
7168_cover.fhmx 2/13/14 2:11 PM Page 1 

C M Y CM MY CY CMY K

“The combination of easy-

to-use software with easy

access to a description of

statistical methods is done

with thoroughness and

skill.”
—Richard Gilbert

Battelle Pacific NW Labs

A clear, comprehensive treatment of the subject, Environmental Statistics
with S-PLUS is an ideal resource for environmental scientists, engineers,
regulators, and students, even those with only a limited knowledge of statistics.
It provides insight into what to think about before you collect environmental
data, how to collect it, and how to make sense of it after you have it. This book
addresses the vast array of methods used today by scientists, researchers,
and regulators.

Through its convenient showcase of information and numerous data sets posted
on the Web, Environmental Statistics with S-PLUS shows you how to
implement these methods using the statistical software package S-PLUS and
the add-in modules EnvironmentalStats for S-PLUS, S+SpatialStats, and S-PLUS

for ArcView. This survey of statistical methods, definitions, and concepts helps
you collect and effectively analyze data for environmental pollution problems.

FEATURES

• Includes background, review, theory, and all pertinent equations

• Provides instruction throughout the book on how to use a major environmental
statistics software package

• Illustrates each topic with examples

• Offers in-depth discussions of Monte Carlo simulation and quantitative risk
assessment

• Presents a variety of data sets to show
how to solve different types of
environmental problems, such as testing
for contaminated groundwater or soil,
and air quality monitoring
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PREFACE 
The environmental movement of the 1960s and 1970s resulted in the 

creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing 
these laws.  Most of these laws mandate monitoring or assessment of the 
physical environment, which means someone has to collect, analyze, and ex-
plain environmental data.  Numerous excellent journal articles, guidance 
documents, and books have been published to explain various aspects of ap-
plying statistical methods to environmental data analysis.  Only a very few 
books attempt to provide a comprehensive treatment of environmental statis-
tics in general, and this book is an addition to that category. 

This book is a survey of statistical methods you can use to collect and 
analyze environmental data.  It explains what these methods are, how to use 
them, and where you can find references to them.  It provides insight into 
what to think about before you collect environmental data, how to collect 
environmental data (via various random sampling schemes), and also how to 
make sense of it after you have it.  Several data sets are used to illustrate 
concepts and methods, and they are available both with software and on the 
CRC Press Web so that the reader may reproduce the examples.  The appen-
dix includes an extensive list of references. 

This book grew out of the authors’ experiences as teachers, consultants, 
and software developers.  It is intended as both a reference book for envi-
ronmental scientists, engineers, and regulators who need to collect or make 
sense of environmental data, and as a textbook for graduate and advanced 
undergraduate students in an applied statistics or environmental science 
course.  Readers should have a basic knowledge of probability and statistics, 
but those with more advanced training will find lots of useful information as 
well. 

A unique and powerful feature of this book is its integration with the 
commercially available software package S-PLUS, a popular and versatile 
statistics and graphics package.  S-PLUS has several add-on modules useful 
for environmental data analysis, including ENVIRONMENTALSTATS for 
S-PLUS, S+SPATIALSTATS, and S-PLUS for ArcView GIS.  Throughout this 
book, when a data set is used to explain a statistical method, the commands 
for and results from the software are provided.  Using the software in con-
junction with this text will increase the understanding and immediacy of the 
methods. 

This book follows a more or less sequential progression from elementary 
ideas about sampling and looking at data to more advanced methods of esti-
mation and testing as applied to environmental data.  Chapter 1 provides an 
introduction and overview, Chapter 2 reviews the Data Quality Objectives 
(DQO) and Data Quality Assessment (DQA) process necessary in the design 



 

 

and implementation of any environmental study, and Chapter 3 talks about 
exploratory data analysis (EDA).  Chapter 4 explains the idea of a popula-
tion, sample, random variable, and probability distribution.  Chapter 5 details 
various methods for estimating characteristics of a population (probability 
distribution) based on a sample (data).  Chapter 6 discusses prediction inter-
vals, tolerance intervals, and control charts, which have been used in the 
manufacturing industry for a long time and have been proposed as good 
methods to use in groundwater monitoring.  Chapter 7 reviews the basic 
ideas in hypothesis testing, including balancing the two possible errors a de-
cision maker can make (e.g., declaring a site contaminated when it really is 
not, or declaring a site not contaminated when it really is).  This chapter also 
illustrates tests for goodness-of-fit and outliers, classical and nonparametric 
methods for comparing one, two, or several groups (e.g., background vs. po-
tentially contaminated sites), and the multiple comparisons problem.  Chap-
ter 8 returns to the DQO process of Chapter 2 and illustrates how to deter-
mine required sample sizes based on the statistical theory presented in Chap-
ters 6 and 7.  Chapter 9 discusses linear models, including correlation, sim-
ple regression, testing for trend, and multiple regression.  This chapter also 
explains the idea of calibration and how this relates to measuring chemical 
concentrations and determining various limits associated with the chemical 
measurement process (i.e., decision limit, detection limit, and quantitation 
limit).  Chapter 10 continues the ideas on calibration discussed in Chapter 9 
by explaining how to handle environmental data that contain “less-than-
detection-limit” results.  Chapter 11 examines methods for dealing with data 
collected over time that may be serially correlated.  Chapter 12 considers 
how to handle data collected over space that may be spatially correlated.  Fi-
nally, Chapter 13 discusses the immense field of risk assessment, which usu-
ally involves both “hard” data and expert judgment. 

TYPOGRAPHIC CONVENTIONS 
Throughout this book, we use the following typographic conventions: 

• The bold font is used for section headings, figure and table ti-
tles, equation numbers, and what you click on dialog boxes. 

• The italic font and bold italic font are used for emphasis. 
• The courier font is used to display commands that you 

type into the S-PLUS Command or Script Window, and the 
names of variables and functions within S-PLUS (S-PLUS  
objects). 

• The italic courier font is used for mathematical nota-
tion (e.g., variable names, function definitions, etc.). 



 

 

A NOTE ABOUT S-PLUS AND GRAPHICS 
Throughout this book we assume the reader has access to S-PLUS and 

ENVIRONMENTALSTATS for S-PLUS, knows how to start S-PLUS, and knows 
how to load the ENVIRONMENTALSTATS for S-PLUS module.  Also, in Chap-
ter 12 where we deal with spatial statistics, we assume the reader has access 
to and is running S+SPATIALSTATS, ArcView GIS, and S-PLUS for ArcView 
GIS. 

At the time this book was being written, the current version of S-PLUS for 
Windows was S-PLUS 2000 Release 2, and the current version of S-PLUS for 
UNIX was Version 5.1.  The current version of ENVIRONMENTALSTATS for 
S-PLUS was Version 1.1 Release 2, but Version 2.0 (which includes pull-
down menus for the Windows version of S-PLUS) was in Beta Release and 
should be available by the time this book is published.  Throughout this 
book, we have included examples demonstrating how to use S-PLUS and 
ENVIRONMENTALSTATS for S-PLUS to create the figures and analyses shown 
in this book.  We assume the reader is using one of the above-mentioned ver-
sions of S-PLUS or a later version. 

The current UNIX version of S-PLUS only works at the command line, so 
if you use this version of S-PLUS you can safely ignore sections that begin 
with the heading Menu (the next UNIX version of S-PLUS, however, will in-
clude pull-down menus).  If you use the Standard Edition of S-PLUS for 
Windows, you can only use the pull-down menus and toolbars; you do not 
have access to the command line, so you can safely ignore sections that be-
gin with the heading Command.  If you use the Professional Edition of 
S-PLUS for Windows, you can use both the pull-down menus and toolbars 
and the command line, so you can apply the information listed under both 
headings. 

Many of the examples of using the command line under a Command 
heading use the attach function to attach a data frame to your search list.  
This is done in order to be able to reference the columns of the data frame 
explicitly without having to use subscript operators.  Please be aware that it 
is possible you may have a data object in your working directory with the 
same name as the column of the data frame that is being used, in which case 
your data object will “mask” the column of the data frame.  For example, the 
data frame epa.94b.tccb.df contains a column named Area.  If you 
already have a data object named Area in your working directory, then any 
examples that involve attaching epa.94b.tccb.df and using the column 
Area will not work correctly.  In these cases, you must change the name of 
your data object or use the $ or [ operator to direct S-PLUS to the correct 
data set (e.g., epa.94b.tccb.df$Area). 

In S-PLUS and ENVIRONMENTALSTATS for S-PLUS it is very easy to pro-
duce color plots.  In fact, most of the built-in plotting functions produce 



 

 

color plots by default.  In this book, however, all of the plots are black and 
white or grayscale due to the high cost of color printing.  The steps for pro-
ducing color plots are still included in the examples in this book, but the pic-
tures in the book will be in black and white, whereas in many cases the pic-
tures on your computer screen will be in color. 

All of the graphs you can create with ENVIRONMENTALSTATS for S-PLUS 
use traditional S-PLUS graphics and, as such, they are not editable in the 
Windows version of S-PLUS.  If you use the Windows version of S-PLUS, 
you can convert traditional plots to editable plots by right-clicking on the 
data part of the graph and choosing Convert to Objects from the context 
menu. 
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1 

1 INTRODUCTION 

The environmental movement of the 1960s and 1970s resulted in the 
creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing 
these laws.  In the U.S., laws such as the Clean Air Act, the Clean Water Act, 
the Resource Conservation and Recovery Act, and the Comprehensive 
Emergency Response and Civil Liability Act mandate some sort of monitor-
ing or comparison to ensure the integrity of the environment.  Once you start 
talking about monitoring a process over time, or comparing observations 
from two or more sites, you have entered the world of numbers and statistics.  
In fact, more and more environmental regulations are mandating the use of 
statistical techniques, and several excellent books, guidance documents, and 
journal articles have been published to explain how to apply various statisti-
cal methods to environmental data analysis (e.g., Berthoux and Brown, 1994; 
Gibbons, 1994; Gilbert, 1987; Helsel and Hirsch, 1992; McBean and Rovers, 
1998; Ott, 1995; Piegorsch and Bailer, 1997; ASTM, 1996; USEPA, 
1989a,b,c; 1990; 1991a,b,c; 1992a,b,c,d; 1994a,b,c; 1995a,b,c; 1996a,b; 
1997a,b).  Only a very few books attempt to provide a comprehensive treat-
ment of environmental statistics in general, and even these omit some impor-
tant topics. 

This explosion of regulations and mandated statistical analysis has re-
sulted in at least four major problems. 

• Mandated procedures or those suggested in guidance documents are 
not always appropriate, or may be misused (e.g., Millard, 1987a; 
Davis, 1994; Gibbons, 1994). 

• Statistical methods developed in other fields of research need to be 
adapted to environmental data analysis, and there is a need for inno-
vative methods in environmental data analysis. 

• The backgrounds of people who need to analyze environmental data 
vary widely, from someone who took a statistics course decades ago 
to someone with a Ph.D. doing high-level research. 

• There is no single software package with a comprehensive treatment 
of environmental statistics. 

This book is an attempt to solve some of these problems.  It is a survey of 
statistical methods you can use to collect and analyze environmental data.  It 
explains what these methods are, how to use them, and where you can find 
references to them.  It provides insight into what to think about before you 
collect environmental data, how to collect environmental data (via various 
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random sampling schemes), and also and how to make sense of it after you 
have it.  Several data sets are used to illustrate concepts and methods, and are 
available in ENVIRONMENTALSTATS for S-PLUS (see below) and/or on the 
CRC Press Web site at www.crcpress.com so that the reader may repro-
duce the examples. You will also find a list of relevant URLs on this Web 
site.  The appendices of this book include an extensive list of references and 
an index. 

A unique and powerful feature of this book is its integration with the 
commercially available software package S-PLUS, a popular and powerful 
statistics and graphics package.  S-PLUS has several add-on modules useful 
for environmental data analysis, including ENVIRONMENTALSTATS for 
S-PLUS, S+SPATIALSTATS, and S-PLUS for ArcView GIS.  Throughout this 
book, when a data set is used to explain a statistical method, the commands 
for and results from the software are provided.  Using the software in con-
junction with this text will increase the understanding and immediacy of the 
methods. 

INTENDED AUDIENCE 
This book grew out of the authors’ experience as teachers, consultants, 

and software developers.  It is intended as both a reference book for envi-
ronmental scientists, engineers, and regulators who need to collect or make 
sense of environmental data, and as a textbook for graduate and advanced 
undergraduate students in an applied statistics or environmental science 
course.  Readers should have a basic knowledge of probability and statistics, 
but those with more advanced training will find lots of useful information as 
well.  Readers will find that topics are introduced at an elementary level, but 
the theory behind the methods is explained as well, and all pertinent equa-
tions are included.  Each topic is illustrated with examples. 

ENVIRONMENTAL SCIENCE, REGULATIONS, AND 
STATISTICS 

As a brief introduction to some of the problems involved in environ-
mental statistics, this section discusses three examples where environmental 
science, regulations, and statistics intersect.  Each of these examples illus-
trates several issues that need to be considered in sampling design and statis-
tical analysis.  We will discuss many of these issues both in general terms 
and in detail throughout this book. 

Groundwater Monitoring at Hazardous and Solid Waste Sites 
The Resource Conservation and Recovery Act (RCRA) requires that 

groundwater near hazardous waste sites and municipal solid waste sites be 
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monitored to ensure that chemicals from the site are not leaking into the 
groundwater (40 CFR Parts 264 and 265; 40 CFR Part 258).  So how do you 
design a program to monitor groundwater? 

Several Federal and state guidance documents have been published ad-
dressing the design and statistical issues associated with complying with 
RCRA regulations (e.g., USEPA, 1989b; 1991c; 1992b,c).  The current prac-
tice at most sites is to start in a phase called detection monitoring in which 
groundwater is sampled at upgradient and downgradient wells a number of 
times each year.  The groundwater at the upgradient wells is supposed to rep-
resent the quality of background groundwater that has not been affected by 
leakage from the site.  Figure 1.1 is a simple schematic for the physical setup 
of such a monitoring program.  More detailed figures can be found in Sara 
(1994, Chapters 9 to 11) and Gibbons (1995, p. 186). 

 
Figure 1.1 Simple schematic of an aerial view of a groundwater monitoring system 

During detection monitoring, the groundwater samples are analyzed for 
indicator parameters such as pH, conductance, total organic carbon, and to-
tal organic halides.  For each indicator parameter and each downgradient 
well, the value of the parameter at the downgradient well is compared to the 
value at the upgradient well(s).  If the value of the parameter is deemed to be 
“above background” then, depending on the permit, the owner/operator of 
the site may be required to take more samples, or the site may enter a second 
phase of monitoring called assessment monitoring or compliance  
monitoring. 
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In assessment or compliance monitoring, the owner/operator of the site is 
required to start analyzing the groundwater samples for other chemical pa-
rameters, such as the concentrations of specific chemicals.  The concentra-
tions of chemicals in the groundwater from downgradient wells are com-
pared to fixed concentration limits (Ground Water Protection Standards or 
GWPS) such as a Maximum Contaminant Level (MCL) or Alternative Con-
centration Limit (ACL).  For any specified chemical, if the concentration is 
“above” the GWPS, the site enters a third phase called corrective action 
monitoring. 

There are several basic scientific design and statistical issues involved in 
monitoring groundwater, including: 

• How do you determine what constitutes an upgradient well and what 
constitutes a downgradient well?  Can you be sure the gradient will 
stay the same over time? 

