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Introduction

The international meeting at St. Petersburg was organized in honor of Prof. Dr. Z.
Borevich, but there was no restriction on the topics of the lectures. A proceedings cov-
ering all subjects of the meeting would therefore constitute a rather inhomogeneous
collection. The present volume, however, is mainly devoted to the contributions relat-
ed to the ESF workshop organized in the framework of the scientific program
“Noncommutative Geometry” of the European Science Foundation and integrated in
the Borevich meeting. The topics dealt with here may be classified as noncommuta-
tive algebra.

The congenial atmosphere at the meeting combined with the city’s preparations
for the anniversary festivities provided the perfect setting for a very fruitful meeting.
Moreover, the combination of the ESF workshop and the Borevich meeting brought
together many participants from East and West (now perhaps old-fashioned termi-
nology) engaging in open discussions, hard work, and the occasional party.  Most of
this may be blamed on the local organizers, Vavilov and Yakovlev, whom we thank
for their great hospitality.
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FINITE GALOIS STABLE SUBGROUPS OF GLn

H. -J. BARTELS1 AND D. A. MALININ2

Abstract. Let K/Q be a finite Galois extension with maximal order OK and Galois
group Γ. We consider finite Γ-stable subgroups G ⊂ GLn(OK) and prove that they
are generated by matrices with coefficients in OKab , Kab the maximal abelian subex-
tension of K over Q. This implies in particular a positive answer to a conjecture of
J. Tate on the classification of p-divisible groups over Z and answers also a longstand-
ing question of Y. Kitaoka on totally real scalar extensions of positive definite integral
quadratic lattices.

Introduction

The starting point of our investigations was the following problem studied by Y. Kitaoka
and the first named author around 1978 on the behaviour of the automorphism groups of
positive definite quadratic Z-lattices under totally real scalar extensions. There was the

Question. If two positive definite quadratic Z-lattices become isomorphic over the ring OK
of integers of a totally real field extension K of the rationals Q, are they already isomorphic
over Z, the ring of rational integers?

Closely connected with this question was the following

Conjecture 1. Let K/Q be a finite totally real Galois extension and denote by OK the
corresponding ring of integers and let G ⊂ GLn(OK) be a finite subgroup stable under
the operation of the Galois group Γ = Gal(K/Q), then G ⊂ GLn(Z) holds, Z the ring of
rational integers.

There are several reformulations and generalizations of the above mentioned conjecture.
One generalization is the following:

Consider an arbitrary not necessarily totally real finite Galois extensionK of the rationals
Q and a free Z-module M of rank n with basis m1, . . . ,mn. The group GLn(OK) acts in
a natural way on OK ⊗M ∼= ⊕n

i=1OKmi. A finite group G ⊂ GLn(OK) is said to be of
A-type, if there exists a decomposition M =

⊕k
i=1Mi such that for every g ∈ G there exists

a permutation Π(g) of {1, 2, . . . , k} and roots of unity εi(g) such that εi(g)gMi = MΠ(g)i for
1 ≤ i ≤ k. The following conjecture generalizes (and would imply) conjecture 1 and would
also give a positive answer to the above mentioned question:

Conjecture 2. Any finite subgroup of GLn(OK) stable under the Galois group Γ =
Gal(K/Q) is of A-type.

For totally real fields K ± 1 are the only roots of 1 contained in K, and so conjecture 2
reduces to conjecture 1.

Partial answers to these questions are given in [2], [3], [4], [8], [9], [10], [14], [16], [17], [19]
(compare also the references in mentioned articles).

1991 Mathematics Subject Classification. Primary 20C10, 11R33, 11S23, 11R29.



2 H. -J. BARTELS AND D. A. MALININ

In an earlier version of this paper (see [4]) it is shown that conjecture 2 is true in the
case of Galois field extension K/Q with odd discriminant. Also some partial answers are
given in the case of field extensions K/Q which are un-ramified outside 2. The proof of the
main part is essentially already contained in the article [17] of the second named author in
slightly different formulation. While [17] focusses mainly on the proofs of conjecture 1 and
contains also some other related results, we observed that the proofs of conjecture 1 can
immediately be transfered in order to proof conjecture 2 in the mentioned cases. Using the
methods of [2], [3] and discriminant estimations of A. Odlyzko [23] in order to exclude the
existence of certain Galois extensions having low ramification, the first named author proved
in an unpublished note eighteen years ago, that conjecture 1 is true in the following cases:

i) Γ = Gal(K/Q) = PSL2(5) ∼= A5 the alternating group of order 60,
ii) Γ = Gal(K/Q) = PSL2(7) the simple group of order 168,
iii) K/Q is tamely ramified of degree ≤ 131
iv) K/Q is tamely ramified of degree ≤ 233 assuming a generalized Riemann hypothesis

to be true.

The combination of this approach using discriminant estimations with the far reaching
results of [17] and [7] gave us the the following better results:

Conjecture 1 is true in the following cases:

i) [K : Q] ≤ 960 assuming the generalized Riemann hypothesis for the zeta function of
the number field K, or if

ii) [K : Q] ≤ 480 unconditionally.

Conjecture 2 is true if [K : Q] < 288 unconditionally. See [4] for the details.
After finishing the first version of our paper [4] we became aware of the recent work [20]

of M. Mazur on the same topic. It turned out that in a certain sense the partial results of
M. Mazur are complementary to our partial results. Using the the classification of finite flat
group schemes over Z annihilated by a prime p for primes p ≤ 17 due to V. A. Abrashkin [1]
and J.-M. Fontaine [6] the particular case of field extensions K/Q which are unramified
outside 2 follows in full generality from [20]. In this revised version of our paper we restrict
therefore ourselves to the case of ramified primes p �= 2. It should be noted that conversely
our Main Theorem in combination with the work of M. Mazur has interesting consequences
for the classification of finite flat commutative group schemes over Z annihilated by a prime
p: It answers a question of J. Tate [28] also for primes p ≥ 17 completing the partial results
of Abrashkin [1] and Fontaine [6].

