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Foreword

Researchers in biology, medicine, public health, psychology, sociology, law and economics reg-
ularly encounter variables that are discrete or categorical in nature. And there is no dearth of
books - elementary to advanced - on the methods of analysis and interpretation of such data.
These books mainly cover large sample methods. When the sample size is not large, or the data
are otherwise sparse, their accuracy is suspect. In that event, methods not based on asymptotic
theory, called exact methods, are desirable.

The origins of the exact method for analysis of discrete data lie in the early analysis of binomial
and Poisson outcomes, and is related to the growth of nonparametric analysis of continuous
data. Its emergence as a distinct branch of statistics, however, dates to the works of Sir Ronald
A. Fisher, Frank Yates and James O. Irwin (Fisher 1934, 1935b; Irwin 1935; Yates 1934). All of
them worked on the exact analysis of a 2×2 table. Despite the early start, the forms of discrete
data for which exact analysis was feasible were, until 1980, rather limited. The analysis was
mostly restricted to univariate data, an equiprobable multinomial, or a 2× 2 table. For complex
models, the exact analysis was formulated theoretically, and creative applications of the Monte–
Carlo method were devised. Yet, it was not a practical option since the computational effort rose
exponentially with sample size. In fact, more energy was expended in the periodic controversies
about exact analysis than on expanding its scope.

A dramatic change occurred during the 1980s. Application of fast Fourier transform based
techniques by Marcello Pagano, David Tritchler and their coworkers, on the one hand, and
of network algorithms by Cyrus Mehta, Nitin Patel and their coworkers, on the other, were
principally behind that turnaround. I had the fortune to be associated with the latter group, and
worked on extending exact analysis of logistic models and the multivariate shift algorithm. Today,
such efficient algorithms and enhanced computing power have made exact analysis eminently
feasible for a vastly enlarged spectrum of discrete data problems. As such, it is often performed
when the traditional large sample methods are in question. (The references relevant to this
paragraph are noted later in the text.)

Yet, despite the plethora of original research and review papers on the subject, and the existence
of computer software, no book with exact analysis of discrete data as its prime focus is currently
available. Most books on discrete or categorical data analysis tend to have a small section on
exact tests. The Fisher exact test for a 2×2 table is always covered. Recent books contain more
material on the topic. The first book with the word “exact” in its title has one half of a chapter on
exact tests for discrete data (Weerahandi 1995). Even when they cover more complex problems,
the books essentially present exact methods as a set of recipes. None develops them from first
principles, covers a broad class of models, gives a variety of worked examples, addresses the
conceptual issues and also presents related computational algorithms, all within an integrated
yet accessible framework.

This book begins the task of filling the void. My aim has been to present, in a unified but
elementary and applications-oriented framework, the distributional theory, statistical methods
and computational methods for exact conditional analysis of discrete data. To shape it into

xxi



xxii FOREWORD

a sturdy and coherent edifice, I have relied on two key ideas, namely, that of a polynomial
based distribution and an evidence function. Their roots lie in the pioneering work of Sir R. A.
Fisher. His analysis of the odds ratio in a 2 × 2 table employed the conditional hypergeometric
probability. For this purpose, he formulated the tail probability as a ratio of two polynomials in
which the numerator was a segment of the denominator. The specific example in Fisher (1935b)
was:

F(ψ) =
1 + 102ψ + 2992ψ2

1 + 102ψ + · · ·+ 476ψ12

Fisher used this ratio of polynomials to assess a significance level for testing if the odds ratio was
equal to one, and determine what we now call 99% and 95% upper confidence bounds for it. A
two-sided version of the basic idea, which is relevant to continuous data and large sample analysis
as well, was later elaborated in a generalized form by Birnbaum (1961). Allan Birnbaum named
this entity a confidence curve; the Fisher polynomial ratio then is but a one-sided confidence
curve.

The confidence curve, or in our terminology, the evidence function is, after a long hiatus, steadily
showing up in the texts on statistics and epidemiology; a recent case in point is Rothman (2002),
where it occupies a prominent position. Over the years, it has been given several different names,
based on the aspect emphasized. I have chosen to call it an evidence function, a name that
captures the overall spirit of what it stands for. No matter what the name, its primacy lies in
that it embodies the three key tools of data analysis, namely, a p-value, a point estimate and
a confidence interval within a single construct. Thereby, it serves a positive pedagogic purpose
and allows a conceptually unified presentation of the results of data analysis.

The importance of the polynomial form for distributions lies in that not only the hypergeometric
but other common discrete distributions like the binomial, Poisson, negative binomial, multino-
mial, product multinomial as well as many of the distributions derived from them are polynomial
based distributions. The polynomial formulation is not rare; it is implicit in several classic works
on discrete data analysis, e.g., Cox (1970) and Zelen (1971), and in the run of the mill old and
new papers like Bennett and Nakamura (1964) and Emerson (1994), to name a few. But, apart
from a specialized and rarely cited branch of research, its primacy was not noted, and, until
recently, its computational utility was not appreciated.

This book utilizes the research published in the 1990s showing that the polynomial formulation
produces an integrated framework for exact inference for discrete data, both in terms of theory
and computation. It links the many algorithms in the field and, unlike the other formulations,
it is based on a simple idea. In fact, the basic idea underlying it is not too distinct from the
high school algebra method of multiplying a set of polynomials in a step by step fashion and
selecting some terms from the product.

My research on polynomial multiplication algorithms for exact analysis began in 1988. On my
own and with Stein E. Vollset, Isildinha Reis, Man Lai Tang and Timothy Johnson - my doctoral
students at UCLA - I wrote a number of papers on exact analysis using such algorithms. The
idea was also independently developed by David O. Martin and Harland Austin. Further, the
pioneering ideas of Cyrus Mehta and Nitin Patel in a related algorithmic area are well reflected in
the polynomial algorithms based literature. Two other papers, Baglivo, Pagano and Spino (1996)
and van de Wiel, Di Bucchianico and van der Laan (1999), contain equivalent formulations of
the same basic idea. (The other references relevant to this paragraph are noted later in the text.)

Thus far this material has been buried in specialized journals. It is time a wider audience of
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students, data analysts, applied researchers and statisticians has access to it. I hope this book
will serve that purpose.

********

The first chapter reviews relevant discrete distributions, lays out the notation and defines key
concepts. Apart from Chapter 4 and Chapter 7, the chapters which follow, up to and including
Chapter 10, develop and illustrate exact conditional methods for various models for discrete data.
Of these, Chapters 2, 3 & 5 cover simple one and two variable models. Chapters 6, 8, 9 & 10 deal
with several 2× 2 tables, and one and several 2×K tables. Chapters 4, 11 & 12, on the other
hand, deal with computational techniques needed for implementing the exact method. Chapters
13 and 14 cover statistical and computational material in an integrated fashion, respectively
dealing with multinomial data, and matched and dependent data. Chapter 7 is on assessing
the tools of inference, and Chapter 15 deals with conceptual matters, and addresses the use
and misuse of exact methods in practice. The relevant large sample methods are presented
throughout the text.

Readers and teachers seeking a self-contained but elementary exposure to the field may study
Chapters 1, 2, 3, 5, 6, parts of 7, 8, 9 and 10. Chapters 4, 11 and 12, and parts of Chapters
13 and 14 are of special importance to those who also want to explored the computational
techniques underlying exact analysis.

This is an introductory work. A basic course in statistics, biostatistics or research methods (at the
level say of Rosner (2000) or Daniel (2005)) is all that is needed to access most of its material. It
developed from my notes for a course on discrete data analysis for masters and doctoral students
in biostatistics at UCLA. I hope that graduate students, teachers and practioners in statistics
and biostatistics as well as quantitatively inclined researchers in fields like epidemiology, genetics,
sociology, education, psychology and business studies will find it of value, both as a learning and
teaching text, and a reference work.

I have avoided a cookbook approach. Instead, the analytic methods are developed in a step by
step manner from first principles. Yet, elaborate theory is absent. Each chapter contains relevant
worked examples and exercises. Some of them can be taken up as class research projects by
students. Relevant material on computer implementation is also included.

This book is not related to any existing statistical software. Those who have access to software
such as StatXact or SAS, which cover exact methods, can use them with the book. Many of the
illustrative examples can be worked out on a calculator, or with simple programming in common
software.

********

Over the years, the field of exact analysis has been fraught with much controversy. In essence,
the debates were about the role of conditioning in, and definition of the frame of reference for,
data analysis. They as such pertain to all forms of statistical analysis, including the traditional
large sample methods. What is called an exact analysis can actually be an unconditional, a
partly conditional or a fully conditional analysis. In discrete data analysis, moreover, there are
distortions of the form not found in the analysis of continuous data. But these, in different
ways no doubt, afflict both approximate and exact methods. Yet mainly because of the context
within which the debates were aired, an impression has been created that such controversies are
inextricably tied to the exact method. At times, some leading statisticians have not helped the
matter by not sufficiently disentangling the separate strands of the arguments. To some, exact
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analysis is, as we illustrate in Chapter 15, synonymous with contentious analysis while some
others swear by it!