• What chemicals are contained in the site?  Are the mandated indica-
tor parameters for detection monitoring good indicators of leakage of 
these particular chemicals? 

• During assessment monitoring, are you required to test for chemicals 
that are not contained in the site?  If so, why? 

• For detection monitoring, how do you determine whether an indica-
tor parameter at a downgradient well is “above” background?  For 
each indicator parameter, what kind of increase in value is important 
to detect and how soon? 

• Is there “significant” spatial and/or temporal variability in any of the 
indicator parameters or chemical concentrations in the upgradient 
area?  If so, how do you account for this when comparing upgradient 
and downgradient wells?  Is it possible to use intrawell comparisons 
instead of comparing downgradient wells with upgradient wells? 

• What other sources of random variation are present?  Is there a lot of 
variability between samples taken on the same day?  Is there a lot of 
variability in the chemical measurement process?  Are different 
laboratories being used, and if so, is there a lot of variability between 
labs? 

• For assessment monitoring, what is the basis of each GWPS?  How 
do you tell whether chemical concentrations at downgradient wells 
are “above” the GWPS? 

• How do you account for the possibility of false alarms, which in-
volve increased monitoring costs, and the possibility of missing con-
tamination, which involves a potential threat to public health? 
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Soil Cleanup at Superfund Sites 
The Comprehensive Emergency Response and Civil Liability Act 

(CERCLA), also known as “Superfund,” requires a remedial investiga-
tion/feasibility study (RI/FS) at each site on the National Priorities List 
(NPL) to determine the extent of contamination and the risks posed to human 
health and the environment.  The U.S. Environmental Protection Agency 
(USEPA) has developed several guidance documents that discuss design and 
analysis issues for various stages of this process (USEPA, 1987a,b; 1989a,c; 
1991b; 1992b,d; 1994b; 1996b,c). 

The guidance documents Soil Screening Guidance:  User’s Guide 
(USEPA, 1996b) and Soil Screening Guidance:  Technical Background 
Document (USEPA, 1996c) discuss the use of Soil Screening Levels (SSLs) 
at Superfund sites that may have future residential land use to determine 
whether soil in a particular area requires further investigation and/or reme-
diation, or if it can be left alone (or at least does not require any further atten-
tion under CERCLA).  The guidance suggests stratifying the site into areas 
that are contaminated, areas unlikely to be contaminated, and areas that may 
be contaminated.  Within each stratum, the guidance suggests dividing the 
area into exposure areas (EAs) that are up to a half acre in size, and taking 
soil samples within each EA.  For each EA, the concentration of a particular 
chemical of concern is compared with the SSL.  If the concentration is 
“greater” then the SSL, then the EA requires further investigation. 

This soil screening guidance involves several basic scientific design and 
statistical issues, including: 

• How do you know what chemicals you are looking for? 
• How do you know the boundary of the area to look at?  How do you 

determine which areas are contaminated, which are not, and which 
might be? 

• What is the basis for an SSL for a particular chemical? 
• How do you determine whether the chemical concentration in the 

soil is “greater” than the SSL? 
• What are the sources of random variation in the data (e.g., field vari-

ability, collector variability, within lab variability, between lab vari-
ability, etc.), and how do you account for them? 

• How do you account for the possibility of false alarms (saying the 
chemical concentration is greater than the SSL when it is not), which 
involves unnecessary costs for further investigation, and the possibil-
ity of missing contamination (saying the chemical concentration is 
less than the SSL when in fact it not), which involves a potential 
threat to public health? 
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Monitoring Air Quality 
The Clean Air Act is the comprehensive Federal law that regulates air 

emissions from area, stationary, and mobile sources.  This law authorizes the 
USEPA to establish National Ambient Air Quality Standards (NAAQS), 
which are national targets for acceptable concentrations of specific pollutants 
in the air. 

There are two kinds of standards:  primary and secondary.  Primary stan-
dards set limits to protect public health, including the health of “sensitive” 
populations such as asthmatics, children, and the elderly.  Secondary stan-
dards set limits to protect public welfare, including effects on soils, water, 
crops, vegetation, buildings, property, animals, wildlife, weather, visibility, 
transportation, and other economic values, as well as personal comfort and 
well-being. 

The USEPA has set national air quality standards for seven principal air 
pollutants, called criteria air pollutants:  carbon monoxide (CO), lead (Pb), 
nitrogen dioxide (NO2), volatile organic compounds (VOCs), ozone (O3), 
particulate matter (PM-10), and sulfur dioxide (SO2).  As an example, the 
primary standard for ozone is based on comparing a specific limit to the 
daily maximum ozone measurement among the network of stations monitor-
ing a specific area.  The monitors at each station record ozone concentrations 
continuously in time, so there are several possible ways to define the “daily 
maximum ozone concentration.”  Between 1978 and 1997, the daily maxi-
mum ozone concentration was based on averaging the concentrations for 
each hour to produce 24 observations per station per day, and the maximum 
daily concentration at a station was defined to be the maximum of these 24 
values.  The daily maximum value (over all of the monitoring stations) could 
exceed 0.12 parts per million (ppm) only three times or fewer within a 3-year 
period. 

The proposed new standard for ozone divides the 24-hour day into three 
8-hour blocks, concentrations are averaged within each 8-hour block to pro-
duce three observations per station per day, and the maximum daily concen-
tration at a station is defined to be the maximum of these three values.  The 
standard looks at the fourth highest daily maximum concentration over all 
stations within a single year.  If the 3-year average of these annual fourth 
highest daily maximum concentrations is less than 0.08 ppm, then the stan-
dard is met. 

The scientific basis for national ambient air quality standards depends on 
knowledge about the effects of air pollutants on health and the environment, 
which involves clinical, epidemiological, and field studies, all of which de-
pend on scientific design and statistical analysis.  Also, USEPA monitors 
trends in air quality over time, which involves time series analysis.  Nychka 
et al. (1998) present several different types of statistical analyses of air qual-
ity data. 
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OVERVIEW 
This section explains the background and layout of this book. 

What is Environmental Statistics? 
Environmental statistics is simply the application of statistical methods to 

problems concerning the environment.  Examples of activities that require 
the use of environmental statistics include: 

• Monitoring air or water quality. 
• Monitoring groundwater quality near a hazardous or solid waste site. 
• Using risk assessment to determine whether an area with potentially 

contaminated soil needs to be cleaned up, and, if so, how much. 
• Assessing whether a previously contaminated area has been cleaned 

up according to some specified criterion. 
• Using hydrological data to predict the occurrences of floods. 

The term “environmental statistics” must also include work done in various 
branches of ecology, such as animal population dynamics and general eco-
logical modeling, as well as other fields, such as geology, chemistry, epide-
miology, oceanography, and atmospheric modeling.  This book concentrates 
on statistical methods to analyze chemical concentrations and physical pa-
rameters, usually in the context of mandated environmental monitoring. 

Environmental statistics is a special field of statistics.  Probability and 
statistics deal with situations in which the outcome is not certain.  They are 
built upon the concepts of a population and a sample from the population. 

Probability deals with predicting the characteristics of the sample, given 
that you know the characteristics of the population (e.g., what is the prob-
ability of picking an ace out of a deck of 52 well-shuffled standard playing 
cards?).  Statistics deals with inferring the characteristics of the population, 
given information from one or more samples from the population (e.g., after 
100 times of randomly choosing a card from a deck of 20 unknown playing 
cards and then replacing the card in the deck, no ace has appeared; therefore 
the deck probably does not contain any aces). 

The field of environmental statistics is relatively young and employs sev-
eral statistical methods that have been developed in other fields of statistics, 
such as sampling design, exploratory data analysis, basic estimation and hy-
pothesis testing, quality control, multiple comparisons, survival analysis, and 
Monte Carlo simulation.  Nonetheless, special problems have motivated in-
novative research, and both traditional and new journals now report on statis-
tical methods that have been developed in the context of environmental 
monitoring.  (See Appendix A:  References for a comprehensive list of jour-
nal articles, guidance documents, and general textbooks that deal with envi-
ronmental statistics and related topics.) 
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Where Do the Data Come from? 
If a law says that you have to monitor the environment because your fac-

tory is emitting chemicals into the air or water, or because you run a hazard-
ous waste site and you have to make sure nothing is seeping into the 
groundwater, or because you want to develop a shopping mall on a piece of 
real estate that used to be occupied by a plant that put creosote on railroad 
ties, then you have to figure out how to collect and analyze the data.  But be-
fore you collect the data, you have to figure out what the question is that you 
are trying to answer. 

The Data Quality Objectives (DQO) Process is a formal method for de-
ciding what the question is, what data need to be collected to answer the 
question, how the data will be collected, and how a decision will be made 
based on the data.  It is the first and most important step of any environ-
mental study.  The DQO process is discussed in Chapter 2, along with vari-
ous methods of random sampling. 

The actual collection and laboratory analysis of a physical sample from 
the environment that eventually leads to a reported number (e.g., concentra-
tion of trichloroethylene) involves several steps (Clark and Whitfield, 1994; 
Ward et al., 1990, p. 19): 

1. Sample collection 
2. Sample handling 
3. Transportation 
4. Sample receipt and storage at laboratory 
5. Sample work up 
6. Sample analysis 
7. Data entry 
8. Data manipulation 
9. Data reporting 

Figure 1.2, reproduced from Clark and Whitfield (1994, p. 1065), illustrates 
these steps, along with sources of variability that cause the measured concen-
tration to deviate from the true concentration.  Sources of variability are dis-
cussed in more detail in Chapter 2. 

Once the physical samples are collected, they must be analyzed in the 
laboratory to produce measures of chemical concentrations and/or physical 
parameters.  This is a whole topic in itself.  An environmental chemist does 
not just scoop a piece of dirt out of a collection vial, dissolve it in water or 
chemicals in a test tube, stick the tube in a machine, and record the concen-
trations of all the chemicals that are present.  In fact, the process of measur-
ing chemical concentrations in soil, water, or air has its own set of DQO 
steps!  Chapter 9 discusses some of the aspects of chemometrics and the im-
portant topic of machine calibration and detection limit. 
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Figure 1.2 The steps involved in producing environmental data, and their associ-
ated sources of variability.  (From Clark and Whitfield, 1994.  Water Re-
sources Bulletin 30(6), 1063−1079.  With permission of American Water 
Resources Association, Herndon, VA.) 
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How Do You Analyze the Data Once You Have It? 
When most people think of environmental statistics, they think of the 

data analysis part.  The design of the sampling program and the DQO proc-
ess are much more important, however.  In fact, one of the steps in the DQO 
process is to specify how you will analyze the data once you have it. 

Chapters 3 to 9 discuss various ways of analyzing environmental data, 
starting with exploratory data analysis (EDA) in Chapter 3.  Chapter 4 ex-
plains the idea of a population, sample, random variable, and probability 
distribution, and gives examples of each of these in the context of a real data 
set.  Chapter 5 discusses various methods for estimating characteristics of a 
population (probability distribution) based on a sample (data).  Chapter 6 
discusses prediction intervals, tolerance intervals, and control charts, which 
have been proposed as good methods to use in groundwater monitoring.  
Chapter 7 reviews the basic ideas in hypothesis testing, including balancing 
the two possible errors a decision-maker can make (e.g., declaring a site con-
taminated when it really is not, or declaring a site not contaminated when it 
really is).  This chapter also illustrates tests for goodness-of-fit and outliers, 
classical and nonparametric methods for comparing one, two, or several 
groups (e.g., background vs. potentially contaminated sites), and the multiple 
comparisons problem.  Chapter 8 returns to the DQO process of Chapter 2 
and illustrates how to determine required sample sizes based on the statisti-
cal theory presented in Chapters 6 and 7.  Chapter 9 discusses linear models, 
including correlation, simple regression, testing for trend, and multiple re-
gression.  In addition, this chapter explains the idea of calibration and how 
this relates to measuring chemical concentrations and determining various 
limits associated with the process (i.e., decision limit, detection limit, quanti-
tation limit, etc.). 

Special Topics 
Chapter 10 continues the ideas on calibration discussed in Chapter 9 by 

explaining how to handle environmental data that contain “less-than-
detection-limit” results.  Chapter 11 examines methods for dealing with data 
collected over time that may be serially correlated.  Chapter 12 considers 
how to handle data collected over space that may be spatially correlated.  Fi-
nally, Chapter 13 discusses the immense field of risk assessment, which usu-
ally involves both “hard” data and expert judgment. 

DATA SETS AND CASE STUDIES 
Throughout this book, we use several data sets to illustrate statistical 

concepts and methods of analyzing environmental data.  Many of these data 
sets are taken from regulatory guidance documents, but a few of them are 
larger data sets from the real world of environmental monitoring. 
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SOFTWARE 
As mentioned earlier, throughout this book we use the software package 

S-PLUS and some of its add-on modules to display computations and graphs.  
S-PLUS is a popular and powerful software program for statistical and 
graphical analysis.  You can produce results either by using drop-down 
menus and toolbars, or by typing commands in a command window.  
ENVIRONMENTALSTATS for S-PLUS is an add-on module to S-PLUS that pro-
vides several graphical and statistical methods that are used extensively in 
environmental statistics.  S+SPATIALSTATS is an add-on module for statistical 
analysis of spatial data and includes kriging.  S-PLUS for ArcView GIS is an 
add-on module that lets you link the statistical and graphical tools in S-PLUS 
with the mapping and visual tools of ArcView.  In this book, when a data set 
is used to explain a statistical method, the commands for and results from the 
software are provided.  Information on the software providers is listed below. 

• S-PLUS, ENVIRONMENTALSTATS FOR S-PLUS, S+SPATIALSTATS, 
and S-PLUS for ArcView GIS 
 
MathSoft, Inc. 
Data Analysis Products Division 
1700 Westlake Ave N, Suite 500 
Seattle, WA  98109  U.S.A. 
800-569-0123 
mktg@splus.mathsoft.com 
www.splus.mathsoft.com 
 
MathSoft International 
Knightway House, Park Street 
Bagshot, Surrey GU19 5AQ   
United Kingdom 
+44 1276 475350 
splus@mathsoft.co.uk 
www.splus.mathsoft.com 

• ArcView GIS 
 
Environmental Systems Research Institute, Inc. (ESRI) 
380 New York Street 
Redlands, CA  92373-8100  U.S.A. 
909-793-2853 
www.esri.com 
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SUMMARY 
• Several laws mandate some sort of monitoring or comparison to en-

sure the integrity of the environment. 
• This explosion of regulations and mandated statistical analysis has 

resulted in several problems, including inappropriate or misused sta-
tistical procedures, a need for more research, a wide variety of back-
grounds in the people who need to use environmental statistics, and a 
lack of comprehensive software.  This book is an attempt to address 
these problems. 

• Probability deals with predicting the characteristics of the sample, 
given that you know the characteristics of the population. 

• Statistics deals with inferring the characteristics of the population, 
given information from one or more samples from the population. 

• Environmental statistics is the application of statistical methods to 
problems concerning the environment, such as monitoring air or wa-
ter quality, or comparing chemical concentrations at two sites. 

• This book discusses the importance of determining the question that 
needs to be answered, planning the design of an environmental 
study, how to look at data once you have collected it, and how to use 
statistical methods to help in the decision-making process. 

