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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide useful ref-
erence books for researchers and scientists in academia, industry, and government,
and also to offer textbooks for undergraduate and graduate courses in the area of
biostatistics and bioinformatics. This book series will provide comprehensive and
unified presentations of statistical designs and analyses of important applications in
biostatistics and bioinformatics, such as those in biological and biomedical research.
It gives a well-balanced summary of current and recently developed statistical meth-
ods and interpretations for both statisticians and researchers/scientists with minimal
statistical knowledge who are engaged in the field of applied biostatistics and bioin-
formatics. The series is committed to providing easy-to-understand, state-of-the-art
references and textbooks. In each volume, statistical concepts and methodologies will
be illustrated through real world examples whenever possible.

In recent years, the screening of thousands of genes using the technique of
expression microarrays has become a very popular topic in biological and biomedical
research. The purpose is to identify those genes that may have an impact on clinical
outcomes of a subject who receives a test treatment under investigation and con-
sequently establish a medical predictive model. Under a well-established predictive
model, we will be able not only to identify subjects with certain genes who are most
likely to respond to the test treatment, but also to identify subjects with certain genes
who are most likely to experience (serious) adverse events. This concept plays an
important role in the so-called personalized medicine research. This volume summar-
izes various useful experimental designs and statistical methods that are commonly
employed in microarray studies. It covers important topics in DNA microarrays and
related genomics research such as normalization of microarray data, microarray qual-
ity control, statistical methods for screening of high-dimensional biology, and power
and sample size calculation. In addition, this volume provides useful approaches to
microarray studies such as clustering approaches to gene microarray data, paramet-
ric linear models, nonparametric procedures, and Bayesian analysis of microarray
data. It would be beneficial to biostatisticians, biological and biomedical researchers,
and pharmaceutical scientists who are engaged in the areas of DNA microarrays and
related genomics research.

Shein-Chung Chow
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Preface

WHAT ARE MICROARRAYS?

Microarrays have become a central tool used in modern biological and biomedical
research. This book concerns expression microarrays, which for the remainder of the
book, we simply refer to as microarrays. They are tools that permit quantification of
the amount of all mRNA transcripts within a particular biological specimen. There are
several different technologies for producing microarrays that have different strengths
and weaknesses. These platforms and alternatives are discussed in Chapter 1 by
Gaffney et al.

Viewed as “hot” and highly exotic tools as recently as the late 1990s, they are now
ubiquitous in biological research and the modern biological researcher can no more
be unaware and unexposed to microarray research and its results than one can remain
ignorant of clinical trials, questionnaire studies, genome scans, animal models, or any
of the other tools that have become standard parts of our armamentarium. Although
much development in microarray research methodology is still needed, it is clear that
microarrays are here to stay.

WHY THIS BOOK?

In one sense, microarrays are simply measurement assays. Just as one can meas-
ure, for example, the amount of insulin (which is the product of a gene) in blood,
we can measure the products of genes with microarrays in any tissue. What distin-
guishes microarrays from traditional approaches is their “omic” nature. That is, they
have capacity to measure all gene transcripts at once. This ushered in the subfield
of transcriptomics. A particular challenge is that because of the expense of micro-
array research and the fact that it is often directed at basic discovery and hypothesis
generation/exploration missions, the number of variables (transcripts) available in
microarray studies tends to exceed the number of cases (subjects) by several orders
of magnitude. Traditional statistical approaches to design and analysis were not
developed in the context of such high dimensional and small sample problems. We
and many others now find that our training in traditional statistical methods is not
especially well-suited to such situations.

We (the editors) were first introduced to the analysis of microarray data ca.
1999. At that time, there were almost no statistical papers providing approaches
to analyze microarray data or design microarray studies from a statistical perspect-
ive. By 2003, this situation had changed dramatically and we estimate that there
were hundreds of papers thereon (Mehta et al., 2004). This overwhelming deluge
of methods from these papers is quite daunting to either the applied investigator
looking for methodologies to utilize or the methodologist trying to keep up with the
field.
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As part of the research efforts funded by the National Science Foundation, we have
hosted an annual retreat for scientists interested in analytic methods for microarray
research for the last five years. The impetus for this book came in part from discussions
held at those retreats. We felt there was a need for a book that consolidated many of
the existing methodologic advances and compiled many of the issues and methods
into a single volume. This book is aimed at both the investigator who will conduct
analyses of microarray data and at the methodologists who will evaluate existing and
develop future methodologies.

WHAT IS HERE?

We have structured this book in a manner that we believe parallels the steps that an
investigator or an analyst will go through while conducting and analyzing a microarray
experiment from conception to interpretation. We begin with the most foundational
issues: ensuring the quality and integrity of the data and assessing the validity of the
statistical methods we employ. We then move on to the often neglected, but critical
aspects of designing a microarray experiment. Gadbury et al. (Chapter 5) address
issues such as power and sample size, where only very recently have developments
allowed such calculations in a high dimensional context. The third section of the book
is the largest, addressing issues of the analysis of microarray data. The size of this
section reflects both the variety of topics and the amount of effort investigators have
devoted to developing new methodologies. Finally, we move on to the intellectual
frontier — interpretation of microarray data. New methods for facilitating and affect-
ing formalization of the interpretation process are discussed. The movement to make
large high dimensional datasets public for further analysis and methods for doing so
are also addressed.

WHAT IS NOT HERE?

This book is not a detailed exposition of software packages (although some are men-
tioned in specific chapters), biochemistry, or the mechanics of the physical production
of microarrays or biological specimens for analysis via microarrays. Interested read-
ers should consult other more topical books in these areas (Jordan, 2001; Grigorenko,
2002; Ye and Day, 2003) Many closely related disciplines such as proteomics and
metabolomics are not discussed in any depth although the astute reader will readily
see the commonalities among the statistical and design approaches that can be applied
to such data.

THE FUTURE

There is no question that this field will continue to advance rapidly and some of the
specific methodologies we discuss herein will be replaced by new advances in the
near future. Nevertheless, we believe the field is now at a point where a foundation
of key categories of methods has been laid and begun to settle. Although the details
may change, we believe that the majority of the key principles described herein and
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the foundational categories are likely to stand the test of time and serve as a useful
guide to the reader. We look forward to new biological knowledge that we anticipate
will emerge from the evermore sophisticated technologies and analysis as well as the
exciting new statistical advances sure to come.

REFERENCES

Girgorenko E.V. (2002) DNA Arrays: Technologies and Experimental Strategies.
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Jordan B.R. (ed.) (2001) DNA Microarray: Gene Expression Applications. Springer-Verlag,
Berlin.
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Ye S. and Day I.N.M. (2003) Microarray and Microplates. Bios Press, Oxford.



