of the noise is not needed when the noise is Gaussian. The fact that higher-order
statistics have more arguments than covariances leads to more practical algorithms that have less
restrictions on the array structure (for instance, the requirement of maintaining identical arrays for
ESPRIT is reduced to only maintaining two identical sensors for VESPA). Another advantage is more
sources than sensors can be detected, i.e., the array aperture is increased when higher-order statistics are
properly applied; or, depending on the array geometry, unreliable sensor measurements can be replaced
by using the VC3 idea. One disadvantage of using higher-order statistics-based methods is that sample
estimates of higher-order statistics require longer data lengths than covariances; hence, computational
complexity is increased. In their recent study, Cardoso and Moulines [2] present a comparative
performance analysis of second- and fourth-order statistics-based MUSIC methods. Their results indicate
that dynamic range of the sources may be a factor limiting the performance of the fourth-order statistics-
based MUSIC. A comprehensive performance analysis of the above higher-order statistical methods
is still lacking; therefore, a detailed comparison of these methods remains as a very important
research topic.

3.5 Flowchart Comparison of Subspace-Based Methods

Clearly, there are many subspace-based direction-finding methods. In order to see the forest from the
trees, to know when to use a second-order or a higher-order statistics-based method, we present Figures
3.4 through 3.9. These figures provide a comprehensive summary of the existing subspace-based methods
for direction finding and constitute guidelines to selection of a proper direction-finding method for a
given application.

Note that: Figure 3.4 depicts independent sources and ULA, Figure 3.5 depicts independent sources
and NL=mixed array, Figure 3.6 depicts coherent and correlated sources and ULA, and Figure 3.7 depicts
coherent and correlated sources and NL=mixed array.

All four figures show two paths: SOS (second-order statistics) and HOS (higher-order statistics). Each
path terminates in one or more method boxes, each of which may contain a multitude of methods.
Figures 3.8 and 3.9 summarize the pros and cons of all the methods we have considered in this chapter.

Using Figures 3.4 through 3.9, it is possible for a potential user of a subspace-based direction-finding
method to decide which method(s) is (are) most likely to give best results for his=her application.
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