It is interesting to notice that the methods used in the proofs, namely the detailed
study of the operation of the higher ramification groups of the Galois group on the given
Galois stable group G for the ramified primes in the field extension K over Q together with
discriminant estimations, in order to eliminate ramification with large depth using trivial
action of higher ramification groups (compare [2] section 1), are similar to the methods used
by [1] and [6].

This paper is organized as follows: Section I contains the results and the propositions and
lemmata used in the proofs. The proofs themselves are presented in Section II. As far as it
is needed the necessary parts of the proofs from [17] are reproduced only slightly changed
in this paper for the convenience of the reader.

Acknowledgement: The second author is grateful to DAAD for support. Helpful
comments from an anonymous referee to an earlier version of this paper are also gratefully
acknowledged.
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Notation

Q,Qp,Z,Zp,OK denote the field of rationals and p-adic rationals, the ring of rational and
p-adic rational integers respectively, and the ring of integers of an algebraic number field K.
We consider O′K to be the intersection of valuation rings of all ramified prime ideals p ∈ OK
(if K �= Q). TrK/L denotes the trace map from K to L. GLn(R) denotes the general linear
group over R. [E : F ] denotes the degree of the field extension E/F . Im denotes the unit
m ×m-matrix, 0n,m and 0m are zero n ×m and m ×m-matrices, ei,j are square matrices
having the only nonzero element 1 in the position (i, j), rankM and detM are rank and
determinant of a matrix M . tM denotes a transposed matrix for M,diag(d1, d2, . . . , dm) is
a block-diagonal matrix having diagonal components d1, d2, . . . , dn. We suppose that K is a
Galois extension of the rationals Q. We denote by Γ the Galois group of a normal extension
K/F ; if needed we specify K/F as a subscript in ΓK/F . The symbols Γi(p) denote the i-th
ramification groups of the prime divisor p and Γ0(p) the inertia group in Γ, ei is the order
of Γi(p) for i ≥ 1, while e = e0 is the order of the inertia group. For Γ acting on G and any
σ ∈ Γ and g ∈ G we write gσ for the image of g under σ-action. If G is a finite linear group,
F (G) denotes the field obtained by adjoining the matrix coefficients of all matrices g ∈ G.
Throughout this paper ζm denotes a primitive m-th root of unity.

1. Statement of the main results

1.1. Let E/F be a normal extension of algebraic number fields, and let ΓE/F =
Gal(E/F ) be its Galois group. We consider the problem of integral realizations of finite
subgroups G of the general linear group GLn(E) that are stable under the natural action
of ΓE/F on the matrices of the group G.

Let OF and OE denote the maximal orders of the number fields F and E respectively.
Let us introduce the class C(F ) of fields normal over F that are obtained by adjoining to
F all coefficients of matrices contained in some finite ΓE/F -stable group G ⊂ GLn(OE).

In [3] it is shown that if F = Q and the class C(Q) contains some field K �= Q, then
C(Q) will also contain some field K1 �= Q, K1 ⊂ K such that there exists only one prime
p ramified in K1. In this paper we use some properties of Galois groups for fields having
restricted ramification. In general, the existence of global fields with a given Galois group
and prescribed local properties for ramification is a rather subtle question. L. Moret-Bailly
proved the existence of extensions of number fields that have prescribed local structure of
ramification over a given set of prime divisors and unramified elsewhere for certain relative
extensions [22]. In our case we deal with absolute extensions of the rationals K/Q, and
we fix the only ramified prime p. Let Cp(Q) denote the class of fields in C(Q) with the
unique ramified prime p. Nilpotent extensions of Q having this property were described by
Markshaitis in [18], but there are many examples of extensions in Cp(Q) that are not nilpo-
tent, and also nonsolvable extensions unramified outside p; for this and also for non-existence
theorems compare [27], [7]. Both conjectures 1 and 2 are true for nilpotent extensions K/Q
(see [3], [8]), and the proof of this fact uses the special structure of the Galois group of
nilpotent extensions unramified outside a prime p [18].

1.2. It is well known, that the problem of description of fields Q(G) can be reduced to the
case of commutative groups G of exponent p. Compare Proposition 1 in [17] and section 3
of [19] and [20] chapter 4. The idea of this reduction appears already in [14], [15], [13] and [10]
where it was used, in particular, to study conditions for coefficients of the representations
of nilpotent groups over integral rings providing their diagonalizability.

Hence, if there would be a counterexample to conjecture 1 or conjecture 2, there would
exist also an elementary abelian p group G as a counterexample.
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We use also reduction to the case of aGLn(Q)-irreducible groupG. Here a matrix groupG
is reducible in GLn(R) or simply R-reducible (R a ring or a field) if there exist h ∈ GLn(R)
such that

h−1Gh ⊂
∣∣∣∣G1 ∗

0 G2,

∣∣∣∣ ,

and G is irreducible otherwise.
We note that the reduction to the case of an irreducible group G can be done using the

following lemma:

Lemma 1.2.1. Let E/F be a normal extension of algebraic number fields with Galois group
ΓE/F = Gal(E/F ) and let E1, F1 be rings with quotient fields E and F respectively. If
G ⊂ GLn(E1) is a finite ΓE/F -stable subgroup which has GLn(F1)-irreducible components
G1, G2, . . . , Gr, then F (G) is the composite of the fields F (G1), F (G2), . . . , F (Gr).

The proof of this Lemma is given at the beginning of section II.
1.3. The essential results of this note can be summarized as follows:

Main Theorem. Let K be a finite Galois extension of Q and G be a finite subgroup of
GLn(OK) that is stable under the natural action of the Galois group Γ of the field K. Then G
is of A-type and in particular G ⊂ GLn(OKab

) holds, Kab the maximal abelian subextension
of K over Q.

Let µp denote the multiplicative group scheme over Z of order p and αp the constant
group scheme of order p (see [28] and [1]). Due to the results of [1] and [6] in conjunction
with [20] one gets immediately the following

Corollary 1. If G is a finite flat commutative group scheme over Z annihilated by a prime
p, then it is a direct sum of copies of µp, αp and, if p = 2, the nontrivial element in
Ext(α2, µ2).

We can also express the result of the Main Theorem in the following form:

Corollary 2. A finite flat group scheme G over Z satisfies G(Q) = G(Qab),Q the algebraic
closure of Q and Qab the maximal abelian (over Q) subextension of Q.