• S-PLUS and its add-on modules, including ENVIRONMENTALSTATS 
for S-PLUS, are useful tools for the analysis of environmental data. 

EXERCISES 
1.1. Compile a partial list of Federal, state, and local agencies that deal 

with the environment.  Two good places to start are the govern-
ment section of the telephone book, and national agency sites on 
the World Wide Web.  (The URL of the U.S. Environmental Pro-
tection Agency is www.epa.gov.  Also, www.probstatinfo.com 
provides links to agencies that deal with the environment.) 

1.2. Compile a partial list of national, state, and local regulations that 
require some sort of environmental monitoring. 

1.3. Look in the Yellow Pages (published or on the Web) under the 
heading “Environmental.”  What kinds of listings are there? 
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2 DESIGNING A SAMPLING 
PROGRAM, PART I 

The DQO Process 

The first and most important step of any environmental study is to define 
the objectives of the study and to design the sampling program.  This chapter 
discusses the basic scientific method and the Data Quality Objectives (DQO) 
process, which is a formal mechanism for implementing the scientific 
method and identifying important information that needs to be known in or-
der to make a decision based on the outcome of the study (e.g., clean up the 
site or leave it alone).  One of the major steps in the DQO process involves 
deciding how you will sample the environment in order to produce the in-
formation you need to make a decision.  We therefore also discuss several 
sampling methods in this chapter as well.  Finally, we present a real-world 
case study to illustrate the DQO process. 

THE BASIC SCIENTIFIC METHOD 
Any scientific study, whether it involves monitoring pollutants in the en-

vironment, determining the efficacy of a new drug, or attempting to improve 
the precision of airplane parts, can eventually be boiled down to trying to de-
termine a cause and effect relationship.  Over the centuries, science has de-
veloped a set of rules to follow to try to rationally determine cause and ef-
fect.  These rules can be summarized as follows: 

1. Form a hypothesis about the relationship between the supposed 
cause and the observed effect (e.g., the presence of a pollutant in a 
river has decreased the population of a particular species of fish). 

2. Perform an experiment in which one set of subjects (e.g., fish, peo-
ple, petri dishes, etc.) is exposed to the cause, and another set of sub-
jects experiences exactly the same conditions as the first set of sub-
jects, except they are not exposed to the cause.  The group of sub-
jects exposed to the cause is termed the experimental group or ex-
posed group, and the other group is termed the control group.  All 
subjects must be similar to one another and be randomly assigned to 
the experimental or control group. 

3. Record and analyze the results of the experiment. 
4. Revise the hypothesis based on the results.  Repeat Steps 2 to 4. 
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The scientific method recognizes the fact that our environment is con-
stantly changing and that any of these changes may create an observed effect 
which may or may not be related to some cause we have hypothesized.  The 
only way to determine whether a specific cause creates a specific effect is 
through careful experimentation that matches the experimental group with 
the control group on every possible condition except for allowing the ex-
perimental group to be exposed to the cause.  In reality, this is often ex-
tremely difficult or impossible to achieve. 

Observational Experiments 
Often in environmental studies, the experiment is not actually controlled 

by scientists doing the investigation, but rather it is an observational ex-
periment (often called an epidemiological study) in which the experimental 
group is a group of people, organisms, aquifers, etc. that has been exposed to 
a cause (e.g., a pollutant) by virtue of physical location or other factors.  A 
control group is then selected based upon the characteristics of the experi-
mental group.  An observational experiment can be very useful for initially 
identifying possible causes and effects, but suffers from the major drawback 
that the experimental group is self-selected, rather than randomly assigned, 
and therefore there might be something peculiar about this group that caused 
the observed effect, rather than the hypothesized cause.  The tobacco indus-
try used this argument for years to claim that there is no “proof” that smok-
ing causes cancer, since all studies on smoking and cancer in humans are ob-
servational experiments (smoking was not randomly assigned to one group 
and no smoking to another).  On the other hand, if many, many observational 
experiments result in the same conclusions, then this is very good evidence 
of a direct cause and effect. 

The Necessity of a Good Sampling Design 
No amount of advanced, cutting-edge statistical theory and techniques 

can rescue a study that has produced poor quality data, not enough data, or 
data irrelevant to the question it was meant to answer.  From the very start of 
an environmental study, there must be a constant dialog between the data 
producers (field and lab personnel, data coders, etc.), the data users (scien-
tists and statisticians), and the ultimate decision maker (the person or organi-
zation for whom the study was instigated in the first place).  All persons in-
volved in the study must have a clear understanding of the study objectives 
and the limitations associated with the chosen physical sampling and analyti-
cal (measurement) techniques before anyone can make any sense of the re-
sulting data. 
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The DQO Process is the Scientific Method 
The DQO process is really just a formalization of sampling design and 

the scientific method.  We will explain the DQO process in detail, but first 
we need to understand the concepts of population, sample, random sampling, 
and hypothesis test. 

WHAT IS A POPULATION AND WHAT IS A SAMPLE? 
In everyday language, the word “population” refers to all the people or 

organisms contained within a specific country, area, region, etc.  When we 
talk about the population of the United States, we usually mean something 
like “the total number of people who currently reside in the U.S.” 

In the field of statistics, however, the term population is defined opera-
tionally by the question we ask:  it is the entire collection of measurements 
about which we want to make a statement (Zar, 1999, p. 16; Berthoux and 
Brown, 1994, p. 7; Gilbert, 1987, Chapter 2). 

For example, if the question is “What does the concentration of dissolved 
oxygen look like in this stream?”, the question must be further refined until a 
suitable population can be defined:  “What is the average concentration of 
dissolved oxygen in a particular section of a stream at a depth of 0.5 m over 
a particular 3-day period?”  In this case, the population is the set of all possi-
ble measurements of dissolved oxygen in that section of the stream at 0.5 m 
within that time period.  The section of the stream, the time period, the 
method of taking water samples, and the method of measuring dissolved 
oxygen all define the population. 

A sample is defined as some subset of a population (Zar, 1999, p. 17; 
Berthoux and Brown, 1994, p. 7; Gilbert, 1987, Chapter 2).  If the sample 
contains all the elements of the population, it is called a census.  Usually, a 
population is too large to take a census, so a portion of the population is 
sampled.  The statistical definition of the word sample (a selection of indi-
vidual population members) should not be confused with the more common 
meaning of a physical sample of soil (e.g., 10g of soil), water (e.g., 5ml of 
water), air (e.g., 20 cc of air), etc. 

RANDOM VS. JUDGMENT SAMPLING 
Judgment sampling involves subjective selection of the population units 

by an individual or group of individuals (Gilbert, 1987, Chapter 3).  For ex-
ample, the number of samples and sampling locations might be determined 
based on expert opinion or historical information.  Sometimes, public opin-
ion might play a role and samples need to be collected from areas known to 
be highly polluted.  The uncertainty inherent in the results of a judgment 
sample cannot be quantified and statistical methods cannot be applied to 
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judgment samples.  Judgment sampling does not refer to using prior informa-
tion and the knowledge of experts to define the area of concern, define the 
population, or plan the study.  Gilbert (1987, p. 19) also describes “haphaz-
ard” sampling, which is a kind of judgment sampling with the attitude that 
“any sample will do” and can lead to “convenience” sampling, in which 
samples are taken in convenient places at convenient times. 

Probability sampling or random sampling involves using a random 
mechanism to select samples from the population (Gilbert, 1987, Chapter 3).  
All statistical methods used to quantify uncertainty assume some form of 
random sampling has been used to obtain a sample.  At the simplest level, a 
simple random sample is used in which each member of the population has 
an equal chance of being chosen, and the selection of any member of the 
population does not influence the selection of any other member.  Other 
probability sampling methods include stratified random sampling, composite 
sampling, and ranked set sampling.  We will discuss these methods in detail 
later in this chapter. 

THE HYPOTHESIS TESTING FRAMEWORK 
Every decision you make is based on a set of assumptions.  Usually, you 

try to make the “best” decision given what you know.  The simplest decision 
involves only two possible choices, with the choice you make depending 
only on whether you believe one specific condition is true or false.  For ex-
ample, when you get up in the morning and leave your home, you have to 
decide whether to wear a jacket or not.  You may make your choice based on 
whether you believe it will rain that day.  Table 2.1 displays the framework 
for your decision-making process. 

 What Happens 
Your Decision It Does Not Rain It Rains 

 
Wear Jacket 

 
Mistake I 

 

 
Correct Decision 

 
 

Leave Jacket 
 

Correct Decision 
 

 
Mistake II 

 

Table 2.1  Hypothesis testing framework for wearing a jacket 

If you wear your jacket and it rains, you made a “correct” decision, and if 
you leave your jacket at home and it does not rain then you also made a “cor-
rect” decision.  On the other hand, if you wear your jacket and it does not 
rain, then you made a “mistake” in some sense because you did not need to 
wear your jacket.  Also, if you leave your jacket at home and it does rain, 
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then you also made a “mistake.”  Of course, you may view the “cost” of 
making mistake II as greater than the cost of making mistake I. 

You can think of the above example as an illustration of a hypothesis test.  
We will say the null hypothesis is that it will not rain today.  You then gather 
information from the television, Internet, radio, newspaper, or personal ob-
servation and make a decision based on this information.  If the null hy-
pothesis is true and you decide not to leave your jacket at home, then you 
made the “correct” decision.  If, on the other hand, the null hypothesis is 
false and you decide to leave your jacket at home, you have made a mistake. 

Decisions regarding the environment can also be put into the hypothesis 
testing framework.  Table 2.2 illustrates this framework in the context of de-
ciding whether contamination is present in the environment.  In this case, the 
null hypothesis is that no contamination is present. 

 Reality 
Your Decision No Contamination Contamination 

 
Contamination 

Mistake: 
Type I Error 

(Probability = α) 

 
Correct Decision 

(Probability = 1−β) 
 

No Contamination 
 

Correct Decision 
Mistake: 

Type II Error 
(Probability = β) 

Table 2.2  Hypothesis testing framework for deciding on the presence of  
contamination in the environment when the null hypothesis is  
“no contamination” 

Statisticians call the two kinds of mistakes you can make a Type I error 
and a Type II error.  Of course, in the real world, once you make a decision, 
you take an action (e.g., clean up the site or do nothing), and you hope to 
find out eventually whether the decision you made was the correct decision. 

For a specific decision rule, the probability of making a Type I error is 
usually denoted with the Greek letter α (alpha).  This probability is also 
called the false positive rate.  The probability of making a Type II error is 
usually denoted with the Greek letter β (beta).  This probability is also called 
the false negative rate.  The probability 1−β denotes the probability of cor-
rectly deciding there is contamination when in fact it is present.  This prob-
ability is called the power of the decision rule.  We will talk more about the 
hypothesis testing framework in Chapters 6 and 7, and we will talk about 
power in Chapter 8. 

COMMON MISTAKES IN ENVIRONMENTAL STUDIES 
The most common mistakes that occur in environmental studies include 

the following: 
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• Lack of Samples from Proper Control Populations.  If one of the 
objectives of an environmental study is to determine the effects of a 
pollutant on some specified population, then the sampling design 
must include samples from a proper control population.  This is a ba-
sic tenet of the scientific method.  If control populations were not 
sampled, there is no way to know whether the observed effect was 
really due to the hypothesized cause, or whether it would have oc-
curred anyway. 

• Using Judgment Sampling to Obtain Samples.  When judgment 
sampling is used to obtain samples, there is no way to quantify the 
precision and bias of any type of estimate computed from these  
samples. 

• Failing to Randomize over Potentially Influential Factors.  An 
enormous number of factors can influence the final measure associ-
ated with a single sampling unit, including the person doing the 
sampling, the device used to collect the sample, the weather and 
field conditions when the sample was collected, the method used to 
analyze the sample, the laboratory to which the sample was sent, etc.  
A good sampling design controls for as many potentially influencing 
factors as possible, and randomizes over the factors that cannot be 
controlled.  For example, if there are four persons who collect data in 
the field, and two laboratories are used to analyze the results, you 
would not send all the samples collected by persons 1 and 2 to labo-
ratory 1 and all the samples collected by persons 3 and 4 to labora-
tory 2, but rather send samples collected by each person to each of 
the laboratories. 

• Collecting Too Few Samples to Have a High Degree of Confi-
dence in the Results.  The ultimate goal of an environmental study 
is to answer one or more basic questions.  These questions should be 
stated in terms of hypotheses that can be tested using statistical pro-
cedures.  In this case, you can determine the probability of rejecting 
the null hypothesis when in fact it is true (a Type I error), and the 
probability of not rejecting the null hypothesis when if fact it is false 
(a Type II error).  Usually, the Type I error is set in advance, and the 
probability of correctly rejecting the null hypothesis when in fact it 
is false (the power) is calculated for various sample sizes.  Too often, 
this step of determining power and sample size is neglected, result-
ing in a study from which no conclusions can be drawn with any 
great degree of confidence. 

Following the DQO process will keep you from committing these common 
mistakes. 
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THE DATA QUALITY OBJECTIVES PROCESS 
The Data Quality Objectives (DQO) process is a systematic planning tool 

based on the scientific method that has been developed by the U.S. Envi-
ronmental Protection Agency (USEPA, 1994a).  The DQO process provides 
an easy-to-follow, step-by-step approach to decision-making in the face of 
uncertainty.  Each step focuses on a specific aspect of the decision-making 
process.  Data Quality Objectives are the qualitative and quantitative state-
ments that: 

• Clarify the study objective. 
• Define the most appropriate type of data to collect. 
• Determine the most appropriate conditions under which to collect 

the data. 
• Specify acceptable levels of decision errors that will be used as the 

basis for establishing the quantity and quality of data needed to sup-
port the decision. 

Once the DQOs are specified, it is the responsibility of the team to determine 
the most cost-effective sampling design that meets the DQOs.  A sampling 
design or sampling plan is a set of instructions to use to scientifically inves-
tigate the study objective and come up with a quantifiable answer.  We will 
discuss several commonly used sampling designs later in this chapter, but it 
is important to note that the actual method of analysis/estimation is part of 
the design, and various available choices must be considered to choose the 
most resource-effective combination of the method of sampling and the 
method of analysis/estimation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 The Data Quality Objectives (DQO) Process 

State the Problem 

Specify Limits on Decision Errors 

Identify the Decision 

Identify Inputs to the Decision 

Define the Study Boundaries 

Develop a Decision Rule 

Optimize the Design for Obtaining Data 
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Figure 2.1 displays a flowchart of the DQO process.  The DQO process 
is described in detail in USEPA (1994a).  The DQO process is a series of 
seven planning steps, as outlined below. 

1. State the Problem.  Clearly and concisely define the problem so 
that the focus of the study will be unambiguous.  Activities include: 

• Identify members of the planning team. 
• Identify the primary decision maker and each team member’s 

role and responsibilities. 
• Develop a concise description of the problem by describing 

what is causing the problem and reviewing prior studies and ex-
isting information to gain a better understanding of the problem. 

• Specify available resources and relevant deadlines for the study. 

2. Identify the Decision.  Define the decision statement that the study 
will attempt to resolve.  Activities include: 

• Identify the principal study question.  For example:  Is the con-
centration of 1,2,3,4-tetrachlorobenzen (TcCB) in the soil at a 
specific site “significantly” above “background” levels? 

• Define possible (alternative) actions to take based on the answer 
to the principal study question.  For example, if the concentra-
tion of TcCB is significantly above background level, then re-
quire remediation; otherwise, do nothing. 

