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Preface
The hallmark of the CRC Press “Electronics Engineering Series” of books is their
depth of coverage on targeted subjects. Even the more general-interest publication of
the series—The Electronics Handbook—covers the entire realm of electronics in ex-
ceptional detail.

This book is a departure from those that have gone before it. The Resource Hand-
book of Electronics is intended to provide quick access to basic information, mostly
through figures and tables. For each of the 20-plus chapters, a broad-brush overview is
given, followed in most cases by extensive tabular data. The Resource Handbook of
Electronics is intended for readers who need specific data at their fingertips, accessible
in a convenient format.

This book is intended for engineers, technicians, operators, and technical managers
involved in the specification, design, installation, operation, maintenance, and man-
agement of electronics facilities. The book is designed to be a hands-on pocket guide
that holds solutions to specific problems. In this regard, it is a companion publication to
The Electronics Handbook and the other books in the series. For readers who need ex-
tensive background on a given subject, The Electronics Handbook and its related works
provide the necessary level of detail. For readers who need a broad overview of the sub-
ject and essential data relating to it, The Resource Handbook of Electronics is the ideal
publication.

This book is organized in a logical sequence that begins with fundamental electrical
properties and builds to higher levels of sophistication from one chapter to the next.
Chapters are devoted to all of the most common components and devices, in addition to
higher-level applications of those components.

Among the extensive data contained in The Resource Handbook of Electronics are

• Frequency assignments—A complete and up-to-date listing of frequencies used
by various services in the U.S. and elsewhere

• Glossary of terms—An extensive dictionary of electronic terms, including ab-
breviations and acronyms

• Conversion factors—Detailed tables covering all types of conversion require-
ments in the field of electronics

The Resource Handbook of Electronics is the most detailed publication of its kind. I
trust you will find it useful on the job, day in and day out.

Jerry C. Whitaker
Morgan Hill, California
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For updated information on this and other engineering books, visit the author’s
Internet site
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Chapter

1
Fundamental Electrical Properties

1.1 Introduction
The atomic theory of matter specifies that each of the many chemical elements is
composed of unique and identifiable particles called atoms. In ancient times only 10
were known in their pure, uncombined form; these were carbon, sulfur, copper, anti-
mony, iron, tin, gold, silver, mercury, and lead. Of the several hundred now identified,
less than 50 are found in an uncombined, or chemically free, form on earth.

Each atom consists of a compact nucleus of positively and negatively charged parti-
cles (protons and electrons, respectively). Additional electrons travel in well-defined
orbits around the nucleus. The electron orbits are grouped in regions called shells, and
the number of electrons in each orbit increases with the increase in orbit diameter in ac-
cordance with quantum-theory laws of physics. The diameter of the outer orbiting path
of electrons in an atom is in the order of one-millionth (10–6) millimeter, and the nu-
cleus, one-millionth of that. These typical figures emphasize the minute size of the
atom.

1.2 Electrical Fundamentals
The nucleus and the free electrons for an iron atom are shown in the schematic dia-
gram in Figure 1.1. Note that the electrons are spinning in different directions. This
rotation creates a magnetic field surrounding each electron. If the number of electrons
with positive spins is equal to the number with negative spins, then the net field is
zero and the atom exhibits no magnetic field.

In the diagram, although the electrons in the first, second, and fourth shells balance
each other, in the third shell five electrons have clockwise positive spins, and one a
counterclockwise negative spin, which gives the iron atom in this particular electron
configuration a cumulative magnetic effect.

The parallel alignment of the electron spins over regions, known as domains, con-
taining a large number of atoms. When a magnetic material is in a demagnetized state,
the direction of magnetization in the domain is in a random order. Magnetization by an
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external field takes place by a change or displacement in the isolation of the domains,
with the result that a large number of the atoms are aligned with their charged electrons
in parallel.

1.2.1 Conductors and Insulators

In some elements, such as copper, the electrons in the outer shells of the atom are so
weakly bound to the nucleus that they can be released by a small electrical force, or
voltage. A voltage applied between two points on a length of a metallic conductor
produces the flow of an electric current, and an electric field is established around the
conductor. The conductivity is a constant for each metal that is unaffected by the cur-
rent through or the intensity of any external electric field.