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page x — #10



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xi — #11

Editors

David B. Allison received his Ph.D. from Hofstra University in 1990. He then
completed a postdoctoral fellowship at the Johns Hopkins University School of Medi-
cine and a second postdoctoral fellowship at the NIH-funded New York Obesity
Research Center at St. Luke’s/Roosevelt Hospital Center. He was a research scient-
ist at the New York Obesity Research Center and Associate Professor of Medical
Psychology at Columbia University College of Physicians and Surgeons until 2001.
In 2001, he joined the faculty of the University of Alabama at Birmingham where
he is currently Professor of Biostatistics, Head of the Section on Statistical Genet-
ics, and Director of the NIH-funded Clinical Nutrition Research Center. He has
authored over 300 scientific publications and edited three books. He has won sev-
eral awards, including the 2002 Lilly Scientific Achievement Award from the North
American Association for the Study of Obesity and the 2002 Andre Mayer Award
from the International Association for the Study of Obesity, holds several NIH and
NSF grants, served on the Council of the North American Association for the Study
of Obesity from 1995 to 2001, and has been a member of the Board of Trustees
for the International Life Science Institute, North America, since January 2002. He
serves on the editorial boards of Obesity Reviews; Nutrition Today; Public Library
of Science (PLOS) Genetics; International Journal of Obesity; Behavior Genetics;
Computational Statistics and Data Analysis; and Human Heredity.

Dr. Allison’s research interests include obesity, quantitative genetics, clinical
trials, and statistical and research methodology.

Grier P. Page, Ph.D. was born in Cleveland, Ohio in 1970. He received his B.S.
in Zoology and Molecular Biology from the University of Texas, Austin. Then he
received his M.S. and Ph.D. in Biomedical Sciences from the University of Texas–
Health Sciences Center—Houston under the mentorship of Drs. Eric Boerwinkle and
Christopher Amos. Dr. Page has been involved in the use and analysis of microarrays
since 1998 for expression, genomics, and genotyping. He is very active in the devel-
opment of new methods for the analysis of microarray data as well as methods and
techniques for the generation on the highest quality microarray data. He uses microar-
rays in his research in the mechanisms of cancer development, nutrient production,
and nutrient gene interactions especially in cancer and plants. He is currently a mem-
ber of the Section on Statistical Genetics, Department of Biostatistics the University
of Alabama, Birmingham.

T. Mark Beasley, Ph.D. is Associate Professor of Biostatics and a member of the
Section on Statistical Genetics at the University of Alabama at Birmingham. He is
the leader of the measurement and inferences teams for a funded National Science
Foundation (NSF) grant to further the development of microarray analysis methods.
He has a Ph.D. in Statistics and Measurement from Southern Illinois University and



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xii — #12

a strong research record in the area of statistical methodology, focused in methodo-
logical problems in statistical genetics; nonparametric statistics; simulation studies;
and the use of linear models. He also has a strong background in measurement the-
ory and the multivariate methods (e.g., factor analysis, structural equation models;
regression models). Dr. Beasley teaches courses on Applied Multivariate Analysis and
General Linear Models at UAB and is currently Editor of Multiple Linear Regression
Viewpoints, a journal focused on applications of general linear models and mul-
tivariate analysis. He has published articles in applied statistics journals such as the
Journal of Educational & Behavioral Statistics, Journal of the Royal Statistical Soci-
ety, Computational Statistics & Data Analysis, Multivariate Behavioral Research,
and Communications in Statistics. He has also published articles on methodological
problems in statistical genetics in leading journals such as the American Journal of
Human Genetics; Behavior Genetics; Genetic Epidemiology; Genetics, Selection,
and Evolution and Human Heredity.

Jode W. Edwards received a Ph.D. in plant breeding and genetics with a minor in
statistics from Iowa State University in 1999. He then spent 3 years with Monsanto
Company as a statistical geneticist working in the areas of marker-assisted plant
breeding and QTL mapping. Dr. Edwards joined the Section on Statistical Genetics as
a Postdoctoral Fellow in 2002. His research involved application of Empirical Bayes
methods to microarray analysis and development of software for microarray data
analysis. Using SAS as a prototyping platform, he designed experimental versions of
the HDBStat! software that is now distributed by the Section on Statistical Genetics.
Additionally, Dr. Edwards helped initiate efforts to build the microarray Power Atlas, a
tool to assist investigators in designing microarray experiments. In 2004, he completed
his postdoctoral studies and assumed a position as a Research Geneticist with the
Agricultural Research Service of the United States Department of Agriculture, in
Ames, IA. His research is focused on quantitative genetics of maize, application of
Bayesian methods in plant breeding, and breeding for amino acid balance in maize
protein.



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xiii — #13

Contributors

David B. Allison
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

T. Mark Beasley
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Jacob P.L. Brand
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Jane Y. Chang
Department of Applied Statistics and

Operational Research
Bowling Green State University
Bowling Green, Ohio

Kei-Hoi Cheung
Department of Genetics
Center for Medical Informatics
Yale University School of Medicine
New Haven, Connecticut

Tzu-Ming Chu
SAS Institute
Cary, North Carolina

Christopher S. Coffey
University of Alabama at Birmingham
Birmingham, Alabama

Stacey S. Cofield
University of Alabama at Birmingham
Birmingham, Alabama

Robert R. Delongchamp
Division of Biometry and Risk

Management
National Center for Toxicological

Research
Jefferson, Arizona

Shibing Deng
SAS Institute
Cary, North Carolina

Jode W. Edwards
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

David Finkelstein
Hartwell Center
St. Jude Children’s Research Hospital
Memphis, Tennessee

Gary L. Gadbury
Department of Mathematics and Statistics
University of Missouri-Rolla
Rolla, Missouri

Patrick M. Gaffney
University of Minnesota
Minneapolis, Minnesota

Elizabeth Garrett-Mayer
Division of Oncology Biostatistics
Sidney Kimmel Comprehensive

Cancer Center
Baltimore, Maryland

Pulak Ghosh
Department of Mathematics and

Statistics
Georgia State University
Atlanta, Georgia



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xiv — #14

Bernard S. Gorman
Nassau Community College and

Hofstia University
Garden City, New York

Jason C. Hsu
Department of Statistics
Ohio State University
Columbus, Ohio

Michael Janis
Department of Chemistry,

Biochemistry, and
Molecular Biology
University of California

at Los Angeles
Los Angeles, California

Christina M. Kendziorski
Department of Biostatistics and

Medical Informatics
University of Wisconsin-Madison
Madison, Wisconsin

Jeanne Kowalski
Division of Oncology Biostatistics
Johns Hopkins University
Baltimore, Maryland

Jeffrey D. Long
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Tapan Mehta
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Kathy L. Moser
Department of Medicine
Institute of Human Genetics and

Center for Immunology
University of Minnesota

Medical School
Minneapolis, Minnesota

Michael V. Osier
Yale Center for Medical Informatics
Yale University School of Medicine
New Haven, Connecticut

Grier P. Page
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Rudolph S. Parrish
Department of Bioinformatics and
Biostatistics School of Public

