


Integral theorems for
functions and differential
forms in Cm



CHAPMAN & HALL/CRC
Research Notes in Mathematics Series

Main Editors
H. Brezis, Université de Paris
R.G. Douglas, Texas A&M University
A. Jeffrey, University of Newcastle upon Tyne (Founding Editor)

Editorial Board
H. Amann, University of Zürich B. Moodie, University of Alberta
R. Aris, University of Minnesota S. Mori, Kyoto University
G.I. Barenblatt, University of Cambridge L.E. Payne, Cornell University
H. Begehr, Freie Universität Berlin D.B. Pearson, University of Hull
P. Bullen, University of British Columbia I. Raeburn, University of Newcastle, Australia
R.J. Elliott, University of Alberta G.F. Roach, University of Strathclyde
R.P. Gilbert, University of Delaware I. Stakgold, University of Delaware
D. Jerison, Massachusetts Institute of Technology W.A. Strauss, Brown University
B. Lawson, State University of New York     J. van der Hoek, University of Adelaide
    at Stony Brook 
   

Submission of proposals for consideration
Suggestions for publication, in the form of outlines and representative samples, are invited by the
Editorial Board for assessment. Intending authors should approach one of the main editors or
another member of the Editorial Board, citing the relevant AMS subject classifications. Alternatively,
outlines may be sent directly to the publisher's offices. Refereeing is by members of the board and
other mathematical authorities in the topic concerned, throughout the world.

Preparation of accepted manuscripts
On acceptance of a proposal, the publisher will supply full instructions for the preparation of
manuscripts in a form suitable for direct photo-lithographic reproduction. Specially printed grid
sheets can be provided. Word processor output, subject to the publisher's approval, is also acceptable.

Illustrations should be prepared by the authors, ready for direct reproduction without further
improvement. The use of hand-drawn symbols should be avoided wherever possible, in order to
obtain maximum clarity of the text.

The publisher will be pleased to give guidance necessary during the preparation of a typescript and
will be happy to answer any queries.

Important note
In order to avoid later retyping, intending authors are strongly urged not to begin final preparation
of a typescript before receiving the publisher's guidelines. In this way we hope to preserve the
uniform appearance of the series.

CRC Press UK
Chapman & Hall/CRC Statistics and Mathematics
Pocock House
235 Southwark Bridge Road
London  SE1 6LY
Tel:  020 7450 7335



CHAPMAN & HALL/CRC

Reynaldo Rocha-Chávez
Michael Shapiro
Franciscus Sommen

Integral theorems for
functions and differential
forms in Cm

Boca Raton   London   New York   Washington, D.C.



 

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. 

 

Trademark Notice: 

 

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

 

Visit the CRC Press Web site at www.crcpress.com

 

© 2002 by Chapman & Hall/CRC  

No claim to original U.S. Government works
International Standard Book Number 1-58488-246-8

Library of Congress Card Number 2001037102
Printed in the United States of America  1  2  3  4  5  6  7  8  9  0

Printed on acid-free paper

 

Library of Congress Cataloging-in-Publication Data

 

Rocha-Chavez, Reynaldo.
Integral theorems for functions and differential forms in C

 

m

 

Reynaldo Rocha-Chavez, Michael Shapiro, Franciscus Sommen.
p. cm. — (Chapman & Hall/CRC research notes in mathematics

series ; 428)
Includes bibliographical references and index.

ISBN 1-58488-246-8 (alk. paper)
  1. Holomorphic functions. 2. Differential forms. I. Shaprio,
Michael, 1948 Oct. 13-         . II. Sommen, F. III. Title. IV. Series.

QA331.7 .R58 2001
515—dc21            2001037102

  CIP

 

disclaimer  Page 1  Monday, June 18, 2001  12:19 PM



Contents

Introduction 1

1 Differential forms 9
1.1 Usual notation . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Complex differential forms . . . . . . . . . . . . . . . 10
1.3 Operations on complex differential forms . . . . . . . 11
1.4 Integration with respect to a part of variables . . . . . 14
1.5 The differential form jF j . . . . . . . . . . . . . . . . . 15
1.6 More spaces of differential forms . . . . . . . . . . . . 16

