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Preface

1. In these notes we present some introductory material on a particular class of
dynamical systems, called SEMIFLOWS. This class includes, but is not restricted to,
systems that are defined, or modelled, by certain types of differential equations of
evolution (DEEs in short). Our purpose is to introduce, in a relatively self-contained
manner, the basic results of the theory of dynamical systems that can be naturally
extended and applied to study the asymptotic behavior of the solutions of the DEEs
we consider. Equations of evolution include ordinary differential equations (ODEs
in short), partial differential equations of evolution (PDEEs in short), and other types
of equations, such as, for instance, stochastic or difference equations. As such, they
provide natural examples of dynamical systems, since one of the independent vari-
ables (usually called “time”) plays a different role than the other variables (which
in some situations may be called “space” variables). Thus, in this context, the heat
and wave equations are considered as prototypical examples of PDEEs, while ellip-
tic equations such as Laplace’s equation are not considered as evolution equations,
because in these equations all the variables have the same role. Here, we make the
further distinction that “time” evolves continuously; thus, we do not consider stochas-
tic equations, nor, except for some introductory examples, discrete systems (where
“time” varies along a sequence).

2. One of the major goals of the theory of dynamical systems is the study of the
evolution of a system, with the purpose of predicting, as accurately as possible, the
behavior of the system as time becomes large. A quite general feature of the systems
we consider, which is shared with other systems, is a property called DISSIPATIV-
ITY. Loosely speaking, this property can be described by the fact that all solutions
of these systems eventually enter, and remain, in a bounded set, called ABSORB-
ING SET. Thus, the evolution of the solutions of the system can be studied in this
set; as a result, the long time behavior of the system can be described by means of
certain subsets of the absorbing set. Among these, we shall consider three types of
sets, called respectively ATTRACTORS, EXPONENTIAL ATTRACTORS, and INERTIAL
MANIFOLDS. (Exponential attractors are sometimes also known as INERTIAL SETS.)
We will present the fundamental properties of these sets, and then proceed to show
the existence of some of these sets for a number of dynamical systems, generated
by fairly well known physical models. In particular, we shall consider in full detail
two particular PDEEs of evolution: a semilinear version of the heat equation, and
a corresponding version of the dissipative wave equation. These examples allow us
to illustrate the most important features of the theory of semiflows, and to provide a
sort of “template” that can then be applied, in a more or less straightforward fashion,
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to the analysis of other models, with the help of the many specialized references that
exist in the literature.

3. Even a quick survey of much of the existing literature on dynamical systems,
both at the introductory and the specialized level, reveals that the notion of “dynami-
cal system” is used with many different meanings, according to the specific point of
view of the authors. At the opposite extreme, this notion may well be not defined
at all. In these notes, we do not attempt to give a general definition of dynamical
system; rather, we confine ourselves to a special class of systems, properly known as
CONTINUOUS, SEMI-DYNAMICAL SYSTEMS, or CONTINUOUS SEMIFLOWS. Here,
the term “continuous” is used to distinguish these systems from DISCRETE ones,
where only a sequence of successive time values are considered, and “semi-” refers
to the fact that time evolves, i.e. we only consider nonnegative values of the time
variable. For brevity, we shall refer to these systems as SEMIFLOWS (their precise
definition is given in section 2.2). In the introductory chapter 1, we consider more
general TWO-PARAMETER SEMIFLOWS or DYNAMICAL PROCESSES, which allows
us to include some nonautonomous difference or differential equations as generators
of dynamical systems. However, when our presentation can proceed in a more dis-
cursive way, and rigor is not an issue, we conform to the common use and adopt the
general term “dynamical system”.

4. In general, we say that an ODE defines a semiflow if the corresponding CAUCHY
PROBLEM is globally well posed, in the sense we define in section 1.2.1. We can
extend this definition to semiflows defined by PDEEs, by interpreting the PDEE
as an abstract ODE in a suitable Banach space X (see remark 3.2 in chapter 3).
This is a generalization of the usual interpretation of a system of ODEs as a sin-
gle differential equation in the Banach space X = Rn, or in more general finite di-
mensional vector spaces, and explains the qualification of the systems generated by
PDEEs as “infinite dimensional” ones, since in this case X is in general no longer
a finite dimensional space. Examples of PDEEs that can be put in such abstract
form are: the Navier-Stokes equations, the Kuramoto-Sivashinski equations, the
“original” Burger’s equation, the Chafee-Infante and Cahn-Hilliard reaction-diffusion
equations, the Korteweg-de Vries and the Maxwell equations (see chapter 6). Indeed,
many basic notions and results in the theory of the asymptotic behavior of infinite di-
mensional dissipative dynamical systems trace their origin in the study of the Navier-
Stokes equations of fluid dynamics, and have been inspired by a detailed analysis of
both the qualitative properties of their solutions, and their behavior with respect to
numerical computations.

5. Not surprisingly, much of the general terminology in the theory of dynamical
systems, as well as the general spirit of its qualitative results, borrows directly from
the qualitative theory of ODEs in Rn. For example, we shall need to recall some
basic results on stability, equilibrium points, periodic orbits, ω-limit sets, etc. On
the other hand, in an effort to keep these notes within a reasonable length, we shall
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be forced to not discuss many other important topics. In particular, we regretfully
do not include any result on bifurcation theory. Among the many excellent and
fairly complete references on the qualitative theory of ODEs, including ODEs as
dynamical systems, we refer for example to Hirsch and Smale, [HS93], Jordan and
Smith, [JS87], Perko, [Per91], Amann, [Ama90], and Verhulst, [Ver90]. A few other
references, specifically on dynamical systems, are listed in the bibliography. Since
so many articles and books are continually being published, it is almost impossible
to compile an exhaustive list of references; on the other hand, an internet search can
provide all necessary updated references on any particular topic.

6. These notes have their origin in a series of graduate seminars we held at the
Universities of Dresden, Wisconsin-Milwaukee and Tsukuba. Most of the material
we cover is relatively well known, although some of the results we present, in par-
ticular on the existence of an exponential attractor and of an inertial manifold for
semilinear dissipative wave equations, even if not entirely new, do not seem to enjoy
the recognition we feel they deserve. In part, our intention in writing these notes is to
be of some help to “beginners” in the area of infinite dimensional dynamical systems;
that is, anyone who, having a solid background in the classical theory of ODEs and
some knowledge of functional analysis in Sobolev spaces, wishes to proceed to the
study of examples of semiflows arising from DEEs, but may need some “smoothing
into” the subject, before turning to more general introductory texts, such as those of
Temam, [Tem88], the cycle of lectures by Oleinik, [Ole96], or, most recently, Sell-
You, [SY02], and Robinson, [Rob01]. We also hope that these notes may serve as a
ready reference to researchers in more applied fields, who feel the need for a clear
presentation of the background material and results that are necessary for the study
of the specific systems they are interested in. To this end, we have tried to “build
up” the material in as careful and gradual progression as possible, with the goal of
presenting the main topics (in particular, the construction of the exponential attractor
and the inertial manifold), with a larger degree of detail than generally found in most
sources in the literature. If successful, our effort should put the reader in a better
position to refer to more specific texts on global attractors, exponential attractors,
and inertial manifolds, such as, respectively, the books by Babin and Vishik, [BV92],
Eden, Foias, Nicolaenko and Temam, [EFNT94], and Constantin, Foias, Nicolaenko
and Temam, [CFNT89].

