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Preface

What! Yet another book on medical biostatistics! Why? What for?

The purpose of this preface is to answer those questions and to add a few other pertinent
remarks. The sections that follow describe a series of distinctions, some of them unique,
that make this book different from other texts.

Goals and Objectives

The goal of the text is to get biomedical readers to think about data and statistical
procedures, rather than learn a set of “cook-book recipes.” In many statistics books aimed
at medical students or biomedical researchers, the readers are believed to have either
little interest or limited attention. They are then offered a simple, superficial account of
the most common doctrines and applications of statistical theory. The “get-it-over-with-
quickly” approach has been encouraged and often necessitated by the short time given
to statistics in modern biomedical education. The curriculum is supposed to provide
fundamental background for the later careers of medical and other graduate students,
but the heavily stressed “basic science” topics are usually cellular and molecular biology.
If included at all, statistics is usually presented briefly, as a drudgery to be endured
mainly because pertinent questions may appear in subsequent examinations for licensure
or other certifications.

Nevertheless, in later professional activities, practicing clinicians and biomedical
researchers will constantly be confronted with reports containing statistical expressions
and analyses. The practitioners will regularly see and use statistical results when making
clinical decisions in patient care; and the researchers will regularly be challenged by
statistical methods when planning investigations and appraising data. For these activities,
readers who respect their own intellects, and who want to understand and interpret the
statistical procedures, cannot be merely passive learners and compliant appliers of doc-
trinaire customs. The readers should think about what they want, need, and receive. They
should also recognize that their knowledge of the substantive biomedical phenomena is
a major strength and dominant factor in determining how to get, organize, and evaluate
the data. This book is aimed at stimulating and contributing to those thoughts.

Another distinction of the text is that the author is a physician with intimate and
extensive experience in both patient care and biomedical investigation. I had obtained a
master's degree in mathematics before entering medical school, but thereafter my roots
were firmly and irrevocably grounded in clinical medicine. When I later began doing
clinical research and encountering statistical strategies, my old mathematical background
saved me from being intimidated by established theories and dogmas. Although not all
statisticians will approve the temerity of an “unauthorized” writer who dares to compose
a text in which the fundamental basis of old statistical traditions is sometimes questioned,



other statisticians may be happy to know more about the substantive issues contained in
biomedical research, to learn what their clients are (or should be) thinking about, and to
lead or collaborate in developing the new methods that are sometimes needed.

New Methods and Approaches

The text contains many new methods and approaches that have been made possible by
advances in statistical strategy for both analytic description and inferential decisions.

Statistical description has traditionally relied on certain mathematical models, such as
the Gaussian distribution of a “normal” curve, that summarize data with means, standard
deviations, and arbitrarily constructed histograms. Readers who begin to think about what
they really want, however, may no longer happily accept what is offered by those old
models. For example, because biomedical data seldom have a Guassian distribution, the
median is usually a much better summary value than the mean; and new forms of data
display — the stem-and-leaf plot and the box plot—not only are superior to histograms,
but are more natural forms of expression.

Another descriptive distinction, which is omitted or blurred in many text books, is the
difference between a trend (for citing correlation or regression) and a concordance (for
citing agreement). Investigators who study variability in observers or in laboratory pro-
cedures have usually been taught to express results with the conventional indexes of
“association” that denote trend, but not concordance. This text emphasizes the difference
between correlation and agreement; and separate chapters are devoted to both “nondi-
rectional” concordance (for observer variability) and “directional” concordance (for accu-
racy of marker tests).

In statistical inference for decisions about probability, the customary approach has used
hard-to-understand mathematical theories and hypothetical assumptions that were devel-
oped, established, and entrenched (for topics such as t tests and chi-square tests), because
they led to standard formulas for relatively simple calculations. During the past few
decades, however, the elaborate mathematical theories and assumptions have been aug-
mented, and sometimes replaced, by easy-to-understand new methods, which use rear-
rangements or resamplings of the observed data. The new methods often require
formidable calculations that were not practical in the pre-computer era; but today, the
“computer-intensive” work can be done quickly and easily, requiring no more effort than
pushing the right “button” for an appropriate program. The new methods, which may
eventually replace the old ones, are discussed here as additional procedures that involve
no complicated mathematical backgrounds or unrealistic assumptions about “parametric”
sampling from a theoretical population. In the new methods —which have such names as
Fisher exact test, bootstrap, and jackknife—all of the rearrangements, resamplings, and
statistical decisions about probability come directly from the empirical real-world data.
Another departure from tradition is a reappraisal of the use of probability itself, with
discussions of what a reader really wants to know, which is stability of the numbers, not
just probabilistic assessments.

The text also has sections that encourage methods of “physical diagnosis” to examine
the data with procedures using only common sense and in-the-head-without-a-calculator
appraisals. From appropriate summary statistics and such graphic tactics as box-plot
displays, a reader can promptly see what is in the data and can then make some simple,



effective, mental calculations. The results will often offer a crude but powerful check on
more complex mathematical computations.

A particularly novel and valuable approach is the careful dissection (and proposed
elimination) of the term statistical significance, which has been a source of major confusion
and intellectual pathogenicity throughout 20th-century science. Statistical significance is an
ambiguous term, because it does not distinguish between the theoretical stochastic signif-
icance of calculated probabilities (expressed as P values and confidence intervals) and the
pragmatic quantitative significance or clinical importance of the “effect sizes” found in
the observed results. Not only is the crucial difference between stochastic and quantitative
significance emphasized and thoroughly discussed, but also a special chapter, absent from
conventional texts, is devoted to the indexes of contrast used for expressing and evaluating
the “effect size” of quantitative distinctions.

Two other unique features of this text are the following:

e Two chapters on the display of statistical data in tables, charts, and graphs
contain good and bad examples that can be helpful to readers, investigators, and
the artists who prepare medical illustrations.

* A chapter that discusses the challenges of evaluating “equivalence” rather than
“superiority” also considers the management of problems that arise when dis-
cordance arises in what the investigator wants, what the results show, and what
the statistical tests produce.

Sequence, Scope, Rigor, and Orientation

The text is arranged in a logical sequence of basic principles that advance from simple to
more elaborate activities. It moves from evaluating one group of data to comparing two
groups and then associating two variables. Thereafter, the scope extends into more com-
plex but important topics that frequently appear as challenges in biomedical literature:
controversies about stochastic issues in choosing one- or two-tailed tests, the graphic
patterns of survival analysis, and the problems of appraising “power,” determining
“equivalence,” and adjudicating “multiple hypotheses.”

Nevertheless, despite some of the cited deviations from customary biostatistical dis-
course, the text describes all the conventional statistical procedures and offers reasonably
rigorous accounts of many of their mathematical justifications. Whether retaining or reject-
ing the conventional procedures, a reader should know what they do, how they do it, and
why they have been chosen to do it. Besides, the conventional procedures will continue
to appear in biomedical literature for many years. Learning the mechanisms (and limita-
tions) of the traditional tactics will be an enlightened act of self-defense.

Finally, although the conventional mathematical principles are given a respectful
account, the book has a distinctly clinical orientation. The literary style is aimed at bio-
medical readers; and the examples and teaching exercises all come from the real-world
medical phenomena. The readers are not expected to become statisticians, although appro-
priate historical events are sometimes cited and occasional mathematical challenges are
sometimes offered. Clinical and biomedical investigators have made many contributions
to other “basic” domains, such as cell and molecular biology, and should not be discour-
aged from helping the development of another “basic” domain, particularly the bio-portion



of biostatistics. As preparation for a future medical career, such basic tools as the methods
of history taking, auscultation, imaging, catheterization, and laboratory tests are almost
always taught with a clinical orientation. As another important basic tool, statistics receives
that same orientation here.

Containing much more than most “elementary” books, this text can help repair the
current curricular imbalance that gives so little attention to the role of statistics as a prime
component of “basic” biomedical education. Statistical procedures are a vital, integral part
of the “basic” background for clinical or biomedical careers, and are essential for readers
and investigators who want to be at least as thoughtful in analyzing results as in planning
and doing the research. The biomedical readers, however, are asked to read the text rather
than race through it. What they learn will help them think for themselves when evaluating
various statistical claims in the future. They can then use their own minds rather than
depending on editorial decisions, authoritarian pronouncements, or the blandishments of
various medical, commercial, or political entrepreneurs.

Before concluding, I want to thank various faculty colleagues — (alphabetically) Domenic
Cicchetti, John Concato, Theodore Holford, Ralph Horwitz, James Jekel, Harlan Krumholz,
Robert Makuch, Peter Peduzzi, and Carolyn Wells—who have contributed to my own
statistical education. I also want to acknowledge the late Donald Mainland, whose writings
made me realize that statistics could be profound but comprehensible while also being
fun, and who launched my career in statistics when he invited me to succeed him in
writing a bimonthly set of journal essays on biostatistical topics. I am immensely grateful
to the post-residency physicians who have been research fellows in the Yale Clinical
Scholar Program, sponsored by the Robert Wood Johnson Foundation and also supported
by the U.S. Department of Veterans Affairs. The Clinical Scholars are the people who
inspired the writing of this text, who have received and worked through its many drafts,
whose comments and suggestions have produced worthwhile improvements, and who
helped create an intellectual atmosphere that I hope will be reflected and preserved. While
I was trying to prod the group into learning and thinking, their responses gave me the
stimuli and pleasures of additional learning and thinking.

My last set of acknowledgments contains thanks to people whose contributions were
essential for the text itself. Donna Cavaliere and many other persons —now too numerous
to all be named — did the hard, heroic work of preparing everything on a word processor.
Robert Stern, of Chapman and Hall publishers, has been an excellent and constructive
editor. Carole Gustafson, also of Chapman and Hall, has done a magnificent job of checking
everything in the text for logic, consistency, and even grammar. I am grateful to Sam
Feinstein for esthetic advice and to Yale’s Biomedical Communications department for
preparing many of the illustrations. And finally, my wife Lilli, has been a constant source
of patience, encouragement, and joy.

Alvan R. Feinstein
New Haven
July, 2001
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Suppose you have just read a report in your favorite medical journal. The success rates were said to be
50% with a new treatment for Disease D, and 33% in the control group, receiving the customary old
treatment. You now have a clinical challenge: Should you beginning the new treatment instead of the
old one for patients with Disease D?

Decisions of this type are constantly provoked by claims that appear in the medical literature or in
other media, such as teaching rounds, professional meetings, conferences, newspapers, magazines, and
television. In the example just cited, the relative merits were compared for two treatments, but many
other medical decisions involve appraisals of therapeutic hazards or comparisons of new technologic
procedures for diagnosis. In other instances, the questions are issues in public and personal health, rather
than the clinical decisions in diagnosis or treatment. These additional questions usually require evalua-
tions for the medical risks or benefits of phenomena that occur in everyday life: the food we eat; the
water we drink; the air we breathe; the chemicals we encounter at work or elsewhere; the exercise we
take (or avoid); and the diverse patterns of behavior that are often called “life style.”

If not provoked by statistics about therapeutic agents or the hazards of daily life, the questions may
arise from claims made when investigators report the results of laboratory research. A set of points that
looks like scattered buckshot on a graph may have been fitted with a straight line and accompanied by
a statement that they show a “significant” relationship. The mean values for results in two compared
groups may not seem far apart, but may be presented with the claim that they are distinctively different.

Either these contentions can be accepted in the assumption that they were verified by the wisdom of
the journal’s referees and editors, or— mindful of the long history of erroneous doctrines that were
accepted and promulgated by the medical “establishment” in different eras— we can try to evaluate
things ourselves. To do these evaluations, we need some type of rational mechanism. What kinds of
things shall we think about? What should we look for? How should we analyze what we find? How do
we interpret the results of the analysis?

The final conclusions drawn from the evaluations are seldom expressed in statistical terms. We
conclude that treatment A is preferable to treatment B, that diagnostic procedure C is better than
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diagnostic procedure E, that treatment F is too hazardous to use, or that G is a risk factor for disease H.
Before we reach these nonstatistical conclusions, however, the things that begin the thought process are
often statistical expressions, such as success rates of 50% vs. 33%.

The statistical citation of results has become one of the most common, striking phenomena of modern
medical literature. No matter what topic is under investigation, and no matter how the data have been
collected, the results are constantly presented in statistical “wrappings.” To evaluate the results scientif-
ically, we need to look beneath the wrapping to determine the scientific quality of the contents. This
look inside may not occur, however, if a reader is too flustered or uncomfortable with the exterior
statistical covering. Someone familiar with medical science might easily understand the interior contents,
but can seldom reach them if the statistical material becomes an obscure or intimidating barrier.

The frequent need to appraise numerical information creates an intriguing irony in the professional lives
of workers in the field of medicine or public health. Many clinicians and public-health personnel entered
those fields because they liked people and liked science, but hated mathematics. After the basic professional
education is completed, the subsequent careers may bring the anticipated pleasure of working in a
humanistic science, but the pleasure is often mitigated by the oppression of having to think about statistics.

This book is intended to reduce or eliminate that oppression, and even perhaps to show that statistical
thinking can be intellectually attractive. The main point to recognize is that the primary base of statistical
thinking is not statistical. It requires no particular knowledge or talent in mathematics; and it involves
only the use of enlightened common sense — acquired as ordinary common sense plus professional
knowledge and experience. Somewhat like a “review of systems” in examining patients, a statistical
evaluation can be divided into several distinctive components. Some of the components involve arith-
metic or mathematics, but most of them require only the ability to think effectively about what we
already know.

I
1.1 Components of a Statistical Evaluation

The six main components of a statistical “review of systems” can be illustrated with examples of the
way they might occur for the decision described at the start of this chapter.

1.1.1 Summary Expressions

The first component we usually meet in statistical data is a summary expression, such as a 50% success
rate. The statistical appraisal begins with the adequacy of this expression. Is it a satisfactory way of
summarizing results for the observed group? Suppose the goal of treatment was to lower blood pressure.
Are you satisfied with a summary in which the results are expressed as success rates of 50% or 33%?
Would you have wanted, instead, to know the average amount by which blood pressure was lowered in
each group? Would some other quantitative expression, such as the average weekly change in blood
pressure, be a preferable way of summarizing each set of data?

1.1.2 Quantitative Contrasts

Assuming that you are satisfied with whatever quantitative summary was used to express the individual
results for each group, the second component of evaluation is a contrast of the two summaries. Are
you impressed with the comparative distinction noted in the two groups? Does a 17% difference in
success rates of 50% and 33% seem big enough to be important? Suppose the difference of 17%
occurred as a contrast of 95% vs. 78%, or as 20% vs. 3%. Would these values make you more
impressed or less impressed by the distinction? If you were impressed not by the 17% difference in
the two numbers, but by their ratio of 1.5 (50/33), would you still be impressed if the same ratio were
obtained from the contrast of 6% vs. 4% or from .0039 vs. 0026? What, in fact, is the strategy you
use for deciding that a distinction in two contrasted numbers has an “impressive” magnitude?
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1.1.3 Stochastic Contrasts

If you decided that the 50% vs. 33% distinction was impressive, the next step is to look at the numerical
sources of the compared percentages. This component of evaluation contains the type of statistics that
may be particularly distressing for medical people. It often involves appraising the stochastic (or
probabilistic) role of random chance in the observed numerical results. Although the quantitative contrast
of 50% vs. 33% may have seemed impressive, suppose the results came from only five patients. The
50% and 33% values may have emerged, respectively, as one success in two patients and one success
in three patients. With constituent numbers as small as 1/2 and 1/3, you would sense intuitively that
results such as 50% vs. 33% could easily occur by chance alone, even if the two treatments were identical.

Suppose, however, that the two percentages (50% vs. 33%) were based on such numbers as 150/300
vs. 100/300? Would you now worry about chance possibilities? Probably not, because the contrast in
these large numbers seems distinctive by what Joseph Berkson has called the traumatic interocular test.
(The difference hits you between the eyes.) Now suppose that the difference of 50% and 33% came
from numbers lying somewhere between the two extremes of 1/2 vs. 1/3 and 150/300 vs. 100/300. If
the results were 8/16 vs. 6/18, the decision would not be so obvious. These numbers are neither small
enough to be dismissed immediately as “chancy” nor large enough to be accepted promptly as “intu-
itively evident.”

The main role of the third component of statistical evaluation is to deal with this type of problem.
The process uses mathematical methods to evaluate the “stability” of numerical results. The methods
produce the P values, confidence intervals, and other probabilistic expressions for which statistics has
become famous (or infamous).

1.1.4 Architectural Structure

Suppose you felt satisfied after all the numerical thinking in the first three steps. You accepted the
expression of “success”; you were impressed by the quantitative distinction of 50% vs. 33%; and the
numbers of patients were large enough to convince you that the differences were not likely to arise by
chance. Are you now ready to start using the new treatment instead of the old one? If you respect your
own common sense, the answer to this question should be a resounding NO. At this point in the evaluation,
you have thought only about the statistics, but you have not yet given any attention to the science that
lies behind the statistics. You have no idea of how the research was done, and what kind of architectural
structure was used to produce the compared results of 50% and 33%.

The architectural structure of a research project refers to the scientific arrangement of persons and
circumstances in which the research was carried out. The ability to evaluate the scientific architecture
requires no knowledge of statistics and is the most powerful analytic skill at your disposal. You can use
this skill to answer the following kinds of architectural questions: Under what clinical conditions were
the two treatments compared? Were the patients’ conditions reasonably similar in the two groups, and
are they the kind of conditions in which you would want to use the treatment? Were the treatments
administered in an appropriate dosage and in a similar manner for the patients in the two groups. Was
“success” observed and determined in the same way for both groups?

If you are not happy with the answers to these questions, all of the preceding numerical appraisals
may become unimportant. No matter how statistically impressive, the results may be unacceptable
because of their architectural flaws. The comparison may have been done with biases that destroy the
scientific credibility of the results; or the results, even if scientifically credible, may not be pertinent for
the particular kinds of patients you treat and the way you give the treatment.

1.1.5 Data Acquisition

The process of acquiring data involves two crucial activities: observation and classification. For clinical
work, the observation process involves listening, looking, touching, smelling, and sometimes tasting.
The observations are then described in various informal or formal ways. For example, the observer
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might see a 5 mm. cutaneous red zone that blanches with pressure, surrounding a smaller darker-red
zone that does not blanch. For classification, the observer chooses a category from an available taxonomy
of cutaneous lesions. In this instance, the entity might be called a petechia. If the detailed description
is not fully recorded, the entry of “petechia” may become the basic item of data. Analogously, a
specimen of serum may be “observed” with a technologic process, and then “classified” as sodium,
120 meq/dl. Sometimes, the classification process may go a step further, to report the foregoing sodium
value as hyponatremia.

Because the available data will have been acquired with diverse methods of observation and classifi-
cation, these methods will need separate scientific attention beyond the basic plan of the research itself.
What procedures (history taking, self-administered questionnaire, blood pressure measurements, labo-
ratory tests, biopsy specimens, etc.) were used to make and record the basic observations that produced
the raw data? How was each patient’s original condition identified, and how was each post-therapeutic
response observed and classified as success or no success? Was “success” defined according to achieve-
ment of normotension, or an arbitrary magnitude of reduction in blood pressure? What kind of “quality
control” or criteria for classification were used to make the basic raw data trustworthy?

The answers to these questions may reveal that the basic data are too fallible or unsatisfactory to
be accepted, even if all other elements of the research architecture seem satisfactory.