2 Differential forms with coefficients in 2� 2-matrices 19
2.1 Classes Gp (
), Gp (
) . . . . . . . . . . . . . . . . . . . 19
2.2 Matrix-valued differential forms . . . . . . . . . . . . 19
2.3 The hyperholomorphic Cauchy-Riemann operators

onG1 andG1 . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Formula for d

�
F ^

?
G
�

. . . . . . . . . . . . . . . . . . 24

2.5 Differential matrix forms of the unit normal . . . . . . 24
2.6 Formula for d�

�
F ^

?
� ^

?
G
�

. . . . . . . . . . . . . . . 28

2.7 Exterior differentiation and the hyperholomorphic
Cauchy-Riemann operators . . . . . . . . . . . . . . . 32

2.8 Stokes formula compatible with the hyperholo-
morphic Cauchy-Riemann operators . . . . . . . . . . 32

2.9 The Cauchy kernel for the null-sets of the hyperholo-
morphic Cauchy-Riemann operators . . . . . . . . . . 34

2.10 Structure of the product K
D
^
?
� . . . . . . . . . . . . 35

2.11 Borel-Pompeiu (or Cauchy-Green) formula for
smooth differential matrix-forms . . . . . . . . . . . . 39

v



vi

2.11.1 Structure of the Borel-Pompeiu formula . . . . 44
2.11.2 The case m = 1 . . . . . . . . . . . . . . . . . . 47
2.11.3 The case m = 2 . . . . . . . . . . . . . . . . . . 48
2.11.4 Notations for some integrals in C

2 . . . . . . . 51
2.11.5 Formulas of the Borel-Pompeiu type in C

2 . . 54
2.11.6 Complements to the Borel-Pompeiu-type

formulas in C
2 . . . . . . . . . . . . . . . . . . 55

2.11.7 The case m > 2 . . . . . . . . . . . . . . . . . . 55
2.11.8 Notations for some integrals in C

m . . . . . . . 57
2.11.9 Formulas of the Borel-Pompeiu type in Cm . . 58
2.11.10 Complements to the Borel-Pompeiu-type

formulas in C
m . . . . . . . . . . . . . . . . . . 58

3 Hyperholomorphic functions and differential
forms in C

m 61
3.1 Hyperholomorphy in Cm : . . . . . . . . . . . . . . . . 61
3.2 Hyperholomorphy in one variable . . . . . . . . . . . 62
3.3 Hyperholomorphy in two variables . . . . . . . . . . 63
3.4 Hyperholomorphy in three variables . . . . . . . . . . 65
3.5 Hyperholomorphy for any number of

variables . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Observation about right-hand-side hyperholomorphy 73

4 Hyperholomorphic Cauchy’s integral theorems 75
4.1 The Cauchy integral theorem for left-hyperholo-

morphic matrix-valued differential forms . . . . . . . 75
4.2 The Cauchy integral theorem for right-G-hyper-

holomorphic m.v.d.f. . . . . . . . . . . . . . . . . . . . 75
4.3 Some auxiliary computations . . . . . . . . . . . . . . 76
4.4 More auxiliary computations . . . . . . . . . . . . . . 77
4.5 The Cauchy integral theorem for holomorphic

functions of several complex variables . . . . . . . . . 78
4.6 The Cauchy integral theorem for antiholomorphic

functions of several complex variables . . . . . . . . . 78
4.7 The Cauchy integral theorem for functions holomor-

phic in some variables and antiholomorphic in the
rest of variables . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . 80



vii

5 Hyperholomorphic Morera’s theorems 81
5.1 Left-hyperholomorphic Morera theorem . . . . . . . . 81
5.2 Version of a right-hyperholomorphic Morera theorem 82
5.3 Morera’s theorem for holomorphic functions of

several complex variables . . . . . . . . . . . . . . . . 84
5.4 Morera’s theorem for antiholomorphic functions of

several complex variables . . . . . . . . . . . . . . . . 85
5.5 The Morera theorem for functions holomorphic in some

variables and antiholomorphic in the rest of variables 86

6 Hyperholomorphic Cauchy’s integral representations 89
6.1 Cauchy’s integral representation for left-

hyperholomorphic matrix-valued differential forms . 89
6.2 A consequence for holomorphic functions . . . . . . . 90
6.3 A consequence for antiholomorphic functions . . . . 90
6.4 A consequence for holomorphic-like functions . . . . 91
6.5 Bochner-Martinelli integral representation for holo-

morphic functions of several complex variables, and
hyperholomorphic function theory . . . . . . . . . . . 92