Health and Information Sciences
University of Louisville
Louisville, Kentucky

Jacques Retief
Iconix Pharmaceuticals
Mountain View, California

Douglas M. Ruden
Department of Environmental Health

Sciences
University of Alabama at Birmingham
Birmingham, Alabama

Chiara Sabatti
Department of Human Genetics
University of California at Los Angeles
Los Angeles, California

Kathryn Steiger
Division of Biostatistics
University of California at Berkeley
Berkeley, California

Murat Tanik
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Alan Williams
Affymetrix
Santa Clara, California



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xv — #15

Russell D. Wolfinger
SAS Institute
Cary, North Carolina

Qinfang Xiang
Department of Mathematics and

Statistics
University of Missouri-Rolla
Rolla, Missouri

Stanislav O. Zakharkin
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Kui Zhang
Department of Biostatistics
University of Alabama at Birmingham
Birmingham, Alabama

Zhen Zhang
Department of Pathology

School of Medicine
Johns Hopkins University
Baltimore, Maryland



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xvi — #16



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xvii — #17

Contents

Chapter 1
Microarray Platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Patrick M. Gaffney and Kathy L. Moser

Chapter 2
Normalization of Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Rudolph S. Parrish and Robert R. Delongchamp

Chapter 3
Microarray Quality Control and Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
David Finkelstein, Michael Janis, Alan Williams, Kathryn Steiger, and
Jacques Retief

Chapter 4
Epistemological Foundations of Statistical Methods for High-Dimensional
Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Stanislav O. Zakharkin, Tapan Mehta, Murat Tanik, and David B. Allison

Chapter 5
The Role of Sample Size on Measures of Uncertainty and Power . . . . . . . . . . . . . . . . 77
Gary L. Gadbury, Qinfang Xiang, Jode W. Edwards, Grier P. Page, and
David B. Allison

Chapter 6
Pooling Biological Samples in Microarray Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Christina M. Kendziorski

Chapter 7
Designing Microarrays for the Analysis of Gene Expressions . . . . . . . . . . . . . . . . . . . . 111
Jane Y. Chang and Jason C. Hsu

Chapter 8
Overview of Standard Clustering Approaches for Gene Microarray Data
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Elizabeth Garrett-Mayer

Chapter 9
Cluster Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Bernard S. Gorman and Kui Zhang



DAAL: “dk2187_c000” — 2005/10/7 — 21:44 — page xviii — #18

Chapter 10
Dimensionality Reduction and Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Jeanne Kowalski and Zhen Zhang

Chapter 11
Modeling Affymetrix Data at the Probe Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Tzu-Ming Chu, Shibing Deng, and Russell D. Wolfinger

Chapter 12
Parametric Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Christopher S. Coffey and Stacey S. Cofield

Chapter 13
The Use of Nonparametric Procedures in the Statistical Analysis of
Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
T. Mark Beasley, Jacob P.L. Brand, and Jeffrey D. Long

Chapter 14
Bayesian Analysis of Microarray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Jode W. Edwards and Pulak Ghosh

Chapter 15
False Discovery Rate and Multiple Comparison Procedures . . . . . . . . . . . . . . . . . . . . . . 289
Chiara Sabatti

Chapter 16
Using Standards to Facilitate Interoperation of Heterogeneous Microarray
Databases and Analytic Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Kei-Hoi Cheung

Chapter 17
Postanalysis Interpretation: “What Do I Do with This Gene List?” . . . . . . . . . . . . . . 321
Michael V. Osier

Chapter 18
Combining High Dimensional Biological Data to Study Complex Diseases
and Quantitative Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Grier P. Page and Douglas M. Ruden

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



DAAL: “dk2187_c001” — 2005/10/5 — 01:25 — page 1 — #1

1 Microarray Platforms

Patrick M. Gaffney and Kathy L. Moser
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1.2 Microarray Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.1 INTRODUCTION

As with the development of any novel and potentially powerful technology, the
prospect of revealing new information that may dramatically change our under-
standing of biological processes can generate much excitement. Such is true for the
emerging genomic approaches that make possible high-density assays using micro-
array platforms. Indeed, it is difficult, if not impossible, to imagine any area of biology
that could not be affected by the wide range of potential applications of microarray
technology. Numerous examples, such as those from the field of oncology, provide
striking evidence of the power of microarrays to bring about extraordinary advances in
molecularly defining important disease phenotypes that were otherwise unrecognized
using conventional approaches such as histology.

In this chapter, we present a general overview of microarray platforms currently
in use with particular emphasis on high-density DNA arrays. We touch briefly on
approaches to data analysis leaving most of the details for the ensuing chapters. For
those just entering the microarray arena or interested in more details, a series of
particularly useful reviews have recently been published that take stock of the latest
developments and discuss the most pressing challenges of this technology [1].

1.2 MICROARRAY TECHNOLOGY

Microarray technology provides an unprecedented and uniquely comprehensive probe
into the coordinated workings of entire biological pathways and genomic-level

1
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2 DNA Microarrays and Related Genomics Techniques

TABLE 1.1
Potential Objectives of Studies
Utilizing Microarray Technology

1. Distinguish patients from normal controls
2. Identify subsets of patients
3. Characterize host responses
4. Examine cellular pathways
5. Compare alternative experimental conditions
6. Examine drug response
7. Follow temporal changes in gene expression
8. Identify candidate genes for genetic studies

processes. In general terms, microarrays refer to a variety of platforms in which
high density assays are performed in parallel on a solid support. Thousands to tens
of thousands of datapoints may be generated in each experiment. The growth of
scientific literature since the mid-1990s may provide some indication for the poten-
tial impact of this technology in biomedical sciences. A majority of applications have
been in oncology, although many examples from other fields are rapidly emerging and
include examination of host response to pathogens, examination of drug responses,
identification of temporal changes in gene expression, and comparisons of various
experimental conditions.

Three major types of microarrays exist — tissue, protein, and DNA. Tissue
microarrays immobilize small amounts of tissue from biopsies of multiple subjects
on glass slides for immunohistochemical processing, while protein arrays immobilize
peptides or intact proteins for detection by antibodies or other means (see Section 1.3).
For the last several years, much excitement and attention has focused on DNA micro-
arrays and most of this book will concentrate on DNA microarray analysis. Regardless
of the specific platform used, these approaches offer new opportunities to address bio-
logic questions in a way never possible before. Table 1.1 provides just a few examples
of the potential ways in which microarray technology can be utilized.

1.3 AUTOANTIGEN AND CYTOKINE MICROARRAYS

Applications of protein microarrays include assessment of enzyme–substrate,
protein–protein, and DNA–protein interactions. Although efforts to develop these pro-
teomic tools predate the first descriptions of DNA microarrays [2], progress has been
relatively slower — in part due to challenges posed by natural inherent differences
in proteins compared with DNA. As examples, proteins consist of highly diverse
conformational structures that result from 20 amino acids vs. the 4 nucleic acid build-
ing blocks that generate a relatively uniform structure in DNA. Proteins may exist
as large complexes, can be hydrophilic or hydrophobic, acidic or basic, and contain
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posttranslational modifications such as acetylation, glycosylation, or phosphoryla-
tion. Functional and conformational properties of proteins must often remain intact
when immobilized onto a microarray in order to retain the desired binding properties
for detection of target ligands.