For the proof of the Main Theorem we distinguish essentially two cases and for their
treatment we need several results which are recorded in the subsequent sections 1.4 and 1.5.
The first Proposition 1 gives a criterion for the existence of integral realizations of an
abelian matrix group. It shows that the existence of G in question is possible only if certain
determinants dk are divisible by the root of the discriminant D of a certain extension of
number fields (for the details see section 1.4 below). In the proof of the Main Theorem in
section II we use this for a certain cyclic extension E/F which is tame with respect to a
fixed prime ideal (case I). Assume that E/Q is not abelian. Then we can make E/F to be a
Kummer extension via adjoining appropriate roots of 1. We use the explicit Kummer basis
to find an index k for which

√
D does not divide dk. The proof of the Main Theorem is

divided in to two parts depending on the ramification index e = e0 of Q(G). In the first
part we use Proposition 1. In the second part we use lemma 1.5.2 and the Corollary 1.5.3
of section 1.5.
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We can sketch the scheme of the proof of the Main Theorem:

Let us outline the idea of the proof of the Main Theorem in more detail for the convenience
of the reader.

The outline of the proof of the Main Theorem.

In virtue of the argument of [3], lemmata 1 and 2 (compare also Theorem 2 in [19]),
we can assume that K is unramified outside a prime p, so we can fix this prime. Since as
already remarked in the introduction the particular case of field extensions K/Q which are
unramified outside 2 follows in full generality from [20], we can restrict ourself to the case
p > 2. We can also assume that G is an abelian group of exponent p, and we can consider
G to be irreducible under conjugation in GLn(Q) by Corollary 1.4.1. The proof of the Main
Theorem consists of a reduction to special cases, and these special cases are treated with
different methods.

For number fields E,L be let O′E ,O′L denote the semilocal rings that are obtained by
intersection of the valuation rings of all ramified prime ideals in the rings OE ,OL respec-
tively. These semilocal rings are known to be principal ideal domains. Denote G0 = GΓ1(p)

the subgroup of elements in G that are fixed by the first ramification group Γ1(p) for some
prime divisor p of p. Let e′0 be the ramification index of Q(G0) over Q with respect to p.
Then e′0 � e0/e1 (= the index of Γ1(p) in Γ0(p).)

Case I.
Assume that e′0 does not divide p − 1. In this case we apply Proposition 1 to a certain

subgroup G0 ⊂ GΓ1(p) ⊂ GLn(O′E) for a certain cyclic Kummer extension E/F with a
convenient power basis πi, i = 0, . . . , t − 1 and with the explicit action of the generating
element σ of order t of the Galois group on the uniformizing element π of O′E , namely
πσ = πζt, which is convenient for applying Proposition 1 explicitly. Here E and F are the
ramification field and the inertia field for some prime divisor p of p adjoined by a primitive
t-root of 1, t = e′0.

Denote ΓE/F the Galois group of E/F . In case I we determine a ΓE/F -stable subgroup
G0 ⊂ G0 which is generated by all conjugates hγ , γ ∈ ΓE/F of some element h ∈ G0. G0

can not be cyclic provided t = e′0 does not divide p − 1, and this is just the case where
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the arguments in case II (see below) can not be applied. So we start the proof of the Main
Theorem just from this most difficult case, and apply Proposition 1 to a subgroup G0 ⊂ G.
We show that case I is impossible since the conditions of Proposition 1 never hold true for
G0 and the extension E/F . In particular, if e′0 does not divide p−1 we have a contradiction
with the condition G ⊂ GLn(OE) which can not hold true since G0 �⊂ GLn(O′E).

Case II.
Let us suppose that e′0 divides p− 1. In this case we can suppose without loss of gener-

ality, that K contains a p-th root of unity ζp (see Lemma 2.2.2 below). Using a local
argument on the diagonalization of matrices which are congruent to In modulo the prime
ideal p (see Corollary 1.5.3 below) a certain subgroup G′1 in G is constructed such that
KΓ1(p)(G′1) is an extension of KΓ1(p) with ζp ∈ KΓ1(p)(G′1), tame ramification index p− 1
and KΓ1(p)(G′1)/K

Γ1(p) is an elementary abelian Kummer extension. In a second step a
careful study of the Galois-action of Γ0(p) on G′1 shows that the constructed group G′1 can
not exist. This gives then the desired contradiction.

1.4. In this section we formulate the mentioned criterion for the existence of an integral
realization of an abelian group G with the properties mentioned above.

Let E,L be finite Galois extensions of the number field F that are different from F with
Galois groups ΓE/F and ΓL/F respectively. As above let O′E , O′L be the semilocal rings
that are obtained by intersection of the valuation rings of all ramified prime ideals in the
rings OE , OL, and let O′F = F ∩ O′E . Let w1, w2, . . . , wt be a basis of O′E over O′F , and
let D be the discriminant of this basis. Suppose that some matrix g of prime order p has
coefficients in E and all ΓE/F -conjugates gγ , γ ∈ ΓE/F generate a finite abelian group G of
exponent p. Let σ1 = 1, σ2, . . . , σt denote all automorphisms of the Galois group ΓE/F of
the field E over F .

Assume that L = E(ζ(1), ζ(2), . . . , ζ(n)) where ζ(1), ζ(2), . . . , ζ(n) are the eigenvalues of
the matrix g, therefore L = E(ζp), ζp a primitive p-th root of unity. We will reserve the
same notations for some extensions of σi to L, and the automorphisms of L/F will be
denoted σ1, σ2, . . . , σr for some r � t. Let E be a numberfield containing F (G) which is
obtained by adjoining to F all coefficients of all g ∈ G. For a suitable choice of t elements
of ζ(1), ζ(2), . . . , ζ(n) say ζ(1), ζ(2), . . . , ζ(t) we can prove the following

Proposition 1. 1) Let G be generated by all gγ , γ ∈ ΓE/F and irreducible under GLn(F )-
conjugation. Then G is conjugate in GLn(F ) to a subgroup of GLn(O′E) if and only if
all determinants

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1)wk+1 · · · wt
wσ2

1 · · · wσ2
k−1 ζ

σ2
(2)w

σ2
k+1 · · · wσ2

t

...
wσt

1 · · · wσt

k−1 ζ
σt

(t) w
σt

k+1 · · · wσt
t

∣∣∣∣∣∣∣∣∣
are divisible by

√
D in the ring O′L.