The term “exact” also has had a variety of meanings in the statistical literature. We discuss
these issues in the text. But for now, given the historical baggage attached to it, we state that to
us the label “exact” surely does not imply that the method in question is the “correct” or “best”
one in any absolute sense. It just refers to a method that avoids large sample approximations.
In that spirit, we see and present exact methods as an integral part of the spectrum of data
analytic techniques available today. After noting their advantages and limitations, we hold that
the former often outweigh the latter. Exact analysis is, in our view, not just a valid, but often a
better option, for many sparse data problems.
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CHAPTER 1

Discrete Distributions

1.1 Introduction

When the variables of a scientific model are related through a chance mechanism, we call it
a statistical model. This book covers statistical models for discrete variables. Its main focus
is on the methods for analysis of discrete variable statistical models called exact conditional
methods. This chapter prepares the groundwork. This includes introducing a unified framework
for representing common discrete probability distributions, defining key concepts and describing
the properties of these distributions. The specific aims here are:

• To state the properties of the binomial, Poisson, negative binomial, hypergeometric and
related distributions.

• To introduce the multinomial distribution, a distribution that forms the basis of many statis-
tical models for discrete data.

• To present the polynomial formulations for common univariate and multivariate discrete
probability distributions.

• To introduce three essential ideas for exact analysis of discrete data, namely, the generating
polynomial, conditioning and sufficient statistics.

We do not develop the probability theory for discrete random variables in a rigorous manner.
The proofs for the results stated are also not all given. Many introductory probability theory
texts contain such material. However, results that are not usually found in standard texts, but
which are especially relevant for this book are accorded due elaboration.

1.2 Discrete Random Variables

Variability is an inescapable fact of nature and life. One child gets an earache frequently but
another hardly ever suffers from the malady. The symptoms of a common cold may clear up in
a few days, or may linger on for weeks. Will this child have an earache in the next six months?
How long will a cold persist? Even a trained physician is hard placed to make the prediction
since events like these do not have the level of certainty we associate with the statement: “A
stone released in midair will fall to the ground.” It is fair to regard whether or not a child will
get an earache, or the number of days a cold will last as random or chance phenomena.

Randomness does not mean complete unpredictability or chaos. Usually, random phenomena
incorporate some systematic components as well. When a large number of cases of the event
in question are examined, a pattern often emerges. For example, boys show a higher tendency
than girls to develop ear infections. Or, that more than 50% of the cases of the common cold
tend to resolve spontaneously within a week or so.

To study processes that are random at a micro-level but which exhibit some degree of regularity

1



2 DISCRETE DISTRIBUTIONS

when viewed on an aggregate scale, we use the idea of a random variable. A simple example
of a random variable obtains from envisioning an event which either occurs or does not occur.
Let π denote the probability of occurrence of the event. In that case,

0 ≤ π ≤ 1 (1.1)

The probability of nonoccurrence of the event then is 1 − π. We define an associated random
variable, Y, as follows. Let Y = 0 if the event does not occur (called a failure), and Y = 1 if it
does (called a success). Then we write

P[Y = 1 ] = π and P[Y = 0 ] = 1 − π (1.2)

A compact way of writing this is: For y ∈ {0, 1},

P[Y = y ] = πy(1 − π)1 − y (1.3)

Y is called a binary random variable, and the random process is referred to as a Bernoulli
trial. Examples include the outcome of a coin toss, cure or failure in treatment for a disease,
the presence or absence of a genetic trait, exposure or nonexposure to a potential occupational
carcinogen, and the presence or absence of an ear infection. Equation 1.3 is also a simple
statistical model.

A random variable that assumes a finite, or at most, a countable number of values is called a
discrete random variable. The number of days an episode of the common cold persists is an
example of a discrete random variable.

Let the symbol T designate a discrete random variable. The set of values, realizations, or
outcomes of T , denoted by Ω, is the sample space or support set of T . We assume throughout
that Ω is a countable set of real numbers, or vectors with real elements, that is, it can be put
into a one-to-one correspondence with a subset of the set of integers.

We let the function f(t) = P[ T = t ] represent the probability of an outcome t ∈ Ω. This
probability function has to satisfy the following basic properties:

Property 1.1: For any t ∈ Ω, P[ T = t ] > 0

Property 1.2: If Ω1, · · · ,Ωk are mutually exclusive subsets of Ω, then

P[ T ∈ Ω1

⋃
· · ·

⋃
Ωk ] =

k∑

j =1

P[ T ∈ Ωj ] (1.4)

for k = 1, · · · ,∞.

Property 1.3:

∑

t∈Ω

P[ T = t ] = 1 (1.5)

As indicated by Property 1.1, throughout this book we consider events with strictly nonzero
probabilities as the relevant subsets of Ω.

********
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We consider two scientific investigations with discrete random variables.

Example 1.1: Kiviluoto et al. (1998) report a clinical trial of two surgical procedures, labeled
LC and OC, for acute cholecystitis. One outcome of interest was the occurrence of major
complications (including death) after surgery. The relevant data from this trial are shown in
Table 1.1.

Table 1.1 Post Surgical Complications

Major
Complications

Surgical Procedure

LC OC

No 32 24

Yes 0 7

Total 32 31

Source: Kiviluoto et al. (1998), Table 3.

c© 1998 by The Lancet Ltd.; Used with permission.

The allocation of patients to treatment was done using a random device. Table 1.1 relates two
binary random variables, the treatment, and the onset of major complications after treatment.
What conclusion can we draw about the complication rates of these treatments?

Example 1.2: Next consider Table 1.2 with data on the status of young children in the pediatrics
ward of a hospital in Tanzania. All these children had Kwashiorkor. The main aim of the study was
to evaluate the change in the erythrocyte sedimentation rate (ESR) level by type of infection in
children with malnutrition. Other children in the study had marasmus and marasmic kwashiorkor,
two other forms of malnutrition. The data for these children are given in Table 13.5 and Table
13.9, respectively, and are also summarized at other places in this text.

All the three variables in Table 1.2 are in a discretized form. None is a binary variable. This
was a cross sectional type of study; at the time of examination, the age and infection status
were known, and the ESR value was the random entity. The latter was converted into a discrete
variable using common clinical cut points. After adjusting for the effect, if any, of age, does the
ESR profile vary by infection status? - that was a key question of interest.

At this juncture, we emphasize that the above data examples and all the other data examples in
this book are given for the sole purpose of illustrating and comparing statistical methods. They
are not used to draw substantive conclusions about the underlying biomedical or other
substantive issues. The latter has to be based on the full data set for the appropriate study.

These examples show us that discrete variables come in various forms. Some are nominal
variables, also known as nominal scale, qualitative, or categorical variables. Their levels are
devoid of any intrinsic order. A case in point is the variable ‘type of infection’ in Table 1.2
which has three unordered levels. As another example, the primary diagnosis of a hospitalized
patient may be classified as cardiac, lung, liver, renal or other disease. For record keeping, we
may attach numeric labels such as 1, 2, 3, 4 or 5 to these disease states. But they are arbitrary
labels. When infection status is analyzed at two levels ‘infection’ or ‘no infection,’ it becomes a
binary variable.
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Table 1.2 ESR and Pulmonary Infection by Age in Kwashiorkor

ESR Level

Age ≤ 12 Months

≤ 10 11–25 26–99 100+

No Infection 12 7 3 0

Pulmonary Tuberculosis 0 0 2 1

Other Pneumonia 4 0 0 0

12 Months < Age ≤ 24 Months

≤ 10 11–25 26–99 100+

No Infection 11 1 0 0

Pulmonary Tuberculosis 0 0 1 1

Other Pneumonia 3 0 0 0

Age > 24 Months

≤ 10 11–25 26–99 100+

No Infection 3 1 1 0

Pulmonary Tuberculosis 1 0 0 1

Other Pneumonia 0 0 1 0

Source: Hameer (1990); Used with permission.

A discrete variable whose levels have a built-in order is called an ordinal variable. The variables
‘age group’ and ‘ESR level’ in Table 1.2 are of this type. To take another case, the side effects
of a medicinal drug may be depicted as: none, not life threatening and life threatening. The
second level is more serious than the first, and the third is more serious than the second. Despite
the ordering, no quantitative magnitude is attached to any level. Some ordinal variables come
with a numeric score attached to each level. The number of side effects from a drug is a case
in point. We call an ordered discrete variable which has a numeric score as a scored variable.
The ESR categories in Table 1.2 (≤ 10, 11 − 25, 26 − 90 and 100+) are generally viewed
as normal, elevated, highly elevated and very highly elevated levels. They may respectively be
assigned natural scores 0, 1, 2 and 3 in an analysis. Or, the scores may be the midpoints of the
associated numeric range.

