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Introduction

Why is a book about food microstructure written by someone with a background in
engineering materials?

My own path to recognizing the importance of image analysis to measure micro-
structural parameters in food products has been round-about. For nearly two decades
as a professor in the Materials Science and Engineering Department at North Carolina
State University I taught a sophomore course in basic materials science that included
such fundamentals as mechanical properties of metals, ceramics, polymers and com-
posites and the procedures for testing them, the basics of phase diagrams and the
formation of microstructures during phase transformations, and so on. Because many
of the students came into the course with little background in materials, but with about
20 years of experience in eating, I commonly used food examples to explain various
processes. College students generally respond well to comparisons of using the liquid-
solid phase change to produce ice beer versus the liquid-gas phase change to distill
corn liquor. Other examples used cooked spaghetti as a model for the entanglement of
linear polymers, and fruit in Jell-O as a model for dispersion strengthening.

Little did I realize at the time that the people whose products are food would look
to materials for models of behavior. It was only recently that I discovered in the excellent
text by Aguilera and Stanley (Microstructural Principles of Food Processing and Engi-
neering, 2nd edition, Aspen Press, 1999) the identical descriptions and equations from
materials science as relating to food products. The same basic understanding pervades
both fields, namely that product performance (mechanical, chemical, environmental,
nutritive, etc.) depends on structure, and that structure in turn depends on processing
history. For most engineering materials this is limited to chemical composition and
thermo-mechanical processing, but for food products it also includes genetics — breed-
ing plants and animals to produce desirable structural properties.

In all cases, there is great interest in quantifying the various aspects of structure,
and in many cases this involves imaging the structure and making measurements on
the images. The images may be simple macroscopic or microscopic light images,
including confocal light microscopy, but can also include electron images (with
either the transmission or scanning electron microscope — SEM and TEM), atomic
force microscope (AFM) images of surfaces, magnetic resonance (MRI) or computed
tomography (CT) images of internal structure, and many more. Some techniques
that we do not normally think of as imaging produce data sets that may be best
interpreted as images, by plotting the data so that the eye (and the computer, with
appropriate software) can identify trends, optima, etc. Even a simple one-dimensional
graph such as a stress-strain curve may reveal more (e.g., the fractal irregularities
of the curve) to the eye than the column of numbers from which it was plotted, and
this becomes more significant for two-dimensional pictures (but unfortunately
becomes more difficult for higher dimensionalities, because of the problems of
plotting and viewing n-dimensional data).



In addition to teaching undergraduates about the basics of materials, I also taught
a graduate course in image analysis and stereology. Although listed as a materials
science course, this consistently attracted significant numbers of students from other
majors, including textiles, wood and paper products, biology, the vet school, even
archaeology — and a steady trickle of food science students. So eventually I was
asked to sit on several graduate student advisory committees in the Food Science
Department, got to know some of the faculty there, suggested various ways that
image analysis could be used to measure structures of interest, and in the process
got something of an education about food microstructure (and became more aware
— not necessarily in a positive way — of what I was personally consuming).

That in turn led to contacts with other researchers, at other universities such as Penn
State and the University of Guelph, to societies and organizations such as the Food
Structure and Functionality Forum (a division of the AOCS), Agriculture and Agri-Food
Canada, and the Hydrocolloids conferences, and to various corporations and their food
interests, ranging from tiny (a specialty chocolate manufacturer and the producer of a
nutraceutical supplement with microencapsulated omega-3 fatty acids) to large (major
producers of cake mixes, baked goods, processed meats, and so on). During this process,
I have been continually surprised to see the same questions and problems surfacing
over and over. While the food products themselves, and to some extent the images and
terminology, differ widely, the structural properties of interest, and the appropriate ways
to determine them from images, tend to be much the same.

That gives me hope that this book can usefully summarize the basic procedures
that will be useful to many of these researchers. The topics covered are the acquisition
and processing of the images, the measurement of appropriate microstructural
parameters, and the interpretation of those numbers required by the fact that the
structures are generally three-dimensional while the images are usually two-dimen-
sional. In most general textbooks in image analysis, including my own (The Image
Processing Handbook, 4th edition, CRC Press, 2002), the organization typically
begins with the characteristics of cameras, proceeds through the various processing
steps on color or grey scale images, and then discusses segmentation or thresholding
and the processing and measurement of binary images. The data from these mea-
surements is then used as the subject for statistical analysis and perhaps the con-
struction of expert systems for feature recognition.

As a framework for instruction, that sequential organization is useful, but for
this text I am risking a different approach. This book starts with basic stereology,
which is the essentially geometric science that relates three-dimensional structures
to the measurements that can be made on two-dimensional slices such as typical
microscope images. From this consideration emerges the fundamental ideas of what
can and should be measured on structures, and that will guide subsequent chapters
of the book. It is conventional to think about measurement as the last step, after
processing and thresholding. But in complex structures it is often very useful to obtain
measurement data directly from the processing operations themselves. Consequently,
measurements will be introduced throughout the various chapters. The reader is
invited to relate these measurements to the important history-structure-function
relationships in the particular kinds of food products of personal interest.



Also, processing of images in the “pixel” or spatial domain is often considered
separately from processing in the frequency or Fourier domain, because the math
appears rather different. Since the math is largely suppressed in this book anyway
(which emphasizes the underlying concepts and concentrates on the visual interpre-
tation of the results), [ have decided to avoid that separation and mix both approaches
together. The resulting organization is based on what I have found to be a useful
step-by-step approach to extraction of information from images, largely driven by
what information is being sought.

This book does not contain the usual hundreds of literature citations for the
various procedures described. The presentation here does not pretend to include the
technical details of the various algorithms and procedures, just illustrations of how
they are used. There are plenty of texts, my own included, that do have those
references, as well as fuller explanations of the underlying math and programs. For
anyone planning to write their own programs, reference to those texts will be
necessary anyway and will lead directly to the primary sources. The intent here is
to familiarize the food scientist with ways of thinking about images, their processing
and measurement. To borrow a description one of my students once used, it is about
playing music, not writing it.

Also, there is no list of citations to work that has used these methods to measure
food structures. My rationale for this absence is that I am involved with the mea-
surement process and not the food science, and am reluctant to judge which papers
are meaningful and which are not. It is my impression that there has been some very
good work done from a measurement standpoint (as well as much that is question-
able), but whether that translates to a better understanding of the processing and
properties of the food structures is beyond my range of understanding, in spite of
the best efforts of some folks acknowledged below to educate me.