In some nonmetallic materials, the free electrons are so tightly bound by forces in
the atom that, upon the application of an external voltage, they will not separate from
their atom except by an electrical force strong enough to destroy the insulating proper-
ties of the material. However, the charges will realign within the structure of their atom.
This condition occurs in the insulating material (dielectric) of a capacitor when a volt-
age is applied to the two conductors encasing the dielectric.

Semiconductors are electronic conducting materials wherein the conductivity is de-
pendent primarily upon impurities in the material. In addition to negative mobile
charges of electrons, positive mobile charges are present. These positive charges are
called holes because each exists as an absence of electrons. Holes (+) and electrons (–),

Figure 1.1 Schematic of the iron (Fe) atom.
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because they are oppositely charged, move in opposite directions in an electric field.
The conductivity of semiconductors is highly sensitive to, and increases with, tempera-
ture.

1.2.2 Direct Current (dc)

Direct current is defined as a unidirectional current in which there are no significant
changes in the current flow. In practice, the term frequently is used to identify a volt-
age source, in which case variations in the load can result in fluctuations in the current
but not in the direction.

Direct current was used in the first systems to distribute electricity for household
and industrial power. For safety reasons, and the voltage requirements of lamps and
motors, distribution was at the low nominal voltage of 110. The losses in distribution
circuits at this voltage seriously restricted the length of transmission lines and the size
of the areas that could be covered. Consequently, only a relatively small area could be
served by a single generating plant. It was not until the development of alternating-cur-
rent systems and the voltage transformer that it was feasible to transport high levels of
power at relatively low current over long distances for subsequent low-voltage distribu-
tion to consumers.

1.2.3 Alternating Current (ac)

Alternating current is defined as a current that reverses direction at a periodic rate.
The average value of alternating current over a period of one cycle is equal to zero.
The effective value of an alternating current in the supply of energy is measured in
terms of the root mean square (rms) value. The rms is the square root of the square of
all the values, positive and negative, during a complete cycle, usually a sine wave. Be-
cause rms values cannot be added directly, it is necessary to perform an rms addition
as shown in the equation:

V V V Vrms total rms rms rms n= + +1
2

2
2 2L (1.1)

As in the definition of direct current, in practice the term frequently is used to iden-
tify a voltage source.

The level of a sine-wave alternating current or voltage can be specified by two other
methods of measurement in addition to rms. These are average and peak. A sine-wave
signal and the rms and average levels are shown in Figure 1.2. The levels of complex,
symmetrical ac signals are specified as the peak level from the axis, as shown in the fig-
ure.

1.2.4 Static Electricity

The phenomenon of static electricity and related potential differences concerns con-
figurations of conductors and insulators where no current flows and all electrical
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forces are unchanging; hence the term static. Nevertheless, static forces are present
because of the number of excess electrons or protons in an object. A static charge can
be induced by the application of a voltage to an object. A flow of current to or from
the object can result from either a breakdown of the surrounding nonconducting ma-
terial or by the connection of a conductor to the object.

Two basic laws regarding electrons and protons are:

• Like charges exert a repelling force on each other; electrons repel other electrons
and protons repel other protons

• Opposite charges attract each other; electrons and protons are attracted to each
other

Therefore, if two objects each contain exactly as many electrons as protons in each
atom, there is no electrostatic force between the two. On the other hand, if one object
is charged with an excess of protons (deficiency of electrons) and the other an excess
of electrons, there will be a relatively weak attraction that diminishes rapidly with dis-
tance. An attraction also will occur between a neutral and a charged object.

Another fundamental law, developed by Faraday, governing static electricity is that
all of the charge of any conductor not carrying a current lies in the surface of the con-
ductor. Thus, any electric fields external to a completely enclosed metal box will not
penetrate beyond the surface. Conversely, fields within the box will not exert any force
on objects outside the box. The box need not be a solid surface; a conduction cage or
grid will suffice. This type of isolation frequently is referred to as a Faraday shield.

