/A\ Auerbach Publications
Tavior S Franc Cooup

The
Debugger’s
Handbook

J. F. DiMarzio

The
Debugger’s
Handbook

Other Auerbach Publications in

Software Development, Software Engineering,
and Project Management

The Complete Project Management
Office Handbook

Gerard M. Hill

0-8493-2173-5

Complex IT Project Management: 16
Steps to Success

Peter Schulte

0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann

0-8493-1499-2

The Hands-On Project Office:
Guaranteeing ROI and On-Time Delivery
Richard M. Kesner

0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

1SO 9001:2000 for Software and Systems
Providers: An Engineering Approach
Robert Bamford and William John Deibler II
0-8493-2063-1

The Laws of Software Process: A New
Model for the Production and
Management of Software

Phillip G. Armour

0-8493-1489-5

Real Process Improvement Using the
CMMI®

Michael West

0-8493-2109-3

Six Sigma Software Development
Christine Tayntor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana

0-8493-2142-5

Software Configuration Management
Jessica Keyes 0-8493-1976-5

Software Engineering for Image
Processing
Phillip A. Laplante 0-8493-1376-7

Software Engineering Handbook
Jessica Keyes 0-8493-1479-8

Software Engineering Measurement
John C. Munson 0-8493-1503-4

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian

0-8493-1661-8

Software Testing: A Craftsman’s
Approach, Second Edition

Paul C. Jorgensen

0-8493-0809-7

Software Testing and

Continuous Quality Improvement,
Second Edition

William E. Lewis

0-8493-2524-2

IS Management Handbook,

8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures
Fenix Theuerkorn
0-8493-2114-X

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold

0-8493-1943-9

Maximizing ROl on Software
Development

Vijay Sikka

0-8493-2312-6

Implementing the IT Balanced Scorecard
Jessica Keyes

0-8493-2621-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 » Fax: 1-800-374-3401
E-mail: orders@crcpress.com

The
Debugger’s

Handbook

Jerome DiMarzio

Auerbach Publications
A Taylor &Francis Group
Boca

n New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

Auerbach Publications

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 0-8493-8034-0 (Hardcover)
International Standard Book Number-13: 978-0-8493-8034--1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

DiMarzio, J.F.
The debugger’s handbook / Jerome F. DiMarzio.,
p.cm.
Includes bibliographical references and index.
ISBN 0-8493-8034-0 (alk. paper)
1.Debugging in computer science. 2. Computer software--Quality control. I.
Title.

QA76.9.D43D56 2006
004.2’4--dc22 2006044272

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

Dedication

This book is dedicated first and foremost to my family — to my loving
wife, Suzannah, for her love, dedication, and work, and to our children,
without whom it would be meaningless.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

ADBOUL the AULNOLoiiiiiiiii e xi
ACKNOWIEAGMENES ...ttt xiii
PLEEACE .oiiiiii e XV
TOETOAUCHON 1.t ettt ettt e an xvii
T Bugs: FACt OF FACtHON?uueeeeieeireeeeeerseeeeessneeeeessneseesssssesessssnseses 1
The HiStOry Of BUGS ...viviiiiiiiiiiiiiicec e 8
The Rise of the Modern Programmer
Killing Bugs Is JUSt @ GAME......couieiiiiiiiiiiiieiiieiteie et
Dissecting a Bug: Definitionc.oocioviiiiiiiiiiiiic e
Fully Realized Code.........cccoceeriinnnn
Code Follow-Through: Tracing........
Syntactically Incorrect Code.............
REVIEW QUESTIONS ..ttt e e e e e e e e e e e e e e e e aaaaaaeeeas
LoOKING ANEAd ..ottt
AVOIAING BUGS . vttt 28
2 Writing Bug-Free Code Part I: The Design Process................. 31
Planning Your Bug-Free Projectooiviiiiiiiiiiiiiceiceceseece e 32
Define the PUIPOSEiiviiiiiiiiii ettt 34
Identify the Flow of the Application...........ccooceviiiiiiiiiiiiiiciee 37
Identify Internal and External COMPONENLScc.eeverereririieiienienieenn, 40
Account Application: Internal and External Components................. 42
Create a Realistic Timeline............ccccceveierinnns
Review QUeStionscccoeeeevviieiieniennenn.
LoOKING AN@Adoiiiiiiiiiiicie e
3 Bug-Free Code Part II: The Coding ProcCess.......cccceeeeueeeccueeenns 45
It Is All in the COMMENTScvviiiiiiiiieiieit et 46
Comment Characters of Multiple Languagesocooovvvierievincienencannen, 48
INErOAUCLOTY COMUMEIIES ...ttt eiee ettt ettt ettt e e anees 49
IN-COAE COMITENES ...ttt 56

vii

viii

B The Debugger's Handbook

Using .NET REZIONScooouiiiiiiiiiiiiiii e
Coding StANAATASccuiiiiiieiiie e

Older Standards..........ccccoeveeviinnenn.