7. These notes are organized as follows. As an introduction to the main ideas
of the abstract theory of semiflows, in chapter 1 we present some well known and
well studied examples of finite dimensional dynamical systems, generated by such
celebrated ODEs as Duffing’s equations and Lorenz’ equations. In chapter 2 we
introduce the general definitions of SEMIFLOWS and their GLOBAL ATTRACTORS,
and we present two sufficient conditions that guarantee the existence of the attractor
under different assumption on the asymptotic properties of the semiflow. We also
describe an alternate construction of the attractor, based on the idea of α-contracting
maps. In chapter 3 we apply these results to show that the semiflows generated by
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two types of semilinear dissipative evolution PDEEs (one parabolic and the other
hyperbolic) admit a global attractor in a suitable space of weak solutions. In chap-
ter 4 we briefly develop the theory of EXPONENTIAL ATTRACTORS, and apply this
theory to the models of PDEEs considered in chapter 3. In chapter 5 we present
Hadamard’s GRAPH TRANSFORMATION METHOD for the construction of an INER-
TIAL MANIFOLD, and apply this method to a one-dimensional version of the PDEEs
considered in chapter 3. In chapter 6, we consider a number of other dynamical sys-
tems, generated by PDEEs that model various mathematical physics problems, and
briefly show how the methods developed in the previous chapters can be applied. In
chapter 7 we present a result, due to Mora and Solà-Morales, on the nonexistence
of inertial manifolds for the semiflow generated by a one-dimensional version of the
hyperbolic model of PDEE considered in chapter 3. Finally, in the Appendix we
collect, for the reader’s convenience, a list of various definitions and results from the
classical theory of ODEs and PDEs, functional and nonlinear analysis, semigroup
theory and Lebesgue-Sobolev spaces, that we use in these notes, and provide at least
one reference for each of the definitions and theorems we state.
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Chapter 1

Dynamical Processes

In this chapter we introduce the definition of DYNAMICAL PROCESS, and the main
ideas of the theory of dynamical systems that we want to investigate. We illustrate
these ideas by examining some simple examples of dynamical processes generated
by finite systems of ODEs and by iterated maps.

1.1 Introduction
1. Roughly speaking, the theory of dynamical systems studies mathematical mod-
els of physical “systems” which evolve in time from a “state” which is known at
an initial moment; more specifically, how the evolution of a system depends, or is
influenced by, its initial state. The changing density of a population from a known
number of individuals (e.g., sharks in a regional sea; bacteria in an infected organism;
prey-predator models); the changing of weather patterns in a particular region; the
spreading of a rumor; the vapor trail in the wake of an airplane; the propagation of a
fire: all these would be examples of dynamical systems.

To study the evolution of a system, we assume that its state at each time t can be
described generally by means of a function t 7→ u(t), where the independent “time”
variable t is measured in a parameter set T ⊂ R, and the corresponding dependent
variable is in a set X , called STATE SPACE. We also assume that the state u(t) of the
system at any given time t depends not only on the value of t, but also on its initial
configuration, i.e. on the value u0 of the system at a previous time t0, with u0 and t0
given or known. A natural goal of the theory is then to study the dependence of the
state u ∈ X on the time t ∈ T and the INITIAL VALUES u0 ∈ X , t0 ∈ T . In particular,
we can think of a dynamical system as a way of transforming an initial state u0 into
a family of subsequent states u(t), parametrized by t ∈ T . We shall indeed assume
that there is a specified functional dependence of u ∈ X from u0 ∈ X and t, t0 ∈ T ,
described by a map

(t, t0,u0) 7→ u(t, t0,u0) . (1.1)

By specifying certain properties of this map, we come to a definition of a special
kind of dynamical systems.

1



2 1 Dynamical Processes

DEFINITION 1.1 Let X be an arbitrary set, and T be one of the sets N, Z, R≥0
or R, where R≥0 := [0,+∞[. Set

T 2
∗ := {(t,τ) ∈ T ×T : t ≥ τ} .

A TWO-PARAMETER SEMIFLOW, or DYNAMICAL PROCESS in X is a family S =
(S(t,τ))(t,τ)∈T 2∗

of maps S(t,τ) : X →X , which satisfies the following conditions:

∀ t ∈ T : S(t, t) = IX (1.2)

(the identity in X ), and

∀ t1, t2, t3 ∈ T : S(t1, t2)S(t2, t3) = S(t1, t3) . (1.3)

The following are familiar examples of dynamical processes.

Example 1.2
LetX = R and T = R. Let f be a continuous function onR, and S= (S(t,τ))(t,τ)∈T 2∗
be the family of maps S(t,τ) : R → R defined by

S(t,τ)x :=
(
exp
(∫ t

τ

f (s)ds
))

x , x ∈ R . (1.4)

Then, S is a dynamical process in R. Indeed, verification of (1.2) and (1.3) is imme-
diate.

Example 1.3
LetX = Rn, and A be an n×nmatrix. Then, the family T = (etA)t∈R of the exponen-
tials of the matrices tA is a linear semigroup in X (see section A.3). Consequently,
the family S defined by

S(t,τ) := e(t−τ)A , (t,τ) ∈ R2 ,

is a dynamical process.

Note that, in these examples, each map S(t,τ) is linear; as we shall see, this needs
not be the case in general.

According to definition 1.1, a dynamical process S on a set X consists of a family
of transformations of X into itself, each defined by the map (1.1), that is,

X 3 u0 7→ u(t,τ,u0) =: S(t,τ)u0 ∈ X . (1.5)

We are then mainly interested in the dependence of the map t 7→ S(t, t0)u0 on the “ini-
tial values” t0 and u0 or, sometimes, on u0 only, for fixed t0. Of course, this requires
X to have some kind of topological structure, and we shall remove the provisional
nature of definition 1.1, supplementing it by a number of continuity conditions on
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the maps S(t,τ) on X , and of the map (t,τ) 7→ S(t,τ). In particular, as the examples
we cited above indicate, we are often interested in being able to describe, or deter-
mine, the evolution of a given system “in the future”. This question can be clearly
related to the asymptotic properties, as t → +∞ (in T ), of the map defined in (1.1).
Because of (1.5), we are then naturally led to relate the asymptotic behavior of the
function u to some suitable properties of the corresponding dynamical process S, de-
fined by (1.5). For example, a possible question would be to determine all the values
(u0, t0) ∈ X ×T such that the limit

lim
t→+∞

S(t, t0)u0 =: L(u0) (1.6)

exists, for a fixed t0. As an illustration, if S is the dynamical process defined in (1.4),
the limit in (1.6) exists for all u0 ∈ R if f is bounded above by a negative constant.
Note that, since in this case L(u0) = 0 for all u0 ∈R, this limit is actually independent
of the initial value u0. Another, related question would be to study the properties of
the map u0 7→ L(u0) defined by (1.6).

2. In these notes, we assume that the state space X is at least a Banach space (on
R), and the underlying time parameter set T will be either N or Z, in which case we
call the system DISCRETE, or R≥0 or R, in which case we call the system CONTIN-
UOUS. In this chapter we propose to give a first idea of the nature of the questions,
related to the long time behavior of dynamical processes, that we want to investigate.
To do so, we consider some introductory examples of discrete dynamical processes,
generated by iterated maps, and of continuous dynamical processes, generated by
finite systems of ODEs. In these cases, the Banach space X has finite dimension,
and the corresponding dynamical process is also called FINITE DIMENSIONAL. In
chapter 3 we will instead consider INFINITE DIMENSIONAL dynamical processes,
generated by PDEs of evolution. In this case, the space X is infinite dimensional;
specifically, a space of functions of some “space” variables, defined on a domain of
Rn.