6.6 Bochner-Martinelli integral representation for antiholo-
morphic functions of several complex variables, and
hyperholomorphic function theory . . . . . . . . . . . 92

6.7 Bochner-Martinelli integral representation for func-
tions holomorphic in some variables and antiholo-
morphic in the rest, and hyperholomorphic function
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Hyperholomorphic D-problem 95
7.1 Some reasonings from one variable theory . . . . . . . 95
7.2 Right inverse operators to the hyperholomorphic

Cauchy-Riemann operators . . . . . . . . . . . . . . . 97
7.2.1 Structure of the formula of Theorem 7.2 . . . . 99
7.2.2 Case m = 1 . . . . . . . . . . . . . . . . . . . . 101
7.2.3 Case m = 2 . . . . . . . . . . . . . . . . . . . . 102
7.2.4 Case m > 2 . . . . . . . . . . . . . . . . . . . . 106
7.2.5 Analogs of (7.1.7) . . . . . . . . . . . . . . . . . 109
7.2.6 Commutativity relations for T-type operators . 110

7.3 Solution of the hyperholomorphic D-problem . . . . . 110



viii

7.4 Structure of the general solution of the
hyperholomorphic D-problem . . . . . . . . . . . . . . 111

7.5 D-type problem for the Hodge-Dirac
operator . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Complex Hodge-Dolbeault system, the @-problem and the
Koppelman formula 117
8.1 Definition of the complex Hodge-Dolbeault system . 117
8.2 Relation with hyperholomorphic case . . . . . . . . . 118
8.3 The Cauchy integral theorem for solutions of degree

p for the complex Hodge-Dolbeault system . . . . . . 119
8.4 The Cauchy integral theorem for arbitrary solutions

of the complex Hodge-Dolbeault system . . . . . . . . 121
8.5 Morera’s theorem for solutions of degree p for the

complex Hodge-Dolbeault system . . . . . . . . . . . 122
8.6 Morera’s theorem for arbitrary solutions of the

complex Hodge-Dolbeault system . . . . . . . . . . . 123
8.7 Solutions of a fixed degree . . . . . . . . . . . . . . . . 124
8.8 Arbitrary solutions . . . . . . . . . . . . . . . . . . . . 124
8.9 Bochner-Martinelli-type integral representation for

solutions of degree s of the complex Hodge-Dolbeault
system . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.10 Bochner-Martinelli-type integral representation for
arbitrary solutions of the complex Hodge-Dolbeault
system . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.11 Solution of the �@-type problem for the complex
Hodge-Dolbeault system in a bounded domain in Cm 127

8.12 Complex �@-problem and the �@-type problem for the
complex Hodge-Dolbeault system . . . . . . . . . . . 128

8.13 �@-problem for differential forms . . . . . . . . . . . . . 130
8.13.1 �@-problem for functions of several

complex variables . . . . . . . . . . . . . . . . 131
8.14 General situation of the Borel-Pompeiu

representation . . . . . . . . . . . . . . . . . . . . . . . 132
8.15 Partial derivatives of integrals with a weak

singularity . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.16 Theorem 8.15 in C 2 . . . . . . . . . . . . . . . . . . . . 140
8.17 Formula (8.14.3) in C 2 . . . . . . . . . . . . . . . . . . 141



ix

8.18 Integral representation (8.14.3) for a
(0; 1)-differential form in C

2 , in terms of
its coefficients . . . . . . . . . . . . . . . . . . . . . . . 143

8.19 Koppelman’s formula in C
2 . . . . . . . . . . . . . . . 143

8.20 Koppelman’s formula in C
2 for a

(0; 1) - differential form, in terms of its
coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.21 Comparison of Propositions 8.18 and 8.20 . . . . . . . 145
8.22 Koppelman’s formula in C

2 and
hyperholomorphic theory . . . . . . . . . . . . . . . . 147

8.23 Definition of �H;K . . . . . . . . . . . . . . . . . . . . . 147
8.24 A reformulation of the Borel-Pompeiu

formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.25 Identity (8.14.4) for a d.f. of a fixed degree . . . . . . . 151
8.26 About the Koppelman formula . . . . . . . . . . . . . 153
8.27 Auxiliary computations . . . . . . . . . . . . . . . . . 159
8.28 The Koppelman formula for solutions of the complex