2) If any of the three sets of conjugates {gγ , γ ∈ ΓE/F }, {hγ , γ ∈ ΓE/F }, {(gh)γ , γ ∈
ΓE/F } generates G and the corresponding eigenvalues of g and h given in 1) are
ζg(1), ζ

g
(2), . . . , ζ

g
(t) and ζh(1), ζ

h
(2), . . . , ζ

h
(t) respectively, then the eigenvalues for the matrix gh

in 1) can be chosen as products ζ(1) = ζgh(1) = ζg(1)ζ
h
(1), ζ(2) = ζgh(2) = ζg(2)ζ

h
(2), . . . , ζ(t) = ζgh(t) =

ζg(t)ζ
h
(t).

Note that the conditions of Proposition 1 are always true if E is unramified over F since
DO′E = O′E in this case.
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Corollary 1.4.1. If there is an abelian ΓE/F -stable subgroup G ⊂ GLn(O′E) of expo-
nent p generated by gγ , γ ∈ ΓE/F such that E = F (G) �= F , then the GLn(F )-irreducible
components Gi ⊂ GLni

(E), i = 1, . . . , k of G are conjugate in GLni
(F ) to subgroups

G′i ⊂ GLni
(O′E) such that E = F (G1)F (G2) . . . F (Gk). In particular, F (Gi) �= F for some

indices i.

The following corollary shows that the conditions of Proposition 1 hold true even if G is
not irreducible.

Corollary 1.4.2. Let E/F be a normal extension of number fields with Galois group ΓE/F .
Let G ⊂ GLn(E) be an abelian ΓE/F -stable subgroup of exponent p generated by g and
all matrices gγ , γ ∈ ΓE/F , and let E = F (G). Then G is conjugate in GLn(F ) to G′ ⊂
GLn(O′E) if and only if all eigenvalues of matrices Bi, i = 1, . . . , t are contained in O′L,
where L = E(ζp). The latter happens if and only if the criterion of Proposition 1, 1) holds
true, i.e. all determinants

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1)wk+1 · · · wt
wσ2

1 · · · wσ2
k−1 ζ

σ2
(2)w

σ2
k+1 · · · wσ2

t

...
wσt

1 · · · wσt

k−1 ζ
σt

(t) w
σt

k+1 · · · wσt
t

∣∣∣∣∣∣∣∣∣

are divisible by
√
D in the ring O′L.

Corollary 1.4.3. Let F = Q. If there is an abelian ΓE/Q-stable subgroup G ⊂ GLn(OE)
of exponent p generated by gγ , γ ∈ ΓE/Q such that E = Q(G) �= Q, then the GLn(Q)-
irreducible components Gi ⊂ GLni

(E), i = 1, . . . , k of G are conjugate in GLni
(Q) to

subgroups G′i ⊂ GLni
(OE) such that E = Q(G1)Q(G2) . . .Q(Gk). In particular, Q(Gi) �= Q

for some indices i.

1.5. For the proof of the Main Theorem (more precisely for the part of the proof dealing
with case II) we use a lemma which is a variation on a theme of Minkowski [21] and is –
like in the earlier related work [2], [3] - the key ingredient in the proofs of Lemma 1.5.2 and
the Main Theorem. For the proof see [11]. Compare also [19], Proposition 1.

Lemma 1.5.1. Let J be an ideal in Dedekind ring S of characteristic χ, 0 �= J �= S, let g
be an n× n-matrix of finite order congruent to In(mod J).

(i) If χ = p > 0, then gp
j

= In for some integer j. If χ = 0, then J contains a prime
number p and gp

j

= In, i ∈ Z. In particular, any finite group of matrices congruent to
In(mod J) is a p-group.

(ii) Let χ = 0, J = p be a prime ideal having the ramification index e with respect to
p, g ≡ In(mod pr) and mpi−1(p − 1) ≤ e/r < pi(p − 1), i ≥ 0,m = min{1, i}. Then
gp

i

= In. In particular, any finite group of matrices congruent to In(mod pt) is trivial
if e < t(p− 1).

Related to these properties is the following

Lemma 1.5.2. Let O be a Dedekind ring in an algebraic number field, and let ζp ∈ O. Let
p = pe, e = p − 1. Let G be a finite subgroup of GLn(O) and g ≡ In(mod p) for all g ∈ G.
Then G is conjugate in GLn(O) to an abelian group of diagonal matrices of exponent p.
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Corollary 1.5.3. Let L be an extension of Q and p a prime ideal in the field L(ζp). Suppose
that L is unramified at p and let Op denote the valuation ring of the ramified prime ideal p
in L(ζp). Let Γ denote the Galois group of L(ζp) over L. If G is a finite Γ-stable subgroup
of GLn(Op) consisting of matrices g, g ≡ In(mod p), then G is conjugate in GLn(L ∩ Op)
to an abelian group of diagonal matrices of exponent p.

2. Proofs

2.1. Proof of Lemma 1.2.1. Let

h−1Gh ⊂

∣∣∣∣∣∣∣
G1 ∗

. . .
0 Gr

∣∣∣∣∣∣∣
for h ∈ GLn(F1). If there exists g ∈ G such that gγ �= g for some automorphism γ of F (G)
over F (G1)F (G2) . . . F (Gr), then g′ = gγg−1 �= In. The blocks Gi in h−1Gh are stable
under the action of γ, since h ∈ GLn(F1) and the elements of F (Gi) are fixed by γ. Because

h−1gh =

∣∣∣∣∣∣∣
g1 ∗

. . .
0 gr

∣∣∣∣∣∣∣
and

(h−1gh)γ = h−1gγh =

∣∣∣∣∣∣∣
g1 ∗′

. . .
0 gr

∣∣∣∣∣∣∣
are matrices having the same diagonal components, all eigenvalues of the matrix g′ = gγg−1

of finite order are 1 and hence g′ = In. This contradiction completes the proof of
Lemma 1.2.1. �

Proof of Proposition 1. One proof (namely of the first part) is given in the paper [17].
The second part of proposition 1, which is important for the proof of the Main Theorem,
follows from the construction given in [17]. But for convenience we give here a proof for the
proposition, which is shorter than in [17].