One can find a large amount of examples of this type of systems in specialized
texts, such as Jordan-Smith, [JS87], Marsden-McCracken, [MM76], Guckenheimer-
Holmes, [GH83], Moon, [Moo92], Alligood-Sauer-Yorke, [ASY96], and many oth-
ers. Among the most studied examples, we recall the models known as Duffing’s
equation, the logistic equation, the Lorenz system, and Hénon’s horseshoe map.
Most of these also illustrate another major goal of the theory of the dynamical sys-
tems, which, regretfully, we cannot pursue because of the introductory character of
these notes. Namely, all these systems depend on various numerical parameters, and
the influence of these parameters on the long time behavior of the system exhibits
some striking phenomena, and unexpected similarities among these systems. In par-
ticular, even if the parameters are allowed to vary in a continuous fashion, and even
if for a certain range of the parameters the evolution of the system seems to be quite
“regular”, for other parameter ranges a number of other, totally new qualitative phe-
nomena unexpectedly appear. Examples of such phenomena are BIFURCATIONS (see
e.g. Marsden-McCracken, [MM76]), FEIGENBAUM CASCADES (e.g. for the logistic
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map described in section 1.4.4; see e.g. Moon, [Moo92], or Feigenbaum, [Fei78]),
and HORSESHOE MAPS (e.g. for Hénon’s map, whose iterations converge to a set of
so-called FRACTAL type; see Hénon-Pomeau, [HP76]).

1.2 Ordinary Differential Equations
1. As a first example of dynamical processes, we consider continuous systems
generated by an evolution equation of the form

u̇ = F(t,u) , (1.7)

where F : R×X →X is a continuous function on a Banach spaceX . In this case, we
take T = R or T = R≥0. If X is finite dimensional, (1.7) is equivalent to a system
of ODEs in Rn, where n is the dimension of X . An example is the system of m
coupled pendulums on the same vertical plane: In this case, if θ1, . . . ,θm denote the
angles of each pendulum with respect to the vertical, then u = (θ1, θ̇1, . . . ,θm, θ̇m)
and X = R2m. We shall, however, be more interested in the case when the dimension
of X is infinite, and (1.7) represents a PDEE, interpreted as an abstract evolution
equation in X . An example is the semilinear heat equation

ut = ∆u+ f (u) (1.8)

in a domain Ω ⊂ Rn, with appropriate boundary conditions. In this case, the space
X is a space of functions defined on Ω ; for example, we can consider the Lebesgue
space L2(Ω), or the Sobolev space H1

0(Ω), or the Hölder space C0,α(Ω). We can
then interpret PDEEs like (1.8) as abstract ODEs in X by means of the following
natural identification. If u is a solution of (1.8), we define a function t 7→ ũ(t) ∈ X
by

(ũ(t))(x) := u(t,x) , x ∈ Ω ;

that is, we consider for each t the image ũ(t) ∈ X as a function of the space variable
x. It is common practice to identify u and ũ, introducing the notation

u(t, ·) := ũ(t) ,

which we shall often adopt.

2. We assume that, in accord with the classical (Newtonian) theory, equation (1.7)
is deterministic, in the sense that the knowledge of the initial values (t0,u0) (and, of
course, of F) uniquely determines a solution u, defined for all “future times”, of the
Cauchy problem corresponding to (1.7), that is{

u̇ = F(t,u) ,
u(t0) = u0 .

(1.9)
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More precisely, we assume that under sufficient assumptions on the function F , there
is a unique function u ∈ C([t0,+∞[;X ), which satisfies the Cauchy problem (1.9),
either in the classical sense (if e.g. u is also in C1([t0,+∞[;X )), or in a generalized
sense (e.g. almost everywhere in t, or in distributional sense). This solution is typi-
cally determined at first only locally in time, that is, on a neighborhood ]t0−α, t0+β [
of t0, and then extended uniquely to a function, which is defined at least on the
unbounded interval ]t0 −α,+∞[, and solves problem (1.9) on the whole interval
[t0,+∞[. We usually denote this extended function again by u. Of course, in some
cases the local solution u could also be extended to the left of t0−α; however, since
in the context of evolution problems we are mostly interested in what happens in “the
future”, we will generally not be too concerned about the possibility of extending u
to the left of t0. (We also note in passing that, when trying to do so, we sometimes
meet additional problems, such as the lack of backward uniqueness.) Thus, when in
the sequel we use the term “global solution”, we always refer to solutions that are
defined globally at least to the right of t0, i.e. for all t ≥ t0.

Clearly, the possibility of extending a local solution to a global one must in general
be proven for each specific problem. This can be done in different ways; a common
one is to show that any local solution satisfies a number of so-called A PRIORI ES-
TIMATES. These are bounds on the solution which are independent of the particular
time interval where the solution is defined, and therefore allow us to extend any local
solution uniquely to a global one, by means of a repeated application of the local
existence result.

3. Having thus established a unique solution u of the Cauchy problem (1.9) for all
choices of initial values (t0,u0), we are then interested in the asymptotic behavior of
u(t) as t→+∞. More specifically, we would like to understand how this behavior is
determined (if at all) by the initial values u0 and t0 (or, in some cases, by u0 only). To
this end, it is convenient to introduce more proper notations. To emphasize that the
solution u depends not only on t, but also on the initial values (t0,u0), we consider u
as a function defined on R×R×X , with values inX , and write u(t, t0,u0) to indicate
the image of the point (t, t0,u0) by u. Next, we realize that the solution of the Cauchy
problem (1.9) defines a family

S := (S(t, t0))(t,t0)∈Θ , Θ := {(t,s) : t ≥ s} , (1.10)

of operators S(t, t0) : X → X , parametrized by the pair (t, t0) in the half-plane Θ .
Each operator S(t, t0) is defined by

S(t, t0)u0 := u(t, t0,u0) , u0 ∈ X . (1.11)

This family S is called the family of SOLUTION OPERATORS associated to (or, de-
fined by) equation (1.7). Standard uniqueness theorems on solutions of the Cauchy
problem (1.9) can then be used to verify that S satisfies conditions (1.2) and (1.3) of
definition 1.1; hence, S is a dynamical process on X . We say that S is GENERATED
by problem (1.9). We also say that the map t 7→ S(t, t0)u0 defined in (1.11) is a MO-
TION of the dynamical process S, corresponding to the initial values (t0,u0), and the
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image of this motion is an ORBIT of the system (a more precise definition of motions
and orbits will be given in section 1.2.4).

Example 1.4
The Cauchy problem {

ẏ = f (t)y ,
y(t0) = y0

(1.12)

generates the dynamical process S defined in (1.4). Indeed, (1.12) has the unique
solution

y(t) = S(t, t0)y0 .

1.2.1 Well-Posedness

From now on, we shall consider the value of t0 in the Cauchy problem (1.9) as
fixed; in fact, unless otherwise specified, we shall always choose t0 = 0. We are then
interested in the question of the dependence of solutions of (1.9) on the other initial
value u0. This question is naturally related to the WELL-POSEDNESS of the Cauchy
problem (1.9). This means that solutions of (1.7) should not only be uniquely deter-
mined by the choice of the initial value u0, but they should also depend continuously
on u0, in a specified topology.