Hodge-Dolbeault system . . . . . . . . . . . . . . . . . 162
8.29 Appendix: properties of �H;K . . . . . . . . . . . . . 163

9 Hyperholomorphic theory and Clifford analysis 167
9.1 One way to introduce a complex Clifford

algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.1.1 Classical definition of a complex Clifford

algebra . . . . . . . . . . . . . . . . . . . . . . . 168
9.2 Some differential operators on W m -valued

functions . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.2.1 Factorization of the Laplace operator . . . . . 171

9.3 Relation of the operators �@ and �@
^ with the Dirac

operator of Clifford analysis . . . . . . . . . . . . . . . 173
9.4 Matrix algebra with entries from W m . . . . . . . . . . 174
9.5 The matrix Dirac operators . . . . . . . . . . . . . . . 175

9.5.1 Factorization of the Laplace operator onWm-
valued functions . . . . . . . . . . . . . . . . . 176

9.6 The fundamental solution of the matrix Dirac
operators . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.7 Borel-Pompeiu formulas forWm-valued
functions . . . . . . . . . . . . . . . . . . . . . . . . . . 179



x

9.8 MonogenicWm-valued functions . . . . . . . . . . . . 180
9.9 Cauchy’s integral representations for

monogenicWm-valued functions . . . . . . . . . . . . 180
9.10 Clifford algebra with the Witt basis and

differential forms . . . . . . . . . . . . . . . . . . . . . 181
9.11 Relation between the two matrix algebras . . . . . . . 183

9.11.1 Operators D andD . . . . . . . . . . . . . . . . 185
9.12 Cauchy’s integral representation for

left-hyperholomorphic matrix-valued
differential forms . . . . . . . . . . . . . . . . . . . . . 189

9.13 Hyperholomorphic theory and Clifford
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 195

Index 201



Introduction

I.1 The theory of holomorphic functions of several complex vari-
ables emerged as an attempt to generalize adequately onto the mul-
tidimensional situation the corresponding theory in one variable. In
the course of a century long, extensive and intensive development
it has proved to have beauty and profundity; many remarkable fea-
tures and peculiarities have been found; new and far-reaching no-
tions and concepts have been constructed. A multitude of applica-
tions to many areas of mathematics as well as to other sciences have
been obtained.

I.2 At the same time, the deepening of the knowledge in several
complex variables theory has been bringing those working in that
field to the revelation of more and more paradoxical differences and
distinctions between the structures of the two theories. S. Krantz,
the author of many books and articles on several complex variables,
writes in Preface of his book [Kr2, p.VII], that “Chapter 0 consists of
a long exposition of the differences between one and several complex vari-
ables.”

It is almost generally accepted that one of the deepest, most fun-
damental reasons for those differences lies in the absence of the uni-
versal and holomorphic Cauchy kernel i.e., a reproducing kernel
which serves in any domain of Cm , with reasonably smooth bound-
ary but of any shape, and most importantly, is holomorphic. As S.
Krantz writes on p.1 in [Kr2], “there are infinitely many Cauchy inte-
gral formulas in several variables; nobody knows what the right one is, but
there are several good candidates.”

In fact, what motivated us was exactly the desire to find the right
Cauchy integral representation in several complex variables. To re-
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2 Introduction

alize what it really is, it proved to be necessary to come to a com-
pletely new approach: the right Cauchy integral representation can
be constructed for a right set of functions which does not reduce to
that of holomorphic functions but must be much more ample.

I.3 To explain the origin of the above-mentioned idea, let us ana-
lyze the basic elements which underlie one-dimensional, not multi-
dimensional, complex analysis. There are many definitions of holo-
morphy there; all of them are equivalent, thus one can start from
any of them. We shall use the standard notation:

@

@�z
:=

1

2

�
@

@x
+ i

@

@y

�
;

@

@z
:=

1

2

�
@

@x
� i

@

@y

�
: (I.3.1)

Null solutions to those operators provide us with the two classes
of functions, respectively, holomorphic and antiholomorphic. Cru-
cial is the fact that they factorize the two-dimensional Laplace oper-
ator �R2 :

@

@z
Æ

@

@�z
=

@

@�z
Æ

@

@z
=

1

4
�R2 : (I.3.2)

Combining this factorization with Green’s (or the two-dimen-
sional Stokes) formula, all the main integral theorems are routinely
obtained: Cauchy and Morera, Borel-Pompeiu (= Cauchy-Green),
Cauchy integral, etc.