Finally, a word of caution to the reader: This is not something you can really
learn by reading through the book and thinking about it — you need to do it yourself.
To continue the analogy from above, you have to play the music, not just listen to
it. Learning from words and pictures in a book is no substitute for learning by trying
out the methods on real images and seeing the results of step-by-step procedures.
It helps to have your own images of the structures of particular interest. And, of
course, that means you need the appropriate cameras, computers, software and so
on. Most of the techniques described in the book can be performed using a wide
variety of commercially available software, ranging from expensive dedicated image
processing and analysis packages such as Media Cybernetics’ Image Pro Plus or
Universal Imaging’s Metamorph programs, to data handling environments such as
Matlab which can also handle images.

That is not intended as an endorsement and is certainly not a comprehensive list
— there are literally hundreds of companies who sell image processing or analysis
software, some highly specialized for particular niche markets. Each program will
impose some limitations on what you can accomplish but more importantly will
typically use quite different terminology to describe the operations, and will have
the functions organized in entirely different ways. Learning the basics of what you
can do and want to do from this book is only the first step; then you have to study
the software manual to find out how to do it.



As an aid to the researcher who does not already have software in place, or who
finds that their particular package lacks some of the tools described here, I have
collaborated with Reindeer Graphics, Inc. (http://www.ReindeerGraphics.com), a com-
pany run by my son and by one of my former students, to produce a set of Photoshop®-
compatible plugins that implement each of the algorithms used in the text. Information
on the software is available online; the CD that installs the software includes a lengthy
tutorial showing how to use the various procedures, with a large suite of test images
for instructional purposes (the software can also be used with any other images). There
are two packages: Fovea Pro and The Image Processing Tool Kit. The Tool Kit is
intended as a low-cost educational package, limited to 8 bit per channel grey scale and
24 bit RGB color images, adequate for bright field microscopy and most SEM images.
Fovea Pro includes all of the Tool Kit functions and also works with 16 bit per channel
images (important for dark field and fluorescence images, transmission EM pictures,
and most surface imaging data) including 48 bit RGB color (such as the output from
most film or flatbed scanners).

Isolating each function as a separate menu item facilitates learning what each
method does, but the software is not limited to teaching. It can also be used for real
analysis, and sequences of operations can easily be created (e.g., using Photoshop®
Actions) to carry out complicated automatic analysis of batches of images. Adobe
Photoshop was selected as a platform for this because it is relatively inexpensive,
well documented and with a reasonable learning curve, and already in widespread
use in labs for image acquisition, presentation, annotation, etc. Photoshop supports
a wide variety of image formats and acquisition devices (scanners, cameras, etc.).
Also, the fact that Photoshop is so widely used means that other programs have
adopted the same convention for add-on plugins, and Photoshop-compatible plugins
can also be used by many other programs on both Windows and Macintosh com-
puters, ranging from inexpensive software such as Jasc’s Paint Shop Pro to costly
professional software such as Media Cybernetics’ Image Pro Plus.

My special thanks go out to the many food scientists who have contributed
generously to this book. Their support has ranged from general encouragement for
the idea that it was time that such a text was available, to taking the time to educate
me about a particular food product or problem, to providing example images. I can
not begin to list here everyone who has helped, but I have tried to credit each picture
supplied by someone else in the captions (and I apologize if I have missed someone
unintentionally due to my own poor record keeping!). Special thanks are due to
Allen Foegeding at North Carolina State University for getting this whole project
started, reviewing the text to try to keep me from saying nonsensical things about
food, and helping a lot along the way; to José Aguilera and David Stanley for writing
their book and encouraging mine; to Alex Marangoni, Howard Swatland and others
at the University of Guelph for sharing their library of many years of images; to
Ken Baker for providing access to his image collection; and to Greg Ziegler at Penn
State University and Paula Allan-Wojtas at Agriculture and Agri-Food Canada, for
images, ideas, and invitations.

John Russ
Raleigh, NC



’l Stereology

THE NEED FOR STEREOLOGY

Before starting with the process of acquiring, correcting and measuring images,
it seems important to spend a chapter addressing the important question of just what
it is that can and should be measured, and what cannot or should not be. The
temptation to just measure everything that software can report, and hope that a good
statistics program can extract some meaningful parameters, is both naive and dan-
gerous. No statistics program can correct, for instance, for the unknown but poten-
tially large bias that results from an inappropriate sampling procedure.

Most of the problems with image measurement arise because of the nature of
the sample, even if the image itself captures the details present perfectly. Some
aspects of sampling, while vitally important, will not be discussed here. The need
to obtain a representative, uniform, randomized sample of the population of things
to be measured should be obvious, although it may be overlooked, or a procedure
used that does not guarantee an unbiased result. A procedure, described below, known
as systematic random sampling is the most efficient way to accomplish this goal once
all of the contributing factors in the measurement procedure have been identified.

In some cases the images we acquire are of 3D objects, such as a dispersion of
starch granules or rice grains for size measurement. These pictures may be taken
with a macro camera or an SEM, depending on the magnification required, and
provided that some care is taken in dispersing the particles on a contrasting surface
so that small particles do not hide behind large ones, there should be no difficulty
in interpreting the results. Bias in assessing size and shape can be introduced if the
particles lie down on the surface due to gravity or electrostatic effects, but often this
is useful (for example, measuring the length of the rice grains).

Much of the interest in food structure has to do with internal microstructure,
and that is typically revealed by a sectioning procedure. In rare instances volume
imaging is performed, for instance, with MRI or CT (magnetic resonance imaging
and computerized tomography), both techniques borrowed from medical imaging.
However, the cost of such procedures and the difficulty in analyzing the resulting
data sets limits their usefulness. Full three-dimensional image sets are also obtained
from either optical or serial sectioning of specimens. The rapid spread of confocal
light microscopes in particular has facilitated capturing such sets of data. For a
variety of reasons — resolution that varies with position and direction, the large size
of the data files, and the fact that most 3D software is more concerned with rendering
visual displays of the structure than with measurement — these volume imaging
results are not commonly used for structural measurement.

Most of the microstructural parameters that robustly describe 3D structure are
more efficiently determined using stereological rules with measurements performed
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on section images. These may be captured from transmission light or electron
microscopes using thin sections, or from light microscopes using reflected light,
scanning electron microscopes, and atomic force microscopes (among others) using
planar surfaces through the structure. For measurements on these images to correctly
represent the 3D structure, we must meet several criteria. One is that the surfaces
are properly representative of the structure, which is sometimes a non-trivial issue
and is discussed below. Another is that the relationships between two and three
dimensions are understood.