1.2.5 Noise in Electronic Circuits

Noise has become the standard term for signals that are random and that are com-
bined with the circuit signal to affect the overall performance of a system. As the
study of noise has progressed, engineers have come to realize that there are many
sources of noise in circuits. The following definitions are commonly used in discus-
sions of circuit noise:

Figure 1.2 Root mean square (rms) measurements. The relationship of rms and aver-
age values is shown.
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• White noise: a signal that has its energy evenly distributed over the entire fre-
quency spectrum, within the frequency range of interest (typically below fre-
quencies in the infrared range). Because white noise is totally random, it may
seem inappropriate to refer to its frequency range, because it is not really periodic
in the ordinary sense. Nevertheless, by examining an oscilloscope trace of white
noise, it can be verified that every trace is different, as the noise never repeats it-
self, and yet each trace looks the same. There is a strong theoretical foundation to
represent the frequency content of such signals as covering the frequency spec-
trum evenly. In this way the impact on other periodic signals can be analyzed. The
term white noise arises from the fact that, similar to white light, which has equal
amounts of all light frequencies, white noise has equal amounts of noise at all fre-
quencies within circuit operating ranges.

• Interference: the name given to any predictable, periodic signal that occurs in an
electronic circuit in addition to the signal the circuit is designed to process. This is
distinguished from a noise signal by the fact that it occupies a relatively small fre-
quency range, and because it is predictable it can often be filtered out. Usually, in-
terference comes from another electronic system such as an interfering radio
source.

• Thermal noise: any noise that is generated within a circuit and is temperature-de-
pendent. This signal usually is the result of the influence of temperature directly
on the operating characteristics of circuit components, which because of the ran-
dom motion of molecules as a result of temperature, in turn creates a random fluc-
tuation of the signal being processed.

• Shot noise: a type of circuit noise that is not temperature-dependent, and is not
white noise in the sense that it tends to diminish at higher frequencies. This noise
usually occurs in components whose operation depends on a mean particle resi-
dence time for the active electrons within the device. The cutoff frequency above
which noise disappears is closely related to the inverse of this characteristic parti-
cle residence time.

1.3 References
1. Whitaker, Jerry C. (ed.), The Electronics Handbook, CRC Press, Boca Raton, FL,

1996.

1.4 Bibliography
Benson, K. Blair, and Jerry C. Whitaker, Television and Audio Handbook for Techni-

cians and Engineers, McGraw-Hill, New York, NY, 1990.
Benson, K. Blair, Audio Engineering Handbook, McGraw-Hill, New York, NY, 1988.
Whitaker, Jerry C., Television Engineers’ Field Manual, McGraw-Hill, New York,

NY, 2000.
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1.5 Tabular Data

Table 1.1 Symbols and Terminology for Physical and Chemical Quantities: Classical
Mechanics (From [1]. Used with permission.)
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Table 1.2 Symbols and Terminology for Physical and Chemical Quantities: Electricity
and Magnetism (From [1]. Used with permission.)
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Table 1.3 Symbols and Terminology for Physical and Chemical Quantities: Electromag-
netic Radiation (From [1]. Used with permission.)
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Table 1.4 Symbols and Terminology for Physical and Chemical Quantities: Solid State
(From [1]. Used with permission.)
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Table 1.6 Tensile Strength of Selected Wrought Aluminum Alloys (From [1]. Used with
permission.)

Table 1.5 Total Elongation at Failure of Selected Polymers (From [1]. Used with permis-
sion.)
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Table 1.7 Density of Selected Materials, Mg/m3 (From

 

[1]. Used with permission.)
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12 Chapter One

Table 1.8 Dielectric Constants of Ceramics (From [1]. Used with permission.)

Table 1.9 Dielectric Constants of Glass (From [1]. Used with permission.)
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Table 1.10 Dielectric Constants of Solids in the Temperature Range 17–22°C (From [1].
Used with permission.)
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Chapter

2
International Standards and

Constants

2.1 Introduction
Standardization usually starts within a company as a way to reduce costs associated
with parts stocking, design drawings, training, and retraining of personnel. The next
level might be a cooperative agreement between firms making similar equipment to
use standardized dimensions, parts, and components. Competition, trade secrets, and
the NIH factor (not invented here) often generate an atmosphere that prevents such an
understanding. Enter the professional engineering society, which promises a forum
for discussion between users and engineers while downplaying the commercial and
business aspects.