As a matter of fact (although normally it is considered to be too
trivial to mention), the definitions (I.3.1) and the factorization (I.3.2)
are based on the excellent algebraic structure of C , the range of func-
tions under consideration. In particular, complex conjugation pro-
vides the possibility to factorize a non-negative quadratic form into
a product of linear forms: z � �z = jzj2 � 0, and, of course, the
factorization (I.3.2) is a manifestation of this property of complex
numbers.

It is worthwhile to note that the commutativity of the multiplica-
tion in C is useful and pleasant to work with, but just in the above-
mentioned integral theorems it is not of great importance.

I.4 Let w = f(z) = u+ iv; z = x + iy; then the condition @f
@�z

= 0 is
equivalent to the system of the Cauchy-Riemann equations which
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says that the components u, v of the holomorphic function f are not
independent, but are interdependent. In other words one can say
that the definition of holomorphy involves w and z entirely, wholly,
not coordinate-wisely. This (trivial) observation will be helpful in
realizing some essential aspects of what follows below.

I.5 Let now f be a holomorphic function in 
 � C
m , i.e., @f

@�z1
=

0; : : : ; @f
@�zm

= 0 in 
; m > 1: Equivalently, there exist all complex
partial derivates of the first order, with no relations between them.
One sees immediately, hence, that the definition lacks the above de-
scribed feature for m = 1 : the definition includes certain conditions
with respect to each, partial complex variable, zk; and not with re-
spect to the entire variable z := (z1; : : : ; zm): Of course, this is
related to the absence of two mutually conjugate operators factoriz-
ing the Laplace operator in Cm : What is called the Cauchy-Riemann
conditions in Cm , should be more relevantly termed partial Cauchy-
Riemann conditions to emphasize the difference in principle of both
notions.

The idea of a holomorphic mapping loses much more from the
original definition in C 1 : Indeed, ifF = (f1; : : : ; fn) is a holomorphic
mapping from 
 � Cm into C n then F keeps lacking any relation
between complex partial derivatives of its components, and there
are no relations, in general, between the components themselves.

I.6 Thus, looking for a one-dimensional structure in several complex
variables we are going to depart from the following heuristic rea-
sonings. Given a domain 
 � Cm , try to find the following objects:

10. A complex algebra A with unit, not necessarily commutative.

20. Two first-order partial differential operators with coefficients
from A; or from a wider algebra, denote them by D and D

�

;

such that
D ÆD� = D

� ÆD = �Cm : (I.6.1)

The idea of such a factorization is very well known in partial differ-
ential equations (see, e.g., [T1], [T2] but many other sources as well),
and the fine point is contained, of course, in the last condition:
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30. Holomorphic functions and mappings should belong to kerD;

or to kerD�

:

To show that such a program is feasible is the aim of this book.

It is meant neither that in this setting the problem has a unique
solution nor that the general case of arbitrary mappings will be cov-
ered. Our algebra A consists of 2 � 2 matrices whose entries are
taken from the Grassmann algebra generated by differential forms
with complex-conjugate differentials only, that is, of type (0; q) in
conventional terminology. Notice that it is possible to consider 1�2

columns instead of matrices, but then we loose the structure of a
complex algebra in the range of functions, for which reason we
chose to work with matrices.

I.7 The book is organized as follows. Chapter 1 recalls some basic
notation which is necessary to work with functions and differential
forms in C

m . Chapter 2 introduces the main object of the study, dif-
ferential forms whose coefficients are 2 � 2 matrices, as well as the
differential operators acting on such differential forms and possess-
ing the basic property (I.6.1).

The latter are called the hyperholomorphic Cauchy-Riemann oper-
ators. The fine point here is that their (2 � 2)-matrix coefficients
contain not only differential forms but the so-called contraction op-
erators also; the deep reasons for that will be explained in Chapter
9: a right algebra should be generated not only by differential forms.