• Combine the principal study question and the alternative actions 
into a decision statement. 

• Organize multiple decisions. 

3. Identify Inputs to the Decision.  Identify the information that needs 
to be obtained and the measurements that need to be taken to resolve 
the decision statement.  Activities include: 

• Identify the information required to resolve the decision state-
ment.  For example, what is the distribution of TcCB concentra-
tions at the site of concern, and what is the distribution of TcCB 
concentrations for a “background” site? 

• Determine the sources for each item of information.  Sources 
may include previous studies, scientific literature, expert opin-
ion, and new data collections. 

• Identify the information that is needed to establish the action 
level.  For example, will the “background” level of TcCB be es-
tablished based on sampling a nearby “control” site or based on 
a regulatory standard? 
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• Confirm that appropriate analytical methods exist to provide the 
necessary data.  Develop a list of potentially appropriate meas-
urement methods, noting the method detection limit and limit of 
quantitation for each method. 

4. Define the Study Boundaries.  Define the spatial and temporal 
boundaries that are covered by the decision statement.   A clear con-
nection should be made between the study boundaries and the state-
ment of the problem so that the decisions are relevant to the problem 
stated in Step 1.  Steps 3 and 4 involve defining the population(s) of 
interest, how it (they) will be sampled, and how the physical samples 
will be measured.  Activities for Step 4 include: 

• Specify the characteristics that define the population of interest. 
• Define the geographic area within which all decisions apply. 
• When appropriate, divide the population into relatively homo-

geneous strata. 
• Determine the timeframe within which all decisions apply. 
• Determine when to collect the data. 
• Define the scale of decision making.  For example, will only one 

decision be made for the whole site, or will the site be divided 
into smaller sub-areas and a separate decision made for each 
sub-area? 

• Identify any practical constraints on data collection. 

5. Develop a Decision Rule.  Define the statistical parameter of inter-
est, specify the action level, and integrate the previous DQO outputs 
into a single statement that describes the logical basis for choosing 
among alternative actions.  Activities include: 

• Specify one or more statistical parameter(s) that characterize(s) 
the population and that are most relevant to the decision state-
ment.  For example, the average concentration of TcCB, the 
median concentration of TcCB, and the 95th percentile of the 
concentration of TcCB. 

• Specify the action level(s) for the study. 
• Combine the outputs from the previous DQO steps into one or 

more “If …then...” decision rules that define the conditions that 
would cause the decision maker to choose among alternative ac-
tions.  For example, “If the average concentration of TcCB in a 
sub-area is greater than the background average concentration 
then remediate the sub-area.” 

6. Specify Tolerable Limits on Decision Errors.  Define the decision 
maker’s tolerable decision error rates based on a consideration of the 
consequences of making an incorrect decision.  Since decisions are 
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made based on a sample rather than a census, and there is uncer-
tainty in the measurements, incorrect decisions can be made.  The 
probabilities of making incorrect decisions are referred to as decision 
error rates.  Activities for this step include: 

• Determine the full possible range of the parameter of interest. 
• Identify the decision errors and formulate the null hypothesis. 
• Specify a range of parameter values where the consequences of 

decision errors are relatively minor (gray region). 
• Assign probability values to points above and below the action 

level that reflect the tolerable probability for the occurrence of 
decision errors. 
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Figure 2.2 Decision performance goal diagram for the null hypothesis that the pa-

rameter is less than the action level of 100 ppm 

Figure 2.2, similar to Figure 6-2 of USEPA (1994a, p. 36), illustrates 
a decision performance goal diagram in which the full range of the 
parameter is assumed to be between about 50 and 200 ppm.  The null 
hypothesis is that the true value of the parameter is less than the ac-
tion level of 100 ppm.  The tolerable false positive decision error rate 
is 5% as long as the true value is less than 60 ppm.  If the true value is 
between 60 and 100 ppm, then the tolerable false positive rate is 10%.  
If the true value is between 100 and 120 ppm, this is a gray region 
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where the consequences of a decision error are relatively minor.  If 
the true value is between 120 and 140 ppm, the tolerable false nega-
tive decision error rate is 10%, and if the true value is bigger than 140 
ppm the tolerable false negative decision error rate is 5%. 

7. Optimize the Design.  Evaluate information from the previous steps 
and generate alternative sampling designs.  Choose the most re-
source-efficient design that meets all DQOs.  Activities include: 

• Review the DQO outputs and existing environmental data. 
• Develop several possible sampling designs. 
• Formulate the mathematical expressions required to solve the 

design problems for each design alternative.  These expressions 
include the relationship between sample size and decision error 
rates, and the relationship between sample size and cost of the 
design. 

• Select the optimal sample size that satisfies the DQOs for each 
possible sampling design. 

• Select the most resource-effective sampling design that satisfies 
all of the DQOs. 

• Document the operational details and theoretical assumptions of 
the selected sampling design in the Sampling and Analysis Plan. 
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Figure 2.3 Example of a power curve for the null hypothesis that the parameter is 

less than the action level of 100 ppm 
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Figure 2.3, similar to Figure 7-1 of USEPA (1994a, p. 40) illustrates a 
power curve for a particular sampling design drawn on top of the de-
cision performance goal diagram shown in Figure 2.2.  Here you can 
see that this particular sampling design satisfies the performance 
goals. 

Steps 3 and 4 should include developing a quality assurance project plan 
(QAPP) to document quality assurance (QA) and quality control (QC) and 
insure the integrity of the final results (USEPA, 1998b).  A good QAPP cov-
ers instructions for sample collection in the field, handling, laboratory analy-
sis and reporting, data coding, statistical analyses, and reports.  Embedded in 
these instructions is the chain of custody procedures for documenting who 
has custody of the samples and the current conditions of the samples from 
the point of collection in the field to the analysis at the laboratory.  Chain of 
custody procedures are used to ensure that samples are not lost, tampered 
with, or improperly stored or handled.  See Keith (1991) and USEPA 
(1998b) for more information. 

Step 7 requires information from previous studies and/or a pilot study to 
quantify the amount of variability that is typical in samples.  Once this in-
formation is available, you can estimate the required sample size based on 
the statistical method of analysis that will be used (see Chapter 8).  Even if 
information on sample variability is available from previous studies, how-
ever, it is almost always advisable to conduct a pilot study in order to “fine 
tune” the QA/QC sampling plan and the overall sampling design.  Sample 
size requirements should take into account that a certain proportion of the 
samples will be unusable due to loss, mislabeling, mishandling, or some 
other factor that keeps the samples from meeting the specified QA/QC stan-
dards. 

The DQO process is iterative.  During the design optimization step (Step 
7), you may discover that there are not enough funds and/or staff available to 
answer the question, given the required decision error rates specified in Step 
6 and the required sample sizes determined in Step 7.  In this case, you may 
need to adjust the budget of the study or the decision error rates, or investi-
gate alternative methods of sampling that may yield smaller variability.  
Once a sampling design is chosen, you should develop a written protocol for 
implementing the sampling design and QAPP programs.  See Gilbert (1987), 
Keith (1991), and USEPA (1989a; 1992b; 1994a,b; 1996) for more informa-
tion on sampling design. 

SOURCES OF VARIABILITY AND INDEPENDENCE 
Figure 1.2 in Chapter 1 displays several sources of variability in meas-

urements from environmental studies.  Some potential sources of variability 
include: 
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• Natural variability over space. 
• Natural variability over time (including seasonal and year-to-year 

fluctuations). 
• Field sampling variability (sample collection, sample handling, and 

transportation). 
• Within laboratory variability (day-to-day, machine-to-machine, 

technician-to-technician, etc.). 
• Between laboratory variability. 

When you are designing a sampling program, it is very important to be 
aware of these different sources of variability and to know how much they 
contribute to the overall variability of a measure.  For example, RCRA regu-
lations for groundwater monitoring at hazardous and solid waste sites require 
a minimum of only one upgradient well (see Figure 1.1 in Chapter 1).  If 
there is substantial natural spatial variability in the concentration of some 
chemical of concern, then we may not be able to tell whether a difference in 
concentrations between the upgradient well and a downgradient well is due 
to actual contamination showing up at the downgradient well or simply due 
to natural spatial variability. 

Independent vs. Dependent Observations 
A key concept in statistical design and analysis is the idea of independ-

ent observations.  Here is a non-technical definition:  observations are inde-
pendent of one another if knowing something about one observation does not 
help you predict the value of another observation.  As an example of inde-
pendent observations, suppose you have a standard deck of 52 playing cards, 
which you shuffle before picking a single card.  You look at the card, put it 
back in the deck, shuffle the deck again, and pick another card.  Knowing 
that the card you picked the first time was the 10 of diamonds will not help 
you predict what the next card will be when you pick from the deck again.  
The values of the two different cards that you pick are independent.  On the 
other hand, if you had kept the 10 of diamonds after you picked it and not re-
turned it to the deck, then you know that the next card you pick cannot be the 
10 of diamonds.  In this case, the two observations are dependent. 

The idea of independence is closely linked to the idea of accounting for 
sources of variability.  Suppose we are monitoring the concentration of arse-
nic in groundwater around a hazardous waste site and the flow of ground-
water is extremely slow.  If we sample say biweekly or monthly, then the 
temporal variability at a monitoring well will be small, so that observations 
taken close together in time will resemble one another more than observa-
tions taken further apart in time.  Thus, if we combine monthly observations 
over 2 years, these 24 observations would not be considered to be independ-
ent of each other; they would exhibit temporal correlation (see Chapter 11).  
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We would have to adjust the sampling frequency to something like quarterly 
to try to produce observations that act like they are independent. 

Similarly, if there is no appreciable natural spatial variability of arsenic 
concentrations over the area we are monitoring, then the combined observa-
tions from an upgradient well and a downgradient well could be considered 
to be independent (assuming there is no leakage from the waste site).  On the 
other hand, if there is substantial spatial variability (but no leakage from the 
waste site), and the concentrations at the downgradient well tend to be larger 
than the concentrations at the upgradient well, then the combined observa-
tions from the upgradient well and the downgradient well would not be con-
sidered independent; knowing which well an observation comes from (up-
gradient or downgradient) helps us predict the value of the observation.  If 
we know the average concentrations at the upgradient and downgradient 
wells (e.g., 5 ppb at the upgradient well and 10 ppb at the downgradient 
well), we can subtract these averages from the observations to produce “re-
sidual values.”  The combined residual values would be considered inde-
pendent, because knowing whether the residual value came from the upgra-
dient or downgradient well does not help us predict the actual value of the 
residual value. 

Most standard statistical methods assume the observations are independ-
ent.  This is a reasonable assumption as long as we are careful about ac-
counting for potential sources of variability and randomizing over potentially 
influential factors (e.g., making sure each laboratory analyzes samples col-
lected by each different collector).  Time series analysis, discussed in Chap-
ter 11, and spatial statistics, discussed in Chapter 12, are special ways of ac-
counting for variability over time and space.  A very common method of ac-
counting for physical sources of variability in the field is stratified random 
sampling, which is discussed in the next section. 

METHODS OF RANDOM SAMPLING 
This section describes four methods of random sampling:  simple random 

sampling, systematic sampling, stratified random sampling, composite sam-
pling, and ranked set sampling.  Other methods of random sampling include 
two-stage and multi-stage random sampling, double random sampling, se-
quential random sampling, and adaptive random sampling.  See Gilbert 
(1987), Keith (1991, 1996), Thompson (1992), and Cochran (1977) for more 
information. 

In our discussions, we will explain the various methods of random sam-
pling in English.  To compare the methods of sampling, however, we need to 
use equations and talk about concepts like the population mean, sample 
mean, and variance of the sample mean.  We will discuss these concepts in 
detail in Chapters 3 and 4.  For now, you may want to skip the equations and 
return to them after you have read these later chapters. 
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Simple Random Sampling 
Simple random sampling is, true to its name, the simplest type of sam-

pling design.  Recall that a sample is a subset of the population.  A simple 
random sample (SRS) is obtained by choosing the subset in such a way that 
every individual in the population has an equal chance of being selected, and 
the selection of one particular individual has no effect on the probability of 
selecting another individual.  The word random denotes the use of a prob-
abilistic mechanism to ensure that all units have an equal probability of be-
ing selected, rather than the colloquial meaning “haphazard.” 

In order to realize an SRS from a population, a complete listing of the 
units in the population may be needed.  These units are referred to as sam-
pling units.  For example, suppose we are interested in determining the con-
centration of a chemical in the soil at a Superfund site.  One way to define 
the population is as the set of all concentrations from all possible physical 
samples of the soil (down to some specified depth).  In the DQO process, we 
may further refine our definition of the population to mean the set of all con-
centrations from all possible physical samples taken on a grid that overlays 
the site.  The grid points are then the sampling units, and an SRS will consist 
of a subset of these grid points in which each grid point has an equal prob-
ability of being included in the sample.  Figure 2.4 illustrates the idea of 
simple random sampling for a grid with N = 160 points for which n = 16 
points were selected at random. 

Example of SRS with N=160 and n=16

 
Figure 2.4 Illustration of simple random sampling on a grid 
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In Chapters 3 and 4 we will discuss the concepts of the population mean, 
population variance, sample mean, and sample variance.  One way to com-
pare sampling methods is based on the variance of the sample mean (how 
much wiggle it has).  For simple random sampling, the population mean or 
average, denoted by µ, is estimated by the sample mean: 
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where n denotes the number of sampling units selected in the SRS and xi 
denotes the value of the measurement on the ith sampling unit that was se-
lected.  The variance of the sample mean is given by: 
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where σ2 denotes the population variance and N denotes the number of sam-
pling units in the population (Cochran, 1977, p. 23; Gilbert, 1987, p. 28).  
Note that as the sample size n increases, the variance of the sample mean de-
creases.  For a finite population, if we take a census so that n = N, the sample 
mean is the same as the population mean and the variance of the sample 
mean is 0.  The quantity n/N in Equation (2.2) is called the finite population 
correction factor.  For an infinite population where N = ∞, the finite popula-
tion correction factor is 0 so that the variance of the sample mean depends 
only on the sample size n. 
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Often in environmental studies, the finite population correction factor is set 
to 0 because the size of the population N is much, much larger than the sam-
ple size n. 

Determining Grid Size 
A common question is:  “If I decide to overlay the area with a grid and 

define my population by the set of all possible points on the grid, how fine 
should the grid be?  Should the points be spaced by 10 feet, one foot, half of 
a foot, or some other distance?”  For simple random sampling, the answer is:  
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Make the grid of possible points to sample from as fine as possible, since 
you would like to extrapolate your results to the whole area.  When you 
overlay the area with a grid, you are in effect taking a systematic sample of 
all possible sampling points (see the next section).  You therefore may have 
introduced bias, because even if you sample from all of the points on the grid 
(instead of taking a random sample of points), the mean based on sampling 
all of the grid points may not equal the true population mean.  As you make 
the grid finer, however, the mean of all grid points will get close to the true 
population mean. 

Systematic Sampling 
Systematic sampling involves choosing a random starting point, and then 

sampling in a systematic way, for example, along a line every 2 feet, or on a 
square or triangular grid.  Figure 2.5 illustrates systematic sampling on a tri-
angular grid.  In this figure, the coordinates of the sampling point in the 
lower left-hand corner were generated by random numbers; once this coordi-
nate was determined, the other sampling coordinates were completely  
specified. 