2.2 The History of Modern Standards
In 1836, the U.S. Congress authorized the Office of Weights and Measures (OWM)
for the primary purpose of ensuring uniformity in custom house dealings. The Trea-
sury Department was charged with its operation. As advancements in science and
technology fueled the industrial revolution, it was apparent that standardization of
hardware and test methods was necessary to promote commercial development and to
compete successfully with the rest of the world. The industrial revolution in the 1830s
introduced the need for interchangeable parts and hardware. Economical manufacture
of transportation equipment, tools, weapons, and other machinery was possible only
with mechanical standardization.

By the late 1800s professional organizations of mechanical, electrical, chemical,
and other engineers were founded with this aim in mind. The Institute of Electrical En-
gineers developed standards between 1890 and 1910 based on the practices of the ma-
jor electrical manufacturers of the time. Such activities were not within the purview of
the OWM, so there was no government involvement during this period. It took the pres-
sures of war production in 1918 to cause the formation of the American Engineering

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



Standards Committee (AESC) to coordinate the activities of various industry and engi-
neering societies. This group became the American Standards Association (ASA) in
1928.

Parallel developments would occur worldwide. The International Bureau of
Weights and Measures was founded in 1875, the International Electrotechnical Com-
mission (IEC) in 1904, and the International Federation of Standardizing Bodies (ISA)
in 1926. Following World War II (1946) this group was reorganized as the International
Standards Organization (ISO) comprised of the ASA and the standardizing bodies of
25 other countries. Present participation is approximately 55 countries and 145 techni-
cal committees. The stated mission of the ISO is to facilitate the internationalization
and unification of industrial standards.

The International Telecommunications Union (ITU) was founded in 1865 for the
purpose of coordinating and interfacing telegraphic communications worldwide. To-
day, its member countries develop regulations and voluntary recommendations, and
provide coordination of telecommunications development. A sub-group, the Interna-
tional Radio Consultative Committee (CCIR) (which no longer exists under this name),
is concerned with certain transmission standards and the compatible use of the fre-
quency spectrum, including geostationary satellite orbit assignments. Standardized
transmission formats to allow interchange of communications over national bound-
aries are the purview of this committee. Because these standards involve international
treaties, negotiations are channeled through the U.S. State Department.

2.2.1 American National Standards Institute (ANSI)

ANSI coordinates policies to promote procedures, guidelines, and the consistency of
standards development. Due process procedures ensure that participation is open to
all persons who are materially affected by the activities without domination by a par-
ticular group. Written procedures are available to ensure that consistent methods are
used for standards developments and appeals. Today, there are more than 1000 mem-
bers who support the U.S. voluntary standardization system as members of the ANSI
federation. This support keeps the Institute financially sound and the system free of
government control.

The functions of ANSI include: (1) serving as a clearinghouse on standards devel-
opment and supplying standards-related publications and information, and (2) the fol-
lowing business development issues:

• Provides national and international standards information necessary to market
products worldwide.

• Offers American National Standards that assist companies in reducing operating
and purchasing costs, thereby assuring product quality and safety.

• Offers an opportunity to voice opinion through representation on numerous tech-
nical advisory groups, councils, and boards.

• Furnishes national and international recognition of standards for credibility and
force in domestic commerce and world trade.
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• Provides a path to influence and comment on the development of standards in the
international arena.

Prospective standards must be submitted by an ANSI accredited standards devel-
oper. There are three methods which may be used:

• Accredited organization method. This approach is most often used by associa-
tions and societies having an interest in developing standards. Participation is
open to all interested parties as well as members of the association or society. The
standards developer must fashion its own operating procedures, which must meet
the general requirements of the ANSI procedures.

• Accredited standards committee method. Standing committees of directly and
materially affected interests develop documents and establish consensus in sup-
port of the document. This method is most often used when a standard affects a
broad range of diverse interests or where multiple associations or societies with
similar interests exist. These committees are administered by a secretariat, an or-
ganization that assumes the responsibility for providing compliance with the per-
tinent operating procedures. The committee can develop its own operating proce-
dures consistent with ANSI requirements, or it can adopt standard ANSI proce-
dures.

• Accredited canvass method. This approach is used by smaller trade associations
or societies that have documented current industry practices and desire that these
standards be recognized nationally. Generally, these developers are responsible
for less than five standards. The developer identifies those who are directly and
materially affected by the activity in question and conducts a letter ballot canvass
of those interests to determine consensus. Developers must use standard ANSI
procedures.