1.1.6 Data Processing

To be analyzed statistically, the categories of classification must be transformed into coded digits that
become the entities receiving data processing. This last step in the activities is particularly vital in an
era of electronic analysis. Because the transformed data become the basic entities that are processed,
we need to know how well the transformation was done. What arrangements were used to convert the
raw data into designated categories, to convert the categories into coded digits, and to convert those
digits into magnetized disks or diverse other media that became the analyzed information? What
mechanisms were used to check the accuracy of the conversions?

The transformation from raw data into processed data must be suitably evaluated to demonstrate
that the collected basic information was correctly converted into the analyzed information.

]
1.2 Statistical and Nonstatistical Judgments

Of the six activities just cited, the last three involve no knowledge of mathematics, and they also have
prime importance in the scientific evaluation. During the actual research, these three activities all occur
before any statistical expressions are produced. The architectural structure of the research, the quality
of the basic data, and the quality of the processed data are the fundamental scientific issues that underlie
the statistical results. If the basic scientific structure and data are inadequate, the numbers that emerge
as results will be unsatisfactory no matter how “significant” they may seem statistically. Because no
mathematical talent is needed to judge those three fundamental components, an intelligent reader who
recognizes their primacy will have won at least half the battle of statistical evaluation before it begins.

Many readers of the medical literature, however, may not recognize this crucial role of nonstatistical
judgment, because they do not get past the first three statistical components. If the summary expressions
and quantitative contrasts are presented in unfamiliar terms, such as an odds ratio or a multivariable
coefficient of association, the reader may not understand what is being said. Even if the summaries and
contrasts are readily understood, the reader may be baffled by the P values or confidence intervals used
in the stochastic evaluations. Flustered or awed by these uncertainties, a medically oriented reader may
not penetrate beyond the outside statistics to reach the inside place where enlightened common sense
and scientific judgment are powerful and paramount.

Because this book is about statistics, it will emphasize the three specifically statistical aspects of
evaluation. The three sets of scientific issues in architecture and data will be outlined only briefly; and
readers who want to know more about them can find extensive discussions elsewhere.!-> Despite the
statistical focus, however, most of the text relies on enlightened judgment rather than mathematical
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reasoning. Once you have learned the strategy of the descriptive expressions used in the first two parts
of the statistical evaluation, you will discover that their appraisal is usually an act of common sense.
Except for some of the complicated multivariable descriptions that appear much later in the text, no
mathematical prowess is needed to understand the descriptive statistical expressions used for summa-
ries, contrasts, and simple associations. Only the third statistical activity — concerned with probabilities
and other stochastic expressions — involves distinctively mathematical ideas; and many of them are
presented here with modern approaches (such as permutation tests) that are much easier to understand
than the traditional (parametric) theories used in most elementary instruction.

]
1.3 Arrangement of the Text

This book has been prepared for readers who have some form of “medical” interest. The interest can
be clinical medicine, nursing, medical biology, epidemiology, dentistry, personal or public health, or
health-care administration. All of the illustrations and examples are drawn from those fields, and the
text has been written with the assumption that the reader is becoming (or has already become)
knowledgeable about activities in those fields.

A major challenge for any writer on statistical topics is to keep things simple, without oversimplifying
and without becoming too superficial. The achievement of these goals is particularly difficult if the writer
wants to respect the basic intellectual traditions of both science and mathematics. In both fields, the
traditions involve processes of assertion and documentation. In science, the assertion is called a hypoth-
esis, and the documentation is called supporting evidence. In mathematics, the assertion is called a
theorem or operating principle, and the documentation is called a proof.

To make things attractive or more palatable, however, many of the assertions in conventional statistical
textbooks are presented without documentation. For example, a reader may be told, without explanation
or justification, to divide something by n — 1, although intuition suggests that the division should be
done with n. Many medical readers are delighted to accept the simple “recipes” and to avoid details of
their justification. Other readers, however, may be distressed when the documentary traditions of both
science and mathematics are violated by the absence of justifying evidence for assertions. If documentary
details are included in an effort to avoid such distress, however, readers who want only “the beef” may
become bored, confused by the complexity, or harassed by the struggle to understand the details.

The compromise solution for this dilemma is to use both approaches. The main body of the text has
been kept relatively simple. Many of the sustaining mathematical explanations and proofs have been
included, but they are relegated to the Appendixes in the back of the pertinent chapters. The additional
details are thus available for readers who want them and readily skipped for those who do not.

|
1.4 A Note about References

The references for each chapter are numbered sequentially as they appear. At the end of each chapter,
they are cited by first author and year of publication (and by other features that may be needed to avoid
ambiguity). The complete references for all chapters are listed alphabetically at the end of the text; and
each reference is accompanied by an indication of the chapter(s) in which it appeared.

For the first chapter, the references are as follows:

1. Feinstein, 1985; 2. Sackett, 1991; 3. Hulley, 2000.

|
1.5 A Note about “Exercises”

The list of references for each chapter is followed by a set of exercises that can be used as “homework.”
The end of the text contains a list of the official answers to many of the exercises, usually those with
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odd numbers. The other answers are available in an “Instructor’s Manual.” You may not always agree
that the answers are right or wrong, but they are “official.”

]
1.6 A Note about Computation

Statistics books today may contain instructions and illustrations for exercises to be managed with the
computer programs of a particular commercial system, such as BMDP, Excel, Minitab, SAS, or SPSS.
Such exercises have been omitted here, for two reasons. First, the specific system chosen for the illustra-
tions may differ from what is available to, or preferred by, individual readers. Second, and more impor-
tantly, your understanding and familiarity with the procedures will be greatly increased if you “get into
their guts” and see exactly how the computations are done with an electronic hand calculator. You may
want to use a computer program in the future, but learning to do the calculations yourself is a valuable
introduction. Besides, unlike a computer, a hand calculator is easily portable and always accessible.
Furthermore, the results obtained with the calculator can be used to check the results of the computer
programs, which sometimes do the procedures erroneously because of wrong formulas or strategies.

Nevertheless, a few illustrations in the text show printouts from the SAS system, which happens to
be the one most often used at my location.

|
Exercises

1.1 Six types of “evaluation” were described in this chapter. In which of those categories would you
classify appraisals of the following statements? [All that is needed for each answer is a number from
1-6, corresponding to the six parts of Section 1.1]

1.1.1. “The controls are inadequate.”

1.1.2. “The data were punched and verified.”

1.1.3. “Statistical analyses of categorical data were performed with a chi-square test.”

1.1.4. “Compared with non-potato eaters, potato eaters had a risk ratio of 2.4 for developing

omphalosis.”

1.1.5. “The patient had a normal glucose tolerance test.”

1.1.6. “The trial was performed with double-blind procedures.”

1.1.7. “Newborn babies were regarded as sick if the Apgar Score was <6.”

1.1.8. “The rate of recurrent myocardial infarction was significantly lower in patients treated with

excellitol than in the placebo group.”

1.1.9. “The reports obtained in the interviews had an 85% agreement with what was noted in the

medical records.”

1.1.10. “The small confidence interval suggests that the difference cannot be large, despite the

relatively small sample sizes.”

1.1.11.“The compared treatments were assigned by randomization.”

1.1.12.“We are distressed by the apparent slowing of the annual decline in infant mortality rates.”
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During the 17th and 18th centuries, nations began assembling quantitative information, called Political
Arithmetic, about their wealth. It was counted with economic data for imports, exports, and agriculture,
and with demographic data for population census, births, and deaths. The people who collected and tabulated
these descriptions for the state were called statists; and the items of information were called statistics.

Later in the 18th century, the royalty who amused themselves in gambling gave “grants” to develop
ideas that could help guide the betting. The research produced a “calculus of probabilities” that became
eventually applied beyond the world of gambling. The application occurred when smaller “samples”
rather than the entire large population were studied to answer descriptive questions about regional
statistics. The theory that had been developed for the probabilities of bets in gambling became an effective
mechanism to make inferential decisions from the descriptive attributes found in the samples. Those
theories and decisions thus brought together the two statistical worlds of description and probability,
while also bringing P values, confidence intervals, and other mathematical inferences into modern
“statistical analysis.”

The descriptive origin of statistics is still retained as a job title, however, when “statisticians” collect
and analyze data about sports, economics, and demography. The descriptive statistics can be examined
by sports fans for the performances of teams or individual players; by economists for stock market
indexes, gross national product, and trade imbalances; and by demographers for changes in geographic
distribution of population and mortality rates. The descriptive origin of statistics is also the fundamental
basis for all the numerical expressions and quantitative tabulations that appear as evidence in modern
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biologic science. The evidence may often be analyzed with inferential “tests of significance,” but the
inferences are a secondary activity. The primary information is the descriptive numerical evidence.

The numbers come from even more basic elements, which have the same role in statistics that molecules
have in biology. The basic molecular elements of statistics are items of data. To understand fundamental
biologic structures, we need to know about molecules; to understand the fundamentals of statistics, we
need to know about data.

In biology, most of the studied molecules exist in nature, but some of them are made by humans. No
data, however, exist in nature. All items of data are artifacts produced when something has been observed
and described. The observed entity can be a landscape, a person, a conversation, a set of noises, a
specimen of tissue, a graphic tracing, or the events that occur in a person’s life. The medical observations
can be done by simple clinical examination or with technologic procedures. The description can be
expressed in letters, symbols, numbers, or words; and the words can occupy a phrase, a sentence, a
paragraph, or an entire book.

The scientific quality of basic observations and descriptions depends on whether the process is suitable,
reproducible, and accurate. Is the score on a set of multiple-choice examination questions a suitable
description of a person's intelligence? Would several clinicians, each taking a history from the same
patient, emerge with the same collection of information? Would several histopathologists, reviewing the
same specimen of tissue, all give the same reading? If serum cholesterol is measured in several different
laboratories, would the results — even if similar — agree with a measurement performed by the National
Bureau of Standards?

]
2.1 Scientific Quality of Data

Suitability, reproducibility, and accuracy are the attributes of scientific quality. For reproducibility, the
same result should be obtained consistently when the measurement process is repeated. For accuracy,
the result should be similar to what is obtained with a “gold-standard” measurement. For suitability,
which is sometimes called sensibility or face validity, the measurement process and its result should be
appropriate according to both scientific and ordinary standards of “common sense.”

These three attributes determine whether the raw data are trustworthy enough to receive serious
attention when converted into statistics, statistical analyses, and subsequent conclusions. Of the three
attributes, accuracy may often be difficult or impossible to check, because a “gold standard” may not
exist for the definitive measurement of such entities as pain, discomfort, or gratification. Reproducibility
can always be checked, however. Even if it was not specifically tested in the original work, a reader can
get an excellent idea about reproducibility by noting the guidelines or criteria used for pertinent decisions.
Suitability can also be checked if the reader thinks about it and knows enough about the subject matter
to apply enlightened common sense.

The foregoing comments should demonstrate that the production of trustworthy data is a scientific
rather than statistical challenge. The challenge requires scientific attention to the purpose of the obser-
vations, the setting in which they occurred, the way they were made, the process that transformed
observed phenomena into descriptive expressions, the people who were included or excluded in the
observed groups, and many other considerations that are issues in science rather than mathematics.

These issues in scientific architecture are the basic “molecular” elements that lie behind the assembled
statistics. The issues have paramount importance whenever statistical work is done or evaluated — but
the issues themselves are not an inherent part of the statistical activities. The data constitute the basic
scientific evidence available as “news”; statistical procedures help provide summaries of the news and
help lead to the “editorials” and other conclusions.

To give adequate attention to what makes the basic data scientifically trustworthy and credible,
however, would require too many digressions from the statistical procedures. A reader who wants to
learn mainly about the statistics would become distressed by the constant diversions into scientific
priorities. Therefore, to allow the statistical discourse to proceed, many of the fundamental scientific
issues receive little or no attention in this text. This neglect does not alter their primacy, but relies on
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the assumption that they will be known, recognized, and suitably considered by readers whose minds
are liberated from mathematical confusion.

For the statistical discussion, the raw descriptive information and groups will be accepted here as
satisfactory scientific evidence. This acceptance, an ad hoc literary convenience, is never warranted in
the real world, where scientific credibility leads to the most important, but commonly overlooked,
problems in statistical analyses. In fundamental scientific thinking, the focus is on what the information
represents, how it got there, and how good it is. Accepting the underlying scientific process as adequate,
however, we can turn to the statistical process discussed in this and the subsequent 27 chapters. The
next level of thinking begins with conversion of the raw data to statistics.

|
2.2 Formation of Variables

The available raw information can be called data, but the data can seldom be analyzed statistically. For
example, statements such as “John Doe is a 37-year-old man” and “Mary Smith is a 31-year-old woman”
contain specific data about specific persons, but the information is not arranged in a manner suitable for
statistical analysis. To get the data into an appropriate format, the first statement can be converted to
“Name: John Doe; Age in years: 37; Sex: male.” The second statement would become “Name:
Mary Smith; Age in years: 31; Sex: female.

In the format just cited, specific attributes such as name, age, and sex were chosen as labels for each
citation. Analogous attributes and formats would be needed to express details of the medical information
contained in a patient’s history, an account of a surgical operation, or a description of a pathologic
specimen. Many other types of raw information, however, receive expressions that are immediately
suitable for analysis. Examples are the laboratory report, hematocrit: 47%, or the clinical description
of systolic blood pressure as 125 mm Hg.

Each of these formats refers to a selected attribute, cited in an available set of expressions. In the
parlance of mathematics or statistics, the attributes are called variables, and the expressions available
for citation are called a scale.

2.2.1 Definition of a Variable

A variable is a class of data in which different distinctions can be expressed. A person’s age, height, sex,
diagnosis, and therapy are all variables. Their distinctions might be cited respectively for a particular
person as 52 years, 69 inches, male, peptic ulcer, and antacid tablets. Although not particularly desirable
as a scientific term, the word variable has become firmly entrenched in its mathematical role. You can
think of it not as something that denotes diversity or change — in the sense of variation or variability —but
simply as the name used for a class of data that can be cited differently for different people.

The expression of eight variables for six individual persons could be shown in a “matrix” table that
has the following skeleton structure:

Names of Variables
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The interior “cells” of this table would contain the assembled citations of each variable for each person.
(Exercises will use different ways and the additional categories for analyzing these data.)

2.2.2 Scales, Categories, and Values

The scale of a variable contains the available categories for its expression. The scale for the variable
sex usually has two categories: male and female. The scale for age in years has the categories 1, 2, 3,
4, ..., 99, 100, ... . (In statistics, as in literature, the symbol “...” indicates that certain items in a
sequence have been omitted.)

For a particular person, the pertinent category of a scale is called the value of the variable. Thus, a
52-year-old man with peptic ulcer has 52 as the value of age in years, male as the value of sex, and
peptic ulcer as the value of diagnosis. The word value is another entrenched mathematical term that
has nothing to do with judgments or beliefs about such “values” as importance, worth, or merit. The
value of a variable is the result of an observational process that assigns to a particular person the
appropriate category of the variable’s scale.

Any descriptive account of a person can be converted into an organized array of data using variables,
scales, categories, and values.

|
2.3 Classification of Scales and Variables

Scales and variables can be classified in various ways. The most common and useful classification
depends on the precision of ranking for the constituent categories.

2.3.1 Precision of Rankings

A 31-year-old person is 14 years younger than someone who is 45. A person with severe dyspnea is
more short of breath than someone with mild dyspnea, but we cannot measure the exact difference. In
both these examples, definite ranks of magnitude were present in the values of 31 and 45 for age, and
in the values of severe and mild for severity of dyspnea. The ranks were distinct for both variables, but
the magnitudes were more precise for age than for severity of dyspnea.

Certain other variables, however, are expressed in categories that have no magnitudes and cannot be
ranked. Thus, no obvious rankings seem possible if history of myocardial infarction is present in one
patient and absent in another; or if one patient has an anterior and another has a posterior location of
myocardial infarction. We might want to regard present as being “more” than absent, but we cannot
rank the magnitude of such locations as anterior or posterior.

The four examples just cited illustrate patterns of precision in ranking for the dimensional, ordinal,
binary, and nominal variables that were used, respectively, to denote age, severity, existence, and location.
These four patterns, together with quasi-dimensional scales, are the basic arrangements for categories
in the scales of variables. The patterns are further discussed in the sections that follow.

2.3.1.1 Dimensional Scales — In a dimensional scale, the successive categories are monotonic
and equi-interval. In the directional sequence of a monotonic ranking, each category is progressively
either greater or smaller than the preceding adjacent category. For equi-interval ranks, a measurably
equal interval can be demarcated between any two adjacent monotonic categories.

Thus, in the scale for age in years, a measurably equal interval of 1 year separates each of the successive
categories 1, 2, 3, 4, ..., 99, 100, ... . Similarly, for the variable height in inches, each of the successive
categories ..., 59, 60, 61, 62, ..., 74, 75, ... has an incremental interval of 1 inch.

Many alternative terms have been used as names for a dimensional scale, which is now the traditional
form of scientific measurement. Psychologists and sociologists often refer to interval scales, but the
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word interval is often used medically for a period of time. The term metric might be a satisfactory name,
but it regularly connotes a particular system of measurement (in meters, liters, etc.).

Mathematicians sometimes talk about continuous scales, but many dimensional categories cannot be
divided into the smaller and smaller units that occur in continuous variables. For example, age and height
are continuous variables. We could express age in finer and finer units such as years, months, days,
hours, seconds, and fractions of seconds since birth. Similarly, with a suitably precise measuring system,
we could express height not merely in inches but also in tenths, hundredths, thousandths, or millionths
of an inch. On the other hand, number of children or highest grade completed in school are dimensional
variables that are discrete rather than continuous. Their scale of successive integers has equi-interval
characteristics, but the integers cannot be reduced to smaller units.

Psychologists sometimes use ratio scale for a dimensional scale that has an absolute zero point,
allowing ratio comparisons of the categories. Thus, age in years has a ratio scale: a 24-year-old person
is twice as old as someone who is 12. Fahrenheit temperature does not have a ratio scale: 68°F is not
twice as warm as 34°F.

Although these distinctions are sometimes regarded as important,' they can generally be ignored.
Any type of scale that has equi-interval monotonic categories can be called dimensional.

2.3.1.2 Ordinal Scales — In an ordinal scale, the successive categories can be ranked monoton-
ically, but the ranks have arbitrary magnitudes, without measurably equal intervals between every two
adjacent categories.

Clinicians constantly use ordinal scales to express such variables as briskness of reflexes in the graded
categories of 0, 14, 2+, 3+, 4+. Severity of pain is a variable often cited as none, mild, moderate, or
severe. Although age can be expressed in dimensional data, it is sometimes converted to an ordinal scale
with citations such as neonatal, infant, child, adolescent, young adult, middle-aged adult, ... .

An ordinal scale can have either unlimited ranks or a limited number of grades. Most ordinal scales in
medical activities have a finite group of grades, such as 0, 1+, ..., 4+ or none, mild, ..., severe. If we
wanted to rank the people who have applied for admission to a medical school, however, we could use an
unlimited-rank scale to arrange the applicants with ratings such as 1, 2, 3, 4, 5, ..., 147, 148, ... . In this
limitless scale, the lowest ranked person might be rated as 238 or 964, according to the number of applicants.
Scales with unlimited ranks seldom appear in medical research, but have been used (as discussed much
later) for the mathematical reasoning with which certain types of statistical tests were developed.