Example of Systematic Sample on a Triangular Grid

 
Figure 2.5 Illustration of systematic sampling with a triangular grid 

Systematic sampling is useful when you are trying to uncover “hot spots” 
of highly contaminated areas.  Gilbert (1987, Chapter 10) discusses how to 
determine grid size when using square, rectangular, or triangular grids to 
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search for hot spots.  Elipgrid-PC is software for determining grid spacing to 
detect hotspots with a specified probability.  It was originally developed at 
Oak Ridge National Laboratory and is available at the following URL:  
http://etd.pnl.gov:2080/DQO/software/elipgrid.html.  Visual Sample Plan 
(VSP; see http://terrassa.pnl.gov:2080/DQO/software/vsp) is an updated ver-
sion of Elipgrid-PC that also includes sample size calculations for simple 
random sampling. 

If you are trying to estimate a mean or a total, systematic sampling works 
as well as or better than simple random sampling if there are no trends or 
natural strata in the population you are sampling.  In general, however, it is 
difficult to obtain reliable estimates of variability with systematic sampling, 
and if some kind of natural trend or pattern is present, systematic sampling 
may yield biased estimates (Gilbert, 1987, Chapter 10). 

Stratified Random Sampling 
Another type of sampling design is called stratified random sampling.  In 

stratified random sampling, the population (site or process) is divided into 
two or more non-overlapping strata, sampling units are defined within each 
stratum, then separate simple random or systematic samples are chosen 
within each stratum.  Population members within a stratum are thought to be 
in some way more similar to one another than to population members in a 
different stratum.  If this is in fact the case, then the sample mean based on 
stratified random sampling is less variable than the sample mean based on 
simple random sampling.  Figure 2.6 illustrates the idea of stratified random 
sampling. 

Example of Stratified Random Sampling
with L=4 Strata and nh=4 Observations per Stratum

 
Figure 2.6 Illustration of stratified random sampling 
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It is important to note that the formulas for estimators such as the sample 
mean or proportion and the associated confidence intervals (see Chapter 5) 
need to be modified to be applicable to data from stratified random sam-
pling.  For stratified random sampling, the population mean of the hth stra-
tum is estimated by choosing nh sampling units and computing the sample 
mean: 
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where xhi denotes the value of the measurement on the ith sampling unit that 
was selected in stratum h.  The population mean over all strata is estimated 
by a weighted average of the sample means from each stratum: 
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L denotes the total number of strata, Nh denotes the number of sampling 
units in the hth stratum, and N denotes the total number of sampling units 
(Cochran, 1977, p. 91; Gilbert, 1987, p. 46).  If we let n denote the total sam-
ple size, then 
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The estimator of the population mean given in Equation (2.5) is not the same 
as the simple sample mean taken over all observations in all the strata unless 
nh/Nh = n/N for all of the L strata, that is, the sampling fraction is the same 
in all of the strata, which is called proportional allocation. 

The variance of the stratified sample mean is given by: 
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where 2
hσ  denotes the variance of the hth stratum (Cochran, 1977, p. 92; Gil-

bert, 1987, p. 47).  Cochran (1977, pp. 96−99) and Gilbert (1987, pp. 50−52) 
show how to minimize this variance if you know the variability within each 
stratum and the cost of taking a sample within each stratum. 

When Should You Use Stratified Random Sampling? 
The main advantage of the stratified random sampling design is its ability 

to provide a greater coverage of the population.  By choosing sampling units 
from all strata, you are avoiding the possibility that all of the sampled units 
may come from the same or adjacent geographical areas and certain parts of 
the population are not represented.  Stratified sampling is beneficial if the 
population you are sampling is fairly heterogeneous and you have a good 
idea of how to divide the population up into strata that are fairly  
homogeneous. 

Composite Sampling 
So far in our discussions of simple and stratified random sampling, we 

have inherently assumed that the physical samples are measured only once 
(e.g., a sample of groundwater is pumped from a monitoring well and the 
concentration of arsenic in that sample is measured).  Sometimes, you may 
want to take two samples very close together in space or time, sometimes 
you may want to split a physical sample into two or more subsamples and 
take a measure on each, or sometimes you may want the laboratory to per-
form two or more analyses on a single physical sample.  Each of these is an 
example of a replicate, so you must be very explicit about what you mean 
when you use this term.  Replicates are used in QA/QC studies to estimate 
within-sample variability.  If the within-sample variability is fairly large 
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(e.g., of the same order as between-sample variability), and the cost of analy-
sis is fairly small compared to the cost of sample collection, you may want to 
specify two or more replicates in the sampling design. 

Often, however, for environmental studies the cost of collecting a sample 
is relatively small compared to the cost of analyzing it.  For instance, in 
sampling from a site which has highly radioactive material, the entire crew 
needs to rehearse the sample collection procedure to minimize the exposure 
and the time spent at the site for sampling.  Once the sampling crew is in the 
field taking soil samples, however, the additional cost of collecting more soil 
samples is relatively small compared to the cost of analyzing the soil sam-
ples for radioactivity.  In such situations, cost-effective sampling designs can 
be achieved by composite sampling (Lovison et al., 1994; USEPA, 1995a). 

Composite samples are obtained by physically mixing the material ob-
tained from two or more sampling units.  Then measurements are obtained 
by analyzing subsamples (replicates) from each composite sample.  Figure 
2.7 illustrates composite sampling in which a composite sample is created by 
mixing together three grab samples (sampling units).  A total of four com-
posite samples are created from 12 grabs.  Two subsamples (replicates) are 
taken from each of the four composite samples and measured, yielding a to-
tal of eight measurements. 

 

Figure 2.7 Illustration of composite sampling in which three grabs are mixed to-
gether to form a composite sample, then two subsamples are taken 
from the composite sample 

Compositing simply represents a physical rather than mathematical 
mechanism of averaging the measurements from individual sampling units 
that make up the composite.  When the cost of collecting samples is small, a 
large number of samples may be collected to ensure a large coverage of the 
population. 
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Compositing is a cost-effective means of estimating population means.  
Estimating the uncertainty and obtaining confidence intervals are not always 
possible with measurements from composite samples since information re-
garding the extremes is lost when grab samples are composited.  Composit-
ing can also be used to efficiently identify “hot-spots” if the sampled mate-
rial does not deteriorate in storage.  In this case, the individual units are stra-
tegically composited in groups and the “hot” samples are identified based on 
measurements from the composite (Sengupta and Neerchal, 1994).  It is also 
possible to apply compositing with stratification or other types of designs as 
a screening mechanism. 

Composite Sampling vs. Simple Random Sampling 
Suppose we take n grab samples and divide them evenly into g groups of 

size h (so h = n/g), then composite the grabs within each group to produce 
g composite samples.  We then take r subsamples (replicates) from each 
composite sample for a total of gr measurements.  In Figure 2.7, we have  
n = 12, g = 4, h = 3, and r = 2. 

Let xij denote the measurement from the jth grab sample in the ith group 
(i = 1,2,…,g; j = 1,2,…,h).  For simple random sampling, our estimate of 
the population mean is the sample mean based on the n grab samples: 

 
1 1

1 g h

ij
i j

x x
gh = =

= ∑ ∑  (2.10) 

This is an unbiased estimator of the population mean µ, and the variance of 
this estimator is given by: 

 ( )
2

Var x
gh
σ

=  (2.11) 

where σ2 denotes the population variance of the grab samples: 

 ( )2
ijVar xσ =  (2.12) 

Let yik denote the kth subsample (replicate) taken from the ith composite 
sample (group), where i = 1,2,…,g and k = 1,2,…,r.  The average of all of 
the subsamples is: 
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= ∑ ∑  (2.13) 

The ith composite sample is formed by physically mixing the h grab samples 
within the ith group, so this is a mechanical way to produce a weighted aver-
age of the h grab samples within that group.  We can therefore write yik as: 

 
1

h

ik ijk ij
j

y w x
=

= ∑  (2.14) 

where 0 ≤ wij ≤ 1 and 

 
1

1
h

ijk
j

w
=

=∑  (2.15) 

The weights wijk represent the contribution of the jth grab sample to the 
ith composite.  These weights are assumed to be random with an expected 

value of 1/h and a variance of 2
wσ .  In the case of perfect mixing for the ith 

composite, each weight is exactly equal to 1/h, the variance of the weights 

is 0 ( 2
wσ = 0), and the values of all of the r subsamples are exactly the same 

as the average of the h grab samples comprising the ith composite group (as-
suming no measurement error).  It is important to note that subsample meas-
urements coming from the same composite (yi1, yi2,…,yir) are correlated 
because they are based on the same set of h grab samples.  However, meas-
urements from two different composites are uncorrelated because different 
composites are based on distinct sets of grab samples.  It can be shown that 
the average of all the subsamples given in Equation (2.13) is an unbiased es-
timator of the population mean with variance given by: 

 ( )
2

2 2
w

h
Var y

gh gr
σ

= + σ σ  (2.16) 

How do you know when it is a good idea to use composite sampling?  
One way to decide is by comparing the variance of the estimator of the popu-
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lation mean under simple random sampling with the variance of the estima-
tor under composite sampling.  Comparing Equations (2.11) and (2.16), we 
see that the variance of the estimator based on compositing can never be 
smaller than the variance of the estimator based on measuring each of the in-
dividual grab samples. 

Let us consider the case now where you have n grab samples but your 
budget only allows you to measure r of the n grab samples, where r < n.  Is 
it better to measure r of the n grab samples and compute the mean based on 
these observations, or is it better to combine all n grab samples into one 
composite, take r subsamples, and compute the mean based on these obser-
vations?  In the first case, the variance of the sample mean is given by: 

 ( )
2

Var x
r
σ

=  (2.17) 

In the second case, we have g = 1 and h = n, so based on Equation (2.16) the 
variance of the mean of all of the subsamples is given by: 

 ( )
2

2 2
w

n
Var y

n r
σ

= + σ σ  (2.18) 

The ratio of these two variances is given by: 

 
( )
( )

2
w

Var y r
n

Var x n
= + σ  (2.19) 

Composite sampling will be better than measuring r of the n grab samples 

when this ratio is less than 1, which will happen if 2
wσ  is sufficiently small 

(i.e., the grabs are well mixed in the composite). 
Designing a sampling plan that may include compositing samples re-

quires you to determine the number of grab samples (n), the number of com-
posite groups (g) or the number of grab samples per group (h), and the num-

ber of subsamples per composite (r).  Thorough mixing reduces 2
wσ  and 

makes composite sampling more competitive with simple random sampling. 
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Using Composite Sampling to Detect “Hot Spots” 
As mentioned earlier, information regarding the extremes is lost when 

grab samples are composited.  If, however, the grabs can be stored without 
any physical deterioration and are available for measurement at a later time, 
then we can use compositing to efficiently determine which, if any, grab 
samples exceed a given threshold without necessarily having to measure 
each individual grab sample.  We shall give a simple example and refer the 
reader to Sengupta and Neerchal (1994) for more details. 

Suppose we have n = 7 grab samples, identified by 1,2,…7, and we want 
to identify any grab sample that exceeds some concentration level L, a level 
that is deemed to be of concern (e.g., a soil screening level as described in 
Chapter 1).  We can use the following procedure. 

1. Make one composite consisting of all seven grabs.  If this composite 
measurement does not exceed L/7, then declare all grabs to be 
“safe.”  If the measurement exceeds L/7, conclude that at least one of 
the grabs is contaminated and go to Step 2.  For this example, we 
will assume that if the composite measure is greater than L/7, it is 
also less than 2(L/7), so that we can conclude that at most one of the 
grabs is “contaminated.” 

2. Form 4 composites as follows: 

Composite Constituent Grabs 
A 1, 3, 5, 7 
B 2, 3, 6, 7 
C 4, 5, 6, 7 

Measure composites A, B, and C and compare each measurement to 
L/4. 

3. Note that each of A, B, and C could either be above L/4 (denoted by 
a +) or below L/4 (denoted by a -).  The table below lists the eight 
possible outcomes and which grab this outcome indicates as being 
contaminated. 

 
A 

 
B 

 
C 

Contaminated 
Grab 

+ - - 1 
- + - 2 
+ + - 3 
- - + 4 
+ - + 5 
- + + 6 
+ + + 7 
- - - None 
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As an example, suppose that the grab measurements are 1, 3, 7, 29, 4, 9 
and 2 ppm.  For this method, we do not measure each grab sample but in-
stead make one composite of all the seven grabs.  Assuming perfect mixing 
(σw = 0), the composite measurement is simply the average of the grab meas-
urements, which in this case is 7.86 ppm.  Now suppose that a sample is 
considered “hot” if it exceeds L = 28 ppm, so we will compare the concen-
tration of the composite sample to L/7 = 28/7 = 4 ppm.  Since the composite 
measurement is between 4 ppm and 8 ppm, we conclude that there is at most 
one “hot” grab.  Thus we form three more composite as in Step 2.  The re-
sulting measurements are shown in Table 2.3. 

Composite Constituent Grabs Measurement (ppm) 
A 1,3,5,7               3.5 
B 2,3,6,7               5.25 
C 4,5,6,7             11 

Table 2.3  Example of using compositing to determine which grab samples are 
“hot” 

Comparing these measurements to 7 ppm, we look up (-,-,+) in the table 
shown in Step 3 above and conclude that grab 4 is possibly “hot.”  One more 
measurement on grab 4 will reveal that it is in fact contaminated.  Note that 
we made a total of five measurements instead of seven.  For the procedure il-
lustrated here we assume perfect mixing and no measurement errors.  Sen-
gupta and Neerchal (1994) show that for a number of situations this proce-
dure leads to savings over testing every grab sample. 

Ranked Set Sampling  
Ranked Set Sampling (RSS) was first introduced by McIntyre (1952) and 

is described in Patil et al. (1994b), Johnson et al. (1996), and USEPA 
(1995b).  In RSS, a large number of sampling units are selected from the 
population and only a subset of those are actually measured.  Ranking based 
on an auxiliary variable is used to determine which of the selected sampling 
units are measured, hence its name.  RSS is worth considering if 

• The cost of measurements (lab analyses) is far greater than the cost 
of collecting the samples. 

• An auxiliary characteristic is available that is highly correlated with 
the main characteristic of interest and is also inexpensive to measure. 

We will first describe the procedure to obtain a ranked set sample and then 
discuss its advantages and disadvantages. 
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Steps to Create a Ranked Set Sample 
In this section we will illustrate how to create a ranked set sample of size 

m = 3 objects, and then explain how to extend this to general values of m. 

1. First collect three simple random samples, each of size 3.  Let Sij 
denote the jth sampling unit within the ith SRS (i = 1,2,3; j = 
1,2,3). 

SRS Sampling Units 
1 S11 S12 S13 
2 S21 S22 S23 
3 S31 S32 S33 

2. Next, order the sampling units within each SRS in increasing order 
according to the values for the auxiliary variable.  Let Si(j) denote 
the jth ordered (ranked) sampling unit within the ith SRS (i = 1,2,3; 
j = 1,2,3). 

SRS Sampling Units 
1 S1(1) S1(2) S1(3) 
2 S2(1) S2(2) S2(3) 
3 S3(1) S3(2) S3(3) 

3. Create the ranked set sample by selecting the jth ranked sampling 
unit for the jth SRS (j = 1,2,3).  That is, the ranked set sample is 
S1(1), S2(2), and S3(3) (the diagonal in the table from the upper left to 
the lower right).  These sampling units are shown in boldface in the 
table above.  The actual variable of interest is measured only on 
these units, and we will denote these measurements by x1(1), x2(2), 
and x3(3). 