Using the basis w1, . . . , wt of O′E over O′F we can write

gσj =
t∑
i=1

wi
σjBi for j = 1, . . . , t

with semisimple matrices Bi ∈Mn(F ). Since the matrix W = [wσj

i ]j,i is nondegenerate, the
matrices Bi can be expressed as a linear combination of gσj , i, j = 1, 2, . . . , t:

Bi =
t∑

j=1

mijg
σj ,
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where [mij ] = W−1. Since by assumption the matrices gσj commute pairwise, all matrices Bi
also commute with each other. The irreducibility of G implies that the minimal polynomial
of Bi is irreducible over F for each i such that Bi is not zero (see [26], page 8, Corollary 3 for
example). So if one of the eigenvalues of Bi is in O′L then all of them are since they are Galois
conjugate. Using the dual basis w∗1 , . . . , w

∗
t to w1, . . . , wt with respect to the traceform one

can see that the inverse matrix W−1 to W = [wσj

i ]j,i is of the form W−1 = [w∗σi
j ]j,i. In

order to prove the claim of the proposition, we need to determine whether or not matrices
Bi, i = 1, . . . , t are conjugate in GLn(F ) to matrices B′i ∈Mn(O′F ), since for the generator
g of G the equation

g = B1w1 +B2w2 + · · ·+Btwt,

holds with Bi ∈ Mn(F ) and w1, . . . , wt a basis of O′E over O′F . In fact each semisimple
matrix Bi ∈Mn(F ) is conjugate in GLn(F ) to a matrix from Mn(O′F ) if and only if all its
eigenvalues are contained in O′L (see Lemma 2.1.1 below).

Cramer’s rule now implies that w∗σj

i = (−1)i+jWi,jdet(W )−1, where Wi,j is the (i, j)-
minor of W . Over the splitting field L there is a basis which consists of eigenvectors for G.
Let u be one such common eigenvector with

gσiu = tiu.

Then ζ(i) := t
σ−1

i
i is an eigenvalue of g. It also follows, that u is an eigenvector for Bk

with eigenvalue

λk =
t∑

j=1

mkjtj =
t∑

j=1

(−1)j+kWj,kζ
σj

(j)det(W )−1.

The cofactor expansion for determinants implies λk = dk/detW and therefore the eigenval-
ues of Bk are in O′L iff detW divides dk, which proves the criterion of Proposition 1 and - by
definition of the eigenvalues ti - also the second statement modulo the proof of the following

Lemma 2.1.1. i) Let all eigenvalues λj , j = 1, 2, . . . , k of the semisimple matrices Bi ∈
Mn(F ), i = 1 . . . , t be contained in the ring O′L for some field L ⊃ F . Then Bi are conjugate
in GLn(F ) simultaneously to matrices that are contained in Mn(O′F ).

ii) Conversely, if the semisimple matrices Bi are contained in Mn(O′F ) and Bi are diag-
onalizable over a field L ⊃ F , then their eigenvalues are contained in O′L.

Proof of Lemma 2.1.1. i) By the virtue of [26], chapter 1, sect. 1, corollary 2 we can consider
A to be a field extending F . Let a1, a2, . . . , an be a basis of O′A over O′F . Then for any B ∈ A
we have B = b1a1 + · · · + bnan, and the elements bi ∈ F are contained in O′F iff B ∈ O′A.
But all coefficients kij of the characteristic polynomials fi(x) = ki0 + ki1x + · · · + kinx

n

of the matrices Bi are contained in O′L, and kin = 1, so Bi ∈ A are integral over F . It
follows that Bi = bi1a1 + · · · + binan, and bij ∈ O′F . If υ ∈ Fn is a non-zero vector in Fn,
then a1υ, a2υ, . . . , anυ is a basis of Fn, and Biajυ = Σkcijkakυ, where cijk ∈ O′F . It follows
that for any i the matrix Ci = [cijk]k,j belongs to GLn(O′F ), and Ci is the matrix of the
operator Bi in the basis a1υ, a2υ, . . . , anυ of Fn. Therefore, Bi is conjugate in GLn(F ) to
Ci for any i = 1, . . . , t.

ii) Consider the characteristic polynomials fi(x) = ki0+ki1x+ · · ·+kinxn of the matrices
Bi. Since kin = 1 and all kij are in O′F all roots of f(x) are in O′L. This completes the
proof of Lemma 2.1.1. �
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Remark. In the situation of Lemma 2.1.1, i) the F -algebra A = F [B1, . . . , Bt] is isomor-
phic to the field L = F [λ1, . . . , λk] where λj , j = 1, 2, . . . , k are all eigenvalues of the
matrices Bi, i = 1 . . . , t.

Proof of Corollary 1.4.1. If G ⊂ GLn(O′E) is a group of exponent p and g = B1w1 +
B2w2 + · · ·+Btwt for a basis w1, . . . , wt of O′E over O′F , then Bi ∈Mn(O′F ), and it follows
from Lemma 2.1.1 that the eigenvalues of Bj are contained in O′L. But eigenvalues are
preserved under conjugation, so the latter claim is also true for all components Gi. We
can apply Proposition 1 to Gi, i = 1, . . . , k. It follows that Gi are conjugate to subgroups
G′i ⊂ GLni

(O′E). Now, Lemma 1.2.1 implies E = F (G1)F (G2) . . . F (Gk). This completes
the proof of Corollary 1.4.1. �

Proof of Corollary 1.4.2. Let

C−1GC =

∣∣∣∣∣∣∣
G1 ∗

. . .
0 Gk

∣∣∣∣∣∣∣

for C ∈ GLn(F ) and irreducible components Gi ⊂ GLni
(E), i = 1, . . . , k. Then for g =