That is where stereology (literally the study of three dimensions, and unrelated
to stereoscopy which is the viewing of three dimensions using two eye views) comes
in. It is a mathematical science developed over the past four decades but with roots
going back two centuries. Deriving the relationships of geometric probability is a
specialized field occupied by a few mathematicians, but using them is typically very
simple, with no threatening math. The hard part is to understand and visualize the
meaning of the relationships and recognizing the need to use them, because they
tell us what to measure and how to do it. The rules work at all scales from nm to
light-years and are applied in many diverse fields, ranging from materials science
to astronomy.

Consider for example a box containing fruit — melons, grapefruit and plums —
as shown in Figure 1.1. If a section is cut through the box and intersects the fruit,
then an image of that section plane will show circles of various colors (green, yellow
and purple, respectively) that identify the individual pieces of fruit. But the sizes of
the circles are not the sizes of the fruit. Few of the cuts will pass through the equator
of a spherical fruit to produce a circle whose diameter would give the size of the
sphere. Most of the cuts will be smaller, and some may be very small where the
plane of the cut is near the north or south pole of the sphere. So measuring the 3D
sizes of the fruit is not possible directly.

What about the number of fruits? Since they have unique colors, does counting
the number of intersections reveal the relative abundance of each type? No. Any
plane cut through the box is much more likely to hit a large melon than a small
plum. The smaller fruits are under-represented on the plane. In fact, the probability
of intersecting a fruit is directly proportional to the diameter. So just counting doesn’t
give the desired information, either.

Counting the features present can be useful, if we have some independent way
to determine the mean size of the spheres. For example, if we’ve already measured
the sizes of melons, plums and grapefruit, then the number per unit volume N, of
each type fruit in the box is related to the number of intersections per unit area N,
seen on the 2D image by the relationship

N, =—H2 (1.1)

mean

where D, is the mean diameter.
In stereology the capital letter N is used for number and the subscript V for
volume and A for area, so this would be read as “Number per unit volume equals
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(c)

FIGURE 1.1 (See color insert following page 150.) Schematic diagram of a box containing
fruit: (a) green melons, yellow grapefruit, purple plums; (b) an arbitrary section plane through
the box and its contents; (c) the image of that section plane showing intersections with the fruit.
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FIGURE 1.2 Section image through a foamed food product. (Courtesy of Allen Foegeding,
North Carolina State University, Department of Food Science)

number per unit area divided by mean diameter.” Rather than using the word “equals”
it would be better to say “is estimated by” because most of the stereological rela-
tionships are statistical in nature and the measurement procedure and calculation
give a result that (like all measurement procedures) give an estimate of the true
result, and usually a way to also determine the precision of the estimate.

The formal relationship shown in Equation 1.1 relates the expected value (the
average of many observed results) of the number of features per unit area to the
actual number per unit volume times the mean diameter. For a series of observations
(examination of multiple fields of view) the average result will approach the expected
value, subject to the need for examining a representative set of samples while
avoiding any bias. Most of the stereological relationships that will be shown are for
expected values.

Consider a sample like the thick-walled foam in Figure 1.2 (a section through
a foamed food product). The size of the bubbles is determined by the gas pressure,
liquid viscosity, and the size of the hole in the nozzle of the spray can. If this mean
diameter is known, then the number of bubbles per cubic centimeter can be calculated
from the number of features per unit area using Equation 1.1. The two obvious
things to do on an image like those in Figures 1.1 and 1.2 are to count features and
measure the sizes of the circles, but both require stereological interpretation to yield
a meaningful result.
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This problem was recognized long ago, and solutions have been proposed since
the 1920s. The basic approach to recovering the size distribution of 3D features
from the image of 2D intersections is called “unfolding.” It is now out of favor with
most stereologists because of two important problems, discussed below, but since it
is still useful in some situations (and is still used in more applications than it probably
should be), and because it illustrates an important way of thinking about three
dimensions, a few paragraphs will be devoted to it.

UNFOLDING SIZE DISTRIBUTIONS

Random intersections through a sphere of known radius produce a distribution
of circle sizes that can be calculated analytically as shown in Figure 1.3. If a large
number of section images are measured, and a size distribution of the observed
circles is determined, then the very largest circles can only have come from near-
equatorial cuts through the largest spheres. So the size of the largest spheres is
established, and their number can be calculated using Equation 1.1.

But if this number of large spheres is present, the expected number of cross
sections of various different smaller diameters can be calculated using the derived
relationship, and the corresponding number of circles subtracted from each smaller
bin in the measured size distribution. If that process leaves a number of circles
remaining in the next smallest size bin, it can be assumed that they must represent
near-equatorial cuts through spheres of that size, and their number can be calculated.
This procedure can be repeated for each of the smaller size categories, typically 10
to 15 size classes. Note that this does not allow any inference about the size sphere
that corresponds to any particular circle, but is a statistical relationship that depends
upon the collective result from a large number of intersections.

If performed in this way, a minor problem arises. Because of counting statistics,
the number of circles in each size class has a finite precision. Subtracting one number

FIGURE 1.3 Schematic diagram of sectioning a sphere to produce circles of different sizes.
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(the expected number of circles based on the result in a larger class) from another
(the number of circles observed in the current size class) leaves a much smaller net
result, but with a much larger statistical uncertainty. The result of the stepwise
approach leads to very large statistical errors accumulating for the smallest size
classes.

That problem is easily solved by using a set of simultaneous equations and
solving for all of the bins in the distribution at the same time. Tables of coefficients
that calculate the number of spheres in each size class (i) from the number of circles
in size class (j) have been published many times, with some difference depending
on how the bin classes are set up. One widely used version is shown in Table 1.1.
The mathematics of the calculation is very simple and easily implemented in a
spreadsheet. The number of spheres in size class i is calculated as the sum of the
number of circles in each size class j times an alpha coefficient (Equation 1.2). Note
that half of the matrix of alpha values is empty because no large circles can be
produced by small spheres.