The development of protein microarrays to detect immunologic targets such
as cytokines or autoantibodies has enormous potential for research and diagnostic
applications in autoimmune diseases. Several groups, including Joos and col-
leagues in Germany [3], and Robinson and colleagues at Stanford University [4],
have made important strides in developing autoantigen microarrays for multiplex
characterization of autoimmune serum. Joos and colleagues spotted 18 common
autoantigens onto silane-treated glass slides and nitrocellulose at serial dilutions.
Bound antibodies from minimal amounts of 25 characterized autoimmune serum
samples and ten normal blood donors were titered by using variable amounts of
autoantigen. The autoimmune serum samples were obtained from patients with
autoimmune thyroiditis (Hashimoto’s thyroiditis and Graves’ disease), systemic
lupus erythematosus (SLE), Sjogren’s syndrome (SS), mixed connective tissue
disease (MCTD), scleroderma, polymyositis, systemic vasculitis, and antiphos-
pholipid syndrome. These assays proved to be highly specific and similar in
sensitivity when compared to a standard ELISA format. Further developments
will include optimizing the nature of the autoantigen material to minimize pos-
sible loss of antigenicity and expanding the representation of autoantigens on
the array.

Similarly, Robinson and colleagues have developed a 1152-feature array con-
taining 196 distinct biomolecules representing major autoantigens targeted by
antibodies produced by rheumatic autoimmune disease patients [4]. The autoanti-
gens included hundreds of proteins, peptides, DNA, enzymatic complexes, and
ribonucleoprotein complexes. Examples of autoantigens spotted include Ro52,
Ro60, La, jo-1, Sm-B/B′, U1-70 kD, U1 snRNP-C, topoisomerase 1, pyruvate
dehydrogenase (PDH), and histone H2A. The arrays were characterized using mul-
tiple sera from eight human autoimmune diseases and included SLE, SS, MCTD,
polymyositis, primary biliary cirrhosis, rheumatoid arthritis (RA), and both lim-
ited and diffuse forms of scleroderma. This work demonstrates the feasibility
of using large-scale, fluorescence-based autoantigen microarrays to detect human
autoantibodies with simple protocols and widely available equipment in a low-
cost and low-sample volume format. Some of the potential applications for this
technology include (1) rapid screening for autoantibody specificities to facilitate
diagnosis and treatment, (2) characterization of the specificity, diversity, and epi-
tope spreading of autoantibody responses, (3) determination of isotype subclass
of specific autoantibodies, (4) guiding development and selection of antigen-
specific therapies, and (5) use as a discovery tool to identify novel autoantigens or
epitopes.

Microarrays that simultaneously detect multiple cytokines have been developed
by Huang and colleagues at Emory University [5]. Their method utilizes capture
antibodies spotted onto membranes, incubation with biological samples such as
patient serum, and detection by biotin-conjugated antibodies and enzymatic-coupled
enhanced chemiluminescence. Twenty-eight cytokines were detected using this
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method, including interleukins-1α, 2, 3, 5, 6, 7, 8, 10, 13, and 15; tumor necrosis
factors α, and β; interferon-γ, and others. In addition to detecting multiple cytokines
simultaneously, these assays were shown to be more sensitive than conventional
ELISAs, with broader detection ranges. The ability to readily scale up this approach
to include much larger numbers of cytokines and other proteins will undoubtedly
fuel further development of this powerful tool for studying complex and dynamic
cellular processes such as immune reactions, apoptosis, cell proliferation, and
differentiation.

1.4 DNA AND OLIGONUCLEOTIDE MICROARRAYS

DNA microarrays were first introduced in the mid-1990s [6] and have been the
most widely utilized application of microarray technology. There are two com-
monly available DNA microarray systems. First are the cDNA microarrays fabricated
by robotic spotting of PCR products, derived primarily from the 3′ end of genes
and expressed sequence tags (ESTs), onto glass slides — this is the method pop-
ularized by, among others, Dr. Patrick Brown at Stanford and Dr. Louis Staudt
at the NIH [7,8]. The second method uses in situ synthesized oligonucleotide
arrays that are fabricated using photolithographic chemistry on silicon chips —
this is the method used in the proprietary AffymetrixTM system [9] and recently
by NimbleGenTM. A third method involves spotting previously synthesized longer
(40 to 70mer) oligonucleotides on either glass (AmershamTM and AgilentTM) or
nylon and plastic (clonetechTM and SuperArrayTM). The data generated using these
systems are highly concordant, as demonstrated in parallel studies of the yeast cell
cycle [10,11]. In the spotted cDNA and long oligo microarray systems, two probes
with different fluorescent tags are hybridized to the same array, one serving as the
experimental condition and the other as a control. The ratio of hybridization between
the two probes is calculated, allowing a quantization of the hybridization signal
for each spot on the array. In this system, the probe is 1st strand cDNA gener-
ated by oligo-dT primed reverse transcription from an RNA sample (for additional
details see http://cmgm.stanford.edu/pbrown/). In the AffymetrixTM system, only
a single labeled probe is used and each gene on the chip is represented by 8 to
10 wild-type 25-mer oligonucletides and the same number of single base mutant
25-mer oligonucleotides synthesized next to one another on the array. Signal intens-
ity and the ratio of specific to nonspecific hybridization allows the generation of
quantitative data regarding gene expression in the sample (for more details see
http://www.affymetrix.com/technology/tech_probe.html).

1.5 TILING ARRAYS

Recently several groups have developed arrays with long stretches of chromo-
somes or whole-genomic sequences probed onto arrays. Potential uses for such
whole-genome arrays include empirical annotation of the transcriptome [12],
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identification of novel transcripts [13,14], analysis of alternative and cryptic
splicing, characterization of the methylation state of the genome, polymorph-
ism discovery and genotyping, comparative genome hybridization, and genome
resequencing [15]. These arrays have great future potential for studying new
aspects of the genome and providing greater insights into the function of living
organisms.

1.6 DATA ANALYSIS

Microarray analysis is often considered a discovery-based rather than hypothesis-
driven approach [16,17], largely due to the potential for discovering altered expression
of novel genes for which little or no prior information was available to sug-
gest a role in the disease or experimental condition examined. However, high
quality experiments are driven by addressing a scientific question (even if it is
simply — “are there genes that are differentially expressed between a group of
patients and controls?”), consistency in execution of experimental protocols, use
of sample sizes with as many replicates as is feasible, and a plan for statistical
analysis and interpretation of the data. Including statistical expertise during the
early phase of experimental design (i.e., prior to any data collection) is critical,
particularly in the setting of microarray analysis where each experiment can carry
significant cost.