For the purpose of data analysis, the same underlying entity is at times deemed a nominal
variable and at other times, an ordinal variable. The age of a subject, measured in years or
months, as in Table 1.2, is often treated as a discrete variable. Then ‘age group’ may be used
as a nominal variable or as a discrete variable with a numeric score.

Categorizing or scoring a variable may imply a loss of information. If not done with care, it has
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the potential to mislead. At times, it may simplify data analysis and interpretation, and at times,
it yields valuable insights into nonlinear relationships. Good science requires that discretization
or categorization be done at the stage of study design and not after the data are collected and
summarized. Further, it should not be done in a way that deviates drastically from the underlying
substantive meaning of the variable in question.

Table 1.1 and Table 1.2 are examples of sparse data. One or more of the cell counts in both
are zero or small. Also, there is an imbalance in the counts at the levels of some variables. Such
data occur even with large sample sizes. The methods given in this text are particularly suitable
for sparse data.

1.3 Probability Distributions

The cumulative distribution function (cdf) of the random variable T is defined as

F(t) = P[ T ≤ t ] (1.6)

The mean (or expectation) and the variance of T respectively are

µ = E[ T ] =
∑

t∈Ω

tP[ T = t ] (1.7)

σ2 = E[ (T − µ)2 ] =
∑

t ∈Ω

(t − µ)2P[ T = t ] (1.8)

The mean is a measure of location and the variance indicates the extent of variability around the
mean. The median is another measure of location. Conceptually, it is the value of the middle
item of a population when all the items are arranged in an increasing order. In a population of
discretized values, such a middle item may not be uniquely identifiable. For a discrete random
variable taking two or more values, the median is defined as follows:

• Suppose there exists a tl ∈ Ω such that P[ T ≤ tl ] = 0.5. Then tr ∈ Ω is the value such
that P[ T ≥ tr ] = 0.5. In this case, the median is not unique, and may be taken as tl or tr.
In practice, we let tm = (tl + tr)/2.

• Suppose there does not exist a t ∈ Ω such that P[ T ≤ t ] = 0.5. Then the median is the
unique value tm ∈ Ω such that P[ T < tm ] < 0.5 and P[ T ≥ tm ] > 0.5.

Other definitions also exist. The median, like the mean, is not necessarily a member of Ω. It
is the preferred measure of location in distributions that are not symmetric. The mean has a
key additive property. Suppose Tk is a random variable with mean µk, k = 1, · · · , K. Then, for
constants ak, k = 1, · · · , K,

E[
K∑

k =1

akTk ] =
K∑

k =1

akµk (1.9)

Unless otherwise specified, when we refer to a random variable from here on, we will mean a
discrete random variable.

********

The conditional probability of the event Ω1 given the event Ω2 is defined by
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P[ T ∈ Ω1 | T ∈ Ω2 ] =
P[ T ∈ Ω1

⋂
Ω2 ]

P[ T ∈ Ω2 ]
(1.10)

provided P[ T ∈ Ω2 ] > 0. Any two events Ω1 and Ω2 are said to be independent events if the
probability of any of them is not affected by whether the other has occurred or not. Formally,
this means that

P[ T ∈ Ω1 | T ∈ Ω2 ] = P[ T ∈ Ω1 ] (1.11)

If Ω1 and Ω2 are independent events then it follows that

P[ T ∈ Ω1

⋂
T ∈ Ω2 ] = P[ T ∈ Ω1 ]P[ T ∈ Ω2 ] (1.12)

In particular, if the random variables T1 and T2 are independent, then

P[ T1 = t1, T2 = t2 ] = P[ T1 = t1 ]P[ T2 = t2 ] (1.13)

for all t1 and t2.

If T1 and T2 are independent random variables with respective finite variances σ2
1 and σ2

2 , and
a1, a2 are some constants, then

var[ a1T1 + a2T2 ] = a2
1 σ

2
1 + a2

2 σ
2
2 (1.14)

where var[T ] denotes the variance of T .

1.4 Polynomial Based Distributions

A polynomial based distribution, denoted PBD, is defined as a probability distribution con-
structed from a polynomial. For example, consider the polynomial

f(φ) = 2 + 7φ2 + 3φ5

with φ ≥ 0. Using the exponents of φ, we construct the sample space {0,2,5}. Then we define
the random variable T on this sample space as

P[ T = 0; φ ] =
2

f(φ)

P[ T = 2; φ ] =
7φ2

f(φ)

P[ T = 5; φ ] =
3φ5

f(φ)

This satisfies all the required properties for a probability distribution. In general, a polynomial
based distribution is defined as follows. Let Ω be a countable set and, for each u ∈ Ω, let c(u) > 0
be an associated coefficient. With a parameter φ ≥ 0, we then construct the polynomial
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f(φ) =
∑

u ∈Ω

c(u)φu (1.15)

From this, we set up a discrete probability distribution for a random variable T as follows. For
any t ∈ Ω,

P[ T = t; φ ] =
c(t)φt

f(φ)
(1.16)

The generic polynomial f(φ) completely specifies this distribution. The set of its exponents
constitutes the sample space, and for any point t in this space, the term with this exponent
divided by the polynomial constitutes its probability.

Distribution (1.16) is expressed in an exponential form using the parameter β = ln(φ) and the
function

h(β) = f(exp(β)) =
∑

u∈Ω

c(u) exp(βu) (1.17)

where exp(β) = eβ . Then

P[ T = t; β ] =
c(t) exp(βt)

h(β)
(1.18)

In the statistical literature, distribution (1.16) is called a Power Series Distribution. (1.18) is
the exponential form of the power series distribution. In this book, we prefer to use the less
technical sounding and more affable name, namely, Polynomial Based Distribution.

The polynomial f(φ) is called the coefficient generating function, the series function, or
simply the generating function of the PBD. We shall refer to it as the generating polynomial,
or gp of the PBD.

In probability theory, the term generating function refers to functions like the probability gener-
ating function, or the moment generating function, or the characteristic function (Gordon
1997). Such functions facilitate the study of properties of probability distributions. For example,
the mean and variance are at times easier to determine by using such a function.

In the case of a PBD, the generating polynomial f(φ) is an equivalent replacement for the more
elaborate generating functions. This is one of the many advantages of using the polynomial
form. In fact, f(φ) is an unnormalized version of the probability generating function and also
completely specifies it (Exercise 1.33). As we proceed in this text, it will become clear that for
exact analysis of many discrete data models, it is simpler and more natural to deal with the
generating polynomial than with the other generating functions.

For emphasis, we reiterate the basic property that the gp of a PBD completely and uniquely
specifies the distribution of T in the following sense.

The Generating Polynomial

• The set of exponents of the generating polynomial of
a PBD specifies the sample space, Ω.

• The probability of a point in this space equals the
term of this polynomial with that exponent divided
by the whole polynomial.
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The gp of a PBD can also be used to compute its mean and variance.

Theorem 1.1: Suppose T is a PBD variate with gp f(φ). If the mean, µ, and variance, σ2, of
T are finite, then

µ = φ
d

dφ
[lnf(φ)] (1.19)

=
f∗(φ)
f(φ)

=
h′(β)
h(β)

(1.20)

σ2 = µ + φ2 d
2

d2φ
[lnf(φ)] (1.21)

=
f∗∗(φ)
f(φ)

−
(
f∗(φ)
f(φ)

)2

=
h′′(β)
h(β)

−
(
h′(β)
h(β)

)2

(1.22)

where

f∗(φ) =
∑

u∈Ω

uc(u)φu and f∗∗(φ) =
∑

u∈Ω

u2c(u)φu (1.23)

further where h′(β) and h′′(β) are the first two derivatives with respect to β of h(β).

Proof: Consider the first portion rhs of the first equation.

d

dφ
[lnf(φ)] =

∑

u ∈Ω

uc(u)φu− 1/f(φ)

Multiplying by φ, this equals

∑

u∈ Ω

uP[ T = u ] = µ

The other relations are proved similarly. �

In a majority of the applications we study, we need to combine a series of independent PBDs.
The distribution of the sum of a set of random variables is called the convolution of these
variables. It is not always easy to directly specify a convolved distribution. When the variables
are independent, using the generating polynomial often provides an easier method.

Theorem 1.2: Let Tk, k = 1, 2, be independent PBD variates with gp

fk(φ) =
∑

u∈Ωk

ck(u)φu (1.24)

Then T = T1 + T2 is a PBD variate with probability function

P[ T = t; φ ] =
c(t)φt

f(φ)
(1.25)
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where

c(t) =
∑

u

c1(u)c2(t − u) (1.26)

and

f(φ) = f1(φ)f2(φ) (1.27)

Further, the sample space of T is the set of exponents of the polynomial f(φ).