2.3.1.3 Quasi-Dimensional Scales — A quasi-dimensional scale seems to be dimensional, but
does not really have measurably equal intervals between categories. Quasi-dimensional scales can be
formed in two ways. In one technique, the scale is the sum of arbitrary ratings from several ordinal
scales. For example, a licensure examination might contain 50 questions, for which each answer is
regarded as a separate variable and scored as 0 for wrong, 1 for partially correct, and 2 for completely
correct. Despite the arbitrary ordinal values, which have none of the equi-interval characteristics of
dimensional data, the candidate’s scores on each question can be added to form a total score, such as
46, 78, 85, or 100. The arbitrary result looks dimensional and is often manipulated mathematically as
though it were truly dimensional.

A second source of quasi-dimensional data is a graphic rating technique called a visual analog scale.
The respondent rates the magnitude of a feeling, opinion, or attitude by placing a mark on a line that is
usually 100 mm. long. The measured location of the mark then becomes converted to an apparently
dimensional rating. For example, someone might be asked to mark the following line in response to a
question such as “How bad is your pain?”

None ‘Worst
Ever



12 Principles of Medical Statistics

If the mark is placed as follows,

None ‘Worst
Ever

the measured distance could represent 67 “pain units.” Despite the dimensional expression, such scales
are not truly dimensional because adjacent categories — such as 70, 71, and 72 — in the arbitrary graphic
ratings are not accompanied by criteria that demarcate equal intervals.

2.3.1.4 Binary (Dichotomous) Scales — A binary or dichotomous scale has two categories,
such as male and female for the variable sex. Other common scales with two categories are alive/dead,
success/failure, and case/control. In medical research, many binary scales refer to entities, such as
chest pain, that can be classified as present or absent, or to a variable such as previous pregnancy that
can be cited as yes or no. When used to represent existence or nonexistence, a binary scale is sometimes
called an existential scale.

Although apparently binary, existential data can often be regarded as a subset of ordinal data. The
ordinal ranking becomes apparent if gradations of probability are added to the scale. Thus, when existence
of acute myocardial infarction is expressed as likelihood of existence, the available scale is ordinally
expanded to include the categories of definitely present, probably present, uncertain whether present
or absent, probably absent, and definitely absent.

2.3.1.5 Nominal Scales — In a nominal scale, the unranked categories have no magnitudes.
Nominal scales would express such variables as a person’s name, address, color of eyes, birthplace,
religion, diagnosis, or type of therapy.

Nominal characteristics can sometimes receive implicit ranks based on cultural, social, political, or
even clinical preferences. Thus, a short name might be preferred to a long one; certain addresses might
be regarded as being in better neighborhoods than others; someone might like blue eyes better than
brown (or vice versa); a person raised in Alabama might be more accustomed to social patterns in
Mississippi than someone from Maine; and a diagnosis of acute pancreatitis might be more desirable
than pancreatic carcinoma. When such rankings occur, however, the variable is no longer nominal and
needs a different title for its expression. For example, if the variable is designated as desirability of
diagnosis rather than diagnosis, the previously nominal categories acute pancreatitis, gallstone obstruc-
tive jaundice, and pancreatic carcinoma might become an ordinal scale.

For analytic purposes, the individual categories of a nominal scale are often decomposed and converted
into a set of “dummy” binary variables, each rated as present or absent. For example, suppose current
occupation is expressed in the nominal categories doctor, merchant, or other. The categories can be
converted into three binary variables: occupation as a doctor, occupation as a merchant, and occupation
as neither a doctor nor a merchant. (The three variables could be suitably condensed into only the first
two, because someone whose values are no for both occupation as a doctor and occupation as a merchant
would have to be rated as yes for occupation as neither a doctor nor a merchant.)

2.3.2 Other Forms of Nomenclature

Because of their fundamental roles in scientific information, the five types of scales and data have
received considerable attention from statisticians and psychosocial scientists, who have labeled the scales
with many different titles. For dimensional data, we have already met the terms inferval and ratio, which
are used by psychologists, and continuous, used by statisticians. To distinguish the arbitrary non-
dimensional categories, ordinal, binary, or nominal data are sometimes called attribute data, categorical
data, or discrete data (although the last term is ambiguous, because integer dimensions are also discrete).



Formation, Expression, and Coding of Data 13

Being readily added, multiplied, and otherwise manipulated mathematically, dimensional data are some-
times called quantitative data, whereas categorical data, which can only be enumerated and cited as
frequency counts, are sometimes called qualitative or quantal data.

For practical purposes as well as simplicity, we can escape all of the possible jargon by using five
main terms: dimensional, quasi-dimensional, ordinal, binary, and nominal. To indicate the arbitrary
categories of non-dimensional scales, they are sometimes here called categorical, although the term non-
dimensional will usually convey the desired distinction.

]
2.4 Multi-Component Variables

Variables can also be classified according to their number of components and timing of component
states. Regardless of the type of scale, a single variable can contain one component or more than one.
A simple variable has only one main component; a multi-component or composite variable has more
than one. A variable can also refer to only one stated condition, or to two or more states.

2.4.1 Composite Variables

A composite variable contains a combination of data from two or more component variables. Each
component variable, expressed in its own scale, is “input” that is aggregated to form a separate “output”
scale. For example, the Apgar Score for the condition of a newborn baby is a composite variable. Its
output scale, ranging from 0 to 10, is a sum of ratings for five simple variables —representing heart
rate, respiration, skin color, muscle tone, and reflex response — each cited in its input scale of 0, 1, or 2.
Although the aggregation can be an “additive score,” some composite variables are formed as “Boolean
clusters.” A Boolean cluster contains a combination of categories joined in logical unions or intersections.
For example, the TNM staging system for cancer contains categorical ratings for three component
variables representing Tumor, Nodes, and Metastases. The individual ratings, which might be cited as
TSNIMO or T2NOM2, are often combined into an ordinal set of clustered categories called stages. In
one common pattern, Stage I1I represents patients who have distant metastases, regardless of the ratings
for tumor and regional nodes. Stage II represents patients with involvement of regional nodes and no
evidence of distant metastases, regardless of the ratings for tumor. Stage I represents patients with no
evidence of either regional node or distant metastatic involvement.

A composite variable can also be formed from dimensional components. For example, for the variable
called anion gap, the sum of serum chloride and bicarbonate concentrations is subtracted from the serum
sodium concentration. The Quetelet index is the quotient of weight (in kg.) divided by the square of
height (in cm.).

Composite variables have many different names. They are sometimes called indexes, factors, stages,
systems, classes, scales, ratings, criteria, multi-dimensional scales, or clinimetric indexes. Although
composite variables are usually expressed in dimensional or ordinal scales, some of the most complex
constructions have binary existential citations. They occur for variables formed as diagnostic criteria for
presence or absence of a particular disease. Thus, in the clinical diagnostic criteria for tuberculosis,
rheumatic fever, rheumatoid arthritis, or myocardial infarction, the output scale is a simple binary
expression such as yes or no (or present or absent). The input, however, consists of multiple variables,
arranged in complex patterns, that often form intermediate axes or “subscales” before everything is
ultimately aggregated into the binary output rating.

2.4.2 Component States

All of the variables described thus far refer to the single-state condition of a particular person at a single
point in time. A single variable, however, can also express the comparison of results for two or more
states. They can be the single-state condition of two persons, the change noted in a person’s single state
on several occasions, or descriptions of the same state by several independent observers.
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In these situations, the comparative result is often cited as a separate variable, having its own scale
for denoting an increment, decrement, or some other comparative distinction in the linked values. For
example, if 70 kg and 68 kg are the values for two people “matched” in a particular study of weight,
the difference between the two single-state values could be cited in a separate variable as +2 kg (or
—2 kg). Alternatively, using a separate ordinal scale, one person could be regarded as slightly heavier
than the other. In another study, a particular person’s single-state values of serum cholesterol might have
been 261 before treatment and 218 afterward. The change could be recorded in a separate variable as
fall in cholesterol: 43. In a study of observer variability, the S-T wave depression in the same electro-
cardiogram might be reported as 2.0 mm by one electrocardiographer and as 2.4 mm by another. The
difference in the two measurements could be expressed in a separate variable as 0.4 mm.

For the three foregoing examples, the value of the additional variable was calculated from values of
the original single-state variables. In other circumstances, however, the change can be rated directly,
without specific reference to single-state values. For example, a patient might express response to
treatment in a rating scale such as excellent, good, fair, poor or in specifically comparative terms such
as much better, somewhat better, same, somewhat worse, much worse. When a comparative change
is cited without reference to single-state components, the expression is called a transition variable.

The total effect of more than two states in the same person often cannot be expressed in simple
comparative terms, such as larger, smaller, or same. The expressions may therefore describe the trend
in the entire series of values. Thus, the pattern of successive blood pressure measurements for a particular
person might be cited in a scale such as rising, stable, or falling. Sometimes the general pattern of trend
is categorized for its average value, desirability, or diagnostic features. For example, a set of successive
daily values for post-therapeutic pain might be cited for their mean value, or in ratings of the total
response as excellent, good, ..., poor. The set of successive dimensional values in a glucose tolerance
curve might be classified as normal, diabetic, or hypoglycemic.

2.4.3 Scales for Multi-Component Variables

Regardless of how the components are expressed and assembled, multi-component variables are cited
in the same types of dimensional, ordinal, binary, or other scales used for single-component variables.
Thus, an Apgar Score of 10, a TNM Stage of 111, an anion gap of 9, a diagnosis of acute myocardial
infarction, or a post-treatment response of much improved could all come from multi-component
variables, but could all be analyzed as values in individual variables.

To evaluate the scientific quality of the multi-component expression, however, we would need to
consider not only the quality of each component, but also the suitability and effectiveness of the way
they have been put together. For example, suppose a composite scale to indicate satisfaction with life
contained certain weighted ratings for age, occupation, and income. Each of the components might be
scientifically measured, but the combination would be an unsatisfactory expression for satisfaction with
life. As another example, each of the components of the Apgar score might be suitably chosen and
appraised, but their aggregate would be unsuitable if reflex responses were rated on a scale of 0, 5, 10
while the other four variables were rated as 0, 1, 2.

|
2.5 Problems and Customs in “Precision”

The idea of precision is a fundamental concept in both science and statistics, but the concept is used
with different meanings in the two domains. Furthermore, the attribute of numerical precision is different
from ordinary precision and is usually a matter of arbitrary custom.

2.5.1 Concepts of Precision

Scientists use precision to denote “the quality of being exactly or sharply defined or stated.”? Thus, the
phrase ‘““cachectic, dyspneic, anemic old man” is more precise than the phrase “sick patient.” The
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numerical expression 3.14159 is a more precise value for & than 3.1. Statisticians, however, use precision
to refer to “the way in which repeated observations” conform to themselves and ... to the dispersion of
the observations.”? In this idea, a series of repeated measurements of the same entity, or individual
measurements of multiple entities, is statistically precise if the spread of values is small relative to the
average value. To a scientist, therefore, precision refers to increased detail and is an attribute of a single
measurement. To a statistician, precision refers to a small spread or range in a group of measurements.

This fundamental difference in concepts may cause confusion when scientists and statisticians com-
municate with one another, using the same word for two different ideas. Furthermore, the difference in
concepts leads to different goals in measurement. A prominent aim of scientific measurement is to
increase precision by increasing details. Statistics does not have a word to indicate “detail,” however,
and many statistical activities are deliberately aimed at “data reduction,” which helps eliminate details.

Doing studies of quality control or observer variability in a measurement process, regardless of its
precision in detail, the scientist may be surprised to discover that excellent reproducibility for the process
is regarded by the statistician as precision. The scientist may also be chagrined to find that the hard
work of developing instruments to measure with high precision may be regarded statistically as producing
excessive details to be reduced.

The two sets of concepts can readily be reconciled by recognizing that scientific precision refers to
individual items of data, whereas statistical precision refers to a group of data. In trying to understand
or summarize meaning for a group of data, both the scientist and the statistician will reduce the amount
of detail conveyed by the collection of individual values. This reduction occurs with the formation of
statistical indexes that denote the average value, spread, or other attributes of the collective group. Before
or while the reduction occurs, however, the individual items of data will require certain policies or
customs about the management of numerical precision.

2.5.2 Strategies in Numerical Precision

The idea of numerical precision involves concepts and customs for “significant figures” or “significant
digits.” In the decimal system of notation, any number can be converted to a standard numerical
expression by moving the decimal point so that the number is cited as a value between O and 10,
multiplied by a power of 10. Thus, .01072 becomes 1.072 x 102 and 1072 becomes 1.072 x 103. With
this convention, a significant figure occurs at the left of the decimal point and the other significant figures
occur at the right. The number 15,000 becomes 1.5000 x 10* and 14,999 becomes 1.4999 x 10%. Each
number has five significant figures.

A prominent challenge in data reduction— at the level of individual values of data—is the decision
about how many significant figures (or digits) to retain in each number. The decision will depend on
how the number was obtained and how it will be used.

2.5.2.1 Production of Numbers — Numbers can be produced by measurement or by calcula-
tion, but there are two forms of measurement: mensuration and enumeration.

2.5.2.1.1 Mensuration. This unfamiliar term refers to the most familiar form of scientific measure-
ment: identifying the magnitude of an entity on a calibrated scale. Mensuration is used to distinguish
this type of measurement from the other type, enumeration, which is discussed in the next subsection.
In the customary form of mensuration, the scale contains dimensional values, and the number is a
measured amount, such as 137 meq/dl for serum sodium concentration or 15.2 units of hemoglobin.
With more precise systems of measurement and calibration, sodium might be determined as 137.419
or hemoglobin as 15.23, but such systems are rarely used because the extra precision is seldom necessary
or helpful.

Because precision will depend on the “refinement” of the dimensional scale, decisions must be made
about how to report results (i.e., how many significant figures to include) that lie between the two finest
units of calibration. For example, if an ordinary ruler is marked at intervals of 1 mm, magnitudes that
lie between two marks are often cited at the midpoint and expressed as 1.5 mm., 2.5 mm., etc.
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Note that mensurations do not always produce dimensional numbers. With an ordinal, binary, or
nominal scale, the result of the mensuration process may be values such as 3+, yes, or hepatitis. The
foregoing discussion of mensuration, however, was confined to dimensional numbers.

2.5.2.1.2 Enumeration. This fancy word for counting is often used because it refers to both the
process and result and, therefore, offers a single term for the two words, frequency count. An enumeration
has unlimited precision because the number of significant digits continues to increase as more entities
are counted. For example, the census bureau can report counts of 1873 or 2,194,876 people in different
regions.

2.5.2.1.3 Calculation. Most of the main numbers used in statistics are calculated from the basic
results obtained with mensuration and/or enumeration. For example, as noted later, a mean is constructed
when a sum of mensurations or enumerations is divided by another enumeration.

During the calculations, numerical precision can be altered in ways that no longer reflect the original
precision of measurement. Addition and multiplication may increase the original number of significant
digits; subtraction can decrease them; and division can produce either increases or decreases. For
example, if one hematocrit is measured with high precision as 23.091 and another as 46, the sum of
69.091 suggests that both measurements have 5 significant digits. Multiplication of the two numbers
would produce the 7 significant digits of 1062.186. For the three-digit serum calcium values of 11.3 and
10.9, subtraction loses two digits, yielding .4. With division, the ratio of the two-digit ages 84 and 42
produces the one-digit 2, but the ratio of 56/32 produces the three-digit 1.75. In some instances,
calculation can produce a “repeating” or “unending” decimal having as many significant digits as desired.
Thus, 2/3 = .66666666... and 1/22 = .0454545... .

2.5.2.2 Transformations — Some variables are regularly transformed either as raw data or for
analytic purposes. The raw-data transformations, often done for scientific custom, can express weight
as kg rather than b, height in cm rather than in., and temperature in °C rather than °F. Many chemical
concentrations today are transformed into standard international units from their original measurements
in mgm or Gm. Other raw-data transformations, done for scientific convenience, will express hydrogen
ion concentration as its negative logarithm, called pH.

In yet other transformations, used for analytic purposes discussed later, values of survival time in
months or bacterial counts might be converted to logarithms. A series of dimensional values for
hemoglobin might be compressed into an ordinal array such as <8, 9-11, 12-13, 14-15, 16-17, and
218. A series of values for serum calcium might be compressed into the categorical zones low, normal,
and high. These transformations, however, usually occur during the statistical analyses, not in the original
expression of the data.

2.5.2.3 Customs in Management — Certain customs have been established to achieve consis-
tency in managing the diverse possibilities for computational alteration of numerical precision. Each
custom depends on whether the number is being understood, reported, or formally calculated.

2.5.2.3.1 Understanding. For understanding what the numbers imply, and for doing certain mental
or in-the-head calculations that can facilitate comprehension, most people are accustomed to using two
significant digits. For example, if two percentages are reported as 49.63% and 24.87%, you may not
immediately perceive their comparative relationship. The relationship is promptly apparent, however,
when the numbers are “rounded” to 50% and 25%. Because most people have become accustomed to
dealing with percentages, which range from O to 100 while usually having two digits, the process of
comprehension usually requires no more than fwo significant digits.

Furthermore, the digits are usually most rapidly understood when presented in a range of 0 to 100.
Thus, the proportions .50 and .25 are easier to compare when expressed in percentages as 50% and 25%.
This custom is responsible for the frequency with which proportions are multiplied by 100 and expressed
as percentages. The custom is also responsible for the epidemiologic tactic, discussed later, of expressing
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populational rates in unit values per 10,000 or per 100,000. Thus, an occurrence rate of 217/86,034
might be cited as 25.2 x 10~* or 252 per hundred thousand rather than .00252.

(Certain tactics in prompt understanding will work with “convenient” numbers rather than significant
digits. For example, if you see a number such as /157 , you can almost immediately recognize that the
result lies between 12 and 13 because 12? = 144 and 132 =169.)

2.5.2.3.2 Reporting. In reporting numbers for readers, three significant digits are usually listed for
measured amounts, and two digits for most percentages. The “rules” may be altered, however, if they
produce ambiguous discriminations or misleading impressions. For example, two baseball players with
“rounded” averages of .333 after the last day of the season may be tied for the batting championship.
The winner, determined with extra decimal places, will be the batter with 216/648 = .3333 rather than
217/652 = .3328. Among a series of percentages, one member of the group may be listed as 0% because
the proportion 2/483 = .00414 was rounded to 0 when converted to integers between 0 and 100. To avoid
confusion between this 0 and another that arises as 0/512, the first one can be cited as 0.4%.

An unresolved custom in reporting is whether to use a “leading” 0 before the decimal point in numbers
such as .183. Frequently seen expressions such as P < .05 need not be reported as P < 0.05, but some
writers believe that the leading zero, as in 0.183, helps improve clarity in both typing and reporting.
Other writers believe the leading 0 is a waste of space. In computer or other printouts of integer digits,
numbers such as 01 or 08 look peculiar, but are increasingly used and accepted. (In this text, the leading
zeros will be omitted except when needed to avoid ambiguity.)

2.5.2.3.3 Calculating. 1In contrast to the truncated two or three digits used for understanding and
reporting, calculations should always be done with all pertinent digits retained during the calculation.
Any truncation (or “rounding”) of “trailing” digits on the right should be reserved until everything is
done, when the final result is reported. The rule to follow is “Round at the end.” Keep all numbers as
intact as possible throughout the calculation and save any rounding until all the work is completed.

The rule is particularly important if you use an electronic hand calculator that can store no more than
9 digits. Many personal digital computers work in “single precision” with 6 digits or in “double precision”
with 12. In the latter situation, or when a mainframe computer works with 24 significant digits in
“extended precision,” the computer seldom has problems in rounding. The reader of the printout may
then be suffused with an excess of trailing digits, however, when the computer displays results such as
#.04545454545” for divisions such as 1/22.