1.7 FUTURE DIRECTIONS

The majority of human diseases undoubtedly involves the complex interplay of many
genes. Although the number and type of genes are not yet known, global assess-
ment of gene expression is a very powerful approach for gaining insight into these
processes. Identification of these genes will certainly contribute to advancing our
understanding of the molecular basis for human diseases and identifying novel thera-
peutic targets. Within a relatively short period of time, the information learned
from the application of microarray technology to address complicated biological
questions has not only met, but often exceeded expectations. Despite their success,
microarray studies are not without their challenges. Continued refinement of these
techniques, including development of improved statistical methods for extracting
information from large datasets and software tools for data processing, manage-
ment, and storage as described in the following chapters of this book, will likely
increase the applicability and general use of these technologies. Additionally, estab-
lishing common standards for the publishing and sharing of microarray generated
data will be important. The applicability of this technology in translational medi-
cine is only beginning to be appreciated and it is likely that microarray technologies
will have a substantial impact on our understanding of human disease now and into
the future.
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2.1 OBJECTIVES OF NORMALIZATION

2.1.1 WHAT IS NORMALIZATION?

Normalization of microarray data is any procedure meant to reduce or account for
systematic variation among or within arrays. This variation is a component common
to all the genes that are measured on an array or, more generally, to a subset of genes
on the array. Normalization methods are often applied prior to the application of stat-
istical analysis methods, which are usually designed to detect differential expression.
However, normalization includes procedures that adjust for known effects as part of
the statistical analysis as well as those that replace the actual data with modified values
prior to the statistical analysis. In either case, normalization represents an effort to
obtain more powerful tests by reducing variation in the data or otherwise accounting
for it mathematically.

2.1.2 SOURCES OF VARIATION

The raw data from gene microarrays involve variation due to several sources [1,2].
The intent of a typical experiment is to determine whether treatment groups of exper-
imental units (e.g., subjects, patients, mice, etc.) exhibit differential gene expression
patterns. Such comparisons are based on an assessment of the variation among the
experimental units within groups, which is the experimental error variance. In addi-
tion to variation in mRNA levels from unit to unit, there is variation arising from
the measurement process. Normalization methods attempt to remove or reduce the
influence of these additional sources of variation.

Some writers distinguish between “biological” and “technical” variation. Vari-
ation that is inherent to the characteristics of the experimental units is considered
as biological variation. Variation that derives from the characteristics of the arrays
themselves (due to manufacturing issues), the processing of the samples applied to
arrays (e.g., sample preparation, mRNA extraction, labeling), hybridization of sample
material onto the arrays, and measurement of intensities (e.g., optical properties, label
intensity, scanner settings) all are considered as technical variation; see also [3]. If all
technical variation could be eliminated, there would be some sense of purity in the
data that should reflect group effects and involve only natural unit-to-unit variation.
An ideal normalization method would remove all effects of technical variation.

Although some procedures may result in transformed data that are approxim-
ately normally distributed (i.e., Gaussian distribution), achieving normality is not the
primary objective of normalization.

2.1.3 BACKGROUND CORRECTION

Many proposed methods incorporate the use of a background correction procedure
in which measured intensities are adjusted according to some level of background
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noise. Although these methods also result in a modification to the data, in this chapter
background correction algorithms are regarded as attempts to reduce bias, whereas
normalization methods are regarded as attempts to reduce variance due to technical
sources. Background corrections mainly affect the low expressions. Thus, background
correction will not be considered in this treatment of normalization.

2.1.4 PLATFORMS

Normalization methods generally apply to any platform, although some methods
obviously are designed for one- or two-color systems or are specific to a platform.
These platforms include high-density oligonucleotide arrays [4], cDNA spotted arrays
using two labels per spot, and spotted arrays using one label per spot [5].

2.2 STATISTICAL BASIS OF NORMALIZATION

2.2.1 MICROARRAY DATA

Microarray data from an individual array basically form just a high-dimension
multivariate observation of gene expressions. The array corresponds to an experi-
mental unit or a sampling unit within the experimental unit, and genes correspond
to the variables measured on the unit. In two-color systems, the red and green dyes
often correspond to paired specimens from the same or different experimental units.
As part of multivariate observations, it is natural to assume that correlations exist
among the variables. Obviously, genes may be correlated through biological relation-
ships. Variables may be correlated also by virtue of being associated with the same
spots on two-color arrays.

Typically, there is only a single array for each experimental unit. That is, there
usually is no replication of multiple arrays per experimental unit. In classical experi-
mental designs, such replication forms the basis for obtaining purer estimates of the
experimental error variance, and this principle can be applied to microarray exper-
iments [6,7]. With microarrays, a different technique is employed that is based on
assumed relationships involving hundreds or thousands of genes on each array. Basic-
ally, normalization methods are developed under the assumption that the average gene
does not change significantly among the experimental units even under the various
experimental conditions.

2.2.2 TRANSFORMATIONS

Nearly all investigators employ a logarithmic (usually base 2) transformation on
expression values prior to analysis or normalization. For 16-bit images, this means
that log2-transformed expression values will be real values between 0 and 16. The
purpose of transforming the data is mostly to address potential multiplicative error
structures that give rise to instability of variances, but also to achieve normality
so that subsequent statistical inferences will be valid. However, considering all
choices, the logarithmic transformation may not be the one that most nearly produces
a normal distribution, and the most appropriate choice of transformation is likely
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to be different for various genes when seeking normality [8,9]. Nonetheless, it is
usually assumed that a logarithmic transformation stabilizes the variance, at least
approximately [10].

2.2.3 ANALYSIS OF VARIANCE MODELS

It is useful to consider statistical models for microarray data in order to characterize
variability mathematically and to assess normalization methods. Several models, as
described below, have been proposed which provide a framework for understanding
the variances that are present in microarray expression data. Among these are analysis
of variance type models with additive errors as given by several authors [3,11–16].
Models involving multiplicative errors have also been introduced [17,18]. Most utilize
a logarithmic transformation of the expression data. Normalization methods that
involve modeling probe intensity levels have also been proposed [19].

Various normalization methods make use of presumed relationships with other
genes (or their overall characteristics) to modify the data so that the among-arrays
variance is reduced. In a linear model context, the data are not modified directly
but rather other effects in the model are adjusted for in order to reduce estimates of
standard errors of treatment differences.

Most papers consider normalization as an adjustment that precedes the analysis
for treatment effects. Examples include the mean (median) subtraction or locally-
weighted regression (loess) adjustments. In these cases, the data are normalized and
then the normalized values are analyzed for treatment effects. However, normalization
can be directly incorporated into the analysis, as with the analysis of variance models.
The analysis of variance approach is attractive because it explicitly accounts for
sources of variation that impact inferences about treatments including the “array
effect,” which invariably is a major source of variation.

2.2.4 VARIANCE COMPONENTS

A simple and typical experimental design for single-channel arrays involves two treat-
ment groups (k = 2), multiple subjects per treatment (n subjects), and a single array
per subject (r = 1). There are two components of random variation: one associated
with variation among subjects treated alike (subjects within treatment groups) and
the other associated with arrays within subjects. The first of these is the experimental
error variance, denoted by σ 2

s . The second is an array-specific variance, denoted
by σ 2

a . The analysis of variance involves three sources of variation in the indicated
expected mean squares. Because the number of degrees of freedom for arrays is zero
when r = 1, the corresponding variance component is not estimable. In this model,
subjects and arrays are considered as random effects.