In general, a RSS of size m requires taking m simple random samples each of 
size m (a total of m2 sampling units). 

Ranking a large number of sampling units is difficult and prone to error, 
especially if the ranking has to be done visually.  It is therefore recom-
mended that the size of each SRS that needs to ranked should be no larger 
than three to five sampling units.  You can increase the sample size of your 
ranked set sample by replicating the process r times.  For example, if you 
want a total of n = 15 sampling units in your ranked set sample, simply cre-
ate r = 5 ranked set samples, each of size m = 3.  This will require a total of 
5 × 32 = 45 sampling units, as opposed to 152 = 225 sampling units. 
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The Auxiliary Variable 
As we discussed earlier in the context of composite sampling, often the 

laboratory analyses are much more expensive than the cost of collecting 
samples (per unit).  The auxiliary characteristic used for ranking, on the 
other hand, should be inexpensive to measure.  Often, the ranking can be 
done visually.  For example, if we are interested in estimating the average 
biomass volume in a forest, a ranking of small, medium, and large can be 
done visually, even though measuring the biomass volume will involve time-
intensive analyses.  In a contaminated site, visible soil characteristics may 
provide a means of ranking the units while a soil sample will have to sent to 
the lab to actually obtain measurements. 

Ranked Set Sampling vs. Simple Random Sampling:  Estimating the Mean 
The sample mean based on RSS is an unbiased estimator of the popula-

tion mean µ.  If we create r ranked set samples, each of size m, to produce a 
ranked set sample of size n = rm, then the variance of the sample mean 
based on RSS is 

 ( ) ( )( )
2 2

2
1

11
m

RSS i
i

Var x
n m =

 σ
= − µ − µ 

σ  
∑  (2.20) 

where µ(i) denotes the expected value of the ith order statistic from a ran-
dom sample of size m (Patil et al., 1994b).  Comparing Equation (2.20) with 
Equation (2.3), we see that the sample mean based on RSS has a smaller 
variance than the sample mean based on a SRS of the same size.  Thus, 
fewer samples are needed to achieve the same precision, leading to a savings 
in sampling costs.  It is worth emphasizing, however, that to obtain unbiased 
estimates of variances you need two or more cycles (see Stokes, 1980 and 
Bose and Neerchal, 1998).  Mode et al. (1999) discuss when ranked set sam-
pling is cost effective based on considering the cost of measuring the auxil-
iary variable, the cost of ranking, and the cost of measuring the variable of 
interest. 

Equation (2.20) assumes there is perfect correlation between the auxiliary 
variable and the variable of interest, and that there are no errors in ranking 
based on the auxiliary variable.  Nevertheless, the variance of the sample 
mean based on RSS is always less than or equal to the variance of the sample 
mean based on SRS.  If there is no correlation between the auxiliary variable 
and the variable of interest, then RSS will simply produce the same results as 
SRS. 
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Ranked Set Samples Are More Regularly Spaced Than Simple Random 
Samples 

We conclude our discussion of RSS by illustrating a very important prop-
erty of the RSS design with a simple example.  Suppose we want to estimate 
the average weight of a herd of elephants.  Furthermore, assume this simple 
herd of elephants has one calf for every mother elephant and has no father 
elephants at all.  We will consider two options: 

• Simple Random Sampling.  Pick two elephants at random, weigh 
them, and use their average weight as an estimate of the average 
weight for the entire herd.  Note that this procedure gives an unbi-
ased estimate. 

• Ranked Set Sampling.  Pick two elephants randomly in the morn-
ing, pick the smaller of the two, and weigh it.  Pick two elephants 
randomly in the afternoon, pick the larger of the two, and weigh it.  
Use the average weight of the two elephants chosen in this way as an 
estimate of the average weight for the entire herd.  It can be shown 
that this estimate is also an unbiased estimate of the average weight 
of the herd. 

Table 2.4 shows the results of SRS with n = 2 elephants, where c denotes a 
calf and M denotes a mother.  For RSS, Table 2.5 shows the possible results 
for the morning sample (smaller of the two is chosen), Table 2.6 shows the 
possible results for the afternoon sample (larger of the two is chosen), and 
Table 2.7 shows the final results. 

  2nd Elephant 
  c M 
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Table 2.4  Possible results of SRS from the elephant herd with sample size n = 2 
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Table 2.5  Possible results of the morning SRS in which two elephants are se-
lected and then the smaller elephant is weighed 
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Table 2.6  Possible results of the afternoon SRS in which two elephants are se-
lected and then the larger elephant is weighed 
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Table 2.7  Possible results of RSS for the elephant herd with final sample size  
n = 2 

For SRS, the probability of getting two mothers in the sample (resulting 
in an overestimate of the mean) or two calves in the sample (resulting in an 
underestimate of the mean) is 2/4 = 50%.  For RSS, the probability of getting 
two mothers in the sample or two calves in the sample is only 6/16 = 37.5%.  
Clearly RSS is superior to SRS in the sense that RSS gives a “representa-
tive” sample more often.  It can be shown theoretically that RSS gives the 
more representative samples more often in general for any herd of elephants 
regardless of the proportion of calves in the herd (Lacayo and Neerchal, 
1996). 

The above example captures the salient feature of RSS of producing less 
variable and more “representative” samples.  This is the reason why the 
sample mean from a RSS has a smaller variance than the sample mean from 
an SRS of the same size.  See Patil et al. (1994b) and the references therein 
for a number of theoretical results comparing RSS to SRS for various stan-
dard estimation problems. 

CASE STUDY 
We end this chapter with a case study that illustrates using the DQO 

process to systematically develop a sampling plan to achieve a specific ob-
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jective.  For our case study, we are interested in determining the percentage 
of employees of a facility who have knowledge of specific critical facts re-
lated to emergency preparedness.  Although the case study is based on a real 
project in which one of the authors was involved, all references to the actual 
facility and people have been removed.  The case study is presented in terms 
of the seven steps of the DQO process.  Neptune et al. (1990) present a case 
study of using the DQO process to design a remedial investigation/feasibility 
study (RI/FS) at a Superfund site. 

1. State the Problem 
A large facility deals with hazardous material on an everyday basis.  The 

facility is required by a Federal law to impart Emergency Preparedness 
Training (EPT) to its employees every year.  The facility has about 5,000 
employees housed in approximately 20 buildings.  In the past, the facility has 
provided training by requiring all employees to attend a training session.  
Assuming a conservative estimate of about 45 minutes of employee time per 
training session (including travel time and not counting the time of the train-
ing staff), the total time spent on EPT adds up to approximately 5,000 × 0.75 
= 3,750 employee hours.  At an average billing rate of $80 per hour per em-
ployee, the cost of EPT coming out of overhead and research programs is 
about 3,750 × $80 = $300,000 per year.  In the past, there has been no fol-
low-up to verify that the employees have retained the material presented at 
the training session. 

To save money and still comply with the law, the facility wants to change 
the training procedure as follows.  Instead of each employee attending the 
formal training session, each employee will receive a list of emergency pre-
paredness (EP) facts the general staff needs to know to be prepared for an 
emergency.  A description of these EP facts is given below, listed in their or-
der of importance (highest to lowest). 

1. Emergency telephone number. 
2. Location of the nearest fire alarm pull box. 
3. Location of the Building Staging Area. 
4. Building alarms and the corresponding required actions by staff 

members. 

The facility wants to verify that the EP facts are retained by the employ-
ees during the year so that they can recall them should an emergency arise.  
The facility will ensure that a high percentage of employees in each facility 
know all of the above facts by actually testing a certain number of occupants 
of each building.  Complete EPT will be required for all occupants of a 
building for which a prescribed proportion of the randomly selected employ-
ees fail to demonstrate the knowledge of these facts. 
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2. Identify the Decision 
It is important that staff members who spend off-hours in the facility on a 

regular basis know each EP fact listed above without exception.  However, it 
may be sufficient if only a high percentage of the remaining staff members 
know these facts.  For example, it may be sufficient if 70% or more of the 
occupants of each building are familiar with the EP facts.  We need to verify 
that a certain large proportion of the occupants of each building are familiar 
with the EP facts 1 through 4.  For each building, if we decide that the pro-
portion of occupants who know the EP facts is too small, then we will send 
everyone in that building to formal EP training. 

3. Identify Inputs to the Decision 
A complete listing of the staff and the respective locations within the fa-

cility is available.  Training manuals containing the EP facts can be provided 
to each staff member and they can be interviewed either in person or by tele-
phone to verify that they have knowledge of all four of the EP facts. 

4. Define the Study Boundaries 
Since the retention of EP information may not last very long, it is impor-

tant to realize that this investigation needs to be repeated every year.  A face-
to-face interview or some honor code may need to be imposed to ensure that 
each staff member is in fact providing the verification based on memory 
rather than using notes. 

5. Develop a Decision Rule 
The number of employees who know the EP facts will be verified for 

each building.  For each building, if 70% or more of the staff members who 
work in that building know the EP facts, we will declare the whole building 
is prepared for an emergency.  If less than 70% of the staff members in a 
building know the EP facts, then everyone in the building will be asked to go 
through the formal EP training session. 

6. Specify Acceptable Limits for the Decision Errors 
Interviewing every single staff member to determine the true percentage 

who know EP facts 1 to 4 would be almost as time consuming as simply 
sending all of the employees to the EPT itself.  Therefore, cost considera-
tions dictate taking a representative sample of staff in each building and in-
terviewing each person in the sample to estimate the percentage of staff in 
each building who know the EP facts.  For each building, a random sample 
of its occupants will be chosen (the recommended sample sizes are given in 
the tables below).  Each selected staff member will be interviewed to deter-
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mine whether he/she knows facts 1 to 4 of the EP checklist.  If the number of 
DUDs (Doesn’t Understand Directions) in the sample does not exceed t (t 
is given in tables below), then the building can be declared to be emergency 
prepared.  Otherwise, the building is considered unprepared for an emer-
gency and all staff in the building will be required to go through EPT. 

We assume that the verification is error-free for all the staff members in-
cluded in the sample.  The decision, however, is based on information from 
only a subset of the occupants of the building.  Therefore, we must recognize 
that there are risks involved with our decision.  Table 2.8 summarizes the 
two kinds of decision errors that can be made and the consequences of each. 

 True Percentage of DUDs 
Decision ≤ 30% > 30% 

 
Train Occupants 

 
Decision Error I; 
Waste of Money 

 
Correct Decision 

Building is 
Emergency  

Prepared 

 
Correct Decision 

 
Decision Error II; 
Compliance Issue 

Table 2.8  Decision errors and their consequences for the EPT case study 

Risks involved with the two kinds error shown in the table above are 
competing with each other.  That is, when the probability of making Deci-
sion Error I goes down, the probability of making Decision Error II goes up, 
and vice-versa.  The approach taken in developing a statistical decision rule 
is to hold the probability of making the most critical error to a predetermined 
low level and to do the best we can with lowering the probability of making 
the other error.  In this example, it is clear that controlling the probability of 
making the error leading to compliance issues (Decision Error II) should be a 
higher priority than controlling the probability of making the error leading to 
a waste of money (Decision Error I). 

In a series of meetings with the managers involved with emergency pre-
paredness training and legal issues of the facility, the following levels of de-
cision errors were determined to be acceptable:  the probability of deciding 
that a building is emergency prepared should not exceed 1% when in fact 
30% or more of its occupants are DUDs; also, when no more than 10% of 
the occupants of a building are DUDs, the probability that the building will 
be declared emergency prepared is at least 90%.  So the required Decision 
Error II rate is no more than 1%, and the required Decision Error I rate is no 
more than 10%.  Note that the decision error rates must be specified relative 
to the true percentage of DUDs in a building.  Figure 2.8 illustrates these 
performance goals for the sampling design (see USEPA, 1994a). 
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Figure 2.8 Decision performance goal diagram for the emergency preparedness 

training study with the null hypothesis that the %DUDs is less than the 
action level of 30% 

7. Optimize the Design 
A representative sample from each building will be taken using simple 

random sampling without replacement.  The probability calculation related 
to this method of sampling is based on the hypergeometric distribution (ex-
plained in detail in Chapter 4).  Table 2.9 lists the number of employees re-
siding in 3 of the 20 buildings, along with the required sample size for each 
building and the maximum number of DUDs that can be present in the sam-
ple without classifying the building as being unprepared for an emergency.  
The probabilities of making the two types of decision errors are also given in 
the table. 

 
Building 

# of  
Occupants 

Sample 
Size 

Maximum # 
DUDs (t) 

Pr(Error I) 
(in %) 

Pr(Error II) 
(in %) 

A 160 41 6 7.8        0.9 
D 247 46 7 6.7        1 
F 342 47 7 7.5        0.9 

Table 2.9  Sampling plans with probability of Decision Error I ≤ 10% and probability 
of Decision Error II ≤ 1%. 
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For example, Building A has 160 occupants.  A random sample of 41 oc-
cupants from the building must be interviewed and if no more than 6 of those 
interviewed do not know EP facts 1 to 4, then the building is declared emer-
gency prepared.  The probability of facing a compliance issue by failing to 
identify Building A as unprepared for building emergencies when in fact 
30% or more of its occupants are DUDs is 0.9% (probability of Error II).  On 
the other hand, the probability of wrongly identifying Building A as unpre-
pared for emergencies and wasting money on training when in fact no more 
than 10% of the occupants are DUDs is 7.8% (probability of Error I). 

Figure 2.9 displays the power curve for the sampling design for Building 
A drawn on top of the decision performance goal diagram shown in Figure 
2.8.  Here you can see that this particular sampling design satisfies the per-
formance goals. 
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Figure 2.9 Power curve for Building A with the null hypothesis that the %DUDs is 

less than the action level of 30%, using a sample size of n = 41 and 
maximum number of DUDs of t = 6 

To explore how the required sample size is affected by our specification 
of the Decision Error II rate, we create Table 2.10, which is similar to Table 
2.9 except that we allow the Decision Error II rate to be 5% instead of 1%.  
Comparing the required sample sizes in these two tables, you can see that 
about 10 to 15 more people per building have to be interviewed to reduce the 
Decision Error II rate from 5% to 1%. 
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Building 

# of  
Occupants 

Sample 
Size 

Maximum # 
DUDs (t) 

Pr(Error I) 
(in %) 

Pr(Error II) 
(in %) 

A 160 31 5         6 4 
D 247 32 5         8 4 
F 342 32 5         8 4 

Table 2.10 Sampling plans with probability of Decision Error I ≤ 10% and probability 
of Decision Error II ≤ 5%. 

In the discussion above and in the recommended sampling plans, we 
have set the highest acceptable percentage of DUDs in a building at 30%.  If 
this percentage is lowered, then a larger sample size is required to ensure the 
same decision error rates of 1% or 5% for Decision Error II and 10% for De-
cision Error I.  Table 2.11 gives the required sample sizes for the case when 
the passing percentage is “no more than 20% DUDS,” the Decision Error II 
rate is 1%, and the Decision Error I rate is 10%.  Table 2.12 shows the same 
thing, except that the Decision Error II rate is allowed to be 5% instead of 
1%.  The required sample size for each building in Table 2.11 is nearly two 
times the corresponding sample size given in Table 2.9. 