N, =Zocij~NAj (12)
J

Figure 1.4 shows the application of this technique to the bubbles in the image
of Figure 1.2. The circle size distribution shows a wide variation in the sizes of the
intersections of the bubbles with the section plane, but the calculated sphere size
distribution shows that the bubbles are actually all of the same size, within counting
statistics. Notice that this calculation does not directly depend on the actual sizes
of the features, but just requires that the size classes represent equal-sized linear
increments starting from zero.

Even with the matrix solution of all equations at the same time, this is still an
ill conditioned problem mathematically. That means that because of the subtractions
(note that most of the alpha coefficients are negative, carrying out the removal of
smaller circles expected to correspond to larger spheres) the statistical precision of
the resulting distribution of sphere sizes is much larger (worse) than the counting
precision of the distribution of circle sizes. Many stereological relationships can be
estimated satisfactorily from only a few images and a small number of counts.
However, unfolding a size distribution does not fit into this category and very large
numbers of raw measurements are required.

The more important problem, which has led to the attempts to find other tech-
niques for determining 3D feature sizes, is that of shape. The alpha matrix values
depend critically on the assumption that the features are all spheres. If they are not,
the distribution of sizes of random intersections changes dramatically. As a simple
example, cubic particles produce a very large number of small intersections (where
a corner is cut) and the most probable size is close to the area of a face of the cube,
not the maximum value that occurs when the cube is cut diagonally (a rare event).
For the sphere, on the other hand, the most probable value is large, close to the
equatorial diameter, and very small cuts that nip the poles of the sphere are rare, as
shown in Figure 1.5.



TABLE 1.1
Matrix of Alpha Values Used to Convert the Distribution of Number of Circles per Unit Area
to Number of Spheres per Unit Volume

N N@ NGB N@ NG NGO N NGB NGO N0 NI N,12) N(13) Ny(14)  N,(15)

0.26491 -0.19269  0.01015 -0.01636 -0.00538 -0.00481 -0.00327 -0.00250 -0.00189 -0.00145 -0.00109 -0.00080 -0.00055 -0.00033 -0.00013
0.27472  -0.19973  0.01067 -0.01691 -0.00549 -0.00491 -0.00330 -0.00250 -0.00186 -0.00139 -0.00101 -0.00069 -0.00040 -0.00016
0.28571 -0.20761  0.01128 -0.01751 -0.00560 -0.00501 -0.00332 -0.00248 -0.00180 -0.0012  -0.00087 -0.00051 —0.00020

0.29814 -0.21649  0.01200 -0.01818 -0.00571 -0.00509 -0.00332 -0.00242 -0.00169 -0.00113 -0.00066 -0.00026

0.31235 -0.22663  0.01287 -0.01893 -0.00579 -0.00516 -0.00327 -0.00230 -0.00150 -0.00087 -0.00034

0.32880 -0.23834  0.01393 -0.01977 -0.00584 -0.00518 -0.00315 -0.00208 -0.00117 -0.00045

0.34816 -0.25208  0.01527 -0.02071 -0.00582 -0.00512 -0.00288 -0.00167 -0.00062

0.37139 -0.26850  0.01704 -0.02176 -0.00565 -0.00488 -0.00234 -0.00094

0.40000 -0.28863  0.01947 -0.02293 -0.00516 -0.00427 -0.00126

0.43644 -0.31409  0.02308 -0.02416 -0.00393 -0.00298

0.48507 -0.34778  0.02903 -0.02528 -0.00048

0.55470 -0.39550  0.04087 -0.02799

0.66667 -0.47183  0.08217

0.89443 -0.68328

1.00000

A30]0a1918
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FIGURE 1.4 Calculation of sphere sizes: (a) measured circle size distribution from Figure 1. 2;
(b) distribution of sphere sizes calculated from a using Equation 1.2 and Table 1.1. The plots
show the relative number of objects as a function of size class.

In theory it is possible to compute an alpha matrix for any shape, and copious
tables have been published for a wide variety of polygonal, cylindrical, ellipsoidal,
and other geometric shapes. But the assumption still applies that all of the 3D features
present have the same shape, and that it is known. Unfortunately, in real systems this
is rarely the case (see the example of the pores, or “cells” in the bread in Figure 1.6).
It is very common to find that shapes vary a great deal, and often vary systematically
with size. Such variations invalidate the fundamental approach of size unfolding.

That the unfolding technique is still in use is due primarily to two factors: first,
there really are some systems in which a sphere is a reasonable model for feature
shape. These include liquid drops, for instance in an emulsion, in which surface
tension produces a spherical shape. Figure 1.7 shows spherical fat droplets in
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FIGURE 1.5 Probability distributions for sections through a sphere compared to a cube.

FIGURE 1.6 Image of pores in a bread slice showing variations in shape and size. (Courtesy
of Diana Kittleson, General Mills)
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FIGURE 1.7 Calculation of sphere size distribution: (a) image of fat droplets in mayonnaise
(Courtesy of Anke Janssen, ATO B.V., Food Structure and Technology); (b) measured histo-
gram of circle sizes; (c) calculated distribution of sphere sizes. The plots show the relative
number of objects as a function of size class.
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mayonnaise, for which the circle size distribution can be processed to yield a
distribution of sphere sizes. Note that some of the steps needed to isolate the circles
for measurement will be described in detail in later chapters.

The second reason for the continued use of sphere unfolding is ignorance,
laziness and blind faith. The notion that “maybe the shapes aren’t really spheres,
but surely I can still get a result that will compare product A to product B” is utterly
wrong (different shapes are likely to bias the results in quite unexpected ways). But
until researchers gain familiarity with some of the newer techniques that permit
unbiased measurement of the size of three-dimensional objects they are reluctant to
abandon the older method, even if deep-down they know it is not right.

Fortunately there are methods, such as the point-sampled intercept and disector
techniques described below, that allow the unbiased determination of three-dimen-
sional sizes regardless of shape. Many of these methods are part of the so-called
“new stereology,” “design-based stereology,” or “second-order stereology” that have
been developed within the past two decades and are now becoming more widely
known. First, however, it will be useful to visit some of the “old” stereology, classical
techniques that provide some very important measures of three-dimensional struc-
ture.

VOLUME FRACTION

Going back to the structure in Figure 1.2, if the sphere size is known, the number
can be calculated from the volume fraction of bubbles, which can also be measured
from the 2D image. In fact, determining volume fraction is one of the most basic
stereological procedures, and one of the oldest. A French geologist interested in
determining the volume fraction of ore in rock 150 years ago, realized that the area
fraction of a section image that showed the ore gave the desired result. The stere-
ologists’ notation represents this as Equation 1.3, in which the V, represents the
volume of the phase or structure of interest per unit volume of sample, and the A,
represents the area of that phase or structure that is visible in the area of the image.
As noted before, this is an expected value relationship that actually says the expected
value of the area fraction observed will converge to the volume fraction.