Source DF Expected mean square
Treatment (Trt) k − 1 QTrt + rσ 2

s + σ 2
a

Subjects (Trt) k(n − 1) rσ 2
s + σ 2

a
Arrays (Subjects Trt) kn(r − 1) σ 2

a
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Normalization may be thought of as an attempt to reduce the magnitude of the
“among-arrays” variance component σ 2

a . The “among-subjects” component σ 2
s is the

experimental error component and should not be modified by normalization. QTrt is
a quadratic form based on treatment means.

2.2.5 SIGNIFICANCE TESTING

In view of the ultimate objectives in microarray analysis, significance testing is
conducted in one form or another in order to discover genes that exhibit differen-
tial expression. As such, normalization methods should seek to improve power of
such tests and to reduce false discovery rates. Thus, in a real sense, the impact on
significance testing is one of the most important characteristics of a normalization
procedure. Methods that replace the data with adjusted values, by definition, attempt
to reduce variability and are likely to produce a higher frequency of significant res-
ults. Consideration of the F test, which is formed by the ratio of the mean square
among treatments, MS(Trt), to the mean square among subjects within treatments,
MSSubjects(Trt), gives rise to the following ratios of variances estimated by these mean
squares in the presence or absence of variance associated with arrays

E(MSTrt)

E(MSSubjects(Trt))
= QTrt + rσ 2

s + σ 2
a

rσ 2
s + σ 2

a
<

QTrt + rσ 2
s

rσ 2
s

Thus, a normalization procedure that is effective in reducing σ 2
a will increase the

F statistics (or, equivalently, t statistics for the case of two treatments), and therefore
reduce p values, assuming σ 2

s remains constant. A problem arises if the normalization
method reduces variability associated not only with the array effects but also that
associated with the experimental error (i.e., among-subjects variance). This issue has
been discussed for two normalization methods applied to prostate cancer data [20].

2.2.6 BIAS AND VARIANCE REDUCTION

Normalization procedures attempt to reduce variance among arrays, which improves
the resolution of treatment differences. However, normalization also may bias the
estimated treatment effects, which impairs the resolution of treatment differences.
The bias and variance can be examined in a simple case, which allows a heuristic
evaluation of the properties to be expected for less tractable cases. Let yga denote the
logarithm of the observed intensity for gene “g” on array “a.” A simple normalization
method is to subtract the global mean for each array. This formula can be written in
matrix form as (I − J/m)ya where I denotes an (m × m) identity matrix, J denotes an
(m × m) matrix of 1s, and ya = (y1a, y2a, . . . , yma)

′. The gth element of (I − J/m)ya

is simply yga − ȳ·a. If µa and � denote the mean and covariance of yga, then the
mean and covariance of the normalized data are, respectively, (I − J/m)µa and
(I − J/m)�(I − J/m)′.

The underlying logic for normalization is an assumption that the m genes meas-
ured on an array share a component of variation, the array effect. The aim of
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normalization is to eliminate this effect. To see this, denote the variance of the
array effect by σ 2

a , then the variance � can be partitioned into two parts such that
� = D + Jσ 2

a , where D is a diagonal matrix with elements equal to the gene-
specific variances (over subjects). Then, the variance of the normalized values is
(I − J/m)D(I − J/m)′, which does not depend on σ 2

a . This matrix has diagonal
elements equal to σ 2

g − (2/m)σ 2
g + (1/m2)

∑m
g=1 σ

2
g , representing variances of

the normalized variables. The covariances are given by −(1/m)σ 2
i − (1/m)σ 2

j +
(1/m2)

∑m
g=1 σ

2
g . In effect, sources of variation shared by all intensities on the array

are eliminated by this normalization. Because the array variance can be quite large
relative to the variance among subjects for specific genes, the data may have substan-
tially lower variance after normalization. For large m, the variance of the normalized
data will be approximately D.

Global normalization of this form also introduces bias. Let	 denote the logarithm
of the true fold changes between two arrays, that is, the expectation of ya − yb. Then
the expected difference after subtracting the respective means is (I − J/m)	 �= 	.
In general, estimated fold changes, which are based on normalized data, are biased
in the opposite direction of the average logarithm of the fold change. If most of the
interrogated genes are unaffected by treatment and m is large, this bias is negligible
and the accompanying reduction in variance far outweighs any detriment from bias.
However, the potential to seriously corrupt inferences about treatment effects through
normalization should be a concern whenever large numbers of genes exhibit differ-
ential expression and/or whenever the data are highly smoothed as this conceptually
corresponds to normalizing within subsets of the interrogated genes (i.e., effectively
small m).

There are two generic directions in which the global means normalization can
be modified. These modifications encompass a large percentage of the normalization
procedures that have been proposed. One direction is to apply the mean normalization
within subsets of the interrogated genes. For example, genes can be placed into subsets
based on their physical location or the magnitude of their intensity. Procedures that
adjust for each print pin or those that regress on the magnitude can be viewed this way.
The other direction of modification is to replace the mean with alternative estimators.
The bias can be mitigated somewhat by the use of ‘outlier’ resistant methods (e.g.,
using the median rather than the mean). An outlier in the context of normalization
is any intensity that is affected by factors in addition to the array effect. The model
outlined above only accounts for treatment effects and array effects, so “outliers”
in the context of this model are the genes affected by treatment. Finessing in both
directions of modification leads to more complex procedures such as loess regression.

Two other procedures also can be interpreted in the context of means normaliz-
ation. If one replaces the rows of J with an indicator of genes for which there are
no treatment effects, then the variance is reduced and there is no bias. However, this
requires a priori knowledge of a subset of interrogated genes which are not affected
by treatment. This is the basis for normalizations based upon housekeeping genes,
although the assertion that they are unaffected by treatment is problematic. Another
approach is to use the normalizing value (global mean) as a covariate in an ana-
lysis of the observed log-intensities. In essence, J is replaced by BJ where B is a
diagonal matrix of gene-specific coefficients estimated by the analysis of covariance.
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Conceptually, this accounts better for different correlations between the observed
intensities and the normalizing value.

2.2.7 VARIANCE wITHIN ARRAYS

Normalization by subtraction of the global means does not adjust for possible different
array-specific variability among genes that might exist. In this situation, individual
gene expressions will have variances across subjects (σ 2

g ) that may be very large,

even with respect to σ 2
a . By considering features of the array-specific distributions

of gene expressions or probe intensities (e.g., the interquartile range or particular
quantiles), additional adjustments may be in order. The method based on the median
and interquartile range is an example of a combined approach.