 
Building 

# of  
Occupants 

Sample 
Size 

Maximum # 
DUDs (t) 

Pr(Error I) 
(in %) 

Pr(Error II) 
(in %) 

A 160 87 11         7         1 
D 247 104 13       10         1 
F 342 119 15         8         0.9 

Table 2.11 Sampling plans with probability of Decision Error I ≤ 10% and probability 
of Decision Error II ≤ 1%, with maximum percentage of DUDs set to 
20% 

 
Building 

# of  
Occupants 

Sample 
Size 

Maximum # 
DUDs (t) 

Pr(Error I) 
(in %) 

Pr(Error II) 
(in %) 

A 160 68 9         8 5 
D 247 83 11         9 4 
F 342 84 11       10 5 

Table 2.12 Sampling plans with probability of Decision Error I ≤ 10% and probability 
of Decision Error II ≤ 5%, with maximum percentage of DUDs set to 
20% 

Figure 2.10 illustrates how the sampling rate (percentage of occupants se-
lected to be interviewed) increases as the maximum allowed percentage of 
DUDs decreases from 50% to 10% for Buildings D and F with 247 and 342 
occupants, respectively.  The figure shows a slow increase followed by a 
rapid increase.  We see that the curves start an uphill climb at around 30%.  
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This documents and, we believe, also justifies the choice of 30% as the high-
est acceptable level of DUDs. 
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Figure 2.10 Sampling rate vs. maximum allowed percentage of DUDs for Buildings 

D and F 

SUMMARY 
• The first and most important step of any environmental study is to 

define the objectives of the study and design the sampling program. 
• The scientific method recognizes the fact that our environment is 

constantly changing and that any of these changes may create an ob-
served effect which may or may not be related to some cause we 
have hypothesized. 

• The basic scientific method consists of forming a hypothesis, per-
forming an experiment using an experimental (exposed) group and a 
control group, analyzing the results of the experiment, and revising 
the hypothesis. 

• The Data Quality Objectives (DQO) process is a formalization of 
the scientific method that is a systematic way to create a legitimate 
and effective sampling and analysis plan. 

• The term population is defined operationally by the question we ask:  
it is the entire collection of measurements about which we want to 
make a statement. 



50 Environmental Statistics with S-PLUS 

 

• A sample is defined as some subset of a population.  The statistical 
definition of the word sample (a selection of individual population 
members) should not be confused with the more common meaning 
of a physical sample of soil (e.g., 10g of soil), water (e.g., 5ml of 
water), air (e.g., 20 cc of air), etc. 

• Probability sampling or random sampling involves using a random 
mechanism to select samples from the population.  All statistical 
methods used to quantify uncertainty assume some form of random 
sampling has been used to obtain a sample. 

• Decisions involving the environment can often be put into the hy-
pothesis testing framework.  You choose a null and alternative hy-
pothesis, then decide which one is probably true based on the infor-
mation you have.  You then make a decision based on your belief. 

• Common mistakes in environmental studies include lack of samples 
from proper control populations, using judgment sampling instead of 
random sampling, failing to randomize over potentially influential 
factors, and collecting too few samples to have a high degree of con-
fidence in the results. 

• The DQO process consists of seven steps:  state the problem, iden-
tify the decision, identify inputs to the decision, define the study 
boundaries, develop a decision rule, specify acceptable limits on de-
cision errors, and optimize the design. 

• The DQO process should include developing a quality assurance 
project plan (QAPP) to ensure the integrity of the data collected for 
the study. 

• Optimizing a sampling plan requires knowledge of the various 
sources of variability.  It is usually a good idea to perform a pilot 
study to estimate the magnitudes of the sources of variability, and to 
“fine-tune” the QA/QC procedures. 

• This chapter describes four methods of random sampling:  simple 
random sampling (SRS), stratified random sampling, composite 
sampling, and ranked set sampling (RSS).  Other methods of random 
sampling include two-stage and multi-stage random sampling, dou-
ble random sampling, sequential random sampling, and adaptive 
random sampling. 
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EXERCISES 
2.1. Concrete pipes that have been used to transport crude oil from the 

field to a refinery are passing in the proximity of a town.  There 
are complaints that the pipes have leaked.  A judgment sampling 
plan (sample the joints in the pipeline) is being recommended as a 
preliminary step in investigating the complaints.  How would you 
proceed?  Discuss the pros and cons of judgment sampling in this 
context. 

2.2. Soil excavated from a contaminated site has been placed in 200-
gallon barrels and stored at a temporary storage facility.  Barrels 
containing very high contamination are to be disposed of at a 
permanent disposal site (burial ground), and the rest of the barrels 
will be allowed to stay in the temporary facility.  The analysis 
costs are very high and therefore disposal by batches of five bar-
rels is being contemplated.  Explain how you would use composit-
ing in this project to save analysis costs. 

2.3. Suppose for the elephant example discussed in the section on 
ranked set sampling that the proportion of calves is 25% and the 
proportion of mothers is 75%.  Compute the probability that the 
ranked set sample consists of only calves.  Compute the probabil-
ity of obtaining such a sample under SRS and show that RSS 
gives rise to such extreme samples less often. 

2.4. In the elephant example we obtained a ranked set sample of size n 
= 2.  Extend the example to an RSS of size n = 3 and show that 
RSS is superior to SRS in that it gives rise to extreme samples less 
often. 

2.5. For the case study discussed at the end of this chapter, the number 
of DUDs in a sample selected from a specific building is a hyper-
geometric random variable.  Use the S-PLUS menu or the S-PLUS 
function phyper to verify the decision error rates shown in Table 
2.9.  (See Chapter 4 for an explanation of the hypergeometric  
distribution.) 
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3 LOOKING AT DATA 

What is Going On? 

Once you have a collection of observations from your environmental 
study, you should thoroughly examine the data in as many ways as possible 
and relevant.  When the first widely available commercial statistical software 
packages came out in the 1960s, the emphasis was on statistical summaries 
of data, such as means, standard deviations, and measures of skew and kur-
tosis.  It is still true that “a picture is worth a thousand words,” and no 
amount of summary or descriptive statistics can replace a good graph to ex-
plain your data.  John Tukey coined the acronym EDA, which stands for Ex-
ploratory Data Analysis.  Helsel and Hirsch (1992, Chapters 1, 2, and 16) 
and USEPA (1996) give a good overview of statistical and graphical meth-
ods for exploring environmental data.  Cleveland (1993, 1994) and Cham-
bers et al. (1983) are excellent general references for methods of graphing 
data.  This chapter discusses the use of summary statistics and graphs to de-
scribe and look at environmental data. 

SUMMARY STATISTICS 
Summary statistics (also called descriptive statistics) are numbers that 

you can use to summarize the information contained in a collection of obser-
vations.  Summary statistics are also called sample statistics because they are 
statistics computed from a sample; they do not describe the whole popula-
tion. 

One way to classify summary or descriptive statistics is by what they 
measure:  location (central tendency), spread (variability), skew (long-tail in 
one direction), kurtosis (peakedness), etc.  Another way to classify summary 
statistics is by how they behave when unusually extreme observations are 
present:  sensitive vs. robust.  Table 3.1 summarizes several kinds of descrip-
tive statistics based on these two classification schemes.  In this section we 
will give an example of computing summary statistics, and then discuss their 
formulas and what they measure. 

Summary Statistics for TcCB Concentrations 
The guidance document USEPA (1994b, pp. 6.22−6.25) contains meas-

ures of 1,2,3,4-Tetrachlorobenzene (TcCB) concentrations (in parts per bil-
lion, usually abbreviated ppb) from soil samples at a “Reference” site and a 
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“Cleanup” area.  The Cleanup area was previously contaminated and we are 
interested in determining whether the cleanup process has brought the level 

 
Statistic 

 
What It Measures / How It Is Computed 

Robust to  
Extreme 
Values? 

Mean Center of distribution 
Sum of observations divided by sample size 
Where the histogram balances 

No 

Trimmed Mean Center of distribution 
Trim off extreme observations and compute  
  mean 
Where the trimmed histogram balances 

Somewhat, 
depends on 
amount of 

trim 
Median Center of the distribution 

Middle value or mean of middle values 
Half of observations are less and half are  
  greater 

Very 

Geometric Mean Center of distribution 
Exponentiated mean of log-transformed  
  observations 
Estimates true median for a lognormal  
  distribution 

Yes 

Variance Spread of distribution 
Average of squared distances from the mean 

No 

Standard Deviation Spread of distribution 
Square root of variance 
In same units as original observations 

No 

Range Spread of distribution 
Maximum minus minimum 

No 

Interquartile Range Spread of distribution 
75th percentile minus 25th percentile 
Range of middle 50% of data 

Yes 

Median Absolute  
Deviation 

Spread of distribution 
Median of distances from the median 

Yes 

Geometric Standard  
Deviation 

Spread of distribution 
Exponentiated standard deviation of  
  log-transformed observations 

No 

Coefficient of  
Variation 

Spread of distribution/Center of distribution 
Standard deviation divided by mean 
Sometimes multiplied by 100 and expressed 
  as a percentage 

No 

Skew How the distribution leans (left, right, or  
  centered) 
Average of cubed distances from the mean 

No 

Kurtosis Peakedness of the distribution 
Average of quartic distances from the mean,  
  then subtract 3 

No 

Table 3.1  A description of commonly used summary statistics 
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of TcCB back down to what you would find in soil typical of that particular 
geographic region.  The data are shown in Table 3.2. 

Area Observed TcCB (ppb) 
Reference 0.22   0.23   0.26   0.27   0.28   0.28   0.29  

0.33   0.34   0.35   0.38   0.39   0.39   0.42  
0.42   0.43   0.45   0.46   0.48   0.50   0.50  
0.51   0.52   0.54   0.56   0.56   0.57   0.57  
0.60   0.62   0.63   0.67   0.69   0.72   0.74  
0.76   0.79   0.81   0.82   0.84   0.89   1.11  
1.13   1.14   1.14   1.20   1.33 

Cleanup   ND   0.09   0.09   0.12   0.12   0.14   0.16  
0.17   0.17   0.17   0.18   0.19   0.20   0.20  
0.21   0.21   0.22   0.22   0.22   0.23   0.24  
0.25   0.25   0.25   0.25   0.26   0.28   0.28  
0.29   0.31   0.33   0.33   0.33   0.34   0.37  
0.38   0.39   0.40   0.43   0.43   0.47   0.48  
0.48   0.49   0.51   0.51   0.54   0.60   0.61  
0.62   0.75   0.82   0.85   0.92   0.94   1.05  
1.10   1.10   1.19   1.22   1.33   1.39   1.39  
1.52   1.53   1.73   2.35   2.46   2.59   2.61  
3.06   3.29   5.56   6.61  18.40  51.97 168.64 

Table 3.2  TcCB concentrations from USEPA (1994b, pp. 6.22−6.25) 

There are 47 observations from the Reference site and 77 in the Cleanup 
area.  Note that in Table 3.2, there is one observation in the Cleanup area 
coded as “ND,” which stands for nondetect.  This means that the concentra-
tion of TcCB for this soil sample (if any was present at all) was so small that 
the procedure used to quantify TcCB concentrations could not reliably meas-
ure the true concentration.  (We will talk more about why observations are 
sometimes coded as nondetects in Chapters 9 and 10.)  For the purposes of 
this example, we will assume the nondetect observation is less than the 
smallest observed value, which is 0.09 ppb, but we will set it to the assumed 
detection limit of 0.09.  (In Chapter 10, we talk extensively about statistical 
methods for handling data sets containing nondetects.) 

Figure 3.1 displays two histograms (see the next section, Graphs for a 
Single Variable), one for the Reference area TcCB concentrations, and one 
for the Cleanup area TcCB concentrations.  Note that these histograms do not 
share the same x-axis.  Also note that in the histogram for the Cleanup area 
data, the bars for the three largest observations (18.40, 51.97, and 168.64) do 
not show up because of the scale of the y-axis.  Figure 3.2 displays the same 
two histograms, but on the (natural) logarithmic scale so that the two histo-
grams can share the same x-axis. 
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Figure 3.1 Histograms of TcCB concentrations in Reference and Cleanup areas 
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Figure 3.2 Histograms of log-transformed TcCB concentrations in Reference and 

Cleanup areas 
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Here are the summary statistics for the original TcCB data. 
                              Cleanup Reference  
                 Sample Size:  77        47      
                   # Missing:   0         0      
                        Mean:   3.915     0.5985 
                      Median:   0.43      0.54   
            10% Trimmed Mean:   0.6846    0.5728 
              Geometric Mean:   0.5784    0.5382 
                        Skew:   7.566     0.8729 
                    Kurtosis:  61.6       2.993  
                         Min:   0.09      0.22   
                         Max: 168.6       1.33   
                       Range: 168.5       1.11   
                1st Quartile:   0.23      0.39   
                3rd Quartile:   1.1       0.75   
          Standard Deviation:  20.02      0.2836 
Geometric Standard Deviation:   3.898     1.597  
         Interquartile Range:   0.87      0.36   
   Median Absolute Deviation:   0.3558    0.2669 
    Coefficient of Variation:   5.112     0.4739 
Here are the summary statistics for the log-transformed TcCB data. 
                           Cleanup Reference  
              Sample Size: 77         47      
                # Missing:  0          0      
                     Mean: -0.5474    -0.6196 
                   Median: -0.844     -0.6162 
         10% Trimmed Mean: -0.711     -0.6207 
                     Skew:  1.663      0.0307 
                 Kurtosis:  6.889      2.262  
                      Min: -2.408     -1.514  
                      Max:  5.128      0.2852 
                    Range:  7.536      1.799  
             1st Quartile: -1.47      -0.9416 
             3rd Quartile:  0.09531   -0.2878 
       Standard Deviation:  1.36       0.468  
      Interquartile Range:  1.565      0.6538 
Median Absolute Deviation:  1.063      0.4825 
 Coefficient of Variation: -2.485     -0.7553 

Here are a few things to briefly note about the data in Table 3.2 and the 
summary statistics above: 

• Most of the observations in the Cleanup area are similar to or smaller 
than the observations in the Reference area. 

• The Cleanup area data contain several observations that are one, two, 
and even three orders of magnitude larger than the rest of the obser-
vations (this is why we plotted the histograms in Figure 3.2 on a 
logarithmic scale). 
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• The mean or average TcCB concentration in the Cleanup area is 
much larger than in the Reference area (about 4 ppb vs. 0.6 ppb). 

• The median TcCB concentration is smaller for the Cleanup area than 
the Reference area (0.4 ppb vs. 0.5 ppb). 

• The standard deviation and coefficient of variation are both two or-
ders of magnitude larger for the Cleanup area. 

• The skew of the Cleanup area is an order of magnitude larger than 
the skew of the Reference area. 

All of these characteristics of the Cleanup area data indicate that probably 
the TcCB contamination has been cleaned up in most of the area, but there 
are a few places within the Cleanup area with residual contamination.  These 
particular places might be called “hot spots.” 

In ENVIRONMENTALSTATS for S-PLUS, the data in Table 3.2 are stored in 
the data frame epa.94b.tccb.df (see the help file Datasets:  USEPA 
(1994b)).  Here are the steps for using ENVIRONMENTALSTATS for S-PLUS to 
produce summary statistics for the TcCB data by area. 