Since we are interested in the long-time behavior of the solutions, a crucial distinc-
tion has to be made between the notion of well-posedness on arbitrary, but bounded,
time intervals [0,T ], and that of well-posedness in the whole interval [0,+∞[. Ex-
plicitly, we explain the first of these notions in

DEFINITION 1.5 The Cauchy problem (1.9) is WELL POSED IN THE LARGE if
for all u0 ∈ X , and all T , ε > 0, there exists δ > 0 such that for all v0 ∈ X and all
t ∈ [0,T ],

‖u0− v0‖< δ =⇒ ‖u(t)− v(t)‖< ε , (1.13)

where u and v are the unique solutions of (1.7) with u(0) = u0 and v(0) = v0, and
‖ · ‖ denotes the norm of X .

We remark that, in the theory of finite dimensional dynamical systems, definition
1.5 is often referred to as “continuity with respect to time and initial conditions”.
Note that, in (1.13), δ depends not only on the initial value u0, but, in general, also
on T . That is, we can define a function (ε,T ) 7→ δ (ε,T ) (this function may often
be defined only implicitly). If δ can be chosen independently of T , the solutions of
(1.7) depend continuously on the initial data on all of [0,+∞[; this corresponds to
the Lyapunov stability of the solutions of (1.7) (see definition A.6). In contrast, it
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is well known that well- posedness in the large is not sufficient to guarantee stability,
since the dependence of δ on T may be “bad”, in the sense that

liminf
T→+∞

δ (ε,T ) = 0 .

To show this, it is sufficient to consider the following elementary example.

Example 1.6
Consider the Cauchy problems for the ODEs

u̇ = − u , (1.14)
u̇ = u , (1.15)

with initial data at t = 0. Both problems have globally defined unique solutions
for each choice of initial values, but only the first is globally well posed for t ≥ 0.
In fact, when checking (1.13) we can take δ = ε for (1.14), but for (1.15) we are
forced to take δ = εe− T , so in this case δ → 0 as T → +∞. We can interpret this
in another way, realizing that the effect of any error in the initial value for equation
(1.14) becomes negligible, up to arbitrary tolerance, if sufficient time is allowed to
pass; on the contrary, even if two solutions of equation (1.15) are initially very close,
after sufficient time they will be arbitrarily apart. Indeed, for (1.14), given anyM and
ε > 0, even if initially |u0 − v0| ≥ M, it will be |u(t) − v(t)| ≤ ε for all t ≥ ln(M/ε),
while for (1.15), given again any M and ε > 0, even if initially |u0 − v0| ≤ ε , it will
be |u(t) − v(t)| ≥ M for all t ≥ ln(M/ε). For instance, if we approximate u0 = π by
v0 = 3.141, the initial error is less than 10 − 3, but for the corresponding solutions of
(1.15) we have |u(t) − v(t)| ≥ 103 for all t ≥ ln(103/(π − 3.141)) ≈ 14.5087. This
phenomenon is illustrated in figures 1.1 and 1.2. In terms of Lyapunov stability, the

large t
t

small difference

u

large difference

0

Figure 1.1: Exponential stability for u̇ = − u: A large difference in initial
values still results in a small difference of the solutions after sufficient time.
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large difference

large t t0

small difference

u

Figure 1.2: Exponential loss of information for u̇ = u: Even a small differ-
ence in initial values is drastically amplified after sufficient time.

point u = 0 in the phase space X = R, which corresponds to the solution u(t) ≡ 0
of both equations, is (uniformly) stable only for system (1.14), while system (1.15)
is highly unstable under arbitrarily small perturbations of the initial value u0 = 0. In
fact, if in (1.15) ± u0 > 0, then as t → +∞, u(t) → ± ∞ (exponentially, of course),
even if |u0| < ε . Loosely speaking, this means that all control on the solution is lost
if sufficient time is allowed to elapse.

1.2.2 Regular and Chaotic Systems

As we have mentioned, the theory of dynamical systems is largely concerned with
the behavior of the orbits t 7→ u(t) as t→+∞, and, more specifically, with how such
behavior is influenced by the choice of the initial value u0. This explains the use of
notations like (1.19) below, which emphasize the dependence of the solution, at each
time t, on its initial value u0.

With a great degree of simplification, we distinguish between two kinds of situa-
tions, which we call REGULAR and CHAOTIC. This choice of terms is rather arbitrary,
and by no means universal; indeed, we find many different definitions of regularity
and chaos in the literature, and even among those definitions that are mathematically
rigorous, no one is universally accepted. Rather, different definitions are preferred
for different applications.

Roughly speaking, regular systems are those for which perturbations in the initial
values will influence the orbits only for a short period of time (called TRANSIENT).
After this time, different orbits would have the same qualitative behavior, and in
particular the same asymptotic behavior. This type of situation is usually described
by theorems like those on the asymptotic stability of a system, or the existence of
limit cycles. In some cases, the asymptotic behavior is even independent of the
initial values, in the sense that two orbits, even if starting from two points that are
arbitrarily apart, after sufficient time (i.e. the transient, whose length depends on how
far apart the initial values are) they will be and remain arbitrarily close to each other,
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and so exhibit the same qualitative asymptotic behavior.
Chaotic systems are instead those for which a sort of opposite situation holds. That

is, these systems are extremely sensitive to even small variations of the initial values,
in the sense that “close” initial conditions eventually move arbitrarily apart. The evo-
lution of this type of system will be “regular” for a short time only (this is in general
a consequence of some result analogous to the well-posedness of ODEs on compact
time intervals). However, if observed for sufficiently long time periods, these sys-
tems not only do not exhibit any indication of convergence towards any sort of stable
or periodic configuration, but their evolution seems to be totally unpredictable. More
precisely, we give the following

DEFINITION 1.7 Let S= (S(t, t0))(t,t0)∈T 2∗
be a dynamical process onX . S is said

to DEPEND SENSITIVELY ON ITS INITIAL CONDITIONS if there is R > 0 such that
for all t0 ∈ T , x0 ∈ X , and all δ > 0, there are y0 ∈ X and t1 ∈ T , t1 ≥ t0, such that

0 < ‖x0− y0‖ ≤ δ and ‖S(t1, t0)x0−S(t1, t0)y0‖ ≥ R . (1.16)

We remark that the notion of sensitive dependence of a dynamical process on its
initial conditions is a natural generalization of that of uniform Lyapunov instability
for ODEs (see section A.1).

Example 1.8
Consider the dynamical processes S1 and S2 inR generated, respectively, by theODEs
(1.14) and (1.15) of example 1.6. Then S1 is regular, while S2 depends sensitively on
its initial conditions. In fact, given ε and R such that 0 < ε < R, any two solutions
x and y of (1.14) which initially differ by R will be such that |x(t)− y(t)| ≤ ε for all
t ≥ t0 := ln R

ε
. That is, t0 is the transient after which these solutions will always differ

by at most ε . In contrast, any two solutions x and y of (1.15) which differ initially by
ε will be such that |x(t)− y(t)| ≥ R for all t ≥ t0 := ln R

ε
(compare to (1.16)).

Example 1.8 shows that there are dynamical processes for which no matter how
close two initial values may be, if sufficient time is allowed to pass the correspond-
ing orbits will be arbitrarily apart. That is, the asymptotic behavior of these systems,
which is still completely and uniquely determined by their initial values (the systems
are deterministic), may be drastically different. To put this in another way, in this
type of system all relevant information carried by the initial data is rapidly lost, and,
consequently, it becomes impossible to maintain any reasonable control on the evo-
lution of the system. Examples of this kind of situation are the smoke of a cigarette,
the dynamics of large populations, of traffic patterns, economic cycles, etc. Probably,
the most familiar example is that of the various meteorological models for the evolu-
tion of weather, whose prediction is in general relatively accurate only in a short time
range (and the shorter the time interval, the better the prediction), but after sufficient
time all predictions lose any practical value.