Proof: First note that

P[ T = t; φ ] =
∑

u

P[ T1 = u, T2 = t− u ]

=
∑

u

P[ T1 = u ]P[ T2 = t− u ]

The last step follows by the independence property. Substituting the probability formula, and
after some rearrangement, we have

P[ T = t; φ ] =
{∑u c1(u)c2(t− u)}φt

f1(φ)f2(φ)

The desired results are a direct consequence. �

Theorem 1.3: Suppose T1, · · · , TK are independent PBD variates with gps f1(φ), · · · , fK(φ),
and sample spaces Ω1, · · · ,ΩK , respectively. Then T = T1 + · · ·+TK has a PBD with gp f(φ)
given by

f(φ) =
K∏

k = 1

fk(φ) (1.28)

Proof: Follows by induction from Theorem 1.2. �

In some applications we consider, Ωk = {lk, lk + 1, . . . , uk}, where lk and uk are integers. In
that case Ω = {l, l+ 1, . . . , u} where l = Σklk and u = Σkuk.

The main message thereby is that the distribution of the sum of independent PBD variates with
the same parameters is obtained as a PBD from the product of their generating polynomials.

********

The polynomial formulation is particularly useful because:

Central Observation

Many of the discrete probability distributions commonly
used in statistical analysis can be expressed in the
form of a polynomial based distribution.

We demonstrate this observation below.
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1.5 Binomial Distribution

Suppose n random patients from a homogeneous population receive a therapy for an acute
disease. The outcome is cured (Y = 1), or not cured (Y = 0). Let Yi denote the treatment
result for the ith person, i = 1, . . . , n. We make two assumptions: (i) All patients have the same
chance, π, of being cured; (ii) Their outcomes are statistically independent of each other.

For this set of n independent and identically distributed (iid) Bernoulli trials, T = ΣiYi is
the random total number of cures (or, in general, successes). The sample space of T is Ω =
{0, 1, · · · , n}. Combinatorial arguments show that T has a binomial distribution, B(n, π),
given by

P[ T = t; π ] =
(
n

t

)
πt(1 − π)n− t, t ∈ {0, 1, . . . , n} (1.29)

where

(
n

t

)
=

n!
t!(n− t)!

(1.30)

Formulating the binomial parameter in terms of odds, i.e., the chance of success relative to the
chance of failure, we have:

φ = π/(1 − π),

or, in terms of the logarithm of the odds (in short, log-odds):

β = ln{π/(1 − π)}

These transformations have the following properties:

• 0 ≤ π ≤ 1 implies 0 ≤ φ ≤ +∞, and −∞ ≤ β ≤ +∞.

• These are one-to-one monotonic transformations with

π =
φ

1 + φ
=

exp(β)
1 + exp(β)

(1.31)

• Any inference on φ or β can be translated into one for π and vice versa.

With these transformations, the binomial probability becomes

P[ T = t; φ ] =
c(t)φt

(1 + φ)n
=

c(t) exp(βt)
{1 + exp(βt)}n (1.32)

where c(t) = n!/{t!(n− t)!}. Hence, the binomial distribution is a polynomial based distribution
with gp equal to

(1 + φ)n =
n∑

u =0

c(u)φu (1.33)

Example 1.3: In a study of mammography screening, Elmore et al. (1998) found that about
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one in two women tend to get a false positive report over a decade of annual screening for breast
cancer. Then, for a random sample of twenty women, we need to compute the chance that at
least 5 women will have a false positive report after a decade of mammography screening. First
we compute the chance that at most 4 will have such an outcome. This is

2−20

(
1 + 20 +

20 × 19
2

+
20 × 19× 18

3 × 2
+

20 × 19 × 18× 17
4 × 3 × 2

)

which equals 0.006. Hence the probability that at least 5 women will have a false positive result
in a decade of screening is about 1 − 0.006 = 0.994.

********

For a binomial, we have that

µ = nπ =
nφ

(1 + φ)
and σ2 = nπ(1 − π) =

nφ

(1 + φ)2
(1.34)

Suppose T1 and T2 are independent B(n, π) and B(m, π) variables. Then the gp of T1 + T2 is

(1 + φ)n(1 + φ)m = (1 + φ)(n+m)

Thus T1 + T2 is a B(n+m, π) variable.

********

For large n, the probability distribution of T is approximated by the normal distribution. The
approximation holds well when π is not far from 0.5. Let Φ(x) denote the cumulative distribution
function of the standard normal. From asymptotic theory, we know that

P[ T ≤ t ] ≈ Φ

(
t− nπ√
nπ(1 − π)

)
(1.35)

A better approximation is provided with the use of the continuity correction. This gives

P[ T ≤ t ] ≈ Φ

(
t+ 0.5− nπ√
nπ(1 − π)

)
(1.36)

We apply the normal approximation (without the continuity correction) to the breast cancer
screening example given above. In this case, n = 20, π = 0.5 and t = 5. Then

z =

(
t− nπ√
nπ(1 − π)

)
= −

√
5

From the standard normal distribution, this gives the desired probability as 0.988. This is close
to the exact binomial probability, 0.994.

The assumption of a uniform cure rate (or identical trials) used to derive the binomial probability
may not hold in practice. Alternatively, we may view the trials as a series of independent but
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nonidentically distributed Bernoulli trials. Suppose the chance of success in the ith trial is
πi (i = 1, · · · , n), and πi is modeled as a function of some features, called covariates, of the
subject, or the study. For example, in a study where πi stands for the chance the ith child will
contract an ear infection, it is written as π(xi), where xi indicates the gender of the ith child.
Considerations of such additional variables or covariates often lead to the data being presented
in the form of two or more 2 × 2 tables. Several chapters in this book deal with data in this
format.

In some situations it may not be appropriate to assume that events are statistically independent.
Modeling the total number of successes in such trials needs to account for the extra binomial
variation or the interdependence between outcomes. There are many ways of doing it. Chapter
14 examines binary response models that relax the assumption of independence.

1.6 Poisson Distribution

The Poisson distribution is used for rare events, for example, for the number of accidents per
day at a section of a roadway, or the number of new cases of a disease with a low incidence
rate. Empirical studies indicate that it often models such processes with a reasonable accuracy.

Let Ω equal the set of nonnegative integers, { 0, 1, 2, . . .}. Then, for t ∈ Ω, the Poisson proba-
bility is

P[ T = t; λ ] = λte−λ/t! where λ > 0 (1.37)

This can also be written as

P[ T = t; λ ] =
c(t)λt

f(λ)
(1.38)

where

c(t) = 1/t! and f(λ) = eλ =
∞∑

u =0

c(u)λu (1.39)

Hence the Poisson is a PBD with Ω = {0, 1, 2, . . . , }, and φ = λ.

********

Example 1.4: In a population based study of selected areas in Wisconsin, Nordstrom et al.
(1998) estimated that the cases of newly diagnosed probable or definite carpal tunnel syndrome
occur at the rate of 3.46 cases per 1000 person years. Assume that a random cohort of 100
subjects from the population without the condition is followed up for three years. We model this
as a Poisson distribution with mean

λ = 3 × 100× 0.00346 = 1.038

The chance that there at most two cases of carpal tunnel syndrome will occur in this sample
during the study period is
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e−1.038

(
1 + 1.038 +

1.0382

2

)
= 0.913

********

For the Poisson variate T ,

µ = σ2 = λ (1.40)

If T represents the number of events occurring within a unit period of time, then λ is the average
rate of occurrence per unit time.

An important property of Poisson variables is additivity. That is, if Ti is Poisson distributed with
parameter λi, i = 1, · · · , n, and if these random variables are mutually independent, then ΣTi

is a Poisson variate with parameter Σλi. This follows from the product of the n gps:

n∏

i =1

exp(λi) = exp

(
n∑

i =1

λi

)

and recognizing that this is a gp of Poisson variable with mean Σλi.

The binomial distribution arises from the Poisson as follows. Let T1 and T2 be independent
Poisson variates with parameters λ1 and λ2. Consider the conditional distribution of T1 when
their sum is fixed:

P[ T1 = t | T1 + T2 = s ] =
P[ T1 = t, T1 + T2 = s ]

P[ T1 + T2 = s ]

which is equal to
P[ T1 = t ]P[ T2 = s− t ]∑
u P[ T1 = u ]P[ T2 = s− u ]

Substituting the Poisson formula and simplifying, we get

P[ T1 = t | T1 + T2 = s ] =
(
s

t

)
πt(1 − π)s− t (1.41)

for t = 0, 1, . . . , s, and where

π =
λ1

λ1 + λ2
(1.42)

The conditional distribution of T1 is thus a B(s, π) distribution.