2.2.8 ANALYSIS OF COVARIANCE MODELS

It is not straightforward to test for treatment effects in analysis of variance (ANOVA)
models unless one makes the assumptions that all genes have the same residual vari-
ance and that all genes are independent, which are unlikely to be satisfied in practice.
From a strict statistical perspective, a better approach is to analyze the intensity
data by individual genes and to extract the “normalizing” information residing in the
other interrogated genes by enlisting a summary statistic as a covariate. For example,
instead of subtracting the median from each log-intensity and then analyzing for treat-
ment effects, one could analyze the log-intensities for treatment effects incorporating
the median as a covariate. Conceptually, such an analysis makes a better adjustment
because it estimates the attenuation associated with measurement error that is implicit
in using the median (or other summary estimate) as a surrogate measure of the array
effect.

To elaborate, consider a simplified hypothetical setting where the analysis
involves two genes per array with several arrays receiving a treatment and several
arrays serving as controls. We make the additional assumption that the second gene
is unaffected by treatment (essentially, the basis for normalizing by housekeeping
genes). Then ya as previously defined can be written

(
Y1
Y2

)
a

∼
[(

µ1 + τ

µ2

)
,

(
σ 2

1 + σ 2
a σ12 + σ 2

a
σ12 + σ 2

a σ 2
2 + σ 2

a

)]

where τ = 0 if the array is from a control sample. In the analysis of covariance,
we are interested in testing the first gene for a treatment effect using the distribution
of Y1, given an observed value of Y2. In general, the expectation of this distribution
depends upon the distributional assumptions in addition to the means and variances.
For a bivariate normal distribution, it is known that E(Y1|y2) = µ1 + τ +β(y2 −µ2)

where

β = σ12 + σ 2
a

σ 2
2 + σ 2

a
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FIGURE 2.1 Ratio of the variances of treatment effect: variance using analysis of covariance
divided by variance using the difference.

In particular, the variance is var(Y1|Y2) = σ 2
1 +σ 2

a −β(σ12 +σ 2
a ) giving the variance

of the estimated treatment effect, var(τ̂ ) = (2/n)(σ 2
1 +σ 2

a −β(σ12 + σ 2
a )), assuming

there are n treated and n control arrays. The variance of the treatment effect estimated
from the differences, y1 −y2, is (2/n)(σ 2

1 + σ 2
2 − 2σ12). Arguably, the better of these

methods is the one that has the smallest variance, which is straightforward to evaluate
if all the component variances are specified. As an example, suppose

σ = σ 2
(

1 + r r
r 1 + r

)

This represents cases where σ 2
1 = σ 2

2 ≡ σ 2, σ12 = 0, and σ 2
a = rσ 2, that is, r is

the relative magnitude of the variance of the array effect. In this example, the ratio of
these variances only depends on r. In Figure 2.1, the ratio is formed with var(τ̂ ) in the
numerator and plotted as a function of r. Since the ratio is less than 1, the analysis of
covariance produces more precise estimates of the treatment effect. At least under the
assumedσ , an analysis of covariance would be preferable to analyzing the differences.
This preference would likely apply whenever normalization is based upon the mean
of a few “housekeeping” genes.

In practice, when the median of all the interrogated genes is employed as a
covariate, the mathematics becomes intractable. However, the median should behave
similarly as the mean where the ratio is essentially 1, so there is little advantage in
regard to the precision of estimated effects. Simulations using the median confirm
that there is little if any increase in the precision of estimated treatment effects when
a covariance analysis is compared to an analysis based upon the differences. Like the
difference, the analysis of covariance also suffers from bias, which justifies use of the
median rather than the mean. Hence, our preference for the analysis of covariance
is largely aesthetic. An analysis of covariance seems better because it renders an
assessment of the variation explained by normalization.



DAAL: “dk2187_c002” — 2005/10/6 — 16:46 — page 17 — #9

Normalization of Microarray Data 17

2.3 NORMALIZATION ALGORITHMS

A large number of normalization methods have been proposed, several of which are
identified in Table 2.1; this list is not exhaustive. Bolstad et al. [19] distinguished
between “complete data” methods, in which data from all arrays are used to nor-
malize, and methods that use a baseline array to establish the normalization relation.
The global normalization methods generally can be applied to all arrays together or
separately to arrays within treatment groups. Nonetheless, there is no consensus on
classification of these methods.

In the following sections, some methods that have been frequently reported are
described in detail; however, this does not imply that these methods are necessarily
more appropriate or more effective than others. Comparisons among normaliza-
tion methods have not established which ones have the most desirable statistical
performance characteristics.

2.3.1 REFERENCE GENES

2.3.1.1 Housekeeping Genes

A set of housekeeping genes may be used as a group of reference genes for adjusting
array values [21,22], provided it can be assumed that true expression values for these
genes are unaffected by experimental conditions and do not vary across subjects or
samples. Such genes are selected in advance of the experiment. Methods for selection

TABLE 2.1
Selected Normalization Methods

Reference genes
Housekeeping and control genes [21,44]

Global and local methods
Global mean or median
Linear scaling [4]
Nonlinear scaling [25]
Invariant set [17]
Consistent set [45]
Median-Interquartile range [28]
Signal dependent q-spline [46]
Variance stabilization [8,10,47]
Quantile [19,32,33]
Local regression [29,30,36,48]
Variance regularization [49]
Spatial normalization [46]

Linear models
Analysis of variance [11]
Mixed-effects models [12,35]
Split-plot design [13]
Subset/global intensity [14]
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of control genes have been described [23]. Some arrays (e.g., HG-U133) are designed
with probe sets that are not expected to vary across different tissue types. Typically,
an adjustment factor would be computed for each array that makes the means of the
reference genes all equal. Some investigators have reported difficulty in selecting
suitable housekeeping genes [24,25].

2.3.2 GLOBAL AND LOCAL METHODS

2.3.2.1 Linear Scaling to a Common Mean and Range

The Affymetrix algorithm [4] involves simple scaling according to the expression

y∗
ij = yij ×

(
y(m)baseline/y

(m)
i

)

where y(m)baseline is the (trimmed) mean of the expression values on the reference array,

and similarly y(m)i is that corresponding to the ith array. This may be applied at the
probe intensity level. Under a linearity assumption, this is effectively fitting a line
through the origin for array i values vs. baseline array values, paired according to
individual genes or probes. This produces for array i the same mean and same range of
variation as for the baseline array. This method does not correct for situations where
the low-level expressions or intensities have a slope different from that for the larger
values (i.e., if the expression distributions are very different).

2.3.2.2 Nonlinear Scaling

Instead of assuming linearity between each array and the baseline array, one can
employ nonlinear relationships. Schadt et al. [25] described use of a nonlinear nor-
malizing relation based on a subset of genes considered to be invariant relative to the
ordering of expressions on an array compared to the baseline array. They proposed an
algorithm based on ranks that finds an approximately invariant set of genes, which then
are used with the generalized cross-validation smoothing spline algorithm (GCVSS)
given by Wahba [26]. This algorithm has been implemented in dChip software [25].
This data transformation may be represented generally as

y∗
ij = fi(yij)

where fi represents the nonlinear scaling function.
Li and Wong [17] employed a piecewise running median line instead of the

GCVSS approach, and Bolstad et al. [19] utilized a loess smoothing approach [27]
on probe intensities.