2.5.3 Rounding

Many people in the world of medicine learned about mathematical rounding long before the same word
was applied in patient care. In mathematics, rounding consists of eliminating trailing digits at the right
end of a number. The excess digits are those beyond the stipulated boundary of two, three, or sometimes
more “significant figures.”

With simple truncation, the trailing digits are chopped off directly with no “adjustment” of previous
digits. With rounding, the previous adjacent digits are adjusted; and the adjustment may involve more
than one digit. Thus, 19.09 might be rounded to 19 for two digits and 19.1 for three, but 19.99 would
become 20 or 20.0.

The rounding process is simple and straightforward if the terminal digits are between 0—4 and 6-9.
If <5, the candidate digit is dropped without further action. If the candidate is >5, the preceding digit
is incremented one unit. Thus, 42.7 becomes 43; 42.4 becomes 42; and 5378 becomes 5380 (or 5400
with more drastic rounding).

The only pertinent problem is what to do when the terminal digit is exactly 5 or has the sequence of
5000... . In many branches of science ( and in most hand-held calculators), the rule is simple: If the
last digit is =5, round upward. With this rule, 42.5 would become 43. A statistical argument has been
offered, however, that the strategy is biased. Of the ten candidate digits, four (1, 2, 3, 4) are rounded
down; four (6, 7, 8, 9) are rounded up; and one (0) has no effect. Therefore, a bias toward higher values
will occur if all terminal 5’s are rounded upward. To avoid this problem, terminal 5’s are rounded to the
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preceding even digit. Thus, 17.5, having an odd digit before the 5, is rounded upward to 18; but 16.5,
with an even digit before the 5, is rounded down to 16. With this tactic, the preceding digits of 0, 2, 4,
6, 8 are left intact, but 1, 3, 5, 7, 9 are rounded upward.

You may now want to argue that the procedure produces a bias toward getting even terminal digits.
This bias might be a problem for betting in roulette, but should not be a difficulty in quantitative
calculations. In fact, the rule would work just as well and the results would be just as “unbiased” if
rounding were aimed toward a preceding odd rather than even digit. The even direction is probably
maintained because rounding toward an even number is easier to remember than rounding “odd.” If you
(or your calculator) happen to neglect the rule, and if terminal 5’s are routinely rounded upward, however,
no great disasters are likely to occur.

Bear in mind that the round-even strategy applies only when the terminal nonzero digit is 5 (or
50000...). Otherwise, use the simple rule of rounding up for > 5 and down for < 5.

Like any other set of rules, the foregoing recommendations have exceptions that occur for discrimi-
nation, identification, and decrementation.

2.5.3.1 Discrimination — If the relative magnitude of two numbers must be discriminated,
rounding can be counterproductive, as in the previous illustration of ranking baseball players. If the
extra digits are needed to discriminate distinctions, do not round.

2.5.3.2 Identification — Among a series of percentages ranging from 1% to 99%, one member
of the group may have the proportion 2/483 = 0.4%. If listed with no more than two integer digits, this
result would be a misleading 0%. To avoid the problem, the rule can be “bent” for an exception listing
the result as 0.4%.

2.5.3.3 Decrementation — Trailing digits are particularly important when two numbers are
subtracted, because the size of the decrement may be determined entirely from distinctions in last
few digits. A disastrous statistical syndrome, called premature rounding, occurs when trailing digits
are “ejaculated” too soon. The malady can occur with hand-calculator determination of an entity
called group variance, which precedes the determination of a standard deviation in Chapter 4.

2.6 Tallying

Despite the advances of electronic computation, you may sometimes (or often) find yourself doing
enumeration by counting the frequency of data in a set of nominal, ordinal, or binary categories. Doing
it manually can save a great deal of effort if you have a relatively small amount of data. By the time
everything gets punched and verified for electronic processing, the manual tally can be long done,
checked, and tabulated. For example, suppose a questionnaire returned by 150 people contains ratings
of 1, 2, 3, 4, or 5 for each of 4 statements, A, B, C, and D. You want to know and summarize the
distribution of frequency counts for the ratings. The rapid manual way to do this job is to prepare a
“tally box” or “tally table” that has the skeleton shown in Figure 2.1.

The next step is to go through the questionnaires, one at a time, putting an appropriate tally in the
columns for the rating given to A, B, C, and D by each person. With a convenient method of tallying,
the frequency counts are evident as soon as you have completed the last questionnaire.

2.6.1 Conventional Methods

The conventional method of tallying uses a vertical slash or up-and-down mark for each of four tallies,
then a diagonal mark through the fifth. The first two marks would be | |, the first four wouldbe | | | | ;

the fifth would be [H-|. With this tactic, the tally L T THAL ] would promptly be
identified as 18.
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Complete Writing Sequence
' cheng' (1) (2 () (4) (5)
= - T F F iE
The Chinese Character Cheng
1 2 3 4 5
A Age in Years Tally Mark Frequency in Group
5 iE F 8
6 IEIET 12
° 7 EEE" 16
8 FEET 17
c 9 EET 12
10 ne 5
D
Total 70
FIGURE 2.1 FIGURE 2.2
Tllustration of a “Tally box” with five possible ratings for Alternative approach for tallying. [Taken from Chapter
four statements. Reference 5.].

2.6.2 Alternative Methods

An alternative way of bunching groups of five, proposed by K. H. Hsieh,’ is the Chinese tally count,
which is based on the five strokes used in the Chinese character cheng. According to Hsieh, the result
is “neater and easier to read than a series of slashes”; and because “an incomplete character can be
identified at a glance,” the method avoids having “to count carefully to see if four slashes have been
recorded” before crossing the fifth. The upper part of Figure 2.2 shows the writing sequence for forming
cheng, and the lower part illustrates its application in a tally table.

John Tukey® has proposed a system of dots and lines that shows 10, rather than 5, for each completed
visual group. In the Tukey system, : : is 4, then lines are drawn around the periphery to form a box (so
that ["1 is 7). Diagonal lines are then drawn so that X is 10.

Any of the tally methods will work well if you become familiar and comfortable with it, and use it
carefully. The Tukey method has the advantage of saving space if only a small area is available for the
tally box.

|
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Exercises

2.1. The skeleton table in Section 2.2 contains variables for age, height, sex, diagnosis, treatment, and
three values of blood pressure.
2.1.1. Identify the scale of each of those variables according to the classifications listed in
Section 2.3.1.
2.1.2. You have been asked to prepare an analysis of the response of blood pressure to treatment.
You can use the three cited values of blood pressure to form any additional variables you might
wish to analyze. Indicate what those variables might be and how they would be formed.
2.2. The variable age is almost always expressed in a dimensional scale. Prepare transformations of the
data that will express age in three different scales that are ordinal, binary, and nominal. Cite the contents
of the categories that form the new scales.
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2.3. The value of a variable expressing a change in state is usually determined by direct comparison of
results in two single-state variables. Occasionally, however, a transition variable is created during clinical
activities without specifically establishing two individual single-state values. Give an example of a
question you might ask a patient (or about a patient) in which the answer would produce data that can
be directly classified as a transition variable.
2.4. In Section 2.4.1, a composite variable was created by combining two or more separate variables.
Can you give at least one example of a nonmedical phenomenon, occurring in daily life, that is regularly
expressed as a composite variable?
2.5. In the TNM system for classifying patients with cancer, the T is expressed in 4 or 5 categories for
rating certain attributes of the primary tumor. The NN contains three ordinal categories for rating the
spread of the tumor to regional lymph nodes. The M contains three ordinal categories for rating the
spread of the tumor to distant metastatic sites. With numerical ratings assigned to each category, the
results for a particular patient may be cited in such TNM index expressions as T3NIMO, T2NOMI,
TIN2M2, and so on. According to the classifications you have learned in this chapter, what kind of a
scale is this? Give the reasons for your decision.
2.6. Using the five types of classification listed in Section 2.3.1, what kind of scales are formed by the
Apgar Score, TNM Stage, anion gap, and Quetelet index?
2.7. In extracting data from medical records, an investigator decides to cite age in years according to
decade. The scale of categories will be 0, 1, 2, 3, ..., 8, 9 according to ages 0-9, 10-19, 20-29, 30-39,
.ers 80-89, and > 90. What do you foresee as the advantages and disadvantages of this scale when the
extracted data are later analyzed statistically?
2.8. Find a set of diagnostic criteria for any disease in which you are interested. Briefly outline the
construction of the criteria and classify the scale used to express the result.
2.9. From any literature at your disposal, find a variable that has been reported with what you regard
as unsatisfactory precision, or that seems to have been categorized or coded in an unsatisfactory manner.
The categorization or coding is “unsatisfactory” if you do not like the chosen categories, cannot determine
how they were identified or demarcated, or believe that the selected codes were inadequate. For example,
you might complain about a component of the Apgar Score if you think that heart rate should have been
divided into four categories rather than three, if you cannot decide where to assign a baby with a heart
rate of 100, if you would have difficulty using the stated criteria for scoring muscle tone, or if you think
that muscle tone is not a “sensible” or sufficiently important variable to be included in the total score.
All that is needed for the answer here is one complaint. You need not identify or include a copy of
the source publication, but please say enough about the topic or circumstances for your complaint to be
clearly understood and justified.



Part 1

Evaluating a Single Group of Data

If individual items of data are the statistical counterpart of biologic “molecules,” groups of data are the
“cells.” In fact, the word cell is regularly used in statistics to denote the particular group of data in each
location of the basic entity called a table. Just as cells are the smallest viable structure in biology, a
group of data for a single variable—containing information such as each person’s diastolic blood pressure,
sex, clinical stage, or principal diagnosis—is the smallest analyzable structure in statistics.

The next seven chapters describe the many things that might be done with such a “univariate” group
of data. The activities extend all the way from simple descriptive summary indexes, such as medians
and standard deviations, to more complicated inferential calculations, such as standard errors, confi-
dence intervals, and a “one-sample” t-test. This long tour through a single group of data will also
include the main conventional activities of statistical inference — probabilities and parametric
sampling—and some attractive new procedures made possible by modern computers: jackknife
analyses and bootstrap resampling.

If you become impatient with the amount of attention being given to a single group, please bear in
mind that (1) as a counterpart of the cells of biology, the phenomena have fundamental importance in
statistics; and (2) all the activities of “advanced” statistics are essentially an extension of what can happen
for a single group. If you understand the univarate descriptions and inferences, the rest is relatively easy.
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Central Index of a Group
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The items in a large collection of data can always be examined individually, but the collection cannot
be interpreted until it receives a meaningful summary. To “make sense” of a collection of individual
items of data, we begin by forming groups, inspecting the spectrum of data in each group, and choosing
appropriate summaries for each spectrum. This chapter is concerned with the crucial first choice in that
summary: a central index.

|
3.1 Formation of a Group

Most statistical discussions begin with the idea that a “sample” has been obtained and is about to be
analyzed. In most medical activities, however, the idea of a sample is often misleading because a process
of “sampling” did not occur.

Instead, the investigator usually collects data from conveniently available groups of people. Some-
times the group is “natural,” consisting of everyone who came to the emergency room or received a

23
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particular treatment during a specified interval of time. Often the group is more “artificial,” containing
the individual persons who decided to respond to a mailed questionnaire or who volunteered for a
special test. Sometimes the group may contain not individual people but a set of observations obtained
repeatedly for the same person.

The way that groups are chosen and formed is an important scientific issue that is commonly overlooked
when statistical procedures are applied. As an arbitrarily defined collection of conveniently available
people, most groups are usually biased either for representing a larger population or for being compared
with one another. The prevention, evaluation, and management of these biases are prime challenges in
scientific architecture, but the statistical discussion here will proceed with the assumption that the groups
have been suitably formed. The statistical goals are to prepare a “univariate” summary of the data for
each variable in a group.

|
3.2 Role of Summary Indexes

The summary of a group is used for both internal and external purposes. Internally, it is a reference
point for locating the relative status of individual members within the group. Is a particular person much
older or much younger than the other people? Externally, the summary index locates the group for
comparison with the outside general world or with some other selected group. Thus, we might want to
know whether a particular collection of people contains mainly children or octogenarians or whether
the group is generally older than a compared group. In other external activities, we may examine the
relationship of one variable, such as age, to other variables, such as serum cholesterol and survival time.

The formation of a summary often receives perfunctory statistical attention. After a description of the
means that offer an “index of central tendency” and the standard deviations that offer an “index of
spread,” the discourse promptly advances to more “interesting” topics: the inferential statistical proce-
dures used for analyzing the summarized data. If the descriptive data have prime scientific importance,
however, the choice of summary expressions is a key decision, requiring substantial thought and attention.

At least three major problems can arise if we merely calculate means and standard deviations, while
ignoring the main scientific goals and the other statistical options:

1. Representation: The mean or other value chosen as a central index becomes the one single number
that repeatedly represents the group thereafter, in all of the internal and external comparisons. If
this central index is unsatisfactory, the group will not be adequately represented.

2. Distortion: 1If the spread of the data in the group’s spectrum is denoted by the standard
deviation, and if the standard deviation is not an effective index of spread, the data will be
inadequately represented and possibly distorted for internal placement of relative locations,
for various external comparisons, and for analytic correlations with other variables.

3. Omission: Many important clinical phenomena are expressed in categorical data, which cannot
be summarized with means and standard deviations. Consequently, a focus on only the latter
two indexes will omit the challenge of getting suitable summaries for non-dimensional
variables.

For all these reasons, the role and choice of summary indexes require careful attention. The rest of
this chapter is devoted to indexes of central tendency. The next two chapters are concerned with indexes
of internal location and spread.

|
3.3 Spectrum (Distribution) of a Group

To choose appropriate summary indexes, the first step is to see what is in the data. The collection of
values in the group form what is usually called a spectrum by biologic scientists and a distribution by
statisticians. The contents and “shape” of the spectrum will indicate how best to summarize the results.
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3.3.1 Displaying the Spectrum

A spectrum is arranged, displayed, and summarized differently for non-dimensional and dimensional data.

3.3.1.1 One-Way Frequency Tabulations — Non-dimensional data are usually displayed in
a “one-way table” showing frequency counts and the relative frequencies (or proportions) for each
categorical value. The results are called “one-way tables” because only a single variable is tabulated.
Figure 3.1 shows the contents of such a table for the ordinal variable, TNM stage, in a group of 200
patients with lung cancer. The distribution has its highest individual proportions (25.5 and 34.0 percent)
at the two “ends” of the data. The lowest proportion (9.0 percent) is in the “middle.” (The “cumulative”
frequencies marked in Figure 3.1 will be discussed in Chapter 4.)

TNM STAGE
Cumulative
TNM STAGE Frequency Percent Frequency Cumulative Percent
I 51 25.5 51 25.5
I 27 13.5 78 39.0
A 18 9.0 96 48.0
1B 36 18.0 132 66.0
v 68 34.0 200 100.0

FIGURE 3.1
Distribution of TNM stages in 200 patients with lung cancer.

Dimensional data can also be displayed in one-way tables, but a “pattern” may not become apparent
if the spectrum contains too many individual values.

3.3.1.2 Stem-Leaf Plots — To show the pattern of dimensional data, John Tukey! introduced the
display called a stem-leaf plot. For this plot, each numerical value of data is split into two parts: the left
side becomes a stem, and the right side, a leaf. For example, the numbers 114, 120, 93, 107, 128, 99,
and 121 might be split as 11|4, 12|0, 9|3, 10[7, 12|8, 9|9, and 12|1. In the tabulated plot, the leaves are
listed consecutively next to each common stem. In the foregoing group of values, which has three 12
stems and two 9 stems, the plot would be

12]081

11]4

10]7
9|39

The number of digits in the available values will determine where to place the splits that separate
stems and leaves. The subsequent plot can then be constructed simply and rapidly to show the spread,
concentration, and shape of the data.

Figure 3.2 shows a stem-leaf plot for the values of hematocrit in 200 patients with lung cancer. The
stems extend from 24 to 56; and most of the leaves are 0 because hematocrit values are usually recorded
as integers. The column on the right shows the number of leaves at each stem.

3.3.1.3 Histograms — Before stem-leaf plots were invented and became generally available via
commercial computer programs, dimensional data were often displayed with histograms. (The term is
a reduced combination of history-gram; it has nothing to do with histology.)

Instead of demarcations formed by the stems of leading digits, the data are divided into a series of
intervals. Instead of showing the trailing digit(s) as leaves, the number of items are counted as frequencies
for each interval. When placed on a graph, the X-axis for the results indicates the boundaries of each
interval, and the Y-axis, the associated frequency counts or their relative proportional frequencies. The
graph forms a frequency polygon, if shown with points, and a histogram, if shown with bars.
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Stem Leaf #
56 0 1
55

54 0 1
53 00 2
52 0 1
51 00 2
50 000000 6
49 000 3
48 000009 6
47 0001 4
46 0000000 8
45 000000000000006 15
44 000000000000 12
43 000000000000555 15
42 0000000000000000009 19
41 00000000047 11
40  0000000000000005 16
39 000000000000003399 18
38 00000000004 11
37 0000000000558 13
36 000033 6
35 0000000 7
34 000000255 9
33 0000003 7
3207 2
31 00 2
30 0 1
29

28 0 1
27

26

25

24 0 1

FIGURE 3.2
Stem-leaf plot for values of hematocrit in 200 patients with lung cancer.

To illustrate the procedures, consider the data of Table 3.1. For the raw values of data in the left-
hand column, the boundaries of intervals are chosen arbitrarily. In one common approach, at least seven
intervals are used for the spread of the data; in another approach each interval spans 5 dimensional
units. Both tactics can be used to divide the data of Table 3.1 into seven intervals: 10-14, 15-19, ...,
and 40—44 units. The results for relative frequency are graphed in Figure 3.3 as both a frequency polygon
and a histogram.

Table 3.2 shows a stem-leaf plot, prepared with an ordinary typewriter, for the data of Table 3.1. (Each
digit must be given equal width if a stem-leaf plot is prepared by hand or by a typewriter that ordinarily
shortens the width of the digit 1.) The horizontal pattern shown in Table 3.2 is essentially identical to
the vertical pattern in Figure 3.3.

3.3.2 Inspection of Shape

The shape of a distribution is the pattern formed by the frequencies (or relative frequencies) displayed
at each of the categorical values, stems, or demarcated intervals. For non-dimensional data, the shape
is not particularly important because, as noted later, it does not affect the choice of summary indexes.
For dimensional data, however, the patterns — when arranged vertically rather than in horizontal stem-
leaf plots— can form the series of shapes shown in Figure 3.4.
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TABLE 3.1
Raw Data, Interval Values, and Relative Frequencies
Demarcated Frequency Relative
Raw Data Intervals Count Frequency (%)
12,14,12,11,13 10-14 5 9
15,18,17,17,16,19,19,18,15 15-19 19 34
17,16,16,17,19,15,17,19,16,18
21,24,20,22,22,21,24,20 20-24 13 23
23,21,22,24,21
28,26,29,28,28,25 25-29 10 18
29,26,28,29
33,30,34,33 30-34 4 7
36,39,37 35-39 3 5
41,43 40-44 2 4
TOTAL 56 100
35
:\'; 30
5 25 - ¥
4
w
3 20 -
TABLE 3.2 e}
o
Stem-Leaf Plot for Data in Table 3.1 w s
>
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<
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3% | 3043 e 5
2e 8698859689 0
2% 1402214031241 101-415%-9 2(2);1 2%) 3%-43%—9 49&1
1e 5877699857667957968
1* 24213 VALUES IN UNITS OF DATA
Note: The symbol * is used for leaves FIGURE 3.3
having values of 0—4; the ¢ symbol Histogram (rectangles) and frequency polygon (dots and
is for values of 5-9. lines) for data contained in Table 3.1.
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FIGURE 3.4
Shapes of different distributions of data. The vertical axes for each shape are relative frequencies of occurrence for the
values (or intervals) in the horizontal axes.