V,=A

Vv

(1.3)

A

To understand this simple relationship, imagine the section plane sweeping
through a volume; the area of the intersections with the ore integrates to the total
volume of ore, and the area fraction integrates to the volume fraction. So subject to
the usual caveats about requiring representative, unbiased sampling, the expected
value of the area fraction is (or measures) the volume fraction.

In the middle of the nineteenth century, the area fraction was not determined
with digital cameras and computers, of course; not even with traditional photography,
which had only just been invented and was not yet commonly performed with
microscopes. Instead, the image was projected onto a piece of paper, the features
of interest carefully traced, and then the paper cut and weighed. The equivalent
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modern measurement of area fraction can often be accomplished by counting pixels
in the image histogram, as shown in Figure 1.8. The histogram is simply a plot of
the number of pixels having each of the various brightness levels in the image, often
256. The interpretation of the histogram will be described in subsequent chapters.
Although very efficient, this is not always the preferred method for measurement of
volume fraction, because the precision of the measurement is better estimated using
other approaches.

The measurement of the area represented by peaks in the histogram is further
complicated by the fact that not all of the pixels in the image have brightness values
that place them in the peaks. As shown in Figure 1.9, there is generally a background
level between the peaks that can represent a significant percentage of the total image
area. In part this is due to the finite area of each pixel, which averages the information
from a small square on the image. Also, there is usually some variation in pixel
brightness (referred to generally as noise) even from a perfectly uniform area.
Chapter 3 discusses techniques for reducing this noise. Notice that this image is not
a photograph of a section, but has been produced non-destructively by X-ray tomog-
raphy. The brightness is a measure of local density.

The next evolution in methodology for measuring volume fraction came fifty
years after the area fraction technique, again introduced as a way to measure min-
erals. Instead of measuring areas, which is difficult, a random line was drawn on
the image and the length of that line which passed through the structure of interest
was measured (Figure 1.10). The line length fraction is also an estimate of the
volume fraction. For understanding, imagine the line sweeping across the image;
the line length fraction integrates to the area fraction. The stereological notation is
shown in Equation 1.4, where L, represents the length of the intersections as a
fraction of the total line length.

:LL

v 1.4)

The advantage of this method lies in the greater ease with which the line length
can be measured as compared to area measurements. Even in the 1950s my initial
experience with measurement of volume fraction used this approach. A small motor
was used to drive the horizontal position of a microscope stage, with a counter
keeping track of the total distance traveled. Another counter could be engaged by
pressing a key, which the human observer did whenever the structure of interest was
passing underneath the microscope’s crosshairs. The ratio of the two counter num-
bers gave the line length fraction, and hence the volume fraction. Replacing the
human eye with an electronic sensor whose output could be measured to identify
the phase created an automatic image analyzer.

By the middle of the twentieth century, a Russian metallurgist had developed
an even simpler method for determining volume fraction that avoided the need to
make a measurement of area or length, and instead used a counting procedure.
Placing a grid of points on the image of the specimen (Figure 1.11), and counting
the fraction of them that fall onto the structure of interest, gives the point fraction



Stereology 13

RSB = 3JICE 2
DATE H-i7-6¢
ASA i SP T i‘ &

Darker=71% Brighter=29%

Frequency

I
Brightness
(b)

FIGURE 1.8 Using the histogram to measure area fraction: (a) photograph of a beef roast,
after some image processing to enhance visibility of the fat and bones; (b) histogram of just
the portion of the image containing the roast. The plot shows the number of pixels with each
possible shade of brightness; the threshold setting shown (vertical line) separates the dark
meat from the lighter fat and bone shows that 71% of the roast (by volume) is meat. The
histogram method does not provide any information about the spatial distribution of the fat
(marbling, etc.), which will be discussed in Chapter 4.
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FIGURE 1.9 X-ray tomographic section through a Three Musketeers candy bar with its
brightness histogram. The peaks in the histogram correspond to the holes, interior and coating
seen in the image, and can be used to measure their volume fraction. (Courtesy of Greg

Ziegler, Penn State University Food Science Department)

P, (Equation 1.5), which is also a measure of the volume fraction. It is easy to see
that as more and more points are placed in the 3D volume of the sample, that the
point fraction must become the volume fraction.
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FIGURE 1.10 The image from Figure 1.2 with a random line superimposed. The sections
that intersect pores are highlighted. The length of the highlighted sections divided by the
length of the line estimates the volume fraction.

:PP

(1.5)

The great advantage of a counting procedure over a measurement operation is
not just that it is easier to make, but that the precision of the measurement can be
predicted directly. If the sampled points are far enough apart that they act as inde-
pendent probes into the volume (which in practice means that they are far enough
apart then only rarely will two grid points fall onto the same portion of the structure
being measured), then the counting process obeys Poisson statistics and the standard
deviation in the result is simply the square root of the number of events counted.

In the grid procedure the events counted are the cases in which a grid point lies
on structure being measured. So as an example, if a 49 point grid (7 X 7 array of
points) is superimposed on the image in Figure 1.11, 16 of the points fall onto the
bubbles. That estimates the volume fraction as 16/49 = 33%. The square root of 16
is 4, and 4/16 is 25%, so that is the estimate of the relative accuracy of the mea-
surement (in other words, the volume fraction is reported as 0.33 + 0.08). In order
to achieve a measurement precision of 10%, it would be necessary to look at
additional fields of view until 100 counts (square root = 10; 10/100 = 10%) had
been accumulated. Based on observing 16 counts on this image, we would anticipate
needing a total of 6 fields of view to reach that level of precision. For 5%, 400
counts are needed, and so forth.
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FIGURE 1.11 The image from Figure 1.2 with a 49 point (7 x 7) grid superimposed (points
are enlarged for visibility). The points that lie on pores are highlighted. The fraction of the
points that lie on pores estimates their volume fraction.