As a matter of fact, the structure of the hyperholomorphic Cauchy-
Riemann operators determines a special structure of other (2 � 2)-
matrices involved — in particular, a unit normal vector to a surface
in Cm is represented as such a matrix, the representation itself be-
ing an operator, not a differential form with matrix coefficients. The
same about the hyperholomorphic Cauchy kernel, which is an operator,
not a differential form, and which can be considered as a kind of a
fundamental solution but in a specified meaning. All this leads to
the hyperholomorphic versions of both the Stokes formula and the
Borel-Pompeiu integral representation of a smooth differential form
(here with (2 � 2)-matrix coefficients, of course), i.e., those versions
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which are consistent with the hyperholomorphic Cauchy-Riemann
operators. There is given a detailed analysis of the structure of the
hyperholomorphic Borel-Pompeiu formula and of its intimate rela-
tion with the Bochner-Martinelli integral representation.

In Chapter 3, hyperholomorphic differential forms with (2 � 2)-
matrix coefficients are introduced as null solutions of the hyperholo-
morphic Cauchy-Riemann operator. The class of such differential
forms in a given domain includes both holomorphic and antiholo-
morphic functions (the latter considered as coefficients of specific
differential forms), and all other holomorphic-like functions, i.e., those
holomorphic with respect to certain variables and antiholomorphic
with respect to the rest of them — all in the same domain and, again,
taken as coefficients of specific differential forms. But this is not
enough, and there are differential forms which do not correspond
to any holomorphic-like functions. What is highly important here
is the fact that just the whole class, not its more famous subclasses,
preserves the deep similarity with the theory of holomorphic func-
tions of one variable.

I.8 This similarity allows, in Chapters 4 through 7, to obtain quickly
the main integral theorems. But even if, for instance, the Cauchy in-
tegral and the Morera theorems go in the usual way, anyhow certain
peculiarities arise. The hyperholomorphic Cauchy-Riemann opera-
tor can be applied to a given matrix both on the left- and on the
right-hand side.

There is no direct symmetry between left- and right-hand-side
notions of hyperholomorphy, but we present versions of the Cauchy
integral theorem and its inverse, the Morera theorem, which in-
volves both types of hyperholomorphy.

The hyperholomorphic Cauchy integral formula (Chapter 6) rep-
resents any hyperholomorphic differential form as a surface integral
with the hyperholomorphic Cauchy kernel. In particular, for holo-
morphic functions it reduces just to the Bochner-Martinelli integral
representation of such functions which explains, in a certain sense,
why the latter holds in spite of non-holomorphy of the Bochner-
Martinelli kernel. One more manifestation of the above stated sim-
ilarity is the solution of the non-homogeneous hyperholomorphic
Cauchy-Riemann equation. In contrast to its counterpart for holo-
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morphic Cauchy-Riemann equations, the hyperholomorphic case
becomes trivial, since there exists a right inverse operator for the
hyperholomorphic Cauchy-Riemann operator. All this is rigorously
analyzed in Chapter 7, where many interpretations are also given,
but the most remarkable applications are moved to the next Chap-
ter.

I.9 In Chapter 8, differential forms are considered which are, simul-
taneously, @-closed and @

�-closed. They form a subclass of hyper-
holomorphic differential forms, but they are of independent interest
and of importance from the point of view of conventional multidi-
mensional complex analysis. That is why we, first of all, describe
the direct corollaries of the theorems which have been proved for
general hyperholomorphic differential forms. What is more, there
are several results here which may be viewed also as corollaries,
being at the same time much less direct and evident. One of them
concerns the @-problem for functions and differential forms in an
arbitrary, i.e., of an arbitrary shape, domain in C

m with a piecewise
smooth boundary. There is given a necessary and sufficient condi-
tion on the given (0; 1)-differential form g in order for the equation
@f = g to have a solution which is a function. The condition is
quite explicit and verifiable: a (0; 2)-differential form whose coeffi-
cients are certain improper integrals of g should satisfy the complex
Hodge-Dolbeault system, i.e., should be @-closed and @

�-closed. A
particular solution is again quite explicit, being a sum of improper
integrals of the same type as above. If g is an arbitrary differential
form (with smooth coefficients) then for the problem @f = g the
necessary and sufficient condition obtained is not that explicit, but
the particular solution has the same transparent structure as the one
described above.

There exists a huge amount of literature on the @-problem, see,
e.g., [AiYu], [Ko], [Li], [Ky], [R], [Kr1], [Kr2], but in no way do we
pretend that the above list is complete or even representative. It is
a separate task to compare what has been obtained already on the
@-problem with the approach of this book.