Note that all methods must fulfill the basic requirements of public review, voting,
consideration, and disposition of all views and objections, and an appeals mechanism.

The introduction of new technologies or changes in the direction of industry groups
or engineering societies may require a mediating body to assign responsibility for a de-
veloping standard to the proper group. The Joint Committee for Intersociety Coordina-
tion (JCIC) operates under ANSI to fulfill this need.

2.2.2 Professional Society Engineering Committees

The engineering groups that collate and coordinate activities that are eventually pre-
sented to standardization bodies encourage participation from all concerned parties.
Meetings are often scheduled in connection with technical conferences to promote
greater participation. Other necessary meetings are usually scheduled in geographical
locations of the greatest activity in the field. There are no charges or dues to be a
member or to attend the meetings. An interest in these activities can still be served by
reading the reports from these groups in the appropriate professional journals. These
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wheels may seem to grind exceedingly slowly at times, but the adoption of standards
that may have to endure for 50 years or more should not be taken lightly.

2.3 References
1. Whitaker, Jerry C. (ed.), The Electronics Handbook, CRC Press, Boca Raton, FL,

1996.

2.4 Bibliography
Whitaker, Jerry C., and K. Blair Benson (eds.), Standard Handbook of Video and Tele-

vision Engineering, McGraw-Hill, New York, NY, 2000.

2.5 Tabular Data

Name Symbol Quantity

ampere A electric current
ampere per meter A/m magnetic field strength
ampere per square meter A/m2 current density
becquerel Bg activity (of a radionuclide)
candela cd luminous intensity
coulomb C electric charge
coulomb per kilogram C/kg exposure (x and gamma rays)
coulomb per sq. meter C/m2 electric flux density
cubic meter m3 volume
cubic meter per kilogram m3/kg specific volume
degree Celsius °C Celsius temperature
farad F capacitance
farad per meter F/m permittivity
henry H inductance
henry per meter H/m permeability
hertz Hz frequency
joule J energy, work, quantity of heat
joule per cubic meter J/m3 energy density
joule per kelvin J/K heat capacity
joule per kilogram K J/(kg•K) specific heat capacity
joule per mole J/mol molar energy
kelvin K thermodynamic temperature
kilogram kg mass
kilogram per cubic meter kg/m3 density, mass density
lumen lm luminous flux
lux lx luminance

Table 2.1 Common Standard Units
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Name Symbol Quantity

meter m length
meter per second m/s speed, velocity
meter per second sq. m/s2 acceleration
mole mol amount of substance
newton N force
newton per meter N/m surface tension
ohm Ω electrical resistance
pascal Pa pressure, stress
pascal second Pa•s dynamic viscosity
radian rad plane angle
radian per second rad/s angular velocity
radian per second squared rad/s2 angular acceleration
second s time
siemens S electrical conductance
square meter m2 area
steradian sr solid angle
tesla T magnetic flux density
volt V electrical potential
volt per meter V/m electric field strength
watt W power, radiant flux
watt per meter kelvin W/(m•K) thermal conductivity
watt per square meter W/m2 heat (power) flux density
weber Wb magnetic flux

Multiple Prefix Symbol

1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
10 deka da
10-1 deci d
10-2 centi c
10-3 milli m
10-6 micro µ
10-9 nano n
10-12 pico p
10-15 femto f
10-18 atto a

Table 2.2 Standard Prefixes

Table 2.1 Common Standard Units (continued)
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Unit Symbol

centimeter cm
cubic centimeter cm3

cubic meter per second m3/s
gigahertz GHz
gram g
kilohertz kHz
kilohm kΩ
kilojoule kJ
kilometer km
kilovolt kV
kilovoltampere kVA
kilowatt kW
megahertz MHz
megavolt MV
megawatt MW
megohm MΩ
microampere µA
microfarad µF
microgram µg
microhenry µH
microsecond µs
microwatt µW
milliampere mA
milligram mg
millihenry mH
millimeter mm
millisecond ms
millivolt mV
milliwatt mW
nanoampere nA
nanofarad nF
nanometer nm
nanosecond ns
nanowatt nW
picoampere pA
picofarad pF
picosecond ps
picowatt pW