In section 1.4 we shall see some other simple examples of systems that exhibit
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chaotic behavior, as described by their being sensitive to their initial conditions. Be-
fore proceeding, we mention another possible way of describing chaotic systems,
whereby “an orbit can begin roughly anywhere and end up roughly anywhere”. More
precisely, given any two open subsets U and V of X , there is x0 ∈ U such that the
corresponding orbit intersect V . For an exhaustive discussion of these, and other,
possible descriptions of the chaotic behavior of a dynamical system, we refer e.g. to
Robinson, [Rob99], and to Alligood, Sauer and Yorke, [ASY96].

Of course, the possibility of determining whether a given system is regular or
chaotic (we should rather say, whether the system may exhibit chaotic features or is
guaranteed not to) is of extreme importance in applications, for at least two reasons.
First, actual initial values depend on physical measurements, and are therefore never
“exact” (this is not just a problem of the “real world”: Even in a simple numerical ex-
ercise in ODEs, initial values like

√
2 can only be introduced within approximations).

Second, because in practice we cannot afford to observe the evolution of a system
for very long time periods (deadlines have to be met, computer simulation time is
expensive . . . ). Moreover, even if we could, we are still bound to observations in
finite time intervals, and there is no guarantee that any such period of time, in which
we may see “irregular” behavior, is still not part of a very long transient, after which
the system may yet settle into a regular evolution.

In these notes, we are concerned with a sort of intermediate situation between
the two extremes described above. There are in fact examples of systems, whose
evolution may appear to be chaotic, and yet after sufficient time their solutions seem
to settle into a pattern that preserves a certain degree of order, which allows for
some control of the disturbances typical of a chaotic regime. This type of behavior
is usually better seen in the state space X , to which the solution curves (u(t))t≥0
belong. More precisely, these systems are characterized by the existence of some
subsets of X , to which the solution curves appear to converge (in the topology of
the phase space), as t →+∞. These subsets are therefore called ATTRACTING SETS,
and can be thought of as a generalization of the sets, such as stationary points or
limit cycles, that are known to be attracting for regular systems of ODEs. Thus, for
example, if a bounded attractor exists, two solutions which started at close initial
values may still be quite apart at arbitrary later times (indication of chaos), but their
distance cannot be arbitrarily large, since they both converge to the same attractor. In
this sense the system is still controllable. Thus, even if we cannot decide whether a
given system is regular, it is clearly desirable that we be able to determine if it at least
possesses an attractor. Indeed, if this is the case, we would then know that, even if
the system may possibly evolve chaotically, it will nevertheless settle into some type
of controlled behavior. This is of course of fundamental importance in applications.

1.2.3 Dependence on Parameters

In many physical examples, the equation (1.7) which models the evolution of a
dynamical process may also depend on various numerical parameters, such as, for
instance, the dielectric and permeability constants in Maxwell’s equations, or the vis-
cosity coefficient in Navier-Stokes’ equations of fluid dynamics. In this case, equa-
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tion (1.7) takes the more general form

u̇ = F(λ , t,u) , λ ∈Λ ⊂ Rm , (1.17)

and the corresponding solution operator also depends on the parameters λ . In ap-
plications, it is of course of great importance to have a good knowledge of how the
evolution of a system is influenced not only by (small) variations of the initial value
u0, but also by (small) variations of these parameters. For example, if the arm of
a robot has the task of repeatedly moving an object from one position to another,
and its motion is governed by a differential equation like (1.17), we are interested in
the choice of parameters that make such motion as smooth as possible, and to avoid
those that may make it irregular or, worse, chaotic.

We will not present any theoretical results on the dependence of dynamical sys-
tems, in particular infinite dimensional ones, on numerical parameters, since this
topic is too extensive and specialized, and a large quantity of the available insights
and results are most often obtained by means of extensive and robust numerical sim-
ulation. Indeed, an experimental analysis of the equations modelling many physical
examples indicates that various kinds of bifurcation phenomena typically occur at
different, increasing values of λ . We refer to Temam, [Tem88, ch. 1], for a very
general outline of various scenarios that are possible.

1.2.4 Autonomous Equations

1. Most classical results on the theory of the asymptotic behavior of dynamical sys-
tems involve systems generated by evolution equations (1.7) that are AUTONOMOUS.
These systems, which occur quite frequently in applications, correspond to the case
when the function F in (1.7) is independent of t, that is, when (1.7) has the form

u̇ = F(u) , (1.18)

with F : X →X continuous. For example, the heat equation (1.8) is autonomous. In
this case, we can always reduce ourselves, by a shift of the time coordinate, to a fixed
choice of t0. This means that the operators of S have the form

S(t,τ) = S(t− τ, t0) =: S̃(t− τ) ,

where now S̃ = (S̃(t))t≥t0 is a one-parameter family of operators, i.e. a SEMIFLOW,
on X . In particular, we choose t0 = 0 for simplicity. We use again the letter S to
denote this one-parameter family; that is, we write S = (S(t))t≥0, and (1.11) reads

S(t)u0 = u(t,0,u0) . (1.19)

In particular, conditions (1.2) and (1.3) of definition 1.1 are satisfied if S is a SEMI-
GROUP of (not necessarily linear) operators on X , i.e. if

S(0) = IX (1.20)
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(the identity in X ), and for all t, s ≥ 0,

S(t+ s) = S(t)S(s) (1.21)

(fig. 1.3). Indeed, if S is the solution operator defined by the autonomous equation

t1

S(t1 + t2)u
S(t1)u

t1 + t2t2

u

Figure 1.3: The action of the semigroup.

(1.18), (1.20) holds by virtue of the initial condition

S(0)u0 = u0 for all u0 ∈ X .

To show (1.21), we note that for all t, s ≥ 0,

S(t)S(s)u0 = v(t) ,

where v is the solution of the Cauchy problem{
v̇ = F(v) ,

v(0) = S(s)u0 = u(s) .

Thus, setting w(t) := v(t − s), we have

ẇ(t) = v̇(t − s) = F(v(t − s)) = F(w(t))

and
w(s) = v(0) = u(s) .

By the assumed uniqueness of solutions of the differential equation, we conclude
that w(t) = u(t) for all t ≥ 0. In particular,

u(t+ s) = w(t+ s) = v(t) ; (1.22)

and since u(t+ s) = S(t+ s)u0 and

v(t) = S(t)v(0) = S(t)S(s)u0 ,
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(1.22) means that (1.21) holds.
Clearly, this argument may fail if the differential system is not autonomous, since

then
v̇(t− s) = F(t− s,v(t− s)) ,

and in general
F(t− s,w) 6= F(t,w) .

Example 1.9
The first order autonomous system {

u̇ = v
v̇ = −u

(1.23)

generates the dynamical system S in R2, defined by

S(t)(x,y) := A(t)(x,y)> , t ∈ R ,

where A(t) is the 2×2 matrix defined by

A(t) :=

(
cos t sin t

−sin t cos t

)
,

and> denotes transposition. Indeed, it is immediate to verify that for all (x,y) ∈R2,
the vector function t 7→U(t) := A(t)(x,y)> solves system (1.23) with initial values
U(0) = (x,y)>. Furthermore, A(0) = I, and for all t and s ∈ R,

A(t+ s) =

(
cos(t+ s) sin(t+ s)

−sin(t+ s) cos(t+ s)

)

=

(
cos t coss− sin t sins sin t coss+ cos t sins

−sin t coss− cos t sins cos t coss− sin t sins

)

=

(
cos t sin t

−sin t cos t

)(
coss sins
−sins coss

)
= A(t)A(s) .