A somewhat greater number of points in the measurement grid would produce
more hits. For example, using a 10 X 10 array of points on Figure 1.2 gives 33 hits,
producing the same estimate of 33% for the volume fraction but with a 17% relative
error rather than 25%. But the danger in increasing the number of grid points is that
they may no longer be independent probes of the microstructure. A 10 x 10 grid
comes quite close to the same dimension as the typical size and spacing of the
bubbles. The preferred strategy is to use a rather sparse grid of points and to look
at more fields of view. That assures the ability to use the simple prediction of counting
statistics to estimate the precision, and it also forces looking at more microstructure
so that a more representative sample of the whole object is obtained.

Another advantage of using a very sparse grid is that it facilitates manual
counting. While it is possible to use a computer to acquire images, process and
threshold them to delineate the structure of interest, generate a grid and combine it
logically with the structure, and count the points that hit (as will be shown in Chapter
4), it is also common to determine volume fractions manually. With a simple grid
having a small number of points (usually defined as the corners and intersections in
a grid of lines, as shown in Figure 1.12), a human observer can count the number
of hits at a glance, record the number and advance to another field of view.

At one time this was principally done by placing the grid on a reticle in the
microscope eyepiece. With the increasing use of video cameras and monitors the
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FIGURE 1.12 (See color insert following page 150.) A sixteen-point reticle randomly placed
on an image of peanut cells stained with toluidine blue to show protein bodies (round, light
blue) and starch granules (dark blue). The gaps at the junctions of the lines define the grid
points and allow the underlying structure to be seen. Seven of the sixteen grid points lie on
the starch granules (44%). The lines themselves are used to determine surface area per unit
volume as described below (at the magnification shown, each line is 66 um long). (Courtesy
of David Pechak, Kraft Foods Technology Center)

same result can be achieved by placing the grid on the display monitor. Of course,
with image capture the grid can be generated and superimposed by the computer.
Alternately, printing grids on transparent acetate overlays and placing them on
photographic prints is an equivalent operation.

By counting grid points on a few fields of view, a quick estimate of volume
fraction can be obtained and, even if computer analysis of the images is performed
subsequently to survey much more of the sample, at least a sufficiently good estimate
of the final value is available to assist in the design of experiments, determination
of the number of sections to cut and fields to image, and so on. This will be discussed
a bit farther on. When a grid point appears to lie exactly on the edge of the structure,
and it is not possible to confidently decide whether or not to count it, the convention
is to count it as one-half.

This example of measuring volume fraction illustrates a trend present in many
other stereological procedures. Rather than performing measurements of area or
length, whenever possible the use of a grid and a counting operation is easier, and
has a known precision that can be used to determine the amount of work that needs
to be done to reach a desired overall result, for example to compare two or more
types of material. Making measurements, either by hand or with a computer algo-
rithm, introduces a finite source of measurement error that is often hard to estimate.
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Even with the computer, some measurements, such as area and length, are
typically more accurate than others (perimeter has historically been one of the more
difficult things to measure well, as discussed in Chapter 5). Also, the precision
depends on the nature of the sample and image. For example, measuring a few large
areas or lengths produces much less total error than measuring a large number of
small features. The counting approach eliminates this source of error, although of
course it is still necessary to properly process and threshold the image so that the
structure of interest is accurately delineated.

Volume fraction is an important property in most foods, since they are usually
composed of multiple components. In addition to the total volume fraction estimated
by uniform and unbiased (random) sampling, it is often important to study gradients
in volume fraction, or to measure the individual volume of particular structures.
These operations are performed in the same way, with just a few extra steps.

For example, sometimes it is practical to take samples that map the gradient to
be studied. This could be specimens at the start, middle and end of a production
run, or from the sides, top and bottom, and center of a product produced as a flat
sheet, etc. Since each sample is small compared to the scale of the expected non-
uniformities, each can be measured conventionally and the data plotted against
position to reveal differences or gradients.

In other cases each image covers a dimension that encompasses the gradient.
For instance, images of the cross section of a layer (Figure 1.13) may show a variation
in the volume fraction of a phase from top to bottom. An example of such a simple
vertical gradient could be the fat droplets settling by sedimentation in an oil and
water emulsion such as full fat milk. Placing a grid of points on this image and
recording the fraction of the number of points at each vertical position in the grid
provides data to analyze the gradient, but since the precision depends on the number
of hits, and this number is much smaller for each position, it is usually necessary
to examine a fairly large number of representative fields to accumulate data adequate
to show subtle trends.

Gradients can also sometimes be characterized by plotting the change of intensity
or color along paths across images. This will be illustrated in Chapter 5. The most
difficult aspect of most studies of gradients and nonuniformities is determining the
geometry of the gradients so that an appropriate set of measurements can be made.
For example, if the size of voids (cells) in a loaf of bread varies with distance from
the outer crust, it is necessary to measure the size of each void and its position in
terms of that distance. Fortunately, there are image processing tools (discussed in
Chapter 4) that allow this type of measurement for arbitrarily shaped regions.

For a single object, the Cavalieri method allows measurement of total volume
by a point count technique as shown in Figure 1.14. Ideally, a series of section
images is acquired at regularly spaced intervals, and a grid of points placed on each
one. Each point in the grid represents a volume, in the form of a prism whose area
is defined by the spacing of the grid points and whose length is the spacing of the
section planes. Counting the number of points that hit the structure and multiplying
by the volume each one represents gives an estimate of the total volume.
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FIGURE 1.13 Diagram of a simple vertical gradient with a superimposed grid. Counting the
fraction of the grid points (b) measures the variation with position, but plotting the area
fraction provides a superior representation from one image.
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FIGURE 1.14 Tllustration of the Cavalieri method for measuring an object’s volume. A series
of sections is cut with spacing = H and examined with a grid of spacing G. The number of
points in the grid that touch the object are counted (N). The volume is then estimated as

N-H-G-G.
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SURFACE AREA

Besides volume, the most obvious and important property of three dimensional
structures is the surfaces that are present. These may be surfaces that bound a
particular phase (which for this purpose includes void space or pores) and separate
it from the remainder of the structure which consists of different phases, or it may
be a surface between two identical phase regions, consisting of a thin membrane
such as the liquid surfaces between bubbles in the head on beer. Most of the
mechanical and chemical properties of foods depend in various ways on the surfaces
that are present, and it is, therefore important to be able to measure them.

Just as volumes in 3D structures are revealed in 2D section images as areas
where the section plane has passed through the volume, so surfaces in 3D structures
are revealed by their intersections with the 2D image plane. These intersections
produce lines (Figure 1.15). Sometimes the lines are evident in images as being
either lighter or darker than their surroundings, and sometimes they are instead
marked by a change in brightness where two phase volumes meet. Either way, they
can be detected in the image either visually or by computer-based image processing
and used to measure the surface area that is present.