28 Principles of Medical Statistics

These univariate patterns are sometimes mistakenly regarded as bivariate, because the graphs seem
to have two variables, placed along an X- and Y-axis. The entity on the Y-axis, however, is not a variable.
It is a statistic determined from counting the available values, not from acts of individual measurement.
The Y-axis shows frequency counts or relative proportions for each category of the single variable on
the X-axis.

3.3.2.1 Catalog of Shapes — The shapes in Figure 3.4 can be catalogued as convex or other,
and as symmetrical and non-symmetrical.

Most patterns have one or more crests that form a basically convex shape, with small relative frequen-
cies at one end of the distribution, rising toward one or more crests in the interior and falling toward
the other end. With a single crest at the center of the curve, the convex shape is also symmetrical. The
famous “bell” or “cocked-hat” shape of the Gaussian (or “normal”) distribution has an essentially
symmetrical convex pattern. (The distribution will be called Gaussian throughout this text to avoid the
medical ambiguity produced when statistical jargon refers to this shape as “normal”). Another shape
that can be regarded as symmetrically convex is a uniform (or rectangular) distribution. When the single
crest is asymmetrically off-center, located toward one of the exterior ends, the distribution is called skew.
The frequency polygon in Figure 3.3 has a right skew pattern.

A symmetrical distribution need not be convex. Symmetrical shapes can also be produced by a bimodal
distribution with two distinctive crests and by a concave distribution with a U-shaped trough. (The latter
type of shape would be produced by the data in Figure 3.1.) Bimodal and concave distributions can also
be asymmetrical, according to the location of the crests and troughs.

A sloping distribution does not have the fall-rise-fall or rise-fall-rise pattern of any of the previous
shapes. Instead, the curve of relative frequencies is “monotonic,” continuously rising toward (or falling
from) a crest that occurs at one end of the distribution. One type of sloping distribution is sometimes
called J-shaped; another type is called inverse-J-shaped, or L-shaped. Statisticians often use the word
exponential for these sloping shapes.

Shapes can also be described as centripetal if their crest (or crests) are somewhere near the center of
the distribution away from either end. All basically convex shapes are centripetal. The shape is centrifugal
if the crests are located at the ends, or if no specific crest occurs. The uniform, concave, and sloping
distributions are all centrifugal.

The reason for all the attention to shape is that symmetrical distributions — whether convex or concave,
centripetal or centrifugal —can be well represented by the means and standard deviations discussed
later. All other distributions are eccentric and may require other types of summary indexes to avoid
distortions.

3.3.2.2 Outliers — When arranged in ascending or descending order of magnitude, the items of
a dimensional distribution are usually close to one another, forming a shape that seems well “connected”
from its lowest to highest values. Sometimes, however, a large gap may occur between the main bulk
of the data and one or more values at the extreme ends.

The extreme values, called outliers, create two types of problems. First, they may sometimes arise as
errors in observing or transferring data. The error can be immediately detected if it represents an
impossible value. For example, values of =21 or 275 for age in years are obviously erroneous. A value
of 275 for weight in kg. is unusual but not necessarily an error. (A complex scientific decision is whether
to accept an outlier value as unusual or to discard it as erroneous.)

The second problem arises if non-symmetrical outlier values, which produce an eccentric shape, are
accepted and included in the data. To avoid the possible distortion of summary indexes calculated as
means and standard deviations, the raw data may be transformed (as noted in Section 3.8.1) into scales
that reduce the impact of outliers, or the summary indexes can be chosen with methods that are unaffected
by outliers.
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]
3.4 Types of Summary Indexes

At least two types of indexes of location are used to summarize a set of data. For external comparisons,
an index of central tendency, or central index, will represent the entire group of data when it is referred
to the outside world. For this purpose, we want something that represents the group by being particularly
typical, common, or central in the distribution. For internal comparisons, an index of cumulative relative
frequency (or percentile) will locate the items of data with reference to one another. These (and other)
indexes of inner location can also indicate the spread or dispersion of the data around the central index.

]
3.5 Indexes of Central Tendency

Although no single index can perfectly represent an array of values, we want something that will do the
best possible job. The job will vary for non-dimensional or dimensional data.

3.5.1 Indexes for Non-Dimensional Data

Non-dimensional data are often summarized not with a single central index, but with an apportionment
that shows the relative frequencies of each category. This type of expression, marked “percent,” was
used to summarize the five categories listed in Figure 3.1.

If a group has c categories, and if n, represents the number of members in category i, the total size
of the group will be N = n, + n, + n; + ... + n.. The Greek symbol X is regularly used to show these
summations. Thus, N = ¥n; = n, +n, + ... + n.. [In strict mathematical usage, the X is accompanied by
upper and lower symbols that indicate exactly where the surcnmation begins and ends. For the complete
collection of data, the result here would be shown as N =I_§ln,-. In pragmatic usage, however, the sum
almost always extends from the first to the last items. The upper and lower symbols are therefore omitted
from the X sign.]

The actual frequencies are converted to relative frequencies when cited as proportions of the total
group. Thus, the relative proportion of the i category is p; = n,/N. In Figure 3.1, which shows 5 categories,
the third category has n; = 18 and N is 200, so that p; = 18/200 = .09 or 9%.

3.5.1.1 Binary Data — For binary data, only two proportions can be cited. If 35 people have
lived and 15 have died in a group of 50, the survival proportion is p = 35/50 = .70 or 70%. The fatality
proportion is q = 15/50 =.30 or 30%. Similarly, if a group of 60 people contains 21 women, the proportions
are p =.35 for women and q = .65 for men, or vice versa.

Because q = 1 — p as a proportion (and 100 — p as a percentage), each of the two proportions (or
percentages) is called the complement of the other. The complete spectrum of binary data is effectively
summarized with either proportion. The choice of whether to use p or q usually depends on the item of
interest, rather than the item that is most common. Thus, the summary of a group might say that 14%
of its members have coronary disease, rather than 86% do not.

3.5.1.2 Nominal Data — Suppose a group of patients on a medical service has the following
spectrum of nominal diagnoses: pneumonia, 8; myocardial infarction, 5; ulcerative colitis, 1;
stroke, 4; cancer, 6; and renal failure, 2. In these 26 people, the relative frequencies of each diagnosis
are pneumonia, .31 (or 31%) calculated as 8/26; myocardial infarction, .19; ulcerative colitis, .04;
stroke, .15; cancer, .23; and renal failure, .08. To summarize a nominal spectrum, the relatively
uncommon items of data are often consolidated into a single category called other or miscellaneous.
Thus, the ulcerative colitis and renal failure diagnoses might be combined into an other category, with
frequency of 3 and a relative frequency of .12. For the total spectrum, the individual proportions will
add up to 1 (or 100%).
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The spread of the spectrum is shown in the array of proportions for each cited category, but a single
central index is difficult to choose for nominal data. The best single choice is usually the proportion of
the most common item, which is called the mode. For the spectrum of the preceding 26 diagnoses,
pneumonia = 31% would be the best single central index.

Alternatively, certain categories may be consolidated and expressed accordingly. Thus, myocardial
infarction and stroke might be combined, and the central index listed as cardiovascular = 34%
[= (5 +4)/26].

3.5.1.3 Ordinal Data — For grades of ordinal data, the central index can come from the pro-
portion of the most common category or from two or more consolidated categories. Suppose response
to treatment is rated as poor in 6 people, fair in 12, good in 11, and excellent in 10. A single summary
index could be formed from the mode of fair in 31% (= 12/39) or from the consolidated category, good
or excellent, in 54% (= 21/39). The data in Figure 3.1 could be summarized with the statement that
61% (= 9% + 18% + 34%) of the patients are in the metastatic stages of IIIA, ITIIB, or IV.

Because ordinal data can be ranked, the results can be summarized with a median, which is the middle
value in the ranked grades. In the preceding 39 people, the 20th rank has the middle position. Counting
the 20th rank from either end of the data, good is the median value. For the 200 people in Figure 3.1,
the middle ranks are 100 and 101. Stage IIIB, the value at both those ranks, is the median. (Medians
are more thoroughly discussed in the next section.)

In some instances, ordinal grades are given arbitrary numerical values, which are then treated as
though they were dimensional. Thus, if the foregoing responses were rated as 1 = poor, 2 = fair, 3 =
good, and 4 = excellent, the individual ratings might be added and averaged in the same manner shown
in the next section for dimensional data. Although the propriety is often disputed, this additive procedure
is often applied to ordinal data.

3.5.2 Indexes for Dimensional Data

For dimensional data, three different contenders are immediately available as an index of central
tendency: the mode, the median, and the mean. The mode is the most common value in the data. It
can be determined for any type of data— dimensional or non-dimensional. The median is the value
that occupies the middle rank when the data are arrayed monotonically in ascending or descending
magnitudes. A median can be determined for ordinal as well as dimensional data. The mean, as an
arithmetical average of the added values, is most properly used only for the equi-interval data of
dimensional variables.

Consider the group of data {13, 7, 1, 15, 22, 7, 21}. For these 7 items, the mean is produced with the
formula £X,/n = X , when their sum, 86, is divided by the number of items to yield 86/7 =12.3. The mode
is 7, which happens to be the only value that appears more than once in this group. To find the median,
we rearrange the values according to their ranks as 1, 7, 7, 13, 15, 21, and 22. The middle-ranked number,
13, is the median.

The mode can be determined, without any calculations, from a simple count of frequencies in the
data. The median can also be determined without any substantial calculations. We simply rank the data
and count the ranks until reaching the middle one. For N items of data, the median is the value of the
item of data that has rank (N + 1)/2 if N is odd. If N is even, (N + 1)/2 is not an integer; and the median
occurs between the values in ranks N/2 and (N + 2)/2. By custom, the median is assumed to be midway
between them. Thus, in the foregoing array of 7 items, the median was at the rank of (7 + 1)/2 = 4.
If the data contained 8 items—arranged as 1, 7, 7, 13, 15, 21, 22, and 25— the median would be
midway between the 4th and 5th items, at the value whose rank is (N + 1)/2 = (8 + 1)/2 = 4.5. There is
a 2-unit distance between 13 (the 4th ranked value) and 15, the 5th ranked value. Half of this distance
is 1 unit, and so the median would be 13 + 1 = 14.

Each of the three contenders has a reasonable claim for selection as the central index. The mode has
the right of popularity: it is the most common occurrence. The median can argue that its central position
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is literally in the exact middle (or center) of the array. Half of the items are on one side of the median;
half are on the other. The mean has the centrality of a fulcrum. It is the point that divides the data by
weight. Half of the summed amounts (or weights) of the values are on one side of the mean; half are
on the other.

Given these three reasonable options, which should be chosen as the index of central tendency? For
people with commercial marketing interests, the best choice is often the mode. It lets the vendor know
where to find the largest audience of potential buyers for a product. In medical research, however, the
mode is generally not a good central index because the data may contain either no naturally occurring
mode or several widely separated modal values.

3.5.3 Choice of Median or Mean

With the mode eliminated as a contender, the choice is between the mean or median. For this decision,
we need to examine the pattern (or “shape”) of the dimensional distribution.

The shapes of the diverse spectrums in Figure 3.4 demonstrate the problems of making a suitable
choice. A centripetal distribution can be reasonably represented by a central index, but a centrifugal
distribution does not have a central tendency; and any efforts to create one will inevitably be
undesirable compromises.

For a symmetrical convex distribution, the mean and median will occur at essentially the same crest
of the curve, and so no major decision is necessary. Either choice will give the same value. For a
symmetrical distribution that is concave, bimodal, or even multi-modal, no central index can be really
satisfactory. Citing a mode would be inadequate, since two or more modes would be needed to represent
the two “crests” on either side of the center. The mean and median will have essentially similar values,
but neither one will be “typical” of the main bulk of the data, which occurs on both sides of the center.
Nevertheless, for lack of anything better, either the mean or the median would seem to be a reasonable
compromise in these circumstances.

The main problems and challenges occur for the many medical distributions that are eccentric. Their
shape can be overtly centrifugal, or centripetal but non-symmetric, or basically symmetric with distinctive
outlier values at the low or high ends of the spectrum. Figure 3.5 illustrates the different locations of
the mode, median, and mean in a common type of right-skewed non-symmetrical distribution that creates
difficult decisions in choosing a single central index. [A simple mnemonic for remembering the location
of the three indexes in a skewed distribution is that they are arranged both statistically and alphabetically
starting at the skewed end of the data. Mean precedes median, which precedes mode.]

Mode

Median
Mean
RELATIVE
FREQUENCY
FIGURE 3.5
Customary location of mode, median, and
mean in a right-skewed distribution. VALUES IN DATA
]

3.6 Advantages of the Median

The median has four main descriptive advantages as an index of central tendency. It is better than the
mean for summarizing eccentric distributions; it can also be properly used, unlike the mean, for ordinal
data; it is often, unlike the mean, an actual member of the data set; and it can be applied, also unlike
the mean, to sets containing incomplete longitudinal data.
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3.6.1 Eccentric Distributions

The median is preferable to the mean for avoiding problems in summarizing eccentric distributions
created by outliers or by asymmetrical (skew) patterns.

3.6.1.1 Avoidance of “Outlier” Distortions — Consider a group of eleven people aged 1,
2,4,4,5,5,5,6, 6, 8, and 97 years. Except for the first and last members of the group, all other values
are arranged symmetrically around a central value of 5. If the last value were 9 rather than 97, the entire
distribution would be symmetrical, with the mean and median each being 5. The outlier value of 97
substantially distorts the symmetry, however, and raises the mean to a value of 13.0—an index that
misrepresents the group’s central location for age and that is not typical for any member of the group.
The median, on the other hand, has the advantage of being unaffected by extreme outliers. For the eleven
people just listed, the median value would be 5, regardless of what the highest value may be.

3.6.1.2 Use in Asymmetrical (Skew) Distributions — The virtues just cited for the median
become more apparent when a distribution is overtly asymmetrical. For a convex skew distribution or
for a sloping distribution, the crest of relative frequencies, the median, and the mean will each usually
be located at different sites. For example, for the raw data listed in Table 3.1, the mode is 17, the median
is 21, and the mean is 22.7. The shape of these data, as shown in Figure 3.3, is skewed to the right—a
pattern that commonly occurs in medical data.

The more general pattern of a right-skewed distribution is shown in Figure 3.5. The most “typical”
or common values of skew distributions will occur at their crests, which are the modal values that are
unsatisfactory as indexes of central tendency. In choosing an alternative central index, the median seems
preferable because the outlier values that create the skew will also move the mean far from the crest,
leaving the median to fall between the crest and the mean.

The median thus has two advantages over the mean for summarizing an eccentric distribution. Being
unaffected by the impact of outlier values, the median will always be consistently located in the central
rank of the distribution; and the median will also be closer than the mean to the “popular” values in the crest.

3.6.2 Application to Ordinal Data

Another advantage of the median is that it can readily be applied to ordinal data because its proper
calculation does not require dimensional values. In Section 3.5.1.3, the median produced good as a
central index for 39 ordinal ratings of response to therapy, and Stage IIIB for 200 cases of lung cancer.

3.6.3 Membership in Group

Another advantage is that the median value is particularly likely to occur in an actual member of the
group. For example, when a census report says that the average American family contains 2.3 children
(calculated as a mean), you may wonder what the family does with the 0.3 child. If the average is
reported as a median of 2, however, the statement is immediately plausible.

If the group contains an even number of people, however, the median is calculated as an average of
two middle values. If they are different, the median will not be a member of the group. Thus, for six
people whose ages are 7, 9, 10, 28, 37, and 43, the two middle values would be 10 and 28. The median
would be cited as halfway between them, or 19. Although not found in any member of the group, this
median value seems reasonable as a central index. (The alternative choice would be a mean of 22.3.)

3.6.4 Application to Incomplete Longitudinal Data

Finally, the median is particularly valuable for expressing results of longitudinal data (such as length of
survival) in groups where the mean value cannot be calculated because some of the people have not yet
died (or otherwise ended the follow-up period). For example, suppose 17 patients followed for 3 years
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after treatment of a particular cancer have survival times that are 1, 2,2, 3, 3,3, 4,4, 5, 6, 6,7, 12, 17,
and 25 months, and unknown for two patients who are still alive after 36 months. The mean survival
time cannot be calculated yet for this group; and the result will vary according to whether the two
survivors die soon after 36 months or live much longer. The median survival, however, can be determined
now. It is 5 months, and will remain at 5 months no matter how long the last two people live.

The median is also helpful as a single summary for survival of the group. The survival rates might
be reported for individual time points such as 65% (=11/17) at three months, 35% (=6/17) at six months,
and 24% (=4/17) at one year; and a survival curve could be drawn to show each temporal rate. To
summarize survival with a single quantitative value, however, the best of the available options would be
the median of 5 months.

3.7 Disadvantages of the Median

In view of all these advantages of the median, you may wonder why the mean is so commonly used in
reports of medical research.

3.7.1 Symbolic

A trivial reason for preferring the mean is that it has a standard symbol, X , but the median does not.
It is sometimes labeled as X, M, or X ;. This problem can readily be solved, particularly with modern
typewriter symbols, by using X for a median.

3.7.2 Computational

A more substantive disadvantage of the median is the enumerative challenge of finding it. The data
must be arranged in ranked order and the ranks must be counted to find the middle one. In the days
before computers and programmable electronic hand calculators, this ranking procedure could be a
nuisance, requiring considerable time to get all the numerical values ranked and then counted for a
large group. A mean was easily determined, however, by the simple act of pushing buttons in a
mechanical calculator, which would do the adding and dividing.

Today, this disadvantage has little pertinence. With modern computational devices, the median can
often be determined just as easily as the mean; and, in fact, with a suitably programmed calculator, both
values can emerge from the same act of button pushing.

3.7.3  “Elitist”

With the problem in counting eliminated, the only remaining objections to the median are conceptual.
One conceptual complaint is that the median is somewhat “elitist.” It is determined from only the middle
or the two middlemost values in the data. The rest of the data are used as ranks and counts in finding
the median, but do not participate as actual values. Since the choice of a central index is intended to
provide intellectual communication rather than participatory populism, this objection does not seem
cogent. Besides, a value that denotes “mediocrity” can hardly be regarded as “elitist.”

3.7.4 Inferential

The most important conceptual objection to the median is that it seldom appears in the probabilistic
reasoning and calculations of inferential statistics.

After being chosen for a group, the central index is often used for inferences about a “parent
population,” or for stochastic contrasts of “statistical significance” in two groups. The various strategies
(confidence intervals, P values, etc.) used for these statistical inferences, as discussed later, have tradi-
tionally been developed with concepts that depend on means, rather than medians. Consequently, the
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mean is usually preferred because it can be analyzed for both descriptive and inferential statistics. Even
if a median were used for description, we might still need the mean for inference.

This point is true, but not germane to the main descriptive issues; and the point may eventually become
irrelevant for the inferential issues. In description, we want a summary that will communicate as effectively
as possible. The median usually offers more effective communication than the mean. In the inferential
activities, if a data set is poorly represented by the mean, its use is scientifically unattractive, regardless
of whatever traditional mathematical theory may be associated. Most importantly, however, modern
computational devices have allowed inferential statistical work to be done with new strategies called
non-parametric, permutation, or resampling procedures, which do not require a mean for the calculations.
As these new procedures become more popular and eventually replace the older ones (such as t or Z
tests), the communicative advantages of the median will no longer be inhibited by extraneous features
of statistical inference.