I.10 In the same Chapter 8, we establish also a deep relation be-
tween solutions of the complex Hodge-Dolbeault system and the
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Koppelman formula. The latter one is a representation of a smooth
(0; 2)-differential form as a sum of a surface integral and of two vol-
ume integrals. For the case of functions, i.e., of (0; 0)-differential
forms, the volume integrals disappear on holomorphic functions,
and thus it is important to have a class of differential forms on which
the volume integrals in the Koppelman formula disappear also. We
show that the Koppelman formula is a particular case of the hyper-
holomorphic Borel-Pompeiu integral representation, which leads im-
mediately to the conclusion that the volume integrals in the Kop-
pelman formula are annihilated by the solutions of the complex
Hodge-Dolbeault system.

We believe this will have deep repercussions for the theory of
complex differential forms.

I.11 Although all the eight first chapters are written in the language
of complex analysis, the underlying ideas were inspired by the au-
thors’ experience in research in Clifford and quaternionic analysis.
What is the direct relation between those, at the present time, for-
mally different areas of analysis is explained in Chapter 9. It ap-
pears that the hyperholomorphic theory restricted onto (2 � 2) ma-
trices with equal rows is isomorphic to the function theory for the
Dirac operator of Clifford analysis, see the books [BrDeSo], [DeS-
oSo], [Mit], [KrSh], [GüSp1], [GüSp2], [GiMu]. But we refer to many
articles as well; other important aspects of the Dirac operators one
can find in [BeGeVe] for instance. The general case of (2�2) matrices
does not reduce to the theory of one Dirac operator but is a kind of
a direct sum of the theories for two Dirac-like operators considered
in the same domain of Cm . The peculiarity of this relation is the ne-
cessity to use not the canonical basis of the Clifford algebra but the
so-called Witt basis which fits perfectly well into the complex anal-
ysis setting. What is more, one half of the elements of the Witt ba-
sis generates the algebra of elementary differential forms while the
other half generates the contraction operators. Hence the function
theory using only differential forms lacks the symmetry of Clifford
analysis, which causes new phenomena, such as, for instance, the
fact that the hyperholomorphic Cauchy kernel is an operator, not a
differential form.
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I.12 Only small fragments of the book have been published already
[RSS2], [RSS3], but the joint article by the authors [RSS1] may be
considered as directly antecedent to the book; what is more, it may
be seen as a direct impulse to realizing certain important ideas of
it. At the same time, in their preceding separate works one can
find many observations, hints, and indications on the relations be-
tween several complex variables theory and Clifford analysis ideas:
F. Sommen treated those relations in [So1] (considering integral trans-
form between monogenic functions of Clifford analysis and holo-
morphic functions of several complex variables), [So2] (deriving the
Bochner-Martinelli formula), [So3]–[So5], see also the books [BrDe-
So] and [DeSoSo]; M. Shapiro treated the applications of quater-
nionic analysis to holomorphic functions in C

2 in joint papers with
N. Vasilevski [VaSh1], [VaSh2], [VaSh3] and with I. Mitelman [MiSh1],
[MiSh2]; see also the paper [Sh1]; the papers by M. Shapiro [Sh2]
and by R. Rocha-Chávez and M. Shapiro [RoSh1], [RoSh2] do not
have any direct relation to several complex variables, but they con-
tain several important ideas which were very helpful in realizing
some essential aspects of the book.

We know of not too many other papers on the topic. J. Ryan
in [Ry1], [Ry2] considered a subclass of holomorphic functions for
which a function theory is valid with the structure quite similar to
that of Clifford analysis. V. Baikov [Ba] and V. Vinogradov [Vi] con-
sidered boundary value properties of holomorphic functions in, re-
spectively, C 2 and Cm using ideas from quaternionic and Clifford
analysis. Quite recently S. Bernstein [Be] and G. Kaiser [Ka] found
new connections between holomorphic functions and Clifford anal-
ysis.

I.13 In the course of the preparation of the book the Mexican au-
thors were partially supported by CONACYT in the framework of
its various projects and by the Instituto Politécnico Nacional via
CGPI and COFAA programs, and they are indebted to those bodies.