********

The Poisson distribution also arises as a limiting distribution to the Binomial. Let T have B(n, π)
distribution. Suppose n is large and π close to zero. Then

P[ T = t ] ≈ λte−λ/t! (1.43)
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where λ = nπ. This property is known as the Poisson approximation to the binomial. The normal
approximation to the Poisson is based on the standardized variate

z =
(t− λ)√

λ

Normal approximations to the Poisson and binomial distributions may, however, not be adequate
even at fairly large sample sizes, as succinctly demonstrated by Jollife (1995).

Poisson distributions are used to model disease occurrence over time or space. The number of
cases of leukemia in the vicinity of a nuclear reactor has been modeled in terms of a Poisson
distribution. The number of incident cases of HIV infection in a large population during a time
period τ is another case. If λ is the rate of new HIV infection per unit time, the number of new
cases during the period may be a Poisson variate with mean λτ .

For events distributed over time or space, the Poisson probability is derived under the following
assumptions:

• The probability of an event in a small interval is proportional to the size of the interval.

• The probability of two or more events in a small time interval is negligible.

• Events in disjoint intervals are independent of one another.

The Poisson distribution is also used to model the rate λ as a function of covariates. In the case
of incident HIV cases, for example, these may be urban or rural residence, illicit drug use, and
gender.

1.7 Negative Binomial Distribution

Consider a series of iid Bernoulli trials, Y1,Y2,Y3,Y4, . . ., with a common success probability
π. For a fixed integer r ≥ 1, let T denote the number of successes before the rth failure in the
series Y1,Y2,Y3,Y4, . . .. Then for t = 0, 1, 2, . . .,

P[ T = t; π ] =
(
t+ r − 1
r − 1

)
πt(1 − π)r (1.44)

This is called the negative binomial distribution. The special case when r = 1 is called the
geometric distribution.

Now let φ = π, f(φ) = (1 − φ)−r and

c(t) =
(
t+ r − 1
r − 1

)

Then we can write

P[ T = t; φ ] =
c(t)φt

f(φ)
(1.45)

showing that the negative binomial is also a PBD on the sample space Ω = {0, 1, 2, . . .}. Note
that here, 0 < φ < 1. In (1.45), we used the property that for φ in this interval,
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(1 − φ)−r =
∞∑

u =0

(
u+ r − 1
r − 1

)
φu (1.46)

********

Example 1.5: Lazarou, Pomeranz and Corey (1998) reported a 6.7% incidence rate of serious
or fatal adverse drug reaction among hospitalized patients in the USA. Suppose a hospital
institutes a monitoring program for newly admitted patients. Assuming the 6.7% incidence rate,
the chance that the first serious or fatal adverse drug reaction will occur in the tenth patient is

0.9339 × 0.067 = 0.035

********

For the negative binomial variable Tr, we can show that

µ =
rπ

1 − π
and σ2 =

rπ

(1 − π)2
(1.47)

1.8 Hypergeometric Distribution

Of a group of N individuals, assume n have a specific disease, and m do not. If we sample s
persons at random without replacement from this group, the chance that t of them have the
condition is

P[ T = t ] =
(
n

t

)(
m

s− t

)(
n+m

s

)−1
(1.48)

Let l1 = max(0, s −m), l2 = min(n, s). The sample space of T is Ω = {l1, l1 + 1, . . . , l2}.
This is the central hypergeometric distribution for which

µ =
ns

(n+m)
(1.49)

σ2 =
nms(n +m− s)

(n+m)2(n+m− 1)
(1.50)

A more general version of this distribution arises from two binomial distributions. Let A be
B(n, π1), and let B be B(n, π0), with A independent of B. Consider the distribution of one of
the variables if their sum is fixed, that is, P[A = t | A + B = s ]. By definition, this equals

P[A = t ]P[B = s− t ]
P[A + B = s ]

=
P[A = t ]P[B = s− t ]∑
u P[A = u ]P[B = s− u ]

If we substitute the binomial expressions in the above, and let
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c(t) =
(
n

t

)(
m

s− t

)
and φ =

π1/(1 − π1)
π0/(1 − π0)

(1.51)

then we get that

P[A = t | A + B = s ] =
c(t)φt∑

u ∈Ω c(u)φu
(1.52)

where Ω is as defined above. (1.52) is called the noncentral hypergeometric distribution. The
central hypergeometric is the special case when φ = 1. The parameter φ is the odds ratio. We
will have the occasion to consider it in depth later.

Now define

f(φ) =
∑

u ∈Ω

c(u)φu (1.53)

Then

P[A = t | A + B = s ] =
c(t)φt

f(φ)
(1.54)

which obviously is a PBD.

********

Example 1.6: Suppose we randomly select 5 girls and 4 boys, all two years of age, from a
population. They are monitored for six months for signs of ear disease. Let A denote the number
of boys, and B denote the number of girls contracting an ear infection. Suppose a total of three
children develop the infection. The conditional probability of A, the number of boys with the
infection, is obtained by first computing c(t) for each t. The four possible values of t and the
associated coefficients appear in Table 1.3

Table 1.3 Hypergeometric Coefficients

t c(t)

0 10

1 40

2 30

3 4

With f(φ) = 10 + 40φ + 30φ2 + 4φ3, it follows that

P[A = 0 | A + B = 3 ] = 10/f(φ)

P[A = 1 | A + B = 3 ] = 40φ/f(φ)

P[A = 2 | A + B = 3 ] = 30φ2/f(φ)

P[A = 3 | A + B = 3 ] = 4φ3/f(φ)
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********

For future reference, we list in Table 1.4 the gps of three commonly used univariate discrete
distributions.

Table 1.4 Generating Polynomials

Distribution φ f(φ)

Binomial π/(1 − π) (1 + φ)n

Poisson λ exp(φ)

Negative Binomial π (1 − φ)−r

1.9 A General Representation

Now we define the multivariate polynomial based distribution. Consider a parameter vector,
φφφ = (φ1, · · · , φK), φk ≥ 0, and let T = (T1, · · · , TK) be a discrete random vector realizing
values t in a countable K-dimensional set Ω. Define

φφφt =
K∏

k =1

φtk (1.55)

Note φφφt is not a vector. Let

f(φφφ) =
∑

u∈Ω

c(u)φφφu (1.56)

be a polynomial in K parameters. T is said to have a multivariate polynomial based distribution
with gp f(φφφ) if

P[ T = t ] =
c(t)φφφt

f(φφφ)
(1.57)

where c(t) > 0 for all t ∈ Ω.

To express this distribution in exponential form, we let φk = exp(βk) with βββ = (β1 , · · · , βK).
Then

P[ T = t ] =
c(t) exp(βββt′)

h(βββ)
(1.58)

where

h(βββ) =
∑

u∈Ω

c(u) exp(βββu′) (1.59)
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The gp f(φφφ) has properties similar to those of the univariate gp f(φ). Some of these are listed
below:

Property 1.4: f(φφφ) completely and uniquely specifies the multivariate PBD.

Property 1.5: f(φφφ) is an equivalent substitute for the probability generating function.

Property 1.6: The moments of a multivariate PBD are derived from the gp in a manner
analogous to that for a univariate PBD.

Property 1.7: The sum of independent identically distributed multivariate PBD vectors is a
multivariate PBD vector whose gp is a product of the gps of the vectors in the sum.

The proofs of these assertions are straightforward generalizations of respective proofs given for
their univariate counterparts and are left to the exercises. Now let us consider an example.

1.10 The Multinomial Distribution

The multivariate distribution frequently applied in discrete data settings is the multinomial
distribution. Consider a series of trials such that in each trial there are K possible outcome
categories. An example of a three category case is: a child may either have no earache, have
an ache in a single ear, or have the problem in both ears. Let the chance the kth outcome will
materialize be πk with 0 ≤ πk ≤ 1 and Σπk = 1. Let Tk denote the random number of times the
kth category occurs in a series of n independent trials. The joint probability for these random
variables is

P[ T1 = t1, · · · , TK = tK ] =
n!

t1!t2! · · · tK !