Menu 
To produce summary statistics for the original TcCB data using the 

ENVIRONMENTALSTATS pull-down menu, follow these steps. 

1. Open the Object Explorer, and click on the Find S-PLUS Objects 
button (the binoculars icon). 

2. In the Pattern box, type epa.94b.tccb.df, then click OK. 
3. Highlight the shortcut epa.94b.tccb.df in the Object column of the 

Object Explorer. 
4. On the S-PLUS menu bar, make the following menu choices:   

EnvironmentalStats>EDA>Summary Statistics.  This will bring 
up the Full Summary Statistics dialog box. 

5. In the Data Set box, make sure epa.94b.tccb.df is selected. 
6. In the Variable(s) box, choose TcCB. 
7. In the Grouping Variables box, select Area. 
8. Click OK or Apply. 

To produce summary statistics for the log-transformed TcCB data using the 
ENVIRONMENTALSTATS pull-down menu, it will simplify things if we first 
make a new data frame called new.epa.94b.tccb.df to contain the 
original data and the log-transformed TcCB observations.  To create the data 
frame new.epa.94b.tccb.df, follow these steps. 

1. Highlight the shortcut epa.94b.tccb.df in the Object column of the 
Object Explorer. 

2. On the S-PLUS menu bar, make the following menu choices:   
Data>Transform.  This will bring up the Transform dialog box. 
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3. In the Target Column box, type log.TcCB. 
4. In the Variable box, choose TcCB. 
5. In the Function box choose log. 
6. Click on the Add button, then click OK.  At this point, you will get 

a warning message telling you that you have created a new copy of 
the data frame epa.94b.tccb.df that masks the original copy.  
Close the message window.  Also, the modified data frame pops up 
in a data window.  Close the data window. 

7. In the left-hand column of the Object Explorer, click on the Data 
folder.  In the right-hand column of the Object Explorer, right-click 
on epa.94b.tccb.df and choose Properties.  In the Name box re-
name this data frame to new.epa.94b.tccb.df and click OK. 

To produce summary statistics for the log-transformed TcCB data using the 
ENVIRONMENTALSTATS pull-down menu, follow these steps. 

1. In the Object Explorer, highlight the shortcut new.epa.94b.tccb.df 
in the Object column (right-hand column). 

2. On the S-PLUS menu bar, make the following menu choices:   
EnvironmentalStats>EDA>Summary Statistics.  This will bring 
up the Full Summary Statistics dialog box. 

3. In the Data Set box, make sure new.epa.94b.tccb.df is selected. 
4. In the Variable(s) box, choose log.TcCB. 
5. In the Grouping Variables box, select Area. 
6. Click on the Statistics tab and deselect (uncheck) Geometric Mean 

and Geometric Standard Deviation.  Click OK or Apply. 

Command 
To produce summary statistics for the original TcCB data using the 

S-PLUS Command or Script Window, type these commands. 

attach(epa.94b.tccb.df) 
full.summary(split(TcCB, Area)) 

To produce summary statistics for the log-transformed TcCB data, type this 
command. 

full.summary(split(log(TcCB), Area)) 
detach() 

Formulas for Summary Statistics 
The formulas for various kinds of summary statistics are shown below.  

In all of these formulas and throughout this book, we will denote the n ob-
servations by: 
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 1 2, , , nx x x…  

and denote the observations ordered from smallest to largest by: 

 ( ) ( ) ( )1 2, , , nx x x…  

That is, ( )1x  denotes the smallest value and ( )nx  denotes the largest value. 

Measures of Location (Central Tendency) 
Equations (3.1) to (3.4) below show the formulas for four measures of 

location or central tendency.  Often in environmental statistics, we are very 
interested in the central tendency of a group of measures, either because we 
want to compare the central tendency to some standard, or because we would 
like to compare the central tendency of data from one area with the central 
tendency of data from another area. 

Mean 
The mean (sometimes called average) is simply the sum of the observa-

tions divided by the sample size. 

 
1

1 n

i
i

x x
n =

= ∑  (3.1) 

It indicates approximately where the histogram balances (it is not necessarily 
exactly where the histogram balances because of the subjectivity of choosing 
the histogram classes).  For example, looking at Figure 3.1 and the summary 
statistics above, we see that the histogram for the Reference area TcCB data 
balances at about 0.6 ppb, whereas the histogram for the Cleanup area bal-
ances at about 4 ppb.  These differences in means between the two areas also 
demonstrate that the mean is sensitive to extreme values. 

Trimmed Mean 
The trimmed mean involves first trimming off a certain percentage of the 

smallest and largest observations, and then taking the mean of what is left 
(Helsel and Hirsch, 1992, p. 7; Hoaglin et al., 1983, pp. 306−311).  In the 
formula below, α is some number between 0 and 0.5 that denotes the trim-
ming fraction, and [y] denotes the largest integer less than or equal to y. 
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Because we purposely trim off extreme observations, the trimmed mean 
is not as sensitive to extreme values as the mean.  For the TcCB data, you 
can see that the mean for the Cleanup area is about 4 ppb, but the 10% 
trimmed mean is only about 0.7 ppb (very close to the mean for the Refer-
ence area). 

Median 
The median is simply the 50% trimmed mean (Helsel and Hirsch, 1992, 

pp. 5−6; Hoaglin et al., 1983, p. 308).  That is, if there is an odd number of 
observations, the median is the middle value, and if there is an even number 
of observations, the median is the mean of the two middle values. 
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 (3.3) 

Half of the observations lie below the median and half of them lie above the 
median. 

The median is very robust to extreme values.  For example, although the 
mean TcCB concentration in the Cleanup area is much larger than in the 
Reference area (about 4 ppb vs. 0.6 ppb), the median TcCB concentration is 
smaller for the Cleanup area than the Reference area (0.4 ppb vs. 0.5 ppb).  
You could take almost half of your data and keep increasing it and the me-
dian would stay the same. 

Geometric Mean 
The geometric mean is often used to describe positive-valued data.  It is 

the exponentiated mean of the log-transformed observations (Helsel and 
Hirsch, 1992, p. 6).  That is, you take the logarithms of the original observa-
tions, compute the mean of these transformed observations, then exponenti-
ate this mean: 
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The geometric mean estimates the true median for a lognormal distribution 
(see Chapter 4 for an explanation of the lognormal distribution).  For exam-
ple, note that for the Reference area TcCB data, both the median and geomet-
ric mean are 0.54 ppb.  The geometric mean is always less than or equal to 
the sample mean, with equality only if all the observations are the same 
value (Zar, 1999, p. 28). 

Just as the median is robust to extreme observations, so is the geometric 
mean.  The geometric mean for the Cleanup area data is about the same as 
for the Reference area (0.6 vs. 0.5 ppb). 

Measures of Spread (Variability) 
Equations (3.5) to (3.16) below show the formulas for seven measures of 

spread or variability.  The spread of a distribution lets us know how well we 
can characterize it.  If the spread is relatively small, then the sample mean or 
median is a fairly “representative” observation, whereas if the spread is 
large, then several observations could be much smaller or much larger than 
the sample mean or median.  When we are comparing chemical concentra-
tions from two or more areas, it is also useful to see whether the variability 
in the data is about the same for all of the areas.  If it is not, this may indicate 
that something unusual is going on.  For example, looking at the log-
transformed TcCB data in Figure 3.2 and the associated summary statistics, 
we can see that the central tendency (mean, median, etc.) of the Reference 
and Cleanup area is about the same, but the spread is much larger in the 
Cleanup area. 

Range 
Probably the simplest measure of spread is the range of the data; the dis-

tance between the largest and smallest value. 

 ( ) ( )1nRange x x= −  (3.5) 

The range quickly gives you an idea about the differences in the orders of 
magnitude of the observations.  For the Reference area TcCB data, the range 
is about 1 ppb, whereas it is about 169 ppb for the Cleanup area.  Obviously, 
the range is very sensitive to extreme observations. 
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Interquartile Range 
The interquartile range (often abbreviated IQR) is a modified form of 

the range.  The 25th, 50th, and 75th percentiles of the data are also called the 
quartiles of the data, so the interquartile range is the distance between the 
75th percentile of the data and the 25th percentile (Chambers et al., 1983,  
p. 21; Helsel and Hirsch, 1992, p. 8; Hoaglin et al., 1983, pp. 38, 59). 

 0.75 0.25IQR x x= −  (3.6) 

In the above equation, xp denotes the p100th percentile of the data.  In Chap-
ter 5 we will talk about how to compute the percentiles for a set of observa-
tions.  For now all you need to know is that for the p100th percentile, about 
p100% of the observations are less than this number and about (1−p)100% 
of the observations are greater than this number. 

Unlike the range, the interquartile range is not affected by a few extreme 
observations; it measures only the range of the middle 50% of the data.  For 
the TcCB data the IQR is about 0.4 ppb for the Reference area and 0.9 ppb 
for the Cleanup area. 

Variance 
The variance is the mean or average of the squared distances between 

each observation and the mean. 
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The sample variance estimates the population variance (see Chapter 5).  The 
formula above is called the method of moments estimator (see Chapter 5), 
but the more commonly used formula for the sample variance is the unbiased 
estimator. 
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Equation (3.8) is the one used by default in ENVIRONMENTALSTATS for 
S-PLUS and S-PLUS. 

For reasons related to estimation (see Chapter 5) and hypothesis testing 
(see Chapter 7), the variance and standard deviation (see below) are the two 
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most commonly used statistics to quantify the spread of a set of observa-
tions.  Unlike the interquartile range, the variance is very sensitive to ex-
treme values, even more so than the mean, because it involves squaring the 
distances between the observations and the mean.  For the TcCB data, the 
variance for the Reference area is about 0.08 ppb2 whereas for the Cleanup 
area it is about 400 ppb2. 

Standard Deviation 
The standard deviation is simply the square root of the variance.  The 

formula based on the method of moments estimator of variance is: 

 ( )2
1

1 n

mm i
i

s x x
n =

= −∑  (3.9) 

but the most commonly used formula for the sample standard deviation is 
based on the unbiased estimator of variance: 
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Equation (3.10) is the one used for the summary statistics for the TcCB data 
and is used by default in ENVIRONMENTALSTATS for S-PLUS and S-PLUS. 

The standard deviation is often preferred to the variance as a measure of 
spread because it maintains the original units of the data.  Just like the vari-
ance, the standard deviation is sensitive to extreme values.  For the TcCB 
data, the standard deviation for the Reference area is about 0.3 ppb whereas 
for the Cleanup area it is about 20 ppb. 

Geometric Standard Deviation 
The geometric standard deviation is sometimes used to describe posi-

tive-valued data (Leidel et al., 1977).  It is the exponentiated standard devia-
tion of the log-transformed observations. 

 ys
gs e=  (3.11) 

where 
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 ( )logi iy x=  (3.13) 

Unlike the sample geometric mean, the sample geometric standard deviation 
does not estimate any population parameter that is usually used to character-
ize the lognormal distribution. 

Median Absolute Deviation 
The median absolute deviation (often abbreviated MAD) is the median 

of the distances between each observation and the median (Helsel and 
Hirsch, 1992, pp. 8−9; Hoaglin et al., 1983, pp. 220, 346, 365−368). 

 ( )1 2, , , nMAD Median x m x m x m= − − −… (3.14) 

where 

 ( )1 2, , , nm Median x x x= …  (3.15) 

Unlike the variance and standard deviation, the median absolute deviation is 
unaffected by a few extreme observations.  For the TcCB data, the MAD is 
0.27 ppb for the Reference area and 0.36 ppb for the Cleanup area.  You 
could take almost half of your data and keep increasing it and the MAD 
would stay the same. 

Coefficient of Variation 
The coefficient of variation (sometimes denoted CV) is simply the ratio 

of the standard deviation to the mean. 
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CV
x

=  (3.16) 
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The coefficient of variation is a unitless measure of how spread out the dis-
tribution is relative to the size of the mean.  It is usually used to characterize 
positive, right-skewed distributions such as the lognormal distribution (see 
Chapter 4).  It is sometimes multiplied by 100 and expressed as a percentage 
(Zar, 1999, p. 40).  Like the mean and standard deviation, the coefficient of 
variation is sensitive to extreme values.  For the TcCB data, the CV is 0.5 for 
the Reference area and ten times as large for the Cleanup area. 

Measures of Deviation from a Symmetric or Bell-Shaped  
Distribution 

Equations (3.17) to (3.19) below show the formulas for two statistics that 
are used to measure deviation from a symmetric or bell-shaped histogram:  
the skew and kurtosis.  A bell-shaped (and thus symmetric) histogram is a 
good indication that the data may be modeled with a normal (Gaussian) dis-
tribution (see Chapter 4).  Many statistical hypothesis tests assume the data 
follow a normal distribution (see Chapter 7).  In the days before it was easy 
to create plots and perform goodness-of-fit tests with computer software, the 
skew and kurtosis were often reported.  Nowadays, they are not so widely 
reported, although they are still used to fit distributions in the system of 
Pearson curves (Johnson et al., 1994, pp. 15−25). 

Skew 
The skew or coefficient of skewness is based on the mean or average of 

the cubed distances between each observation and the mean.  The average of 
the cubed distances is divided by the cube of the standard deviation to pro-
duce a unitless measure. 
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The formula above uses method of moments estimators.  This is the formula 
that is used by default to compute the skew in ENVIRONMENTALSTATS for 
S-PLUS.  Another formula is sometimes used based on unbiased estimators. 
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The skew measures how the observations are distributed about the mean.  
If the histogram is fairly symmetric, then the skew is 0 or close to 0.  If there 
are a few or several large values to the right of the mean (greater than the 
mean) but not to the left of the mean, the skew is positive and the histogram 
is said to be right skewed or positively skewed.  If there are a few or several 
small values to the left of the mean (less than the mean) but not to the right 
of the mean, the skew is negative and the histogram is said to be left skewed 
or negatively skewed. 

Because environmental data usually involve measures of chemical con-
centrations, and concentrations cannot fall below 0, environmental data often 
tend to be positively skewed (see Figure 3.1).  For the log-transformed TcCB 
data shown in Figure 3.2 , the Reference area has a skew of about 0.03 since 
this histogram is close to being symmetric, but the Cleanup area has a skew 
of about 1.7. 

Kurtosis 
The kurtosis or coefficient of kurtosis is based on the average of the dis-

tances between each observation and the mean raised to the 4th power.  The 
average of these distances raised to the 4th power is divided by the square of 
the standard deviation to produce a unitless measure.  The formula below 
uses method of moments estimators.  This is the formula that is used by de-
fault to compute the kurtosis in ENVIRONMENTALSTATS for S-PLUS. 
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The kurtosis measures how peaked the histogram is relative to an ideal-
ized bell-shaped histogram.  This idealized bell-shaped histogram is based 
on the normal (Gaussian) distribution (see Chapter 4), which has a kurtosis 
of 3.  If the histogram has too many observations in the tails compared to the 
idealized histogram then the kurtosis is larger than 3.  If the histogram has 
short tails and most of the observations are tightly clustered around the 
mean, then the kurtosis is less than 3.  For the log-transformed TcCB data 
shown in Figure 3.2, the kurtosis for the Reference area is about 2, whereas 
it is about 7 for the Cleanup area. 

GRAPHS FOR A SINGLE VARIABLE 
One of the main strengths of S-PLUS and its add-on modules 

ENVIRONMENTALSTATS for S-PLUS and S+SPATIALSTATS is the great variety 