B1w1 +B2w2 + · · ·+Btwt

C−1gC =

∣∣∣∣∣∣∣
g1 ∗

. . .
0 gk

∣∣∣∣∣∣∣
= B′1w1 +B′2w2 + · · ·+B′twt

holds with B′i = C−1BiC. Let us consider the F -algebra A generated by all B′i, i = 1, . . . , t
over F . Since A is semisimple, it is completely reducible. It follows that matrices B′i are
simultaneously conjugate in GLn(F ) to the block-diagonal form. Therefore, G is conjugate
in GLn(F ) to a direct sum of its irreducible components Gi. Since E ⊂ F (Gi) for all i, and
O′E contains all rings O′F (Gi)

, we can apply Proposition 1 to each of them. Proposition 1
implies that each Gi is conjugate in GLni

(F ) to G′i ⊂ GLni
(O′E) if and only if all eigenvalues

of matrices B′i, i = 1, . . . , t are contained in OLi′, where Li = F (Gi)(ζp) and this happens iff

dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1)wk+1 · · · wt
wσ2

1 · · · wσ2
k−1 ζ

σ2
(2)w

σ2
k+1 · · · wσ2

t

...
wσt

1 · · · wσt

k−1 ζ
σt

(t) w
σt

k+1 · · · wσt
t

∣∣∣∣∣∣∣∣∣

are divisible by
√
D in the ring O′L. But F (G) = F (G1)F (G2) . . . F (Gk) by the Lemma in

section 1.2, and so L = L1L2 . . . Lk. This completes the proof of Corollary 1.4.2. �

Proof of Corollary 1.4.3. The argument of the proof of Corollary 1.4.1 remains true for the
rings of integers OE and Z in E and F = Q since Z is a principal ideal domain and OE has
a free basis over Z. Therefore, the rest of the proof of Corollary 1.4.3 reproduces the proof
of Corollary 1.4.1 with OE and Z instead of O′E and O′F respectively. �
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2.2. Proof of the Main Theorem. Let us suppose that there exist a counterexample G
to the Main Theorem with corresponding Galois extension K/Q,K = Q(G) with Galois
group Γ := ΓK/Q. In virtue of Lemmas 1 and 2 in [3] or Theorem 2 in [19] we can assume
the field K to be unramified outside the fixed prime p. Since as already remarked above
the particular case of field extensions K/Q which are unramified outside 2 follows in full
generality from [20], we can restrict our self to the case p > 2. Because of the Proposition
in section 1.2 we can also suppose that G is an abelian group of exponent p and we can
consider G to be irreducible under conjugation in GLn(Q) by Corollary 1.4.3. Let us
assume that G is a counterexample of minimal order of this kind. With the notation of the
beginning of this note let Γi(p) ⊂ Γ denote the i-th ramification groups of the prime divisor
p for i ≥ 1 and Γ0(p) the inertia group in Γ. Let G0 = GΓ1(p) denote the subgroup of
elements in G that are fixed by the first ramification group Γ1(p) for some prime divisor p
of p. Let e′0 be the ramification index of Q(G0) over Q with respect to p. Then e′0 � e0/e1(=
the index of Γ1(p) in Γ0(p).) We distinguish two cases: Case I : e′0 does not divide p − 1
and Case II : e′0 is a divisor of p− 1.
Case I. e′0 does not divide p− 1.

1) In this case, where e′0 does not divide p− 1, let us fix p and one of its ramified prime
divisors say p. Let E1 and F1 denote the subfields of Γ1(p)-fixed elements and Γ0(p)-
fixed elements of K respectively. We will prove that for p �= 2 and a field K which
has discriminant pj , j ∈ Z, all Γ0(p)/Γ1(p)-stable finite subgroups G of GLn(OE′

1
)

are already in GLn(OF1) for E′1 = F1(GΓ1(p)) = F1(G0) ⊂ KΓ1(p) and F1 = KΓ0(p).
We can extend the ground field F1 by adjoining ζt, t = e′0. Set E = E1(ζt) and
F = F1(ζt). We obtain a cyclic extension E/F such that ζt ∈ F for t = e′0. Since
K is unramified outside p,Q(ζt) and K have intersection Q and therefore we can
identify the Galois group ΓE/F = Gal(E/F ) with the Galois group Gal(E1/F1). With
respect to this extension of the corresponding Galois action to E/F we obtain a ΓE/F−

stable group G0 ⊂ GLn(OE). E/F is a tame extension with respect to p, t = e′0
is its ramification index and p − 1 ≥ 2. We have the following conditions for local
ramification: p

e′0
E = (p) = (ζp − 1)p−1 as ideals of the ring OEp(ζp), where pE is the

prime divisor of p in p-adic completion Ep of E. It is clear that
([

e′0
2

]
+ 1
)

(p−1) > e′0.

Hence p[t/2]+1 does not divide (ζp − 1) as ideals of OE(ζp). We can also assume that
G is an abelian p-group of exponent p, and E �= F because e′0 > 1 in the case I. We
use the statement of Proposition 1 and its Corollary 1.4.2 for the rings O′E and O′F
and a basis 1, π, . . . , πt−1, such that πt ∈ F . If ΓE/F , the Galois group of E/F , is
generated by an element σ of order t, we can consider the action of ΓE/F on the basis
1, π, . . . , πt−1 in the following way: (πi)σ = πiζit . Then

det W = πt(t−1)/2
∏

1�i<j�t
(ζjt − ζit).

Let us consider the determinants of the matrices Wj that are obtained from W by
changing elements of j-th column of W = [(πi)σ

j

]i,j to appropriate p-roots ζ(1), ζ(2), . . . , ζ(t)
of 1 that are the eigenvalues of the matrices gσ

i

, i = 1, 2, . . . , t for some g ∈ G, according to
Proposition 1. For simplicity let ζ = ζt, but reserve previous notation for ζp for the rest of
this proof.

Recall, that G is supposed to be a minimal counterexample to the Main Theorem and
that K is unramified outside p. In the proof of the Case I we pick g ∈ G0 = GΓ1(p) and a
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generator σ of the Galois group of E over F ; by our assumption, the order t of σ does not
divide p− 1. There is a matrix g ∈ G0 such that matrices gγ , γ ∈ Γ generate G. Indeed, if
matrices gγ , γ ∈ Γ generated a proper subgroup G1 of G for any g ∈ G0, then G1 would be
a group of A-type, since G is a minimal counterexample, and the order of e′0 would divide
p− 1 (because Q(G1)/Q is unramified outside p and tamely ramified at p), contrary to the
assumption of the Case I. Let us fix the above G and σ. We need the following auxiliary
lemma which specifies the option of g for our proof of the case I:

Lemma 2.2.1. Let k be an integer such that 0 < k < p. There is a matrix g ∈ G0

such that matrices gγ , γ ∈ Γ generate G, and the group G is generated by all hγ , γ ∈ Γ,
where h := gkgσ.