∏

k

πtkk (1.60)

We denote this distribution as M(n; π1, · · · , πK). The sample space Ω is the space of vectors
(t1, . . . , tk) that satisfy

0 ≤ tk ≤ n, k = 1, · · · , K and Σtk = n

With the special case of K = 3, we illustrate a multivariate PBD. Suppose we perform n
independent trials, and each trial has one of three outcomes labeled A, B and C. Let (Y1i,Y2i)
be the outcome of the ith trial with Y1i = 1 if the ith trial results in “A”, and = 0 otherwise;
and Y2i = 1 if it results in “B”, and = 0 otherwise. Let T1, T2 and T3 be the numbers of trials
with outcomes A, B and C, respectively. Obviously,

T1 =
n∑

i =1

Y1i

T2 =
n∑

i =1

Y2i

T3 = n− ( T1 + T2 )

Further,

P[ T1 = t1, T2 = t2 ] = c(t1, t2)π
t1
1 πt22 π

t3
3
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Table 1.5 Trinomial Sample Space and Coefficients

t1 t2 t3 c(t1, t2) t1 t2 t3 c(t1, t2)

0 0 4 1 1 3 0 4

0 1 3 4 2 0 2 6

0 2 2 6 2 1 1 12

0 3 1 4 2 2 0 6

0 4 0 4 3 0 1 4

1 0 3 1 3 1 0 4

1 1 2 12 4 0 0 1

1 2 1 12

where π1, π2 and π3 are the chances of A, B and C, respectively, in any trial, with 0 ≤
π1, π2, π3 ≤ 1, and π1 + π2 + π3 = 1; where t1 + t2 + t3 = n; and further, where

c(t1, t2) =
n!

t1!t2!(n− t1 − t2)!
(1.61)

Let φ1 = π1/(1− π1 − π2), and φ2 = π2/(1− π1 − π2). With a slight rearrangement, we write
this trinomial probability as

P[ T1 = t1, T2 = t2 ] =
c(t1, t2)φ

t1
1 φ

t2
2

f(φ1, φ2)
(1.62)

where

f(φ1 , φ2) = (1 + φ1 + φ2)n (1.63)

From basic algebra, we know that

f(φ1, φ2) =
∑

(u,v)∈Ω

c(u, v)φu1
1 φu2

2 (1.64)

where Ω = {(u, v) : 0 ≤ u, v ≤ n and 0 ≤ u+ v ≤ n}. Hence, the trinomial distribution is a
PBD. The general multinomial distribution is also shown to be a PBD in a similar way.

Example 1.7: Consider a concrete case with n = 4 and K = 3. A polynomial representation of
this trinomial is in Table 1.5.

********

For the multinomial distribution, we can show that

µk = E[ Tk ] = nπk (1.65)

σ2
k = var[ Tk ] = nπk(1 − πk) (1.66)

σkj = E[ (Tk − µk)(Tj − µj) ] = −nπkπj, k �= j (1.67)
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The following properties of a multinomial are useful in discrete data analysis.

Property 1.8: Aggregating a set of multinomial random variables will yield a smaller set of
random variables which are also multinomial.

For example, suppose (T1, · · · , T5) is M(n; π1, · · · , π5). Define S1,S2,S3 as: S1 = T1+T2,S2 =
T3 + T4, and S3 = T5. Then (S1,S2,S3) is M(n; π1 + π2, π3 + π4, π5).

Property 1.9: The distribution obtained by conditioning on distinct sums of multinomial out-
comes is a product of multinomial distributions.

Suppose (T1, · · · , T5) is M(n; π1, · · · , π5). Consider, for example, the probability of T1, T3, T4

given T1 +T2 = t (and thus T3 +T4 +T5 = n− t). This distribution is a product of M(t; π∗
1 , π

∗
2)

and M(n− t; π∗∗
1 , π

∗∗
2 , π∗∗

3 ), where

π∗
1 =

π1

π1 + π2

π∗
2 =

π2

π1 + π2

π∗∗
1 =

π3

π3 + π4 + π5

π∗∗
2 =

π4

π3 + π4 + π5

π∗∗
3 =

π5

π3 + π4 + π5

Property 1.10: If Tk, k = 1, . . . , K, are independent Poisson(λk), then P[ T1 = t1, · · · , TK =
tK | ΣkTk = s ] is M(s; π1, · · · , πK) where πj = λj/Σkλk.

The multinomial is the subtext for many distributions used to model and analyze discrete data.
Properties 1.8, 1.9 and 1.10 are used to produce the conditional distribution or likelihood from
which inference on the data is drawn.

The multinomial distribution is also used to model dependent discrete variables. For example,
in the case of two Bernoulli variables, consider the occurrence or otherwise of cataract in the
two eyes of an individual. These may not be independent events. One formulation of the pos-
sible dependence between them is as follows. Consider the variables Y1 and Y0 with respective
observed value y1, y0 ∈ {0, 1}. Then let

P[Y1 = y1,Y0 = y0 ] =
θ
y1
1 θ

y0
0 θ

y1y0
10

1 + θ1 + θ0 + θ1θ0θ10
(1.68)

where all the θ’s are nonnegative parameters. Let πij = P[Y1 = i,Y0 = j ]. This is a special
case of a four outcome multinomial. In this distribution, if θ10 = 1, then we get a product of two
independent Bernoulli variables with success probabilities θj/(1 + θj), j = 1, 0. We use models
based on such a distribution in Chapter 14. This formulation can also be extended to more than
two dependent binary variables.

1.11 The Negative Trinomial

Consider a sequence of independent trials with three outcomes, labeled {1, 2, 3}, in each trial.
Let their respective probabilities of occurrence be π1, π2 and π3 with π1 + π2 + π3 = 1. We
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conduct the experiment until the total number of outcomes of type 3 reaches r. Let T1, T2 and T3

respectively be the total number of outcomes of each type. The resulting probability distribution
is a negative trinomial distribution. Using the arguments like those for the negative binomial,
we can show that it has a polynomial form:

P[ T1 = t1, T2 = t2 ] =
c(t1, t2)φ

t1
1 φ

t2
2

f(φ1 , φ2)
(1.69)

where φ1 = π1, φ2 = π2

c(t1, t2) =
(
t1 + t2 + r − 1

t1 t2

)

and

f(φ1, φ2) = (1 − φ1 − φ2)−r (1.70)

Note that here 0 < φ1, φ2 < 1.

This can be readily generalized to the case with K outcome categories.

********

The other cases of the multivariate PBD, which we will encounter later, include several forms
of multivariate extensions of the hypergeometric and conditional distributions that are derived
from multivariate discrete probability models.

1.12 Sufficient Statistics

Sufficiency is a key concept in conditional methods for data analysis. We introduce it through a
sequence of n iid Bernoulli variables, {Y1, · · · ,Yn}. Set

π = exp(β)/{1 + exp(β)}

Then

P[Y1 = y1, . . . ,Yn = yn ] =
exp(βΣi yi)

{1 + exp(β)}n

Let T = ΣiYi, and consider the conditional probability

P[Y1 = y1, . . . ,Yn = yn | T = t ]

=
P[Y1 = y1, . . . ,Yn = yn ]

P[ T = t ]
=

t!(n− t)!
n!

The conditional probability of the n iid Bernoullis given their sum does not contain the parameter
β or π. In this sense, the knowledge of T has served to extricate the parameter from the
distribution. Formally, we define:
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Sufficient Statistic

A random variable T is sufficient for the parameter
β if the conditional probability of the data given T
does not contain the parameter.

Note T and β may be vectors. The factorization theorem, stated below without proof, often
facilitates identification of sufficient statistics.

Theorem 1.4: Let T be a function of discrete random variable(s) Y (both may be vectors). T
is sufficient for parameter β if and only if, for any y,

P[Y = y; β ] = g(t(y), β)q(y) (1.71)

�

Two important results on sufficiency and PBD need to be stated.

Theorem 1.5: Let T = (T1, · · · , TK) be multivariate PBD. Then Tj is sufficient for φj (or for
βj).

Proof: Use the definition or the factorization theorem. �

Theorem 1.6: Let T = (T1, · · · , TK) have a multivariate PBD. The conditional distribution of
a set of Ti’s given some other Tj’s is also multivariate PBD.

Proof: Let T 1 and T 2 be vectors of distinct elements of the vector T with φφφ1 and φφφ2, the
corresponding parameter vectors. Write the joint generating polynomial as

f(φφφ1, φφφ2) =
∑

(u1,u2)∈Ω

c(u1,u2)φφφ
u1
1 φφφu2

2 (1.72)

Then P[ T 1 = t1 | T 2 = t2 ] is

P[ T 1 = t1,T 2 = t2 ]∑
u∈Ω(.,t2)

P[ T 1 = u,T 2 = t2 ]
=

c(t1, t2)φφφ
t1
1

f(φφφ1, 1;., t2)
(1.73)

where

f(φφφ1, 1;., t2) =
∑

u∈Ω(.,t2)

c(u, t2)φφφu
1 (1.74)

and where Ω(., t2) is the set of values T 1 from the vectors (T 1,T 2) ∈ Ω in which T 2 = t2.�

This conditional distribution excludes the parameters in φφφ2. It is thus of use when the analysis
only concerns the parameters in φφφ1. For models with sufficient statistics, appropriate conditioning
allows us to focus on the parameters of interest. It was observations along such lines that
historically gave birth to the field of exact analysis of discrete data. In summary:
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• Sufficient statistics in a PBD are readily identifiable.

• The conditional distribution (1.73) is PBD.

• The conditional gp (1.74) has the same properties as the gp of an unconditional PBD.