Table 2.3 Common Standard Units for Electrical Work
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Table 2.4 Names and Symbols for the SI Base Units (From [1]. Used Used with permission.)
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Table 2.5 Units in Use Together with the SI (These units are not part of the SI, but it is recognized that
they will continue to be used in appropriate contexts. From [1]. Used

permission

 with permission.)
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Table 2.6 Derived Units with Special Names and Symbols (From [1]. Used

permission

with permission.)
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Table 2.7 The Greek Alphabet (From [1]. Used  with permission.)
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Table 2.8 Constants (From [1]. Used with permission.)
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Chapter

3
Electromagnetic Spectrum

3.1 Introduction
The usable spectrum of electromagnetic-radiation frequencies extends over a range
from below 100 Hz for power distribution to 1020 for the shortest X-rays. The lower
frequencies are used primarily for terrestrial broadcasting and communications. The
higher frequencies include visible and near-visible infrared and ultraviolet light, and
X-rays.

3.1.1 Operating Frequency Bands

The standard frequency band designations are listed in Tables 3.1 and 3.2. Alternate
and more detailed subdivision of the VHF, UHF, SHF, and EHF bands are given in Ta-
bles 3.3 and 3.4.

Low-End Spectrum Frequencies (1 to 1000 Hz)

Electric power is transmitted by wire but not by radiation at 50 and 60 Hz, and in
some limited areas, at 25 Hz. Aircraft use 400-Hz power in order to reduce the weight
of iron in generators and transformers. The restricted bandwidth that would be avail-
able for communication channels is generally inadequate for voice or data transmis-
sion, although some use has been made of communication over power distribution cir-
cuits using modulated carrier frequencies.

Low-End Radio Frequencies (1000 to 100 kHz)

These low frequencies are used for very long distance radio-telegraphic communica-
tion where extreme reliability is required and where high-power and long antennas
can be erected. The primary bands of interest for radio communications are given in
Table 3.5.
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Medium-Frequency Radio (20 kHz to 2 MHz)

The low-frequency portion of the band is used for around-the-clock communication
services over moderately long distances and where adequate power is available to
overcome the high level of atmospheric noise. The upper portion is used for AM ra-
dio, although the strong and quite variable sky wave occurring during the night results
in substandard quality and severe fading at times. The greatest use is for AM broad-
casting, in addition to fixed and mobile service, LORAN ship and aircraft navigation,
and amateur radio communication.

High-Frequency Radio (2 to 30 MHz)

This band provides reliable medium-range coverage during daylight and, when the
transmission path is in total darkness, worldwide long-distance service, although the

Table 3.1 Standardized Frequency Bands (From [1]. Used with permission.)

Table 3.2 Standardized Frequency Bands at 1GHz and Above (From [1]. Used with per-
mission.)
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reliability and signal quality of the latter is dependent to a large degree upon iono-
spheric conditions and related long-term variations in sun-spot activity affecting
sky-wave propagation. The primary applications include broadcasting, fixed and mo-
bile services, telemetering, and amateur transmissions.

Table 3.3 Detailed Subdivision of the UHF, SHF, and EHF Bands (From [1]. Used with
permission.)

Table 3.4 Subdivision of the VHF, UHF, SHF Lower Part of the EHF Band (From [1].
Used with permission.)
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Very High and Ultrahigh Frequencies (30 MHz to 3 GHz)

VHF and UHF bands, because of the greater channel bandwidth possible, can provide
transmission of a large amount of information, either as television detail or data com-
munication. Furthermore, the shorter wavelengths permit the use of highly directional
parabolic or multielement antennas. Reliable long-distance communication is pro-
vided using high-power tropospheric scatter techniques. The multitude of uses in-
clude, in addition to television, fixed and mobile communication services, amateur
radio, radio astronomy, satellite communication, telemetering, and radar.

Microwaves (3 to 300 GHz)

At these frequencies, many transmission characteristics are similar to those used for
shorter optical waves, which limit the distances covered to line of sight. Typical uses
include television relay, satellite, radar, and wide-band information services. (See Ta-
bles 3.6 and 3.7.)