Example 1.10
The solution operator defined by the ODE

u̇ = cos t
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is not a semigroup. Indeed, for arbitrary t and s ∈ R we have

u(t) = u0 + sin t ,
S(t+ s)u0 = u0 + sin(t+ s) ,
S(t)S(s)u0 = u0 + sins+ sin t .

On the other hand, the solution operator defined by the autonomous ODE

u̇ = 1−u

is indeed a semigroup. In fact, for arbitrary t and s ∈ R we have

u(t) = (u0−1)e−t +1 ,

S(t+ s)u0 = (u0−1)e−(t+s) +1 ,

S(t)S(s)u0 = (S(s)u0−1)e−t +1

=
(
(u0−1)e−s +1−1

)
e−t +1

= (u0−1)e−s−t +1 .

Except for some elementary introductory examples, in these lectures we shall only
consider autonomous systems. For an extensive account on the nonautonomous case,
see e.g. Haraux, [Har91].

2. When a system is autonomous, we call the corresponding family S of solution
operators a SEMIFLOW on X , and the space X is often called the PHASE SPACE of
the dynamical system. The map u : [0,+∞[→X defined by

u(t) := S(t)u0 , t ≥ 0 ,

is called a MOTION, and the image of u in X , i.e. the subset (or curve)

γu0 :=
⋃
t≥0

u(t)⊂X ,

is called the ORBIT of the motion u, starting at u0. (When the system is not au-
tonomous, we would need to consider the product R×X as an extended phase
space.) Then, the asymptotic behavior of solutions of (1.18) is related to the evolu-
tion of the corresponding orbits, as subsets of X . Indeed, the recourse to the notion
of orbits in the phase space (as opposed to that of solution of the differential equa-
tion) quite naturally allows us to introduce, together with the appropriate instruments
from analysis in metric spaces to determine limiting behaviors etc., a more geomet-
ric approach, in which we study and exploit the topological properties of the orbits,
seen in their own right as subsets of the phase space X . The example of definition of
stability in the theory of ODEs is a familiar one; another example in two dimensions
of space, i.e. for X = R2, is the Poincaré-Bendixon theorem (see e.g. theorem A.32),
which describes conditions under which the orbits of an autonomous system of two
ODEs converge, in a suitable sense, to a limit cycle.
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3. In conclusion, we have seen in what sense an autonomous differential equation
(1.18) generates a continuous semiflow S, by means of the solution operator defined
in (1.19). If F is sufficiently regular, S is also differentiable. It is worth to point
out that the converse is also true; that is, a differentiable semiflow S = (S(t))t≥0 is
always generated by an autonomous ODE.

PROPOSITION 1.11
Let S be a semiflow defined on X , and assume that for all x0 ∈ X , the map

[0,+∞[ 3 t 7→ S(t)x0 ∈ X

is differentiable at t = 0. Let F : X →X be defined by

F(x) :=
d
dt

(S(t)x)
∣∣∣
t=0

, x ∈ X ,

and, for x0 ∈ X and t ≥ 0, set x(t) := S(t)x0. Then x is differentiable in [0,+∞[, and
satisfies the autonomous Cauchy problem{

ẋ = F(x) ,
x(0) = x0 .

(1.24)

PROOF Fix t0 ≥ 0. For t ≥ t0, we compute that

x(t)− x(t0)
t− t0

=
S(t)x0−S(t0)x0

t− t0
=

S(t− t0 + t0)x0−S(t0)x0
t− t0

=
S(t− t0)S(t0)x0−S(t0)x0

t− t0
. (1.25)

Let y0 := S(t0)x0 and θ := t− t0. Then from (1.25)

x(t)− x(t0)
t− t0

=
S(θ)y0− y0

θ
.

Since the map t 7→ S(t)y0 is differentiable at t = 0, we have that, as θ → 0

x(t)− x(t0)
t− t0

−→ d
dθ

(S(θ)y0)
∣∣∣
θ=0

= F(y0) = F(S(t0)x0) .

This proves that x is differentiable from the right, and

x′+(t) = F(x(t)) .

If instead 0 < t < t0, we compute that

x′−(t0) = lim
t→t−0

x(t)− x(t0)
t− t0

= lim
s→t+0

x(2t0− s)− x(t0)
t0− s
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= lim
s→t+0

S(t0− s)y0− y0
t0− s

= lim
θ→0+

S(θ)y0− y0
θ

= F(y0) = F(x(t0)) .

This proves that x is differentiable also from the left, and

x′−(t) = F(x(t)) .

Hence, x is differentiable, and satisfies the equation of (1.24). The initial value of
(1.24) is obviously taken.

1.3 Attracting Sets
We have mentioned that in some cases, even if the evolution of a system appears

to be chaotic, a certain degree of order seems to be preserved, in the sense that the
orbits of the system appear to settle into a somewhat regular pattern, described by
the fact that they converge, or at least remain “close”, to some subset of X . We can
often describe this situation in terms of subsets that are ATTRACTING, or at least
ABSORBING, in the following sense.

1. Absorbing Sets. In the theory of ODEs, a first step in the study of the asymptotic
behavior of the solution of a given system is to recognize that these solutions are
bounded as t → +∞. Analogously, given a dynamical system S on a Banach space
X , it may be possible, in some cases, to recognize the existence of a subset B ⊂ X
into which all orbits, or at least those starting from some subset U ⊆ X containing
B, enter and, after possibly leaving B a finite number of times, eventually remain in
B for ever. This set B is thus called an ABSORBING SET. If a bounded absorbing set
exists, this is taken as an expression of a specific property of the system, generically
called DISSIPATIVITY.

2. Attracting Sets. When an absorbing set exists, it is sometimes possible to also
recognize the existence of a smaller subset A ⊂ B, to which all orbits starting from
U converge as t →+∞ after having entered B; see fig. 1.4.

(The precise definition of convergence of an orbit to a set of X is given in sec-
tion 2.1 of chapter 2.) Such sets A are generally called ATTRACTING SETS. We will
see that if a dynamical system admits an attractor, it necessarily has an absorbing
set as well. Attracting sets may have a quite complicated geometric or topological
structure (they may be self-similar sets, or FRACTALS), and the convergence of the
orbits to these sets may be quite slow. However, these sets often possess some im-
portant properties, that may allow for a better understanding of the evolution of the
system (in particular, if the system appears to be chaotic). For example, the set A
may be compact, and (often but not always) it may have a finite fractal dimension
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B

A

x

Figure 1.4: Absorbing and attracting sets. After entering the absorbing set
B for the last time at x, the orbit remains in B, and then converges to A.

(the definition of which we recall in section 2.8 of chapter 2). The setA may also be
invariant, which means that

S(t)A =A for all t ≥ 0 . (1.26)

That is, if u0 ∈ A then u(t) = S(t)u0 ∈ A for all t ≥ 0 and, conversely, every u0 ∈ A
is on some orbit starting from some point in A.