Proof of Lemma 2.2.1. Take a matrix g ∈ G0 such that matrices gγ , γ ∈ Γ generate G. If
a group H generated by all hγ , γ ∈ Γ is a proper subgroup of G, it is a group of A-type,
and it is fixed elementwise by the commutator subgroup Γ′ of Γ. Then gσ = g−kh = glh

for l ≡ −k(modp). We have gσ
2

= gl
2
hlhσ, . . . , gσ

p−1
= gl

p−1
h0 = gh0 for some matrix

h0 having coefficients fixed by Γ′. Since h ∈ G0, G0 is fixed by Γ1(p) and K is unramified
outside p, we have h ∈ GLn(Q(ζp)). But ζσ

p−1

p = ζp, and we also have gσ
i(p−1)

= ghi0, so
for i = p we obtain gσ

p(p−1)
= g. The same argument is true for elements g1, h1 such that

g1 = gτ ∈ G0(τ ∈ Γ) and h1 = gk1g
σ
1 taken instead of g, h. We have gσ

p(p−1)

1 = g1. But G0 is
covered by subgroups generated by all elements g1 = gτ since G is generated by elements
g1 = gγ , γ ∈ Γ. Therefore, σp(p−1) acts trivially on G0. But the order of σ is coprime to p.
We conclude that the order of σ divides p − 1, which contradicts the assumption of the
Case I. It follows that either the group H or the group H1 generated by all hγ1 , γ ∈ Γ
coincides with G. In the latter case we can rename matrix g1 to g. This completes the proof
of Lemma 2.2.1.

We distinguish the cases of odd and even t, the order of σ. If t is odd, we need a matrix
g′ having at least one eigenvalue θi = ζ(i) = 1 (we use notations of Proposition 1) such
that G is generated by all conjugates g′γ , γ ∈ Γ. For an even t we have to choose g′ =
gkgσζsp . The choice of the eigenvalues ζ(i) (see Proposition 1) ensures that the product of the
corresponding eigenvalues are in accordance with the product of two matrices h1, h2 ∈ G
(compare the proof of Proposition 1).

Now, we intend to replace G0 by a smaller subgroup G0 generated by a single element
of G0 which also satisfies the conditions of the Case I.
G0 is covered by its ΓE/F -stable subgroups Gγ , where Gγ are generated by elements

(ĝγ)σ
i

, i = 1, 2, . . . , t for some γ ∈ Γ and any ĝ such that ĝγ ∈ G0 and all ĝτ , τ ∈ Γ,
generate G. By definition, Gγ is generated by the orbit of an element g having the above
property. But if h satisfies the conditions of the above Lemma, the elements ĝτ , τ ∈ Γ
generate G for ĝ = hγ

−1
, so we can assume that Gγ is generated by elements hσ

i

, i = 1, . . . , t
for a given γ and some h ∈ G satisfying the conditions of the above Lemma. Since the
ramification index with respect to p of the composite of the fields F (Gγ), γ ∈ Γ, does not
divide p − 1, there is γ ∈ Γ such that the ramification index e(F (Gγ)/F ) of F (Gγ) does
not divide p− 1. Let us briefly explain this claim. The field F (G0) is a composite of fields
Ei = F (Gγi

), and F (G0)/F is a cyclic totally ramified extension whose Galois group is
generated by an element σ of order t equal to the ramification index of F (G0)/F in p.
So Ei/F are also cyclic totally ramified extensions, and their Galois groups are generated
by elements σi of orders equal to the ramification indices ti of Ei/F . Therefore, if all ti
divide p− 1, then the order of σ must also divide p− 1, because σ is a product of pairwise
commuting elements of orders ti. This completes the proof of our claim.
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Let us fix γ and denote G0 = Gγ . The group G0 is not cyclic since the order of σ does not
divide p− 1 in the case I. Using Proposition 1 or, alternatively, Corollary 1.4.1 or Corollary
1.4.2 of Proposition 1, we will prove that G0 ⊂ GLn(O′F ). Below we use ΓE/F -stability of
G0 in order to apply Proposition 1 to G0 ⊂ G0 generated by all (hγ)σ

i

, i = 1, 2, . . . , t for the
fixed γ ∈ Γ. Since E/F is a cyclic Kummer extension, for E′ = F (G0) ⊂ E the extension
E′/F is also a cyclic Kummer extension, and there are an integer t dividing t, σ ∈ ΓE/F
and a basis 1, π, π2, . . . , πt−1 such that πt ∈ F, πσ = πζt and the Galois group ΓE′/F of
E′/F is generated by σ. Moreover, both extensions E/F and E′/F are totally ramified in
p, and t is the ramification index of E′/F , so we have as earlier the following inequality:([

t
2

]
+ 1
)

(p− 1) > t, and p[t/2]+1 does not divide (ζp − 1).