The conditional PBDs we have seen thus far are: (i) The noncentral hypergeometric of §1.8,
(ii) the binomial derived from conditioning on two Poisson distributions in §1.6 and (iii) the
multinomial derived by conditioning on the sum of several Poisson variates noted in Property
1.10 of §1.10.

1.13 The Polynomial Form

We have shown many common discrete probability distributions can be expressed in a polynomial
form. Using this form for exact (and even large sample) analysis of discrete distributions is
additionally suggested for the following reasons. These reasons will become clearer as we proceed
through the chapters of this text.

Why Use The Polynomial Form?

• Discrete data analysis often involves polynomial
based distributions.

• Discrete distributions for which exact conditional
methods have been developed so far mostly are those
with the form of a univariate or a multivariate PBD.

• The common underlying distributional form allows
us to construct a unified strategy for exact and
asymptotic inference.

• The parameterizations that produce the polynomial
forms are in accord with the common usage of odds
ratios and log-odds ratios in conventional analysis
of discrete data.

• The polynomial form promotes a unified development,
and simple portrayal, of efficient computational
algorithms for exact analysis of discrete data.

Computational algorithms for exact inference are too often described in unnecessarily intricate
ways and appear to be very complex. A key aim of this book is to demonstrate that that is not
the case.

Before we end this section, we give a general notation for polynomials, first invoked in Theorem
1.6 above, for later use. For example, consider a trivariate polynomial

f(φ1, φ2, φ3) =
∑

(u1,u2,u3)∈Ω

c(u1, u2, u3)φ
u1
1 φ

u2
2 φ

u3
3 (1.75)

Suppose we want terms in this polynomial in which the exponents of φ2 are equal to or
greater than t2, and the exponents of φ3 are equal to t3. We write this subpolynomial as
f(φ1, φ2, φ3;.,≥t2, t3). That is

f(φ1 , φ2, φ3;.,≥t2, t3) = φ
t3
3

∑

u1

∑

u2 ≥ t2

c(u1, u2, t3)φ
u1
1 φ

u2
2 (1.76)
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Next suppose we want terms in (1.75) in which the exponents of φ2 are equal to t2 and those
of φ3 are equal to t3 when φ2 = φ3 = 1. We write this subpolynomial as f(φ1, 1, 1;., t2, t3).
That is

f(φ1 , 1, 1;., t2, t3) =
∑

u1

c(u1, t2, t3)φ
u1
1 (1.77)

Such a notation is also useful for the sample space Ω. For example, Ω(., t2,≥t3) represents that
segment of Ω when the value along the second dimension is fixed at t2 and the points along the
third dimension are all greater than or equal to t3.

This notation, which readily generalizes to higher dimensions and other forms of restrictions,
is used later to represent conditional distributions derived from multivariate polynomial based
distributions as well as their tail portions.

1.14 Relevant Literature

The material in this chapter is but a tiny portion from the vast field of probability and statis-
tics. The references below, among many others, provide the broader background and further
elaboration.

The main discrete distributions, the normal distribution and concepts like independence and
conditioning are covered in many elementary books. For example, Thomas (1986) covers a
wide ground in a readable manner. Gordon (1997) contains a particularly lucid account of
discrete probability. Wild and George (2000) is an ideal elementary introduction to probability
and statistical inference while Roussas (2003) clearly explains intermediate level material.

Many texts relate common continuous and discrete probability distributions. For instance, the
cumulative binomial is linked to the F distribution and the Poisson, to the chisquare distribution.
Many other asymptotic approximations to discrete distributions also exist; for example, the
arcsine approximation of the binomial to the normal. For a comprehensive overview of discrete
distributions, see Johnson and Kotz (1969) and Johnson, Kotz and Kemp (1992).

Books on stochastic processes generally derive the Poisson probability under mild assumptions.
A readable work is Goodman (1988). Properties of the multinomial are discussed in Bishop,
Fienberg and Holland (1975).

A sizeable theoretical literature on power series distributions, or what we call the PBD, exists.
See Johnson and Kotz (1969) and Patil (1986). A multivariate PBD is a member of the dis-
crete version of the multivariate exponential family of distributions (Patil 1985). A proof of a
portion of Theorem 1.1 is in Patil (1986). Bivariate PBDs are well covered in Kocherlakota and
Kocherlakota (1992). Pe’rez–Abreu (1991) has given a proof of the applicability of the Poisson
approximation to power series distributions in general.

Distributions expressed in a polynomial form (or its exponential version) are found in many
papers dealing with exact inference on discrete data. Cases in point: The exact distributions in
the seminal paper, Zelen (1971), are in a polynomial form. So are several in the comprehensive
review, Agresti (1992). The exact distributions for logistic regression models of discrete data in
the influential text, Cox and Snell (1989), are in the exponential polynomial form. An explicit
linkage between power series distributions and those used in the analysis of discrete data was
made in Hirji (1997a).

The history of generating functions in exact inference on discrete data is a long one. See Cox
(1958), Cox (1970) and Hirji, Mehta and Patel (1987). Two recent papers showing their use for
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discrete data analysis are Baglivo, Pagano and Spino (1996) and Hirji (1997a). van de Wiel, Di
Bucchianico and van der Laan (1999) has a broad perspective on the subject and notes other
relevant material.

For a rigorous approach to sufficiency, see Lehmann (1986) and Cox and Hinkley (1974). Ap-
plication of sufficiency to discrete data models is covered in Cox and Snell (1989) and Bishop,
Fienberg and Holland (1975). Pratt and Gibbons (1981) has an elementary proof of the factor-
ization theorem.

1.15 Exercises

1.1. Construct a probability distribution based on each of the following polynomials: (i) f1(φ) =
3φ3+11φ5+7φ7; (ii) f2(φ) = φ3+4φ4+5φ5+6φ6+7φ7; and (iii) f3(φ) = φ−1+3+4φ+
4φ2+3φ5+φ9. For each distribution compute P[ T = 5; φ = 1.5 ] and P[ T < 5; φ = 1.5 ].

1.2. With f1(φ) and f2(φ) defined above, let f(φ) = f1(φ)f2(φ) be the generating polynomial
of a discrete PBD random variable T . Compute P[ T = 10; φ = 1.5 ] and P[ T ≥ 10; φ =
1.5 ]. Also compute the mean, median and variance of this distribution when φ = 1.5.

1.3. A rare disease occurs in region A at an average rate of three cases a month, and in region
B, at an average rate of two cases a month. Assume that cases in any one region occur
independently of that in the other. Compute the probability that in a given month: (i) a
total of at most three cases are reported from the two regions, (ii) at least two cases are
reported in each region and (iii) no cases are reported in either region.

1.4. Kessler (1993) estimated that the reporting rate for serious adverse reactions to prescription
drugs in the U.S. is about 1%. Using this as the underlying reporting rate, compute the
probability that of the 100 serious reactions occurring in a given period at a medical facility,
at most 5 will be reported. Use three methods for this: the exact binomial probability, the
Poisson approximation to the binomial and the normal approximation to the binomial.
Comment on the results.

1.5. For the geometric variate T with π = 0.2, what is (i) P[ T = 2 ] and (ii) P[ T > 4 ]?

1.6. Show that the negative binomial variable arises as the sum of r independent geometric
variables. Use this to derive its mean and variance.

1.7. Determine the mean, median and variance of the PBDs with generating polynomials

f(φ) = (1 + φ)2(1 + 2φ+ φ2)2

and

f(φ) = (2 + 3φ)(3 + 2φ)2

1.8. Let Ω = {1, 2, · · · , n} and let P[ T = t ] = 1/n for t ∈ Ω. T is the discrete uniform random
variable. Is T a PBD variate? Compute the mean, median and variance of T .

1.9. If T1 and T2 are discrete uniform variates on Ω1 = {1, 2, · · · , n1} and Ω2 = {1, 2, · · · , n2},
what is the distribution of (i) T1 + T2 and (ii) min(T1, T2)?

1.10. For a Poisson variate T , find the probability that (i) T is even and (ii) T is odd.

1.11. Prove the variance formulae in Theorem 1.1.

1.12. Derive the mean and variance of the binomial, Poisson, central hypergeometric and negative
binomial distributions in two ways, directly and by using Theorem 1.1.

1.13. What is the median of B(n, 0.5) when (i) n is even and (ii) n is odd?
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1.14. Determine the medians of the Poisson distributions with λ = 0.5, 1.0, 1.5.

1.15. What is the median of the hypergeometric distribution when (i) φ = 1.0, and (ii) φ = 0.5
and n = m.

1.16. Determine the medians of the negative binomial distributions with r = 5 and π = 0.25, 0.50, 0.75.

1.17. How would you determine the median of the geometric distribution?

1.18. The kth factorial moment of T is

E[ T (T − 1) . . . (T − k + 1) ]

Determine the kth factorial moment of a PBD in terms of its gp, f(φ). Use this to find
the kth factorial moments of the binomial, Poisson and negative binomial distributions.