Chapter 1

Differential forms

1.1 Usual notation

We shall denote by C the field of complex numbers, and by Cm the
m-dimensional complex Euclidean space. If z 2 Cm , then by z1, : : :,
zm we denote the canonical complex coordinates of z. For z; z0 2
Cm we write:

�z := (�z1; : : : ; �zm) ;

z; z0

�
:= z1z

0
1 + � � �+ zmz

0
m;

jzj :=
�
jz1j

2 + � � � + jzmj
2
� 1

2
=
p
hz; �zi:

R denotes the field of real numbers, and Rm denotes the m-
dimensional real Euclidean space.

Topology in Cm is determined by the metric d (z; z0) := jz � z0j.
Orientation on Cm is defined by the order of coordinates (z1; : : : ;

zm), which means that the differential form of volume is

dV := (�1)
m(m�1)

2
(�1)m

(2i)m
dz ^ d�z = (�1)

m(m�1)
2

1

(2i)m
d�z ^ dz;

where

dz := dz1 ^ : : : ^ dzm;

d�z := d�z1 ^ : : : ^ d�zm:

9



10 Differential forms

If z 2 Cm then

xj := Re (zj) 2 R;

yj := Im (zj) 2 R:

So, one can write z = (x1 + y1 � i; : : : ; xm + ym � i). Hence Cm �=
R
2m as oriented real Euclidean spaces, where the orientation in R

2m

is defined by the order of coordinates (x1; y1; : : : ; xm; ym), which
means that the differential form of volume on R

2m is dx1^dy1^ : : :^
dxm ^ dym.

The word domain means an arbitrary (not necessarily connected)
open set. The word neighborhood means an open neighborhood.

Some more standard notations:

1. N denotes the set of all positive integers,

2. B (z; ") := f� 2 C
m j jz � �j < "g,

3. S (z; ") := f� 2 Cm j jz � �j = "g,

4. E2�2 :=

�
1 0
0 1

�
,

5. �E2�2 :=

�
0 1
1 0

�
.

Mention that �E2
2�2 = E2�2:

1.2 Complex differential forms

The term “differential form” (or simply “form” and d.f. some-
times) will be used for differential forms with measurable complex-
valued coefficients. The support of a differential form F will be de-
noted by supp (F ). For a fixed k 2 N, Ck-forms are those forms
with k times continuously differentiable coefficients (this definition
is independent of the local coordinate system of class Ck+1). Con-
tinuous forms will be called also C0-forms, and F 2 C1 means that
F is a form of class Ck for any k 2 N .
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A form F of class Ck defined on Cm is called an (r; s)-form
(i.e., a form of bidegree (r; s)) if, with respect to local coordinates
(z1; : : : ; zm) of class Ck+1, 0 � k � 1, it is represented as

F (z) =
X

jjj=r; jkj=s

Fjk (z) dz
j ^ d�zk; (1.2.1)

where the summation runs over all strictly increasing r-tuples j =
(j1; : : : ; jr) and all strictly increasing s-tuples k = (k1; : : : ; ks) in
f1; : : : ; mg, and dzj := dzj1 ^ : : :^dzjr , d�zk := d�zk1 ^ : : :^d�zks , with
the coefficients Fjk being complex-valued functions of class Ck.

It is worthwhile to note that although we use the same letter
z both for independent variable and for differentials dzq, d�zp, it is
sometimes convenient and necessary to distinguish between them,
so we will write d�q, d��p or dwq , d �wp, etc. This causes no abuse of
notation, because these differentials do not depend on z. In that
occasion, we will write F

�
z; d�; d��

�
instead of F (z).

1.3 Operations on complex differential forms

Consider the following important differential operators. The linear
contraction operatorsdd�zq andddzq are defined as endomorphisms by
their action on the generators:

1. if q = kp, then

dd�zq hdzj ^ d�zk
i
:=dd�zq ^ dzj ^ d�zk :=

:= (�1)jjj+p�1 dzj ^ d�zk1 ^ : : : ^ d�zkp�1 ^ �zkp+1 ^ : : : ^ d�zks ;

2. if q =2 fk1; : : : ; ksg, then

dd�zq hdzj ^ d�zk
i
:=dd�zq ^ dzj ^ d�zk := 0;

3. if q = jp, then

ddzq hdzj ^ d�zk
i
:=ddzq ^ dzj ^ d�zk :=

:= (�1)p�1 dzj1 ^ : : : ^ zjp�1 ^ dzjp+1 ^ : : : ^ dzjr ^ d�zk;