Infrared, Visible, and Ultraviolet Light

The portion of the spectrum visible to the eye covers the gamut of transmitted colors
ranging from red, through yellow, green, cyan, and blue. It is bracketed by infrared on
the low-frequency side and ultraviolet (UV) on the high side. Infrared signals are used
in a variety of consumer and industrial equipments for remote controls and sensor cir-
cuits in security systems. The most common use of UV waves is for excitation of
phosphors to produce visible illumination.

X-Rays

Medical and biological examination techniques and industrial and security inspection
systems are the best-known applications of X-rays. X-rays in the higher-frequency
range are classified as hard X-rays or gamma rays. Exposure to X-rays for long peri-
ods can result in serious irreversible damage to living cells or organisms.

Table 3.5 Radio Frequency Bands (From [1]. Used with permission.)
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Table 3.6 Applications in the Microwave Bands (From [1]. Used with permission.)
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3.2 Radio Wave Propagation
To visualize a radio wave, consider the image of a sine wave being traced across the
screen of an oscilloscope [2]. As the image is traced, it sweeps across the screen at a
specified rate, constantly changing amplitude and phase with relation to its starting
point at the left side of the screen. Consider the left side of the screen to be the an-
tenna, the horizontal axis to be distance instead of time, and the sweep speed to be the
speed of light, or at least very close to the speed of light, and the propagation of the ra-
dio wave is visualized. To be correct, the traveling, or propagating, radio wave is re-
ally a wavefront, as it comprises an electric field component and an orthogonal mag-
netic field component. The distance between wave crests is defined as the wavelength
and is calculated by,

λ = c

f
(3.1)

where:
λ = wavelength, m
c = the speed of light, approximately 2.998 × 108 m/s
f = frequency, Hz

At any point in space far away from the antenna, on the order of 10 wavelengths or 10
times the aperture of the antenna to avoid near-field effects, the electric and magnetic
fields will be orthogonal and remain constant in amplitude and phase in relation to any
other point in space. The polarization of the radio wave is defined by the polarization of
the electric field, horizontal if parallel to the Earth’s surface and vertical if perpendicu-

Table 3.6 Applications in the Microwave Bands (continued)
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lar to it. Typically, polarization can be determined by the orientation of the antenna radi-
ating elements.

An isotropic antenna is one that radiates equally in all directions. To state this an-
other way, it has a gain of unity.

If this isotropic antenna is located in an absolute vacuum and excited with a given
amount of power at some frequency, as time progresses the radiated power must be
equally distributed along the surface of an ever expanding sphere surrounding the iso-
tropic antenna. The power density at any given point on the surface of this imaginary
sphere is simply the radiated power divided by the surface area of the sphere, that is:

Table 3.7 Satellite Frequency Allocations (From [1]. Used with permission.)
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P
P

D
d

t=
4 2π

(3.2)

where:
Pd = power density, W/m2

D = distance from antenna, m
Pt = radiated power, W

Because power and voltage, in this case power density and electric field strength, are
related by impedance, it is possible to determine the electric field strength as a function
of distance given that the impedance of free space is taken to be approximately 377 Ω,

E Z P
P

D
d

t= = 5 48. (3.3)

where E is the electric field strength in volts per meter.
Converting to units of kilowatts for power, the equation becomes

E
P

D

t kW= 173
( )

V/m (3.4)

which is the form in which the equation is usually seen. Because a half-wave dipole
has a gain of 2.15 dB over that of an isotropic radiator (dBi), the equation for the elec-
tric field strength from a half-wave dipole is

E
P

D

t kW= 222
( )

V/m (3.5)

From these equations it is evident that, for a given radiated power, the electric field
strength decreases linearly with the distance from the antenna, and power density de-
creases as the square of the distance from the antenna.

3.2.1 Free Space Path Loss

A typical problem in the design of a radio frequency communications system requires
the calculation of the power available at the output terminals of the receive antenna
[2]. Although the gain or loss characteristics of the equipment at the receiver and
transmitter sites can be ascertained from manufacturer’s data, the effective loss be-
tween the two antennas must be stated in a way that allows for the characterization of
the transmission path between the antennas. The ratio of the power radiated by the
transmit antenna to the power available at the receive antenna is known as the path
loss and is usually expressed in decibels. The minimum loss on any given path occurs
between two antennas when there are no intervening obstructions and no ground
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