The length of the lines in the 2D images is proportional to the amount of surface
area present in 3D, but there is a geometric factor introduced by the fact that the
section plane does not in general intersect the surface at right angles. It has been

* e
| Q\
FIGURE 1.15 Passing a section plane through volumes, surfaces, and linear structures pro-

duces an image in the plane in which the volumes are shown are areas, the surfaces as lines,
and the linear structures as points.
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shown by stereologists that by averaging over all possible orientations, the mathe-
matical relationship is

S,=—-B, (1.6)

where S, is the area of the surface per unit volume of sample and B, is the length
of boundary line per unit area of image, where the boundary line is the line produced
by the intersection of the three-dimensional surface and the section plane. The
geometric constant (4/1t) compensates for the variations in orientation, but makes the
tacit assumption that either the surfaces are isotropic — arranged so that all orien-
tations are equally represented — or that the section planes have been made isotropic
to properly sample the structure if it has some anisotropy or preferred orientation.

This last point is critical and often insufficiently heeded. Most structures are not
isotropic. Plants have growth directions, animals have oriented muscles and bones,
manufactured and processed foods have oriented structures produced by extrusion
or shear. Temperature or concentration gradients, or gravity can also produce aniso-
tropic structures. This is the norm, although at fine scales emulsions, processed gels,
etc. may be sufficiently isotropic that any orientation of measurement will produce
the same result. Unless it is known and shown that a structure is isotropic it is safest
to assume that it is not, and to carry out sampling in such a way that unbiased results
are obtained. If this is not done, the measurement results may be completely useless
and misleading.

Much of the modern work in stereology has been the development of sampling
strategies that provide unbiased measurements on less than ideal, anisotropic or
nonuniform structures. We will introduce some of those techniques shortly.

Measuring the length of the line in a 2D image that represents the intersection
of the image plane with the surface in three dimensions is difficult to do accurately,
and in any case we would prefer to have a counting procedure instead of a mea-
surement. That goal can be reached by drawing a grid of lines on the image and
counting the number of intersections between the lines that represent the surface
and the grid lines. The number of intersection points per length of grid line (P,) is
related to the surface area per unit volume as

S,=2-P, 1.7

The geometric constant (2) compensates for the range of angles that the grid
lines can make with the surface lines, as well as the orientation of the sample plane
with the surface normal. This surprisingly simple-appearing relationship has been
rediscovered (and republished) a number of times. Many grids, such as the one in
Figure 1.12, serve double duty, with the grid points used for determining volume
fraction using Equation 1.5, while the lines are used for surface area measurement
using Equation 1.7.

As an example of the measurement of surface area, Figure 1.16 shows an image
in which the two phases (grey and white regions, respectively) have three types of
interfaces — that between one white cell and another (denoted o—at), between one
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grey cell and another (3—f3), and between a white and a grey cell (0—B). The presence
of many different phases and types of interfaces is common in food products.

By either manual procedures or by using the methods of image processing
discussed in subsequent chapters, the individual phases and interfaces can be isolated
and measured, grids generated, and intersections counted. Table 1.2 shows the

TABLE 1.2
Surface Area Measurements from Figure 1.16

Boundary Intersection Cycloid length S, =2¢P, Boundary Length Image Area S, = 4/w*B,

Type Counts (pm) (pm) (pm) (pm?) (pm™)
o0t 24 360 0.133 434.8 4500 0.123
o 29 360 0.161 572.5 4500 0.162
B-p 9 360 0.050 117.8 4500 0.033

FIGURE 1.16 (See color insert following page 150.) Measurement of surface area. A two-
phase microstructure is measured by (a) isolating the different types of interface (shown in
different colors) and measuring the length of the curved lines; and (b) generating a cycloid
grid and counting the number of intersections with each type of interface. The reason for
using this particular grid is discussed in the text.
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FIGURE 1.16 (continued)

specific results from the measurement of the length of the various boundary lines
and from the use of the particular grid shown. The numerical values of the results
are not identical, but within the expected variation based on the precision of the
measurements and sampling procedure used.

Note that the units of P,, B, and S, are all the same (length"). This is usually
reported as (area/volume), and to get a sense of how much surface area can be
packed into a small volume, a value of 0.1 um™! corresponds to 100 cm?cm?, and
values for S| substantially larger than that may be encountered. Real structures often
contain enormous amounts of internal surface within relatively small volumes.

For measurement of volume fraction the image magnification was not important,
because P,, L,;, A, and V,, are all dimensionless ratios. But for surface area it is
necessary to accurately calibrate image magnification. The need for isotropic sam-
pling is still present, of course. If the section planes have been cut with orientations
that are randomized in three dimensions (which turns out to be quite complicated
to do, in practice), then circles can be drawn on the images to produce isotropic
sampling in three dimensions.
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One approach to obtaining isotropic sampling is to cut the specimen up into
many small pieces, rotate each one randomly, pick it up and cut slices in some
random orientation, draw random lines on the section image, and perform the
counting operations. That works, meaning that it produces results that are unbiased
even if the sample is not isotropic, but it is not very efficient. A better method,
developed nearly two decades ago, generates an isotropic grid in 3D by canceling
out one orientational bias (produced by cutting sections) with another. It is called
the method of “vertical sections” and requires being able to identify some direction
in the sample (called “vertical” but only because the images are usually oriented
with that direction vertical on the desk or screen). Depending on the sample, this
could be the direction of extrusion, or growth, or the backbone of an animal or stem
of a plant. The only criterion is that the direction be unambiguously identifiable.
The method of vertical sections was one of the first of the developments in what
has become known as “unbaised” or design-based stereology.

Section planes through the structure are then cut that are all parallel to the vertical
direction, but rotated about it to represent all orientations with equal probability
(Figure 1.17). These planes are obviously not isotropic in three-dimensional space,
since they all include the vertical direction. But lines can be drawn on the section
plane images that cancel this bias and which are isotropic. These lines must have
sine-weighting, in other words they must be uniformly distributed over directions
based not on angles but on the sines of the angles, as shown in the figure. It is
possible to draw sets of straight lines that vary in this way, but the most efficient
procedure to draw lines that are also uniformly distributed over the surface is to
generate a set of cycloidal arcs.