Since p is odd and t does not divide p − 1, we can assume that t > 2. We will
consider matrices

Mj

∣∣∣∣∣∣∣∣∣∣

1 π · · · πj−1 ζ(1) − 1 πj · · · πt−1

1 πζ · · · πj−2ζj−2 ζ(2) − 1 πjζj · · · πt−1ζt−1

...
1πζt−1 · · · (πj−2)σ

t−1
ζ(t) − 1 (πj)σ

t−1 · · · (πt−1)σ
t−1

∣∣∣∣∣∣∣∣∣∣
,

j = 2, . . . , t that are obtained from Wj by subtracting first column of Wj from j-th column
of Wj . For even t we may suppose that only r � n − 2 elements from ζ(1), ζ(2), . . . , ζ(t),
the eigenvalues of h, are distinct from 1. Indeed, we can choose two elements g1 and g2 of
G0 generating a noncyclic subgroup of G0 in such a way that ζα1

p , ζα2
p , . . . and ζβ1

p , ζβ2
p , . . .

compose the full set of eigenvalues of g1 and g2 respectively and α1 �= α2. Set

k =
−(β1 − β2)
α1 − α2

and h = ζsp · gk1g2 for s = −kα1 − β1,

since we are calculating αj , βj and k modulo p we can find an integer k with this properties.
Then matrix h has two eigenvalues ζ(i) for different i, and the group generated by hγ , γ ∈

ΓE′(ζp)/F (ΓE′(ζp)/F denotes the Galois group of E′(ζp)/F ) is abelian of exponent p; we can
still apply the criterion of Proposition 1 to the group G0 generated by matrices hγ , γ ∈
ΓE′/F . In other words, we can extend the group G0, if it is needed, by adjoining some
scalar matrices and naturally extending Galois action to them, and this does not change
ΓE/F -stability of G0. For convenience we still preserve our previous notation. We can apply
our construction to the matrix h = ζsp · g0 for some g0 ∈ G0 and if we show that this matrix
is not contained in GLn(O′E(ζp)), then g0 �∈ GLn(O′E), and this contradiction is exactly the

aim of our proof of the case 1). Denote Λ = [ζ(i−1)(j−1)]ti,j=1. Note that Λ is a symmetric
matrix. Let

det Wj = det Mj = θj1(ζ(1) − 1) + θj2(ζ(2) − 1) + · · ·+ θjt(ζ(t) − 1), where

θjk = (−1)j+kπt(t−1)/2−(j−1) · ζ
−(j−1)(k−1)

t
· c = πt(t−1)/2−(j−1) · λjk

t
,

for

c = detΛ =
∏

1�i<j�t
(ζj − ζi).
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and λjk = (−1)k+jζ−(j−1)(k−1) = λkj . Indeed, denote Λ−1 = [ ζ
−(j−1)(i−1)

t
]ti,j=1, and so

(ij)-th cofactor of Wj is (−1)j+i · ζ−(j−1)(i−1)

t
· c. Let us consider the element δ from the

Galois group of Q(ζ)/Q such that δ : ζ → ζ−1, and so δ �= 1, δ2 = 1. δ acts as a complex
conjugation on t-th roots of 1. Note that for a t-root η of 1 ηδ = η iff η−1 = η or, equivalently,
η = ±1. Let us determine some properties of the above elements λij under δ-action. Since
the number of rows in Λ that are permuted under δ-action is equal to φ(t), the Euler
function, we have cδ = c if φ(t)/2 is even and cδ = −c if φ(t)/2 is odd. Furthermore,
δ permutes i-th row and (t + 2 − i)-th row of the matrix Λ for 1 < i < 1 + t/2, and
(−1)i+j = (−1)t−i+j = (−1)t(−1)i+j . Therefore, if both t and φ(t)/2 are even, or both
t and φ(t)/2 are odd, then λδk,j = λk,t−j+2 = λt−k+2,j for 1 < j < 1 + t/2, otherwise
λδk,j = −λk,t−j+2 = −λt−k+2,j . In the general case we can claim that λδk,j = s · λk,t−j+2 =
s · λt−k+2,j where s = s(t) = (−1)t+φ(t)/2 = ±1 depends only on t.

Let t be even, and let Λ1 = [λij ]i,j = [(−1)i+jζ−(i−1)(j−1)]i,j . Then Λ−1
1 = [λi,j ]−1

i,j =

[(−1)i+j · ζ(i−1)(j−1)

t
]i,j , and it follows that cofactors of λij are equal to aij = ζ(i−1)(j−1)

t
, and

so all aij �≡ 0(modq), in particular, a1j = t
−1. Let C = [cij ] be a (t − 1) × (t − 1)- matrix

obtained via eliminating the first row and the first column of Λ. Taking an expansion of a1i

by t
2 -th row of C we obtain: t−1 = ci1Ai1+ci2Ai2+· · ·+ci,t−1Ai,t−1 where Aiu are cofactors

of the elements ciu in the i-th row of C. It follows that for some m Aim �≡ 0(modq). Now it
is possible to fix integers j = 1 and m. We can use matrices g1 = g and g2 = gσ for getting
a matrix g′ whose eigenvalues associated with j-th and m-th blocks are ζ(j) = ζ(m) = 1
(see Proposition 1, 2)) and the above Lemma. For this purpose take the eigenvalues ζα1

p

and ζα2
p of g1 and the eigenvalues ‘ζβ1

p and ζβ2
p of g2 associated with j-th and m-th blocks

respectively. If ζα1
p = ζα2

p , set g′ = ζα1
p g, otherwise set g′ = ζspg

k
1g2 for s = −kα1 − β1

and k = −(β1−β2)
α1−α2

. Now we can apply Proposition 1 to the group G0 generated by all

hσ
i

, i = 1, . . . , t for h = g′.
Let us consider a prime ideal q in the ring of integers O of the field Qp(ζp, ζ) such that

q divides p. Let us suppose that ζ(l) �= 1 and the elements

(ζ(1) − 1)λi1
ζ(l) − 1

+
(ζ(2) − 1)λi2
ζ(l) − 1

+ · · ·+ (ζ(t) − 1)λit
ζ(l) − 1

, i = 1, 2, . . . , t

are divisible by (ζ(l) − 1) in the ring O, then the system of congruences




x1λ11 + x2λ12 + · · ·+ xtλ1t ≡ 0(mod q)
x1λ21 + x2λ22 + · · ·+ xtλ2t ≡ 0(mod q)
...
x1λt1 + x2λt2 + · · ·+ xtλtt ≡ 0(mod q)

(S )

has a nontrivial solution

x1 = 1, x2 =
ζ(2) − 1
ζ(l) − 1

, x3 =
ζ(3) − 1
ζ(l) − 1

, · · · , xt =
ζ(t) − 1
ζ(l) − 1

.

Let us eliminate the first and the (t/2 + 1)-th congruences from system (S), coefficients
of which are equal to (λi1, λi2, . . . , λit) = (1, 1, . . . , 1) for i = 1 and (1,−1, 1,−1, . . . , 1,−1),