Until that time arrives, however, you will often see the mean, rather than the median, in most summaries
of dimensional data.

3.8 Alternative Approaches

The descriptive problems of using the mean as a central index have led to many proposed substitutions
and adjustments, having diverse titles or eponyms. Among the many proposed alternatives, only two are
likely to appear in current medical literature: transformations of data and geometric means.

3.8.1 Transformations of Data

Various mathematical transformations have been used to convert non-symmetrical distributions into more
symmetrical shapes, from which the mean is then calculated. After the raw data are changed into their
square roots, logarithms, or some other suitably chosen value that will produce a “better” pattern, an
additive mean is calculated for the transformed data. The result is then converted back to the original
units of expression.

For example, in a study of antibody levels to poliomyelitis vaccine, the following values were found
in 17 persons: 4, 4, 8, 8, 16, 16, 32, 64, 64, 256, 256, 256, 512, 512, 512, 1024, and 2048. For these
skewed data, the median is 64, but the arithmetic mean is the unrepresentative value of 328.9. The data
would become more symmetrical (or “Gaussian”) if transformed to their logarithmic values (base 10).
The logarithms of the 17 antibody values are respectively .60, .60, .90, .90, 1.20, 1.20, 1.51, 1.81, 1.81,
241,241, 241,271, 2.71, 2.71, 3.01, and 3.31. This distribution seems reasonably symmetrical, and
its mean is 1.89. To convert the “log mean” back to the original values, we calculate 10 and get 78.47.
(Note that the reconverted log mean is reasonably close to the median value of 64.)

The logarithmic transformation is particularly useful (and common) for data that have a right skew
or high-value outliers. A square root transformation is sometimes applied to help “adjust” data that have
a left skew or low-value outliers. A transformation having the delightful eponym of Box-Cox? is often
mentioned in statistical literature, but rarely (if ever) receives medical usage.

Two other seldom-used transformations are applied for their logical rather than “Gaussianizing”
virtues. The harmonic mean, calculated from the reciprocals (1/X,) of the observed values, is often used
for averaging rates of speed. The quadratic mean or root mean square, calculated from the squares of
the observed values as ZX?/H, appears later in the text here as a mechanism for summarizing a set
of differences in two measurements of the same entities.

3.8.2 The Geometric Mean

The log-mean transformation was popular in the days before modern electronic calculators. Today, the
same result can be calculated directly as an entity called the geometric mean. It is obtained by multiplying
the N values of observed data and then taking the Nth root of their product. (The advantage of modern
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calculators is the “y*” function that allows an easy computation of the N root, where y = product of
the values and x = 1/N.)

The direct product of the 17 previous antibody values is 4 X 4 X 8 X ... X 512 x 1024 X 2048 =
1.622592769 x 10%2. The 17th (or 1/17) root of this number is 78.47, which is the same as the reconverted
log-mean value.

The logarithmic transformation was popular for many years because it could often “Gaussianize” skew
data and provide the numerical precursor of the geometric mean. Today, with the ease and rapidity
permitted by electronic calculators, the geometric mean can be determined directly with hardly more
effort than what is needed to obtain an arithmetic mean.

For people who want a “populist” index of central tendency, the geometric mean has the advantage
of including all the values of data in the calculation, but the result is often close to the “elitist” median.
This advantage of the geometric mean is lost, however, in several important situations. If any of the data
values is 0, the entire product is 0, and the geometric mean must be 0. If the product of the data values
is negative, a logarithm cannot be determined and the Nth root of the product (even if calculatable) may
be meaningless. A different kind of problem occurs if the data are skewed to the left, rather than rightward.
For example, suppose the data set contains the values 1, 62, 67, 67, and 75. The arithmetic mean of this
group is 54.4 and the median is 67, but the geometric mean is 29.1, which is farther from the median
than the arithmetic mean. On the other hand, if the data set were skewed right, with values of 62, 67,
67, 75, and 200, the arithmetic mean would be 94.2 and the geometric mean of 83.97 would be closer
to the median of 67. For these reasons, except perhaps in an all-positive skewed-right distribution, the
median is a better general index of central tendency than the geometric mean.

The geometric mean is often preferred, however, if the basic data are expressed “exponentially” in
powers of 10 (or some other number) for such entities as bacterial counts and antibody titers. In the
earlier example (Section 3.8.1) of 17 antibody levels to poliomyelitis vaccine, all of the values were
expressed in exponential powers of 2, and the geometric mean was much better than the arithmetic mean
as an index of central tendency. The geometric mean has also been used to summarize the “skewed
distribution” of plasma prolactin concentrations? and the “log normal distribution” of blood-lead values.*

3.8.3 The Midrange

A particularly simple index, the midrange, is half of the sum of the minimum and maximum items in
the data set. The midrange is a good “screening clue” for discerning an asymmetrical distribution, which
probably exists if the midrange differs substantially from the ordinary additive mean, X . In Table 3.1,
the midrange of (12 + 43)/2 = 27.5 immediately indicates the asymmetry of the data set, for which the
mean is 22.7.

3.8.4 “Robust” Means

In modern new approaches, called Exploratory Data Analysis (EDA),> the mean is still determined by
addition, but is made more “robust” by different methods of thwarting the effect of outliers. The
calculations use various tactics to eliminate or “trim” the extremes of the data. The results have names
such as trimmed mean, Tukey’s tri-mean, Studentized mean, Windsorized mean, and Hempel adjusted
mean; and new suggestions are constantly proposed in the literature of statistics and data processing.

The mathematical attraction of the “robust means” seldom overcomes both their unfamiliarity and
their inapplicability for inferential (rather than descriptive) statistics. The median seems much simpler
and more intuitively appealing as a descriptive mechanism for avoiding the effects of outliers.

|
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|
Exercises

3.1. Which of the three central indexes — mean, median, and mode — would you choose to summarize
the central tendency of the data in Table 3.1 and Figure 3.37 Why?
3.2. The results of a clinical trial are presented in a two-way table as follows:

Number of Patients Who Received

Outcome Treatment A Treatment B Treatment C
Success 40 70 50
Failure 320 280 295

3.2.1. Classify the types of variables under assessment in this table.

3.2.2. What proportion of patients received Treatment A?

3.2.3. How would you summarize the results for success with Treatment C?

3.2.4. If you had to give a single index for the success achieved in this entire trial, what would

you choose?
3.3. A group of patients on a medical service shows the following values for fasting blood sugar: 62,
78, 79, 80, 82, 82, 83, 85, 87, 91, 96, 97, 97, 97, 101, 120, 135, 180, 270, and 400. Calculate or
demonstrate the following indexes for these data: mean, median, mode, geometric mean.
3.4. Using any method you want to apply for estimating shape, classify the shape of the distribution of
data in Exercise 3.3.
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For the external role of showing an “average” general location, the central index lets us know whether
the members of a group are mainly children or octogenarians, fat or thin, rich or poor, high or low
achievers — or somewhere in between. The central index also represents each group when it is compared
to decide whether some other group is older, fatter, richer, or more achieving.

An index of inner location has a different job. It shows the relative position of individual members
internally within the group. If told that someone had the 10th highest score in a certification test, we
might be impressed if the group contained 273 people, and unimpressed if it contained 11. In another
group with a central index of 80, a value of 75 seems relatively close to the center— only 5 units away.
The actual closeness of the 75 item, however, depends on all the other items of data. In the data set {75,
77,77,79,79,79, 81,81, 81, 83, 83, 85} the 75 is relatively far away, separated by five intermediate items.

I
4.1 Analytic Roles of Inner Locations

An index of inner location can have four important roles in description and subsequent analysis.

1. The most obvious role is to identify members of a group as being relatively near or far from
the center.

2. In a subsequent role, indexes of inner location can demarcate boundaries for inner zones that
contain selected proportions of the data.

3. The size of the inner zones can indicate the data set’s relative compactness or dispersion.

4. The relative dispersion of the data can then be used to assess the adequacy and (later) the
stability of the central index itself.

The last three roles of indexes of inner location will be discussed in subsequent chapters. The rest of
this chapter is concerned with the indexes themselves. The two most commonly used expressions are
percentiles and standard deviations. The percentile index is simple, obvious, and direct: it relies on
counting the relative “depth” of ranked items in the observed distribution. The standard deviation, as a
calculated entity, is more complex, but is currently more popular because it has become a traditional
statistical custom.

|
4.2 Percentiles

Percentiles are points that divide a set of ranked (dimensional or ordinal) data into proportions. At the
25th percentile point, .25 or 25% of the data are below the cited value, and 75% are above. The 50th
percentile point divides the data into two equal halves.

The proportions are easy to determine because each member of a set of n items occupies a 1/n
proportion of the data. The ranking can be done in either direction — from low values toward high, or
vice versa—but as the ranks ascend (or descend), the proportions accumulate so that the first r ranks
will occupy 1/n of the data. For example, in the 56-item data set of Table 3.1, each item occupies 1/56 =
.018 of the data. At the 39th rank, the first 39 items will occupy 39/56 = .696 of the data.

4.2.1 Problems in Identification

The concept is easy to describe and understand, but its application produces three tricky problems: shared
boundaries, intra-item percentiles, and shared ranks.

4.2.1.1 Shared Boundaries — The proportions occupied by two adjacent members of a data set
have boundaries that “touch” or are shared by the upper end of the first and the lower end of the second.
For example, in a five-item data set, the first item occupies the proportions 0—.20; the second item
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occupies .20—.40; the fifth occupies .80—1.00. To do the demarcation properly, the corresponding per-
centile point is located between the two items that might claim it. Thus, in the five-item data set, the
20th percentile would be placed between the first and second items, and the 80th percentile would be
between the fourth and fifth.

When adjacent items “touch” the pertinent proportions, the in-between location allows the percentile
to be additively reciprocal. Thus, the percentile point, P, when counted in one direction, will be 100—P
when counted in the opposite direction. If we went from high to low ranks instead of from low to high
in the five-item data set, the 20th percentile would become the 80th, and vice versa. The direction of
counting ranks is unimportant as long as it is used consistently, because the percentile in one direction
is always the additive reciprocal of the percentile in the other.

4.2.1.2 Intra-Item Percentiles — In mathematical theories for “continuous” data, each value
is a point of infinitesimal width on a curve. In pragmatic reality, however, each item of data occupies
its own zonal proportion of the total collection. This attribute creates problems in the small data sets
that are commonly analyzed in biomedical research, because certain percentiles may be contained within
an item of data.

For example, in a five-item data set, the first item occupies the proportions 0—.20; and any of the
percentiles from 1 to 19 would be contained within this item. Similarly, the fifth item of data would
contain any of the percentiles from 81 to 99. The 50th percentile or median of the data set would pass
through the third item, which occupies the proportions from .40 to .60.

This distinction of small data sets is responsible for the use of two different methods (discussed later)
for determining percentiles. The pragmatic-reality method uses proportions of the discrete data; the math-
ematical-theory method relies on interval divisions for a continuous curve.

4.2.1.3 Shared (Tied) Ranks — When two or more items have the same value in a data set,
they are “tied” and will share the same ranks. To preserve the correct sums and proportions for the total
of ranks, each tied value is assigned the same average rank. For example, in Table 3.1, the two values
of 12 would occupy ranks 2 and 3. They are each assigned rank 2.5. (The next value, 13, becomes
rank 4.) The four values of 21 would occupy ranks 27, 28, 29, and 30. Their average rank can be determined
as (27 + 28 + 29 + 30)/4 = 28.5, or, more simply, as the first plus last divided by 2. Thus, (27 + 30)/2 =
28.5. (The proper management of tied ranks is an important challenge that is further discussed for Rank
Tests in Chapter 15.)

Tied ranks are seldom a substantial problem in determining percentiles, particularly if the same values
“compete” for the location of a particular percentile point. For example, in the 56-item data set of
Table 3.1, the first 28 items occupy the proportions 0—.50 and the last 28 items occupy .50 — 1. Because
the .50 value is shared by ranks 28 and 29, the 50th percentile, or median, is placed between them. Since
these ranks, as noted in the foregoing paragraph, are occupied by the same value, i.e., 21, the value of
the 50th percentile is 21.

4.2.2 General Procedure

Each of the 56 items in the data set of Table 3.1 will have two ranks —one counted from each end.
Thus, 11 is the first rank counting in one direction, and the 56th rank in the other; and 43 would
correspondingly be either the 56th or the first rank.

As just noted, the middle rank or median for this distribution would be at the rank of (56 + 1)/2 =
28.5. Counting from low to high values, this rank occurs among the four values of 21 that occupy ranks
27 through 30. Going in the other direction, if 43 is counted as the first rank, the values of 24 occupy
ranks 20-22; 23 has rank 23; values of 22 occupy ranks 24-26; and values of 21 occupy ranks 27-30.

Since the number of ranks will vary as n changes from one data set to another, the counted ranks are
standardized by citation as proportions or relative frequencies of the data. The cumulative relative
frequency or cumulative proportions will be 2/n after the second ranked item, 3/n after the third, and
r/n after the rth ranked item.



40 Principles of Medical Statistics

In the ordinal data of Figure 3.1, the two rightmost columns show the cumulative count of frequencies
as the categories ascend, and the associated cumulative relative frequency is marked cumulative percent.
After the last category in any array, the cumulative count is always N (the total size of the group), and
the cumulative percent is always 100%.

4.2.3 Points and Zones

The first percentile point demarcates a zone of cumulative relative frequency that includes 1/100 of the
data. The second percentile point demarcates a zone for 2/100 of the data, and so on. Note that percentile
points demarcate the boundaries of zones, whereas cumulative proportions refer to the amounts of data
contained in each zone. Thus, the 50th percentile point demarcates two zones, each containing a .50
cumulative proportion, or half the data in the set. The 25th, 50th, and 75th percentile points demarcate
four zones, each containing one fourth of the data.

The distinction is shown in Figure 4.1. The upper part of the figure indicates the percentile points for
values of the data. The lower part shows the proportionate amount of the items of data located in each
zone demarcated by the percentiles.

Figure 4.2 shows the location of the 25th, 50th, and 75th percentiles in a Gaussian distribution. Because
the distribution is much denser near the center than at the edges, the zones containing the second and

L | | | |
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FIGURE 4.1
Distinction between percentile points (upper) and the corresponding zones of demarcated data (lower).
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third “quarters” of the data are taller and thinner than the zones for the first and fourth quarters. Despite
the symmetrical shape of the Gaussian curve around its center, the distances between adjacent percentile
points are not symmetrical. Thus, the distance from the Oth percentile (which is never quite reached) to
the 25th percentile is much larger than the distance from the 25th to the 50th percentile. On the other
hand, on the two sides of the curve, the interpercentile distances are symmetrical between the 25th to
50th and 50th to 75th percentiles, and between the Oth to 25th and 75th to 100th percentiles.

4.2.4 Tabular Illustration of Cumulative Frequencies

An empirical display of frequencies, relative frequencies, and cumulative relative frequencies is shown
in Table 4.1, which contains the observed serum chloride values and the frequency of each value in 2039
consecutive patients tested at a university hospital’s laboratory. The relative frequencies of each value,
which are shown in the third column of the table, are plotted as a frequency polygon in Figure 4.3. The
shape of the spectrum seems reasonably symmetrical, with the crest of the “curve” at the mode of 103.

TABLE 4.1

Serum Chloride Values for a Population of about 2,000 People (Courtesy of laboratory service, Yale-
New Haven Hospital.)

Serum Ascending Descending
Chloride Cumulative Cumulative
Concentration* Observed Relative Relative Relative
mEq/dl) Frequency Frequency Frequency Frequency Z Scores
75-83 8 .0039 .0039 1.0000 —
84-85 12 .0059 .0098 9961 —
86-87 12 .0059 .0157 9902 —
88 10 .0049 .0206 9843 -2.611
89 10 .0049 .0255 9794 —2.418
90 28 .0137 .0392 9745 —2.226
91 20 .0098 .0490 .9608 —2.034
92 22 .0108 .0598 9510 —1.842
93 18 .0088 .0687 9402 —-1.649
94 32 .0157 .0844 9313 —-1.457
95 43 0211 .1054 9156 -1.264
96 51 .0250 1305 .8946 -1.072
97 76 .0372 1677 .8695 -0.879
98 96 .0471 2148 .8322 —0.687
99 125 .0613 2761 7852 —0.495
100 146 .0716 3477 .7239 —0.302
101 159 .0780 4256 .6523 —0.110
102 204 .1000 5257 5743 0.082
103 222 .1089 .6346 4743 —0.275
104 195 .0956 7303 3654 0.467
105 167 .0819 .8122 2697 0.659
106 136 .0667 .8789 1878 0.852
107 83 .0407 9196 1211 1.044
108 49 .0240 .9436 .0804 1.237
109 41 .0201 9637 .0564 1.429
110 26 .0128 .9765 .0363 1.621
111 13 .0064 9828 .0235 1.813
112 15 .0074 .9902 .0172 2.006
113-114 10 .0049 9951 .0098 —
115-127 10 .0049 1.0000 .0049
TOTAL 2,039 1.0000 — —

Note: Mean = | = 101.572; standard deviation = ¢ = 5.199; the Z score values are described in Chapter 5 of the text.

* At the top and bottom of this table, certain extreme values have been compressed to save space. The individual values
and their observed frequencies are as follows: 75-1; 76-1; 77-1; 80-2; 82-1; 83-2; 84-5; 85-7; 86-7; 87-5; 113-4;
114-6; 115-1; 116-3; 117-1; 118-1; 120~1; 123-2; 127-1.
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The relative frequencies of the chloride values can be cumulated in either an ascending or descending
direction, as shown in the fourth and fifth columns of Table 4.1. In the ascending direction, starting with
the lowest chloride value, each successive chloride value (or interval) adds its own relative frequency
to what was previously cumulated. The cumulative results continue to increase until they reach their
final total of 1.000 after the highest chloride value is added. In the descending direction, starting with
the highest chloride value, the process is similar but opposite.

Figure 4.4 shows the relative cumulative frequencies in an ascending direction for each chloride value.
The S-shaped or sigmoidal curve is called an ogive. The shape is characteristic of cumulative frequencies
in a Gaussian distribution.

The data in Table 4.1 (or in Figure 4.4) allow any cited chloride value to be immediately located in
the spectrum. The value of 94 occurs near the lower end, as shown by its ascending cumulative relative
frequency of .0844. The chloride value of 108, with an analogous proportion of .9436, is located near
the upper end. The value of 102, with an ascending cumulative relative frequency of .5257, is close to
the middle.
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sociated with the observed values of serum chloride listed for the chloride concentrations shown in Table 4.1 and
in Table 4.1. The two extreme “tails” of the curve are Figure 4.3.

shown with dotted lines because the points marked “X”
are a composite of several values, as noted in Table 4.1.

With either Table 4.1 or Figure 4.4, we can immediately find the chloride value that corresponds to a
selected percentile, and vice versa. In an ascending direction, the value of 102 occupies the cumulative
proportions from .4256 to .5257. In a descending direction, 102 occupies the cumulative proportions
from .4743 to .5743. In either direction, the cumulative proportion of .50 is passed within the value of
102, which is therefore the 50th percentile point or median. With a similar inspection, the chloride value
of 99 contains the 25th percentile point in an ascending direction and the 75th percentile point in a
descending direction.