3. Attractors. Bounded, positively invariant attracting sets are generally called
ATTRACTORS. Of particular importance are attractors that are finite dimensional, be-
cause the corresponding dynamics is also finite dimensional. Indeed, the invariance
of the attractor implies, by (1.26), that orbits which originate in the attractor remain
in the attractor for all future times; consequently, the evolution of a system on a fi-
nite dimensional attractor would essentially be governed by a finite system of ODEs.
In fact, a celebrated theorem of Mañé, [Mañ81], states that if a dynamical system
possesses a finite dimensional attractor, this attractor can be generated by (or, as it is
sometimes said, is “imbedded into”) a finite system of ODEs. This result allows us to
reduce, at least in principle, the study of the long time behavior of orbits which con-
verge to a finite dimensional attractor to that of the solutions of a finite dimensional
system of ODEs on A.

This question, together with the description of the corresponding ODEs, is one
of the most challenging problems in the theory of dynamical systems. Moreover, in
most cases the reduction of the study of the evolution of the system on the attractor
cannot be pursued in practice, because of several difficulties, which partially moti-
vate the search for “friendlier” sets, such as the inertial manifolds discussed below.
For example, we have mentioned the generally nonsmooth geometrical or topologi-
cal structure of the attractor, which may cause the corresponding ODEs to only admit
generalized solutions. Another problem, of special importance in applications, is that
in many cases the available estimates on the dimension of the attractor, and therefore
on the dimension of the system of ODEs, are simply too large for computational
feasibility. For instance, in meteorology it is not uncommon to have estimates of the



18 1 Dynamical Processes

order of 10m, m ≥ 20. Also, attractors are in most cases not sufficiently stable under
perturbations of the data, so that their numerical approximations, and the consequent
propagation of errors, may be quite difficult to control. For example, approximations
of attractors with respect to the Hausdorff distance (see section 2.1) are in general
only upper semicontinuous. Finally, the rate of convergence of the orbits to the at-
tractor may really be no better than polynomial, as the following example shows.

Example 1.12
Consider the semiflow S generated by the autonomous ODE

u̇ = f (u) := − u3 . (1.27)

The attractor of S is the setA= {0}, but the convergence of the orbits toA is at most
polynomial, as we see from the explicit solution of the Cauchy problem relative to
(1.27) with initial value u(0) = u0, that is,

u(t) =
u0√

1+2u20t
.

4. Inertial Manifolds. On the other hand, there are systems whose attractors do
not present this type of difficulties, since they are imbedded into a finite dimensional
Lipschitz manifoldM of X , and the orbits converge to this manifold with a uniform
exponential rate. Such a set M is called an INERTIAL MANIFOLD of the system
(fig. 1.5). When an inertial manifold exists, the evolution of the semiflow on the

Figure 1.5: Inertial Manifolds.

manifold is governed by a finite system of ODEs, called the INERTIAL FORM of the
semiflow. This finite system of ODEs will in general admit solutions with a certain
degree of smoothness, depending on the smoothness of the manifold. Since orbits
converge to the inertial manifold with a uniform exponential rate, we see that, in turn,
the dynamics on the manifold will be a good description of the long time behavior of
solutions of equation (1.7). Clearly, the possibility of imbedding the attractor into an
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inertial manifold provides an indirect way to obtain the above mentioned desired sys-
tem of ODEs. Moreover, the uniformity of the rate of convergence of the orbits to the
manifold makes these systems extremely stable under perturbations and numerical
approximations. Unfortunately, there are not many examples of systems which are
known to admit an inertial manifold; among these, we mention the semiflows gen-
erated by a number of reaction-diffusion equations of “parabolic” type, and by the
corresponding hyperbolic (small) perturbations of these equations. A typical model
is that of the so-called Chafee-Infante equations, which we present in chapter 5.

5. Exponential Attractors. An intermediate situation occurs when a system ad-
mits a so-called EXPONENTIAL ATTRACTOR. These sets, which are also sometimes
called INERTIAL SETS in the literature, are somehow intermediate between attractors
and inertial manifolds, in the sense that while they do not necessarily have a smooth
structure, they can still be imbedded into a finite system of ODEs. In addition, these
sets retain at least three of the features of the inertial manifolds that attractors do not
necessarily have: the finite dimensionality, the exponential convergence of the orbits,
and a high degree of stability with respect to approximations (for example, continu-
ity with respect to the Hausdorff distance). This means that when an exponential
attractor exists, after an “exponentially short” transient the dynamics of the system
are essentially governed by a finite system of ODEs (the classical image is that of an
airplane, landing at a “fast” speed and then “slowly” taxiing to the arrival gate).

The following is a simple example of a regular system, whose solutions converge
exponentially to its attractor.

Example 1.13
Consider the function f : [0,1] → [0,1] defined by f (x) = (1+ x)−1, and the cor-
responding discrete system (Sn)n∈N defined by the iterated sequence (1.30). This
system has an attractor, which is the set A = {`}, with ` := (

√
5− 1)/2. We now

show that A is also an exponential attractor; that is, there is α > 0 such that, for all
initial values x0 ∈ [0,1],

|Snx0− `| ≤ e−αn . (1.28)

Indeed, setting
Snx0 = f (xn) =: xn+1 ,

we see that this sequence converges to the positive solution of the equation x = f (x),
which is precisely `. Since ` = f (`), we compute that

`− xn+1 = f (`)− f (xn) =
xn− `

(1+ `)(1+ xn)
. (1.29)

Since 1+ ` > 3
2 and 1+ xn ≥ 1 for each n, we deduce from (1.29) that

|xn+1− `| ≤ 2
3 |xn− `| ,
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from which we conclude that

|xn− `| ≤ ( 23 )
n|x0− `| ≤ ( 23 )

n .

This shows that (1.28) holds, with e.g. α = ln 3
2 > 0. We explicitly note that α is

independent of the initial values: this ensures that the iterates Snx0 converge to A
with a uniform rate.

Of course, not all dynamical systems will possess attractors, exponential attractors
or inertial manifolds. In the sequel, we shall try to present a theory, by now quite well
established, that provides a number of sufficient conditions on the system for at least
some of these sets to exist. In particular, since attractors will contain stationary and
periodic solutions of (1.17), this theory is really a natural extension of the classical
theory of stability for ODEs.

1.4 Iterated Sequences
Not surprisingly, many of the ideas (and difficulties) in the theory of continuous

dynamical systems already surface in the context of discrete dynamical systems gen-
erated by ITERATED SEQUENCES. These are sequences (un)n∈N ⊂X , of the form

un+1 = f (un) , (1.30)

where f is a map of X into itself. Thus, each sequence is completely determined
by its initial value u0, assigned separately. Iterated sequences generate a DISCRETE
dynamical system S := (Sn)n∈N on X , defined by

S0 = I , Sn+1 = S◦Sn ,

where Sn is the n-th iterate of S, and ◦ denotes the composition of maps in X . Thus,
T = N, and the orbits of S are the sequences (Snu0)n∈N. We are interested in how
the behavior of each such sequence, as n→+∞, depends on its initial term u0.

In this section we present some well known examples of discrete systems in Rn,
n≤ 3, each defined by a sequence like (1.30).

For future reference, we recall the following

DEFINITION 1.14 Let F : X →X be a map (not necessarily linear), and x ∈ X .

1. x is a FIXED POINT of F if x = F(x).

2. A fixed point x of F is said to be STABLE if, given any neighborhoodU of x there
is another neighborhood Ũ ⊂ U of x such that for all x0 in Ũ , the corresponding
recursive sequence (xn)n∈N, starting at x0 and defined by xn+1 = F(xn), is
contained in U . Otherwise, x is said to be UNSTABLE.
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3. A fixed point x of F is said to be ATTRACTIVE if for all x0 in a neighborhood
of x, the above defined recursive sequence (xn)n∈N converges to x.