The cycloid is a mathematical curve generated by rolling a circle along a line
and tracing the path of a point on the rim (it can be seen as the path of a reflector
on a bicycle wheel, as shown in Figure 1.18). The cycloid is exactly sine weighted
and provides exactly the right directional bias in the image plane to cancel the
orientational bias in cutting the vertical sections in the first place. Cycloidal arcs
can be generated by a computer and superimposed on an image. The usual criteria
for independent sampling apply, so the arcs should be spaced apart to intersect
different bits of surface line, and not so tightly curved that they resample the same
segment multiple times. They may be drawn either as a continuous line or separate
arcs, as may be convenient. Figure 1.18 shows some examples.

The length of one cyloidal arc (one fourth of the full repeating pattern) is exactly
twice its height (which is the diameter of the generating circle), so the total length
of the grid lines is known. Counting the intersections and calculating Sy using
Equation 1.7 gives the desired measure of surface area per unit volume, regardless
of whether the structure is actually isotropic or not. Clearly the cutting of vertical
sections and drawing of cycloids is more work than cutting sections that are all
perpendicular to one direction (the way a typical microtome works) and using a
simple straight-line grid to count intersections. Either method would be acceptable
for an isotropic structure, but the vertical section method produces unbiased results
even if the structure has preferred orientation, and regardless of what the nature of
that anisotropy may be.



26 Image Analysis of Food Microstructure
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FIGURE 1.17 The method of vertical sections: (a) a series of slices are cut lying parallel to
an identifiable direction, but rotated to different angles about that direction; (b) on each slice,
lines that are sine-weighted (their directions incremented by equal steps in the value of the
sine of the angle) are drawn. These lines isotropically sample directions in three dimensional
space.
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FIGURE 1.18 Cycloid grids: (a) generation of a cycloid as the path traced out by a point on
the rim of a rolling circle; (b) a set of continuous cycloid grids; (c) a set of separated cycloid arcs.



28 Image Analysis of Food Microstructure

LINES AND POINTS

The preceding sections have described the measurement of volumes and surfaces
that may be present in 3D structures. These are, respectively, 3- and 2-dimensional
features. There may also be 1- and 0-dimensional features present, namely lines and
points. Surfaces were considered to include extremely thin interfaces between
phases, as well as finite membranes around objects. Similarly, a linear structure may
have finite thickness as long as its lateral dimensions are very small compared to
its length and the size of the other structures with which it interacts. So the veins
or nerves in meat, and the various kinds of fibers in either natural or man-made
foods are all linear structures.

A thicker structure, such as the network of particles that form in gels (e.g.,
polysaccharides such as pectin or alginates), shortening and processed meats, may
also be considered as a linear structure for some purposes, as can a pore network.
In both cases, we imagine the lateral dimensions to shrink to form a backbone or
skeleton of the network, which is then treated as linear for purposes of measurement.
Note that a linear structure may consist of a single long line, many short ones, or a
complex branching network. The topology of structures is considered later, at the
moment only the total length is of concern.

In addition, a line exists where two surfaces meet, as indicated in Figure 1.19.
One of the simplest examples of these edge lines is the structure of a bubble raft
such as the head on beer. Except for the bubbles on the outside of this raft, whose
surfaces are curved, all of the soap films that separate bubbles from each other are
flat planes. This is the equilibrium structure of many solid materials as well, ranging
from grains in metals to cells in plants. The boundaries of each facet where three
planes meet are lines, and can be treated as an important component of the structure.
It is these triple lines where much of the diffusion of gases and fluids occurs, for
example, or which are responsible for the mechanical strength of a fiber network.

Linear structures appear as points in a section plane, where the plane intersects
the line. In many real cases the lateral dimension of the linear structure is small but
still large enough that the intersections appear as small features in the image. These

FIGURE 1.19 Diagram of a cell or bubble structure (with the topmost cell removed for
clarity) showing the triple lines (a) where three cells meet and the quadruple points (b) where
four cells meet.
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are simply counted. The total length of the linear structure per unit volume L, of
material is calculated from the number of intersection points per unit area P, as

L,=2P, (1.8)

where P is the number of points of intersection, A is the area of the image, and (2)
is a geometrical constant, as above, that compensates for the range of orientations
with which the section plane can intersect the lines.

As for the measurement of surfaces, discussed above, the measurement of line
length must be concerned with directionality. If the sample is not isotropic, then the
probes must be. In this case the probes are the section planes, and it was noted above
that producing an isotropic array of section planes is very difficult, inefficient, and
wasteful of material. There is a useful technique that can use the method of vertical
sections to simplify the procedure.

Thus far, measurements have been made on plane sections cut through surfaces.
Either the material has been considered as opaque so that a true plane surface is
examined, or in the case of transmission microscopy, the section thickness has been
assumed to be very thin as compared to the dimensions of any of the structures of
interest. But in many cases the food products of interest are at least somewhat
transparent and it is possible to obtain images by shining radiation (light, electrons,
or something more exotic) through a moderately thick slice. The resulting image
shows a projection through the structure in which linear features can be seen.

Simply measuring the length of the lines will not suffice, however. There is no
reason to expect them to all lie flat in the plane of the section, so that their true
length can be measured, and there is likewise no reason to expect them to be isotropic
in direction so that a geometric constant can be used to convert the total measured
projected length to an estimate of the true length in 3D.

But another approach is possible. Imagine drawing a line on the image. That
line represents a plane in the original thick slice sample that extends down through
the thickness of the slice, as shown in Figure 1.20. Counting the number of inter-
sections of the linear structure with the drawn line (which implies their intersection
with the plane the line represents) gives a value of P, (number of counts per unit
area of plane). The area of the plane is just the length of the line drawn on the image
times the thickness of the section, which must be known independently. Then the
same relationship introduced above (Equation 1.8) can be used.

In order to obtain isotropic orientation of the plane probes (not the section planes,
but the thru-the-slice planes that correspond to the lines drawn on the image), it is
necessary to use the vertical sectioning approach. All of the slices are cut parallel
to some assumed vertical orientation and rotated about it. Then the lines are drawn
as cycloids, representing a cycloidal cylindrical surface extending down through the
section thickness. Because in this case it is the orientation of the surface normals
of those probe surfaces that must be made isotropic, it is necessary to rotate the grid
of cycloid lines by 90 degrees on the image, as shown in Figure 1.21.

Finally, there are many structures in which the features of interest are small in
dimension as compared to the scale of the image and of surrounding structures.