4.2.5 Nomenclature

When a set is divided into hundredths, the demarcations can properly be called either centiles or
percentiles. The former term is preferred by some writers, but the latter (employed throughout this text)
is more commonly used and seems to be preferred in both ordinary and statistical dictionaries.

The percentile (or centile, if you wish) is regularly used to denote the inner location of an item of
data in a dimensional spectrum. If a particular item occupies several percentiles, it is commonly cited
with the “esthetic” or “conventional” demarcations that end in (or near) the digits O or 5. Thus, the
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chloride value of 95, which occupies the ascending cumulative relative frequencies between .0844 and
.1054 in Table 4.1, could be called the 9th percentile, but would usually be called the 10th.

4.2.5.1 Quantiles — Certain percentiles are given special names, called quantiles. The tertiles
are the 33rd and 67th percentiles. The quintiles are the 20th, 40th, 60th, and 80th percentiles. The
frequently used quartiles are the 25th, 50th, and 75th percentile points. These three quartiles are also
respectively called the lower quartile, median, and upper quartile. The lower and upper quartiles are
often symbolized as Q, and Q. (The median would be Q,, but is usually shown with X or some other
special symbol.) The percentiles set at 2.5, 5.0, 7.5, ..., 92.5, 95, 97.5, 100 each demarcate zones
containing 1/40 of the distribution. Henrik Wulff! has proposed that they be called quadragintiles.

4.2.5.2 Quantile Zones — The names of certain percentiles are regularly applied erroneously
to the demarcated zones as well as the boundary points. A set of k quantiles will demarcate k + 1 zones.
Thus, the four quintile points demarcate five zones, each containing one fifth of the data. The three
quartile points demarcate four zones, each containing one fourth of the data. These zones are really fifths
and fourths, but they are often mislabeled as quintiles or quartiles.

4.2.5.3 Points, Ranks, and Values — An important distinction in nomenclature is the points,
ranks, and values of percentiles.

A percentile point is a general location. Among 100 such points, it is regularly set (or found to be)
at 20, 25, 50, 70, 75, or some other percentage of 100. In demarcating cumulative proportions of the
data, these points would be denoted as .20, .25, .50, .70, and .75. When the term percentile is used
without further specification, the reference is almost always to the point.

Percentile points will have different ranks within a set of data, according to the number of members
in the distribution. The 50th percentile point (or median) occurs at rank 5 in a group of 9 items and at
rank 14 in a group of 27.

A percentile value is the actual value of the particular item (or interpolated item) of data that is located
at the percentile rank. This value will be 0.6, —12, 78.3, 1.9 x 10° or whatever occurs at that rank in the
observed collection of data.

The following statement indicates all three uses of the terms: “He scored 786, which placed him in
the 95th percentile, because he ranked 60th among the 1206 candidates who took the test” In this
instance, the percentile value is 786, which is the actual score in the test. The percentile rank is cited
directly as 60. The percentile point is determined from the proportion 60/1206 = .0498. Since high scores
are usually reported with reciprocal percentiles, this proportion becomes converted to 1 —.0498 = .9502,
or the 95th percentile.

|
4.3 Calculating Ranks, Zones, and Percentile Points

If r is the rank of an item in an n-item data set, the percentile point, P, occurs when the cumulative
proportion, r/n, just exceeds P; i.e., (/n) > P or r > Pn. Consequently, if the product Pn = r is exactly
an integer, the selected rank must exceed Pn. It will have an intermediate rank that lies between r = Pn
and the next rank, r + 1. For example, the formula Pn = r for the 25th percentile point of a 28-item data
set yields (.25)(28) = 7; and the point will lie between the 7th and 8th ranks. Similarly, for the median
or 50th percentile in that set, Pn=ris (.50)(28) = 14, and the point occurs between the 14th and 15th ranks.

On the other hand, if Pn = r is not an integer, the rank is within the next item. Thus, for the 5th
percentile in a set of 28 items, Pn = r = (.05)(28) = 1.4. The 5th percentile is within the second rank.

This process will produce symmetrical results, working from either end of the data. With the proportion
formula for the 95th percentile in a set of 28 items, we get r = (.95)(28) = 26.6, which becomes the 27th
ranked item, counting from the lower end. This item will correspond to the 2nd ranked item (i.e., Sth
percentile) counting from the upper end.
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4.3.1 Calculating Ranks from Percentile Points

To calculate a rank from a percentile point, the simplest approach is to use the r = Pn formula. If the
result is not an integer, the rank is the next higher item. If the result is an integer, the rank lies between
the surrounding items. Thus, if Pn = 8, the rank is between 8 and 9. If Pn = 8.3, the rank is within the
9th item.

4.3.2 Calculating Percentile Points from Ranks

Going in the other direction is not as easy because you start with a ranked integer, r, and cannot promptly
use the foregoing rule to calculate r = Pn. After getting the value of P = 1/n, however, you can use r =
Pn to see whether an integer emerges. Thus, for the 12th rank in a 37 item data set, P = 12/37 = .32
and r = (.32)(37) = 11.8, which confirms that the 32nd percentile is within rank 12. For the 14th item
in a 28 item data set, P = 14/28 = .5, and r = (.5)(28) = 14, which is an integer. Therefore the 50th
percentile must lie between ranks 14 and 15. In zones, the cumulative proportions end at .464 (=13/28)
for the 13th rank, at .500 (=14/28) for the 14th rank, and at .536 (=15/28) for the 15th. The individual
zones are from .464 to .500 for the 14th rank and .500 to .536 for the 15th. Because the 14th and 15th
ranks share the “edges” of the .500 cumulative proportion, the percentile point must lie between them.

4.3.3 Alternative “Statistical Method”

The foregoing discussion is straightforward and direct, and the proposed method will always do the
correct job. This method, however, is not what is offered in most conventional statistical discussions of
percentiles. Accustomed to the theoretical collection of “continuous” data in Gaussian curves, the
statistical approach does not deal with the problems of data sets that contain a finite number of individual
items. Accordingly, in most statistical discussions, percentiles are used to demarcate intervals and interval
boundaries, rather than the zones demarcated by those boundaries.

For large data sets (e.g., n > 100) or for the continuous curves that seldom occur in medicine but that
are a common substrate in statistical reasoning, no real distinctions arise between the interval and the zonal
approaches. In small data sets, however, where each item can occupy a substantial zone, the customary
statistical approach will sometimes give slightly different (and erroneous) results. The next few subsections
describe the statistical concepts and the reasons why the statistical formula usually appears as r=P(n + 1)
rather than r = Pn. If you are content with what you already know about percentiles, skip to section 4.4.
If you want to know about the customary statistical reasoning, read on.

4.3.3.1 Concept of Intervals — A data set containing n members will have n + | interval
boundaries. Consider the alphabet as a 26-member data set symbolized as

a,b,c d,...,wX,Y,z

There are 25 or n — 1 interval boundaries between each pair of adjacent members; and there are 2
boundaries at each end, separating the first and last members from the outside world. Thus, the total
number of interval boundaries is 27, or n — 1 + 2 = n + 1. The first of these boundaries is the Oth
percentile, which never actually occurs. Each letter then occupies 1/26 or .038 of the zones of this data
set, and so the sequence of cumulative proportions is .038, .076, .115,... until 1 is reached after the letter z.

4.3.3.2 Use of n + 1 Formula — To convert back and forth from ranks to percentile points,
the interval-based formula is r = P(n + 1), where n is the number of items in the data set, P is the
percentile point (expressed in hundredths), and r is the corresponding rank.

With this approach, if P(n + 1) is an integer, it is the rank. Thus, the median (or 50th percentile) rank
in a set of 29 items is r = (.50)(30) = 15. If P(n + 1) is not an integer, the percentile lies between the
two surrounding ranks. Thus, for the lower quartile in a set of 40 items, (.25)(41) = 10.25, and so Q,
will lie between the 10th and 11th ranks.
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The location of ranks for the two methods of calculations are shown in Table 4.2. For the two examples
just cited, the results are the same with either formula. Thus, the proportion formula, r = Pn, yields
(.50)(30) = 14.5, which becomes 15 for the median of a set of 29 items, and (.25)(40) = 10, which places
Q, between ranks 10 and 11 for a set of 40 items.

TABLE 4.2

Location of Rank with Two Formula for Percentiles
Result of Calculation Proportion: r = Pn Interval: r =P(n + 1)
Integer (exactly r) Betweenrandr + 1 r
Non-integer (r +...) r+1 Between rand r + 1

4.3.3.3 Problems in Small Data Sets — The r = P(n + 1) formula will work well for finding
percentile ranks in large data sets, but can lead to difficulties in small data sets where the cumulative
proportions and boundaries of intervals are not always the same.

For example, consider the five ranked items in the data set {a, b, c, d, e}, which has 6 interval
boundaries, numbered as

—_—
— ™
— W
— =~
— W
—

The median item, c, contains the .50 cumulative proportion; and it also will split the six interval
boundaries evenly so that three of them are on each side of c. With the interval P(n +1) formula the
ranked location of ¢ is (.50)(6) = 3. The rank of the 25th percentile point, or lower quartile, however,
would be (.25)(6) =1.5, which suggests a location between the first and second ranks, which in this
instance are the items a and b. In reality, however, the cumulative portion of .25 in a five-item data set
occurs within the second item of data, which occupies the proportions from .20 to .40. Thus, the P(n + 1)
calculation yields something between a and b for the lower quartile, but the cumulative proportion shows
that it actually occurs within b.

Correspondingly, the upper quartile, determined for the cumulative proportion of .75, will lie within
d, which occupies .60 to .80 of the data. If the percentile is calculated as a split interval, however, the
upper quartile will lie between d and e.

4.3.3.4 No Problem in Large Data Sets — For large data sets, the difference in interval vs.
proportion methods of calculation becomes trivial because the results will usually be the same whether
the data are apportioned as n items or split into n + 1 intervals. Consequently, the P(n + 1) method is
often preferred because it seems easier to work with.

For example, the Sth percentile value for the 2039 items in Table 4.1 is in the 102nd rank whether
calculated as a cumulative proportion, (.05)(2039) = 101.95, or as an interval marker, (.05)(2040) = 102.
In the table itself, the serum chloride values from 75 to 91 occupy 100 observed frequencies (=8 + 12
+ 12 + 12 + 10 + 10 + 28 + 20), which are the ranks from 1 to 100. The chloride level of 92 has 22
observed frequencies, which occupy the ranks from 101 to 122. Thus, the 102nd rank occurs at a chloride
level of 92.

Analogously, to get the 2.5 percentile value for the 2039 items in Table 4.1, P(n) would produce 50.975
and P(n + 1) would produce 51. With either calculation, the percentile value would occur in the 51st
rank. As shown in the table, the chloride levels from 75 to 88 occupy the first 42 ranks (=8 + 12 +
12 + 10). The chloride level of 89 occupies the next 10 ranks, from 43 to 52, and so the 2.5 percentile
is at the chloride level of 89.

In small data sets, however, the results of the two methods may differ. Being immediately anchored
to the data, the proportion technique is always preferable for small data sets.
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4.3.4 Management of Values for Inter-Rank Points

If the calculated rank lies between two integer ranks, the easiest way to choose the appropriate percentile
value is to split the difference in values at those two ranks. Thus, if the calculated rank lies between the
two values of a and b, the percentile value can be set at (a + b)/2. This result is equivalent to calculating
a—+.5[(b-a).

A preferable method of getting the inter-rank value, however, is to adjust the difference according to
the “weight” of the percentile. With this technique, the inter-item value for the 20th percentile would
be a + .20(b — a) = .80a + .20b. The calculation is a + P(b — a) where P is the percentile in hundredths.
In the opposite direction, if the 80th percentile lies between a and b, the formula for its value would be
b — .80(b — a) = .80a + .20b, which produces the same result as before. Thus, if the lower quartile lies
between the values of 31 and 37, the quartile value will be (.75)(31) + (.25)(37) = 32.5. The alternative
formula for the calculation would be 31 + (.25)(6) = 32.5.

This method of calculating the inter-rank values can be used regardless of whether the ranks are
determined with the zonal formula r = Pn or with the interval formula r =P(n + 1). On the other hand,
no great harm will be done if you ignore the distinction and simply split the value as (a + b)/2 rather
than as a + P(b — a).

4.3.5 Choice of Methods

Because of the possible disparities, data analysts are sometimes advised not to use percentiles unless
the data set contains at least 100 members. Because this advice would eliminate a valuable index for
the many small data sets that constantly occur in medical research, a better approach is to recognize
that the r = P(n) method is always more accurate for demarcating the zones that are usually a prime
focus of analytic attention. The only disadvantages of the r = P(n) method are the need to remember
(1) that an integer result implies an intermediate rank, (2) that a non-integer result implies the next higher
rank and (3) that most statistical textbooks (ignoring the challenges of small data sets) cite r=P(n + 1)
as a routine method of calculation. If in doubt about whether the data set is large enough, always use
the r = P(n) method. It will be correct for small data sets, and should agree with the r = P(n + 1) result
for large data sets.

Regardless of which method is used, the same percentile value should emerge for the rank calculated
in both directions. Thus, the 2.5th, 5th, and 25th percentile values in one direction should be identical
to the corresponding values that emerge, respectively, for the 97.5th, 95th, and 75th percentile ranks in
the opposite direction.

|
4.4 Percentiles as Indexes of Inner Location

Despite the ambiguities of calculation for small data sets, the percentile technique is a simple method
of immediately locating an item within a distribution. Low percentile points will denote a location at
one end of the distribution; high percentiles will denote the other end; and the 40-60 region of percentile
points will denote values near the middle.

4.4.1 Identifying Remoteness from Central Index

The percentile technique can be used to illustrate earlier comments (on the first page of this chapter)
about two data sets, each containing 13 members, in which the value of 75 seemed close to or far away
from the median of 80.

Using the proportional technique to calculate percentiles for the small data sets, each item contains
the proportions of 1/13 = .077 of the data. The first item occupies percentiles from O to 7.7. The fourth
ranked item occupies the percentiles from 3/13 to 4/13, which contains the proportions from .231 to
.308. The sixth ranked item occupies the percentiles from 5/13 to 6/13, containing .385 to .462 of the
cumulative proportions. Using customary expressions, we could say that the first item is at the 5th, the
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fourth item is at the 25th, and the sixth item is at the 40th percentile. Thus, in the first data set, 75 (as
the sixth ranked item) is roughly at the 40th percentile, and in the second data set, 75 (as the first ranked
item) is roughly at the 5th percentile.

[With the customary statistical (interval) method of calculation, the r = P(n + 1) formula would produce
the percentile point as P =r/(n + 1). In the first data set, 75 is the sixth ranked member, and its percentile
point would be 6/(13 + 1) = .43. In the second data set, 75 is the first ranked member; and its percentile
would be P = 1/(13 + 1) = .07. With either technique of calculation, the value of 75 is relatively close
to the median of 80 in the first data set and relatively distant in the second.]

The percentile-point index shows where an item lies in the total distribution, but does not specifically
designate distance from the center. Because the central percentile is at 50, the subtraction of P — 50 can
promptly indicate remoteness from the center. The absolute size of the P — 50 difference, which can
extend from O to 50, will indicate increasing remoteness, with negative values being below the center,
and positive values above it.

4.4.2 Clinical Applications

Percentiles are commonly used by practicing pediatricians as a method for checking a child’s growth. The
patient’s actual height and weight are located in a chart that shows the percentile distributions of these
values in “standard” groups of normal children at different ages. If the child’s percentile location for height
and weight seems satisfactory for the age, the child is regarded as having normal development (at least
in these two variables).

The height—weight percentiles can also be used for certain descriptive comparisons. If a child is at
the 20th percentile for height and 80th percentile for weight, each percentile is within the limits of
normal, but their relationship suggests that the child may be relatively too fat.

Percentiles are commonly used (as noted in a previous example) to rank candidates in a certifying
examination, and can also be employed (as noted later) to compare the similarity or differences in data
for two groups.

Some of the most valuable statistical applications of percentiles, however, are discussed in Chapter 5,
where they are used to form zones of data.

|
4.5 Percentiles as Probabilities

Beyond their role in describing inner locations, percentiles can indicate probabilities for what might
happen if members were randomly chosen from a distribution. For example, in the earlier data of
Table 4.1, a chloride value of 99 has an ascending cumulative relative frequency of .2761; and 100 has
a descending cumulative relative frequency of .7239. Therefore, if someone were randomly chosen from
this distribution, the probability would be .2761, or about 28%, for getting a chloride value of <99 and
about 72% for getting a chloride value of =100.

These probability values, as discussed later, have prime importance in the statistical applications of
percentiles. In descriptive statistics, percentile boundaries are used to demarcate a range of “customary”
or “normal” values. In inferential statistics, percentile zones of probability are used for decisions about
“significant” distinctions.

|
4.6 Standard Deviation

The statistical entity called the “standard deviation” was originally devised and is best known for
its role (discussed later in Chapter 5) as an index of dispersion. With certain mathematical principles,
however, the standard deviation can become an index of inner location.
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4.6.1 Definitions, Symbols, and Calculations

Usually symbolized as s, the standard deviation denotes the average deviation between the individual
items of data and the mean. The ideas require some new symbols and terms. If X; is a member of a data
set having n members, with £X, as the sum of values in the set, the mean is calculated as X = XX//n.
Each member of the data set deviates from the mean by the amount X; — X.

The obvious way to get the average of the deviations is to take their sum and divide it by n, the
number of items in the data. Since some of the deviations in a set of data will lie above and others below
the mean, however, the sum of the deviations, X(X; — X), will always be zero.

To avoid this problem, we can find the average deviation by eliminating the positive or negative signs,
determining the sum of each absolute deviation, X|X; - X|, and then calculating the average absolute
deviation as X|X; - X|/n. Although an excellent way to get average deviations, this method has not
become statistically popular because the calculations were difficult in the days before electronic com-
putation.

To escape from absolute values, and from positive and negative signs, the deviations are squared, as
(X; — X)2 Their sum, which is always a positive number, is expressed symbolically as

S = Z(X—-X)’

[The reason for the xx subscript is that the calculation is really %(X; — X )(X; — X ). Later on, in Chapter
19, the calculation of Z(X; — X )(Y; — Y ) for co-deviations between two variables is symbolized as N
S,« has many synonymous names: deviance, group variance, system variance, and sum of squares. In
strict statistical concepts, S,, is the sum of squares in a “sample,” and is used to estimate group variance
in the parent population. This distinction is commonly neglected, however, in many discussions and
computer printouts. Because both deviance and sum of squares can pertain to diverse computational
arrangements, the calculation using the original mean of the data (X ) is easily and unambiguously cited
as group variance — the term commonly used in this text.

In its role now, S,, is merely an entity calculated enroute to a standard deviation. In many subsequent
statistical activities, however, S, has an important job of its own.

4.6.2 Calculation of Group Variance: S,,

The computation of S,, can be simplified for hand calculators by using an algebraic expansion and
reformulation of X(X; — X ). It becomes

S, = X’ —nX
or
S. = IX{ - [(ZX;)*/n]

The latter formula is preferable for hand calculation because “rounding” is avoided until the end of the
calculations.

To illustrate the calculations of S,,, consider three data sets, each containing three items, with 30 as
the mean for each set. The calculations are as follows:

Sn=ZX!-nX’=
Data set =X} X nX’=(ZX,)*/n IX{ - [(ZX)*/n]
29, 30, 31 292 +302 + 312 = 2702 30 (90)%/3 = 2700 2
25, 30, 35 252 4302 + 352 = 2750 30 2700 50

1, 30, 59 12 4302 + 592 = 4382 30 2700 1682
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These results immediately show the important role of the squared original observations, X}, in
contributing to the group variance. Each of the three cited data sets had the same mean, and hence the
same values of X , ZX; and (£X,)?/n. The source of the differences in the S_, values was the value of X .