4. A stable and attractive fixed-point is called ASYMPTOTICALLY STABLE.

5. A point x is said to be p-PERIODIC (p ∈ N) if F p(x) = x.

Note that not all stable fixed points are attractive, as we see by taking F(x) = x.
For this map, each point x is a stable, but not attractive, fixed point. On the other
hand, we have the following

THEOREM 1.15
Let X = R, and x0 be a fixed point of a C1 function F . Then x0 is asymptotically
stable if |F ′(x0)|< 1, while if |F ′(x0)|> 1, x0 is unstable.

PROOF Without loss of generality, we can confine ourselves to symmetric neigh-
borhoods of x0.

1) Assume first that |F ′(x0)|< 1. There exists then a number ε ∈ ]|F ′(x0)|,1[, and,
correspondingly, a number δ > 0 such that if |x− x0| ≤ δ , then

|F(x)−F(x0)| ≤ ε|x− x0| . (1.31)

Since ε < 1 and F(x0) = x0, (1.31) implies that

|F(x)− x0| ≤ |x− x0| ≤ δ .

Consequently, we can repeat estimate (1.31), and obtain that for all n ∈ N≥1,

|Fn(x)− x0| ≤ ε
n|x− x0| . (1.32)

From this, it follows that x0 is asymptotically stable: Indeed, given any neighborhood
U :=]x0−ρ,x0 + ρ[ of x0, let δ ∈ ]0,ρ], and set Ũ :=]x0−δ ,x0 + δ [. Then, (1.32)
implies that if x ∈ Ũ , each iterate Fn(x) is in U , because

|Fn(x)− x0| ≤ ε
n|x− x0| ≤ δ ≤ ρ .

Thus, x0 is stable; clearly, (1.32) also implies that x0 is also attractive.
2)Conversely, assume that |F ′(x0)|> 1. Then, as before, given any a∈ ]1, |F ′(x0)|[,

we can determine γ > 0 such that if |x− x0| ≤ γ , then

|F(x)− x0| ≥ a|x− x0| . (1.33)

We wish to prove that there is ρ̄ > 0 such that for all δ ∈]0, ρ̄], there are x̄ and n̄ such
that

|x̄− x0| ≤ δ and |Fn(x̄)− x0| ≥ ρ̄ .
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Arguing by contradiction, taking ρ = γ , we can determine δ ∈ ]0,γ] such that if
|x− x0| ≤ δ , then for all n ∈ N>0,

|Fn(x)− x0| ≤ ρ = γ . (1.34)

Now, (1.34) and (1.33) imply that for all n,

|Fn(x)− x0| ≥ an−1 |F(x)− x0| ; (1.35)

but since |x− x0| ≤ δ ≤ γ , (1.33) implies that, in fact,

|Fn(x)− x0| ≥ an |x− x0| (1.36)

for all n. Choose then, for example, x = x0 + 1
2δ . Then, (1.36) implies that

γ ≥ |Fn(x)− x0| ≥ 1
2δan . (1.37)

Since a > 1, letting n→+∞ in (1.37) we achieve the desired contradiction.

x1x2
x3x0

x1 x2x3 x0
x1x3x2x0

x1 x2x3
x0

Figure 1.6: The four possibilities: F ′(x0) > 1, F ′(x0) <−1,
0 < F ′(x0) < 1, −1 < F ′(x0) < 0.

We remark that when |F ′(x0)| = 1, x0 can be either attractive, or unstable. This is
easily seen by considering a function F which changes concavity at x0. For example,
if F ′(x0) = 1, and F changes from convex to concave at x0, then x0 is attractive, while
if F changes from concave to convex at x0, then x0 is unstable.

1.4.1 Poincaré Maps

Given a continuous dynamical system, it is in many cases possible to construct a
discrete one, whose asymptotic behavior is essentially the same as that of the con-
tinuous system. One way to do so is to choose a sequence (tn)n∈N of equidistant
values tn →∞ and, given a solution of the continuous autonomous system (1.18), to
consider the corresponding sequence (un)n∈N of points un := u(tn) in the phase space
X . Clearly, each of these points lies on the orbit starting at u0. This choice defines a
map Φ : X →X , by

un+1 = Φ(un) . (1.38)
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Maps constructed in this way are called STROBOSCOPIC MAPS. For example, the
choice tn = n+1 in (1.38) yields the sequence (un)n∈N, defined by

S := S(1) , un+1 = Snu0 for n ∈ N .

We can visualize a stroboscopic map by considering the graph of u in the product
space [0,+∞[×X ; that is, the set

graphu := {(t,u(t)) : t ≥ 0} . (1.39)

Then, the sequence in X defined by the stroboscopic map (1.38) is obtained by pro-
jecting on X the points (tn,u(tn)).

In the case of finite dimensional systems, a remarkable construction is that of
the so-called POINCARÉ MAPS. These maps are constructed by fixing a hyperplane
Σ ⊂ Rn, called a POINCARÉ SECTION, and considering on Σ the sequence of points
Pn defined by the “first returns” of the (graph of the) solution on Σ , i.e. by the succes-
sive intersections of the semiorbit {u(t) : t ≥ 0} with Σ (figs. 1.7 and 1.8). Indeed,

Σ

Figure 1.7: The Poincaré section.

Poincaré maps are sometimes also known as “first return” maps. More precisely, we
consider again the intersection of the graph (1.39) with R×Σ (both as subsets of
R×Rn), and construct the sequence of points (u(tn))n∈N ⊆ Σ , as ordered by the first
argument tn; that is, by the time of the n-th intersection of the orbit with the hyper-
plane Σ . Set un := u(tn). The sequence (un)n∈N can then be considered as a recursive
sequence on Σ , defined by a map

un+1 = ΦΣ (un) .
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Σ

limit cycle

Figure 1.8: In the plane, the Poincaré section is a line.

The map ΦΣ is called the POINCARÉ MAP associated to the semiflow defined by
(1.18). Poincaré maps can thus be used to study the asymptotic behavior of a contin-
uous semiflow, by reducing it to a discrete one. For example, if (1.7) has a periodic
solution with period T , the Poincaré map with sampling synchronized with the pe-
riod, i.e. with tn = nT , will have a fixed point (fig. 1.9). Of course, for a given ODE,
or system of ODEs, even autonomous ones, it may not be clear how to find suitable
sampling sequences (tn)n∈N, and extensive numerical experimentation may well be
required.

Finally, we mention that the notion of Poincaré maps can be generalized to infinite
dimensional continuous dynamical systems (see e.g. Marsden- McCracken, [MM76]).

1.4.2 Bernoulli’ s Sequences

We start with an example that illustrates the phenomenon of the loss of information
from the initial data after sufficient time is allowed to pass.

The so- called BERNOULLI’S SEQUENCE is the recursive sequence xn+1 = f (xn)
generated by the function f : [0,1]→ [0,1] defined by

f (x) := 2x − b2xc ,

where bxc denotes the integer part of x (that is, the largest integer less than or equal
to x). Note that f is not continuous at x = 1

2 (fig. 1.10); however, f can be nicely
described as a so- called “circle- doubling” map, if we identify the endpoints of the
domain interval [0,1] with each other. More precisely, if we define g : [0,1]→R2 by

g(x) := (cos(2π f (x)),sin(2π f (x))) ,