1.19. (i) If T is a B(n, π) variate, then prove that

E[(T − nπ)3] = nπ(1 − π)(1 − 2π)

(ii) If T is a Poisson variate with parameter λ, then prove that

E[(T − λ)3] = λ

1.20. Let (T1, T2, T3) have M(12; 0.5, 0.25, 0.25) distribution. What is the (i) marginal probability
of T1 and (ii) conditional probability of T1 given T2 = t2? Further, compute: (i) P[ T1 =
4, T2 = 3 ], (ii) P[ T1 ≥ 3, T2 ≥ 2 ], (iii) P[ T1 = 4 ], and (iv) P[ T1 ≤ 4 ].

1.21. What is the generating polynomial for a multinomial variate with n trials and K outcome
categories? For this distribution, show that

∑

t∈Ω

c(t) = Kn

1.22. For the trinomial distribution of §1.10, show that the conditional distribution of T1 given
T2 is a PBD.

1.23. Derive the mean, variance and covariance formulae for the multinomial distribution stated
in §1.10.

1.24. Consider the model for two dependent Bernoulli variates in §1.10. What is the probability
of having cataracts in both eyes given that at least one is affected?

1.25. Suppose T1 is a B(n, π1) and T2 is a B(m, π2) random variable. If they are independent,
determine the distribution of T1 + T2. Is it a PBD?

1.26. Give a formal proof of Theorem 1.3.

1.27. Prove that the sum of iid multivariate PBD vectors is a multivariate PBD vector whose gp
is a product of the gps of the vectors in the sum.

1.28. Prove the properties 1.8, 1.9 and 1.10 of the multinomial distribution stated in §1.10, and
state them in a general form.

1.29. If (T1, T2) has a bivariate PBD, then derive the covariance of T1 and T2 in terms of its
generating function. Extend Theorem 1.1 to a multivariate PBD including the specification
of the covariances in terms of the generating polynomial f(φφφ). Apply these results to the
multinomial distribution and the negative trinomial distribution.

1.30. Suppose Tj, j = 1, . . . , K is a binomial variate with success probability π and total number
of trials equal to nj. How would you obtain the distribution of ΣjT 2

j ? Extend your result
to K Poisson, negative binomial and general PBD distributions.
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1.31. Give a detailed proof that the negative trinomial of §1.11 is a PBD and clearly specify
its sample space. Further: (i) Derive the mean and variance of T1 and T2 as well as the
covariance between them. (ii) What is the distribution of T1+T2? (iii) What is the marginal
distribution of T1? (iv) Generalize this to the case with K outcome categories.

1.32. Consider an experiment with three outcome categories in each independent trial. It is
continued until r outcomes of either type 2 or type 3 occur. Derive the joint distribution
of (T1, T2). Is it a PBD?

1.33. Suppose T1, · · · , TK are independent but not necessarily identically distributed PBD vari-
ates with gps f1(φ1), · · · , fK(φK), and sample spaces Ω1, · · · ,ΩK, respectively. Is the
distribution of T = T1 + · · ·+ TK necessarily a PBD? Apply this to: (i) three independent
binomial variates, (ii) three independent Poisson variates and (iii) two independent negative
binomial variates.

1.34. For a nonnegative random variable T , and for |ψ| < 1, the probability generating function,
GT (ψ), is defined by

GT (ψ) = E[ψT ] =
∑

t

ψtP[ T = t ]

Suppose T is a PBD variate with gp f(φ). Then show that

GT (ψ) =
f(ψφ)
f(φ)

Therefore, the probability generating function of a PBD is the ratio of two functions, each
of which is obtained from the gp, f(φ). Extend this to the multivariate PBD.

1.35. Prove the Factorization Theorem for sufficient statistics (Theorem 1.4).

1.36. For a discrete random variable taking nonnegative integer values, T , show that

E[ T ] =
∞∑

j =0

P[ T > j ]

Use this to find the mean of the geometric distribution.

1.37. Suppose the distribution of T given N = n is B(n, π), with the distribution of N being
Poisson with mean λ. What is the unconditional distribution of T ? Is it a PBD?

1.38. Suppose the distribution of T given N = n is B(n, π), with the distribution of N being a
negative binomial with r, the maximal number of failures allowed, and success probability,
π∗. What is the unconditional distribution of T ? Is it a PBD?

1.39. Suppose the distribution of T given R = r is a negative binomial with r, the maximal
number of failures allowed, and success probability, π. Further, the distribution of R is
Poisson with mean λ. What is the unconditional distribution of T ? Is it a PBD?

1.40. Consider K independent events, A1, · · · , AK . Show that the probability that at least one
of them will occur is

P[
K⋃

k =1

Ak ] = 1 −
K∏

k =1

(1 − P[Ak ])





CHAPTER 2

One-Sided Univariate Analysis

2.1 Introduction

This chapter introduces exact methods for analyzing data from polynomial based distributions.
The corresponding asymptotic methods are also described. Its specific aims are:

• To formulate one-sided and two-sided hypotheses setups for the parameter of a statistical
model.

• To show how the tail area of a probability distribution can be used as a measure of evidence
for a one-sided hypothesis.

• To formulate one-sided conventional exact, mid-p exact and asymptotic evidence functions
for univariate PBDs.

• To define one-sided p-values and confidence intervals, and relate them to the one-sided
evidence function.

• To define the size, significance level and critical region of a statistical test.

• To begin the discussion, to be continued in later chapters, of the linkage between study design
and method of data analysis.

While the binomial, Poisson and negative binomial distributions are used to illustrate the ideas
of this chapter, they apply broadly to other naturally univariate PBDs and to those univariate
PBDs constructed by conditioning from a multivariate PBD. For now, we focus on one-sided
methods. Though less frequently applied in practice, they form a useful device for explaining the
logic of the tail area approach to statistical inference, and a foundation upon which the more
common two-sided methods are formulated.

2.2 One Parameter Inference

The scientific aims of a study often require assessing the value of one or more of the parameters
of a statistical model. We seek, for example, to evaluate the diagnostic utility of a neural
network algorithm for subjects who have had a myocardial infarction. Its actual but unknown
false diagnosis rate among the patients with an infarct is π. We want to check if this rate exceeds
π0, the maximally acceptable rate.

We begin with defining a key idea in study design. Suppose we have a large population of subjects
whose characteristics are defined by the random variable T (it may be a vector). Suppose we
sample n subjects from this population. Let Tj denote the characteristic of the jth subject in
this sample. This sample is said to be a random sample from the parent population if (i) for
any t, P[ Tj = t ] = P[ T = t ] and (ii) Tj, j = 1, . . . , n are mutually independent.

A random sample has the feature that probability statements we make about it apply to the
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population from which it was drawn as well. It is then said to protect the generalizability or
external validity of the study.

In particular, for a random sample with binary variables, the expected mean value is the popu-
lation proportion of the binary characteristic.

E

⎡

⎣ 1
n

∑

j

Tj

⎤

⎦ = E[ T ] = π

Example 2.1: Suppose π0 = 0.05, or 5%. In one study, a particular neural network algorithm
correctly identified 35 of the 36 patients who actually had a myocardial infarct. The observed
error rate thereby was 1/36 or 2.8% (Baxt 1991; Newman 1995). What do we conclude?

********

The objective of such a study may be stated as a choice between two competing hypotheses
regarding the parameter of interest. They are the null hypothesis, denoted H0, and the alter-
native hypothesis, denoted H1. Several ways of framing such hypotheses exist. In a one-sided
setup, the null and the alternative hypotheses represent a segment of the real line to the left
or right of a specified value. For example, we write:

H0 : π ≤ π0 versus H1 : π > π0 (2.1)

Alternatively, the directions of the one-sided null and alternative hypotheses may be reversed.
That is:

H0 : π ≥ π0 versus H1 : π < π0 (2.2)

One-sided hypotheses are also called directional hypotheses. At times, the one-sided hypothesis
testing setup (for example, (2.2)) is, not quite accurately, written as testing a simpleH0 : π = π0

versus H1 : π < π0.

********

Example 2.2: The gender of a newborn baby is a random entity. Some environmental factors
may, however, alter the male to female ratio in the newborn babies. Irgens et al. (1997) looked
at this ratio among the offsprings of workers who had been exposed to low frequency electro-
magnetic fields (LFEMF) on the job. Let us assume that the proportion of male offsprings in
an unexposed but otherwise comparable reference population is known. Call it π0, and let π be
the unknown proportion of males in the LFEMF exposed population. Then we ask:

Does occupational exposure to LFEMF affect the offspring sex ratio? That is, is π different from
π0?

********

Such a query is formalized in a two-sided hypotheses setup. Here the null and alternative
hypotheses are couched in terms of equivalence or nonequivalence to a given value.