Each of the original values, X, contributes X; to the sum TX;, which is sometimes called the
“original” or “uncorrected” sum of squares. If each value of X; were replaced by the mean, X, the new
square for each value would be X, and the sum of the n squared values would be nX’. The difference
in the two sums of squares, i.e., ZXiz - n)’({ represents the reduction or “correction” achieved in the
original sum of squares when each of the original values is replaced by a “fitted model.” In this instance,
the fitted model is the mean.

An advantage of using the mean as an index of central tendency is that the sum of squared deviations,
S, 1s smaller with the mean than with any other “model” (such as the median) that might have been
chosen as a central index. (The median, X, is best for minimizing the sum of absolute deviations as
2 |X; — X|, but not for sums of squared deviations.) The idea of a smallest value for sums of squares
may not seem particularly impressive now, but it becomes important later on, when we fit data with
other models and evaluate the achievement by noting the reductions produced in sums of squared
deviations from the model.

4.6.3 Formula for Repeated Frequencies

If each value of the data, X|, occurs repeatedly with a frequency of f;, the formula for calculating S,, is
If(X) - (2f,X)7/N

where N = Zf.. For the data in Table 3.1, the group variance calculated in the usual manner is 3255.
If each interval in Table 3.1 is replaced by its midpoint (so that 10-14 is represented by 12, 15 — 19
by 17, etc.), the result could be approximated as 5(12)% + 19(17)? + 13(22)? + 4(32)> + 3(37)% + 2(42)* —
[5(12) + 19(17) + 13(22) + 10(27) + 4(32) + 3(37) + 2(42)]%/56. The result is 31524 — (1262)*/56 =
31524 — 28440 = 3084, and is not too different from the more accurate calculation of S,,.

4.6.4 Calculation of Variance

With S, as the group variance for the total of n members, we want an average value that is “standardized”
for the size of the group. For this purpose, S,, is divided either by n or by n—1 to produce a result
called the variance, which is symbolized as s2. The square root of the variance is s, the standard deviation.

In the three sets of data in Section 4.6.2, dividing each S,, value by n = 3 produces the respective
variances of .67, 16.67, and 560.67. The square roots of these variances are the respective standard
deviations of .82, 4.08, and 23.68. If S,, had been divided by n — 1, which is 2 in this instance, the
respective standard deviations would be 1, 5, and 29.

4.6.5 Choice of Division by n or n — 1

A subtle issue in calculating the variance is whether to use n or n — 1 in the denominator. Because
ordinary intuition suggests the use of n, you may wonder why n — 1 becomes a tenable or even desirable
candidate for the divisor. The reason, as noted later when we consider the inferential strategies of
statistics, is that division by n — 1 generally provides a better or allegedly “unbiased” estimate of variance
in the hypothetical population from which the observed group is thought to have been “sampled.”

For the moment, you can use the rule that if the data set is complete and is being summarized for
purely descriptive purposes, S,, is divided by n to yield the variance. On the other hand, if the standard
deviation is going to be used for anything inferential — such as calculating the standard errors, confidence
intervals, or P values discussed later in the text—S,, is divided by n — 1.

If you are not sure about whether to use n or n — 1 in a particular situation, use n — 1. With a large
data set, the results will be hardly affected. With a small data set, your statistical colleagues are more
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likely to feel comfortable and to approve. For most purposes, therefore, the formula for calculating the
standard deviation is

X - [(£X))’/n]

If n is used as divisor, the variance becomes
Syx/n = (EX:—nX)/n = X(X:/n) - X

The latter (descriptive) formula is responsible for the statement that the variance is the “mean of the
squares minus the square of the mean.” With this formula, the standard deviation is

s = J(EX2/n)-X

4.6.6 Other Approaches

Calculations that use a central index can be avoided if an average deviation is determined for all possible
pairs of values in the data set. If X; and X; are any two members in the data set, this average can be
calculated from the squares of all differences, (X; — X)) or from the absolute differences IX; - Xj|. The
latter approach is called Gini’s mean difference. Although available and interesting, these “pairing”
approaches are hardly ever used.

A different pairing tactic, called Walsh averages, can be applied for descriptions of non-Gaussian
data sets. An array of means is calculated as (X; — X;)/2 for each pair of data, including each value
paired with itself. For n items of data, there will be n(n + 1)/2 Walsh averages. The median of the array
can be used as a central index, and the range of values above and below the median can help denote
(as discussed later) the stability of the central index.

4.7 Standardized Z-Score

The inner location of any item in a distribution of data can be cited with a standardized Z-score, which
is calculated as

X,-X
S

Zi=

and sometimes called a standardized deviate. The division by s produces a “standardization” that is unit-
free, because Z; is expressed in magnitudes of the standard deviation. The positive or negative value of
each Z, indicates whether the item lies above or below the mean.

To illustrate the standardizing effect, consider {9, 12, 17, 18, 21} as a data set for age in years. This
5-item set of data has X =15.4 and s = 4.827. If age were expressed in months, however, the same set
of data would be {108, 144, 204, 216, 252}. For the latter expression, X =184.8 and s = 57.924. Thus,
with a simple change in units of measurement, the same set of data can have strikingly different values
for X, s, and the deviations, X, — X . The values of Z, however, will be identical in the two sets. In the
first set, Z; for the first item will be (9 — 15.4)/4.827 = —1.326. In the second set, Z, for the first item
will be Z, = (108 — 184.8)/57.924 = —1.326. Identical Z; values will also occur for all other corresponding
items in the two data sets.
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4.7.1 Distribution of Z-Scores

In the two foregoing sets of data, the Z-scores for age are {—1.326, —.704, .331, .539, 1.160}. The scores
have a mean of 0 and a standard deviation of 1. This attribute of any set of Z-scores is inherent in their
calculation and has nothing to do with the shape of the distribution of data. Regardless of whether a
distribution is symmetrical or skew, convex or concave, the Z-scores will have a mean of 0 and a standard
deviation of 1. (A proof of this statement appears in Appendixes 4.1 and 4.2.) This remarkable feature
gives Z-scores many statistical advantages.

4.7.2 Z-Scores as Indexes of Inner Location

The main advantage to be discussed now is that Z-scores can be used as indexes of inner location. An
item’s Z-score of —0.6, 1.2, 0, —2.3, etc. will immediately indicate how relatively far (in standard deviation
units) the item lies above or below the mean.

The rightmost column of Table 4.1 shows the Z scores calculated as Z; = (X; — 101.572)/5.199 for
each item of the chloride data, using their mean and standard deviation. These Z-scores, rather than
percentiles, could cite the relative inner location of any item in the data. Note that most of the items are
included in a zone of Z-scores that extends from —2 to +2. If values of Z >|2| are excluded, the Z-score
zone from —2 to +2 in Table 4.1 contains the chloride values from 92 to 111. The zone will contain
about 93% of the data, excluding .049 of the data at the low end and .0172 of the data at the high end.

4.7.3 Application of Z-Scores

The ability of a Z-score to denote inner location is exploited in diverse ways. A common procedure,
which you have probably already encountered in previous scholastic adventures, is the use of Z-scores
for educational tests, where the process is sometimes called “grading on a curve.” The Z-scores can
avoid calculation of percentiles for small data sets, and can immediately be used to rank the test takers
for performance in tests that have different scoring systems.

Standard reference Z-scores? were used in a recent study of zinc vs. placebo supplements in breastfed
infants® to compare each infant’s status for length and weight before and after treatments. Z-scores
have also been advocated* as a replacement for percentiles in determining the nutritional status of
children, particularly in developing countries. The argument is that the rank of many malnourished
children is difficult to establish as a percentile, because they are below the first percentile of the World
Health Organization (WHO) reference population.’ A “road to health” chart, shown in Figure 4.5, has
been proposed as an illustration that can help health workers understand the Z-score procedure.
Figure 4.6 illustrates the mean Z-scores of weight according to age in a population of children in a
region of South Africa.b
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FIGURE 4.6

Mean weight-for-age Z-scores of 921 Basotho children by age and sex, Lesotho, 1985-1986. Z-scores were computed using
the reference population of the National Center for Health Statistics. The child’s weight was compared with the 50th
percentile value of the reference populations and divided by the standard deviation of the references at that age. A Z-score
of zero means that the child’s weight is equal to the 50th percentile of the reference population. [Legend and figure taken
from Chapter Reference 6.]

The use of Z-scores also avoids an undesirable technique, discussed in Chapter 5, which identifies
inner locations according to the percentage by which each value is greater or less than the median value.

|
4.8 Conversion of Z-Scores to Probabilities

Compared with percentiles, Z-scores have one major disadvantage as indexes of inner location. By
showing cumulative relative frequency, a percentile immediately denotes a specific location relative to
other ranks; and the location can also be converted to a probability. Thus, a percentile of 95% tells us
that only 5% of items have higher values and that the probability of getting one of those higher values
is .05. A Z-score of 1.2, however, does not indicate either of these features. The array of Z-scores could
be used to arrange a set of 5 items in ranked order as {—1.3, —.70, .33, .54, 1.2}, but we would not have
known that 1.2 was the highest rank until we saw its location relative to the others.

This advantage can be overcome if the distributional shape of the data can be described with a
conventional mathematical formula. When a suitable mathematical expression is available, each Z value
can promptly be converted to a probability value for cumulative relative frequency. The eponymic
mathematical distributions named after Gauss, Poisson, Bernouilli, etc. have been popular because of
the correspondence between probability values and statistical indexes, such as Z.

4.8.1 Gaussian Distribution

The famous Gaussian distribution was promulgated in the 19th century by Carl Gauss, studying what
today would be called “observer variability.” As new technologic devices became available, the results
found for repeated measurements of the same entity did not always agree. Confronted with the choice
of which observation to accept, Gauss decided that their mean would be the correct value. He then noted
that the deviations from the mean, called errors, were distributed around the mean in a symmetrical
pattern that is today sometimes called normal by statisticians and Gaussian by people who want to avoid
the medical connotations of normal.
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Later in the 19th century, Adolphe Quetelet found that this same pattern occurred for the distribution
of height in Belgian soldiers. This similarity of patterns helped give the Gaussian distribution its
enthusiastic application in biostatistics of the 19th and early 20th centuries. The same pattern seemed
to fit two different phenomena: multiple measurements of the same individual entity and individual
measurements of multiple entities.

This dual accomplishment made the Gaussian distribution so mathematically attractive that Francis
Galton, often regarded as the founder of modern biometry, believed it was a “Law of Frequency of
Error.” He expressed his admiration by saying, “the law would have been personified by the Greeks
and deified, if they had known of it. It reigns with serenity and in complete self-effacement amidst the
wildest confusion.”’

The diverse technologic measurements of the 20th century, however, have demonstrated that most
medical data do not have Gaussian distributions. Consequently, clinical investigators have had to think
about other distributions and to use statistical strategies that do not depend on theoretical mathematical
patterns. Nevertheless, despite the descriptive inadequacies, the Gaussian distribution remains valuable
for inferential activities that will be discussed later.

4.8.2 Gaussian Mathematics

Although popularized by Gauss, the mathematical formula for the distributional pattern was actually
discovered by Abraham DeMoivre. In that formula, the height of the curve shows the relative frequency,
y, at each Z; score. The mathematical expression is essentially

where e is the well-known mathematical constant, 2.7183.... This formula describes a standard Gaussian
curve, with mean = 0 and standard deviation = 1.

In the standard Gaussian curve, the height of the curve, y, is the relative frequelncy for each possible
value of Z. Thus, when Z =0, i.e., at the mean, y = 4e = 4. When Z==%.5,y = 4e72% =35 When Z =
+2.0, y = .054. The corresponding values of y and z are as follows:

0 +£25 £50 +75 £1.0 £1.25 150 £1.75 +2.0 £225 +2.5 +3.0 +3.5
y 4 .39 .35 .30 24 18 13 .087 .054 .032 .018 .004 .0009

The pattern of these points is shown in Figure 4.7. Note that the height of the curve becomes infinitesimal
for Z values that exceed £3, but the height never reaches zero. For example, if Z = 6, y = 6.092 x 10-°.

When Gaussian curves are expressed in values of X, rather than Z;, their mean will be at X and their
relative width will be determined by the size of the standard deviation, s. The value of Z, in the foregoing
Gaussian formula will be replaced by (X; — X )/s and the .4 factor will be divided by s, thus making
the curve wider and shorter as s enlarges, and narrower and taller as s gets smaller.

4.8.3 Citation of Cumulative Probabilities

With integral calculus, the formula for the Gaussian curve can be converted to show the cumulative
rather than individual relative frequencies at each value of Z,. With this conversion, a specific probability
value of cumulative relative frequency is associated for each of the possible negative and positive Z values.

The cumulative relative frequencies are usually expressed as proportions (or percentiles) that begin
with 0 at Z = 0, and enlarge as Z becomes larger in either a positive or negative direction. In one mode
of expression, the cumulative proportions on either side of O can be cited as follows:

z 0 +.25 +5 +.75 +1.0 +1.5 +2.0 +2.5 +3.0 +3.5

Cumulative 099 191 27 34 43 477 494 498 499
Proportion
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FIGURE 4.7
Values of y axis for Z-scores in Gaussian curve.

A more detailed account of the corresponding results is shown in Table 4.3. If you want to cumulate
these proportions starting from the lower end of a Gaussian distribution and going upward, remember
that the value of .5 should be added or subtracted appropriately for each of the foregoing values of the
corresponding proportions. Thus, the Z value of —3.08, with a cumulative relative frequency of .4990 on
the left side of the distribution, becomes .5 — .4990 = .001, which is the .1 percentile. The corresponding
results for converting Z values to cumulative relative proportions are —.6 — .5 — .2257 = .2743, -26 —
5 —-.1026 =.3974,0 — .5, .26 — 599, .6 — 7257, ...,2.0 —» 9772, ..., 3.6 — .999.

Although the cumulative proportions (and probabilities) can be used like percentiles merely to identify
the inner locations of a distribution, their most frequent application occurs as P values in statistical
inference. The P values are created when inner locations and probabilities for individual items in the
data are demarcated into zones of location and probability. The demarcations and applications are
discussed in the next chapter.

|
4.9 Inner Locations for Non-Dimensional Data

The percentiles and standard deviations that are pertinent for dimensional data cannot be used directly
and must be modified to rank inner locations for the categories of non-dimensional data.

4.9.1 Nominal Data

Questions about the rank of an inner location do not arise for nominal data, which cannot be ranked.

4.9.2 Ordinal Data

Percentiles can easily be determined for ordinal data, although the same values will occupy many
percentiles if the data are expressed in grades. For example, consider the 39 people whose therapeutic
responses were rated as poor, 6; fair, 12; good, 11; and excellent, 10 in Section 3.5.1.3. Because each
item occupies 1/39 = .026 of the data, the poor group would include the percentiles from O to 15 (since
6/39 = .154). The fair group occupies the subsequent percentiles up to 46 (since 18/39 = .462); the good
group extends to the 74th percentile (since 29/39 = .744); and the excellent group occupies the rest.

Although not appropriate for ordinal data, standard deviations could be calculated if the four
grades were regarded as dimensions (such as 1, 2, 3, 4) and summarized with means.
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TABLE 4.3

Cumulative Normal Frequency Distribution (Area under the standard
normal curve from 0 to Z)

V/ 0.00 0.02 0.04 0.06 0.08
0.0 0.0000 0.0080 0.0160 0.0239 0.0319
0.2 .0793 .0871 .0948 .1026 .1103
0.4 1554 1628 .1700 1772 .1844
0.6 2257 2324 .2389 2454 2517
0.8 2881 .2939 .2995 .3051 .3106
1.0 3413 3461 .3508 .3554 .3599
1.2 .3849 .3888 3925 .3962 .3997
1.4 4192 4222 4251 4279 4306
1.6 4452 4474 4495 4515 4535
1.8 4641 4656 4671 4686 4699
1.9 4713 4726 4738 4750 4761
2.0 4772 4783 4793 4803 4812
2.1 4821 4830 4838 4846 4854
2.2 4861 4868 4875 4881 4887
23 4893 4898 4904 4909 4913
24 4918 4922 4927 4931 4934
2.6 4953 4956 4959 4961 4963
2.8 4974 4976 4977 4979 4980
3.0 4987 4987 4988 4989 4990
32 4993 4994 4994 4994 4995
3.4 4997 4997 4997 4997 4997
3.6 4998 4999 4999 4999 4999
3.9 .5000

Note: Abridged table showing correspondence of Z-scores (shown in first
column, augmented by values in subsequent columns) and unilateral
cumulative proportions (shown in cells) of Gaussian curve in zone
from O to Z. Values not shown here can be obtained by interpolation.

4.9.3 Binary Data

A set of binary data, expressed as yes/no, success/failure, alive/dead, etc. can be coded as 1/0. If the
set contains n items, r items will be coded as 1 and n — r items will be coded as 0. The binary proportion
that summarizes the data will be either p =1/n or q = (n — r)/n.

The percentiles of such a data set are relatively trivial. The first r values of 1 in the set 1, 1, 1, ..., 1, 0,
0, ..., 0 will occupy r/n = p or the first P percentiles. The standard deviation of the data set, however, is
not trivial. It becomes particularly important later on when we consider the “standard error” of a proportion.

The standard deviation of a set of binary data can be calculated with the same formula used for
dimensional data. In r items of the data, the deviation is (1 — p) from the “mean” value, p; and n — r
items will have the deviation (0 — p). Thus, the group variance will be (1 — p)> + (n — r) X (0 — p)>.
Letting 1 — p =q, r = pn, and n — r = qn, this expression becomes png? + qnp> = npq(q + p) = npq.

The group variance is customarily divided by n — 1 to form the variance of dimensional data, but by
n for binary data. (The reason will be explained later.) Accordingly, the variance of a set of binary data
is npg/n = pq, and the standard deviation is

s = Jpq

Note that this remarkable formula refers to standard deviation of the data, not to variance of the binary
proportion that is the central index. In other words, each of the 1 or 0 values in the data deviates from
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the central index, p, by an average of ./pq. This same average deviation occurs if we express the
central index as q = 1 — p, rather than p. Thus, for the 12 values of 1 and 7 values of 0 that are
summarized as p = 12/19 = .63 or as q = 7/19 = .37, the standard deviation is /(12/19)(7/19) =
m =.48. This same standard deviation would occur if the data set were three times larger, with
p expressed as 36/57 = .63.

Appendixes for Chapter 4

A.4.1 The Mean of a Set of Z-Scores is 0

Proof: If the original data are represented by {X;}, X, and s, each Z-score will be Z, = (X; — X)/s.
Then £Z, = (X, — X )/s = (IUs)[ZX, — =X ] = (I/s)[NX — NX]=0.

A.4.2 The Standard Deviation of a Set of Z-Scores is 1

Proof: The group variance of the Z scores will be X(Z, — Z ) = ZZiz, since Z =0. Since Z;, = (X, —
X /s, each Z7 will be (X! —2X,X + X' )/s* and 77 = (X! — nX’ )/s2. If calculated with n — 1, the
variance of the Z scores will be Z‘.Zi2 /m—1)= (ZXi2 -nX’ )/[(n —1)s?]. Since (n — 1)s? = ZXi2 - an,
the quotient for the variance is 1. Its square root, 1, will be the standard deviation.
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Exercises

4.1. For 