2.3.2.3 Overall Mean or Median

An additive adjustment factor can be computed for each array in order to make the
array means or medians all equal to one another. That is, it makes the total intensity
for all arrays equal or nearly so. This can be implemented by choosing a reference
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(i.e., baseline) array arbitrarily and adjusting the other arrays to that total intensity
value, or it can be implemented by computing the mean of the means or median of the
medians as the target value. This type of normalization might be valid if log expression
values are affected as a direct result of differing quantities of mRNA. Mathematically,
this is represented as

y∗
ij = yij + (y.(m) − y(m)i )

where yij is the prenormalized log-expression value for array i and gene j, y(m)i is the
mean or median value for array i based on values of all genes on the array or it may
be the value from the baseline array, y.(m) is the mean of means or median of medians
over all arrays, and y∗

ij is the normalized log-expression value. An arithmetic mean or
a trimmed mean can be used. In a distribution sense, this method equates the central
tendencies for all arrays. A global mean or median adjustment can be applied across
all arrays together or within treatment groups separately.

2.3.2.4 Scaling for Heterogeneity of Variance

The global mean or median adjustment provides shift corrections but does not alter the
variance of gene expression values within arrays. A simple adjustment for differing
variances can be accomplished by selecting a scaling constant for each array. The
scaling constants can be based on a measure of dispersion using either a baseline array
or the mean or median of that measure over all arrays. Commonly, the interquartile
range (IQR) is used because it is not affected by outliers as is the case with the
standard deviation [28]. Incorporation of both global mean or median adjustment and
an IQR-based dispersion adjustment is given mathematically by

y∗
ij = (yij + y.(m) − y(m)i )× (D./Di)

where Di is the measure of dispersion for the ith array and D. is the mean or median or
maximum of the Di values over all arrays. The IQR-based method can be generalized
for use of any two other quantiles, such as the normal range based on the 2.5th and
97.5th percentiles. When the IQR criterion is used, all arrays will have the same IQR
after normalization.

2.3.2.5 Loess on Two-Channel or Paired Arrays

Dudoit et al. [29] described a loess-based method based on M vs. A (MvA) plots. This
method plots

Mj = log2(y
(1)
ij /y

(2)
ij ) vs. Aj = 0.5 log2(y

(1)
ij × y(2)ij )

or, equivalently,

Mj = log2(y
(1)
ij )− log2(y

(2)
ij ) vs. Aj = [log2(y

(1)
ij )+ log2(y

(2)
ij )]/2



DAAL: “dk2187_c002” — 2005/10/6 — 16:46 — page 20 — #12

20 DNA Microarrays and Related Genomics Techniques

for each array i over all genes (or probes) j, and then fits a loess smoothing function.
Here, y(1)ij represents the expression (or probe) values for one channel and y(2)ij similarly
for the other channel.

Normalized values are a function of the deviations, denoted by M ′
j , from the fitted

regression line; particularly,

log2(y
(1)∗
ij ) = Aj + 0.5M ′

j and log2(y
(2)∗
ij ) = Aj − 0.5M ′

j

where y(1)∗ij and y(2)∗ij represent the normalized values for the two channels.

2.3.2.6 Cyclic Loess on Single-Channel Arrays

The method of Dudoit et al. [29] was adapted by Bolstad et al. [19] for application
to single-channel arrays by considering all pairs of arrays when constructing MvA
plots. Their algorithm iteratively finds adjustments that ultimately result in normalized
values.

2.3.2.7 Loess on an Orthonormal Basis

A version of the MvA method was introduced by Astrand [30] in which he first
transforms the log probe intensity vector for each array using an orthonormal contrast
matrix with dimensions equal to the number of probes, in order to create an alternative
basis of the data. This is followed by applying a loess method to the MvA plots where
a fixed reference vector in the alternative basis is paired with each of the other arrays
in the alternative basis. This algorithm is implemented in the R software maffy [2,31].

2.3.2.8 Quantile Normalization

Bolstad and coworkers [19,32–34] introduced a method based on quantiles of the
underlying distribution of probe intensities. That method creates identical distribu-
tions of probe intensities for all arrays by replacing the intensity values in order to
attain a straight-line relationship on quantile–quantile plots for any two arrays. This
is accomplished by projecting the points of an n-dimensional quantile plot onto a
unit diagonal vector, according to the following steps (a) Form a data matrix X of
dimension p × n where p is the number of probes and n is the number of arrays;
(b) Sort each column of values from low to high to produce order statistics for each
column; (c) Replace all values in each row of the sorted matrix by the mean of that
row’s values (i.e., the mean of the ith order statistics from all columns); (d) Rearrange
the elements of each column back to the original ordering. The resulting matrix is the
normalized data matrix from which expression values then are calculated.

2.3.3 LINEAR MODEL BASED METHODS

In the following statistical models, the response variable is generally taken to be the
log2 of expression.



DAAL: “dk2187_c002” — 2005/10/6 — 16:46 — page 21 — #13

Normalization of Microarray Data 21

2.3.3.1 ANOVA-Based Model

Kerr et al. [11] introduced the use of ANOVA models that accounted for array, dye, and
treatment effects for cDNA arrays. In this fashion, normalization was accomplished
intrinsically without preliminary data manipulation. The model they proposed may
be written as

yijkg = µ+ Ai + Tj + Dk + Gg + AGig + TGjg + eijkg

where µ is the mean expression, Ai is the effect of the ith array, Tj is the effect of
the jth treatment, Dk is the effect of the kth dye, Gg is the gth gene effect, and AGig

and TGjg represent interaction effects. Of interest for testing differential expression
are the interaction effects, TGjg, for which appropriate contrasts can be estimated for
each gene. In this model, all effects were considered as fixed effects. Other terms
could be incorporated into this model.

2.3.3.2 Mixed-Effects Model

Wolfinger et al. [12] utilized a mixed-effects model for cDNA data where the array
effect and related interaction terms are considered as random effects. A model
involving all effects simultaneously can be written as

yijg = µ+ Ai + Tj + ATij + Gg + AGig + TGjg + eijg

Like the ANOVA model, this also intrinsically adjusts for the effects of arrays without
modifying the data directly, although they recommend first fitting the model

yijg = µ+ Ai + Tj + ATij + eg(ij)

and calculating residuals, denoted by rijg. Then the residuals are used as the dependent
variables in the gene-specific models given by

rijg = Gg + AGig + TGjg + eijg

or, equivalently, for each gene

r(g)ij = µ(g) + A(g)i + T (g)j + e(g)ij

The residuals are the normalized values. The effect of interest for testing differential
expression is the T (g)j term.

For single-channel arrays, in which different arrays are used within treatments,
this approach can be represented with the overall model

yijg = µ+ Tj + A(T)i(j) + Gg + TGjg + egi(j)