The New Standards..........cccoceveienienn
Functions, Subroutines, and Methods ..

Hardcoding ValUesooiiiiiiiiiiiiieiiecee e 81
REUSADIE COUE. ..ottt 86
REVIEW QUESHIONS ..iieiiiiiiiiiii ettt e et e e e e 87
LOOKING AN@Adoiiiiiiiiiiiiciie e 88
Throwing Custom EXCepPtionsS........cccuvvueeeeeerrecccsssssnneneeeeccccsnns 89
Unstructured Error Handling..........ooooiviiiiiiiiiiiioi e 90
Structured Error Handlingccoccooiiiiiiiiiiiiii e 113
Throwing CUStOmM EITOISciiiiiiiiiiiiiiiiie et 120
Review Questions 122
Looking Ahead........... 123
Design Time Debugging.........ccceeenneees 125
Benefits of Removing Bugs at Design Timeccccocooiniiiiriciicienn. 126
Debugging in Visual Studio 2003cccccciiiiiiiiiiiiiiiiii e 128

BUILA EITOTS. ...ttt 131

DEbUZ MOt 137
Visual Basic Debug Mode Editing.........ccooviiiiiiiiiiiiiiiiieiiiecee e 140

MOAUIES. ... 150

Compiler-Generated EITOIS..........cooiiiiiiiiiiiiiiieieec e 150
REVIEW QUESHIONS ...viiiiieiei ettt 160
LoOKING ANEAd ..ottt 160
Debugging and Visual Studio 2005cceevveeercrsneeeccssneencnnes 161
Debugging with the New Features in Visual Studio 2005............ccccc.... 161

TTACEPOINES .ivieveiieitie ettt ettt 162
Design Time Debuggingccccoviviiiiiiiiiiiieiic e 171

Debug Mode Code Editing

Edit Trackingccccoovvvvevieneiicnnnn.

Projects and Solutions.......................

TEXE EQITOT .ttt

Database TOOIScocioiiiiiiiiiiiee e
DIEDUGEING ..ot

SNIPPEL MANAZET ..ovviviiiiiiiiiiiiii e

EXCEPUON ASSISTANTovviiiiiiiiiiiiiiiicceee e

Unused Variable NOUfICAON.........c.ooiiiiiiiiiiiieiiee e 211
REVIEW QUESHIONS ..ttt ebe e 214

LoOKING AN@Adooiiiiiiiiiiiiiie 214

Contents ® ix

10

11

12

13

14

15

16

ST 5 s TN 215
When Is Tt Time tO TESI....ciiiiiiiiiiieiiet ettt 216
Setting Up the Test ENVIFONMENTcviiiiiiiiiiiiieie e 223
Choosing the TeSt TEAMccveiiiiiiiiiiieiie et 230
FINAING BUZS ..ottt ettt eie e 233
REVIEW QUESHIONS 1..viiviiiiiieiieciieie ettt ettt ebe e 234
LOOKING ANEAdooiiiiiiiiiiicicc e 234
Commenting Your Code with XML........ccccceeevirunenneneeecccccssannne 235
XML TAGS 1ottt ettt ettt ettt ettt bttt 236
REVIEW QUESHIONS ..ttt ettt et e e 242
LOOKING AN@Adoiiiiiiiiiiiiiiie e 242
Real-World Scenarios: Opening Files........cceeeeeeeeeeeeeneeeeeeennanees 243
OPEnINgG FleSoiiiiiiiiiii i 245
Executing the Close Method in the Wrong Place...........ccccooiviiiiiiinnnnnn. 246
Other Syntactical/File Navigation EITOLScocoviiiiniiiiiiniiciciice 249
Real-World Scenarios: Reading Files............ccceeeeeeeeeeeeeeaeeeeeee. 259
Opening a File as the INCOrrect TYPE ..cccvvviiiiiiiaiiiieiieiieee e 259

APPEIA .ot 260

TOUPUL ettt 260

OULPUL ettt ettt ettt ettt ettt ettt e 260

RANAOM L.t 260
Real-World Scenarios: Saving Program Settings............ccec.... 277

Reading from the App.config INCOrectlycocoviviiiiiiniiiniieniiiin, 277
Real-World Scenarios: Working with Objects........................ 285
Not Defining the Object COrrectlyocooiiiiiiiiiiiiniiiiiee 286
Not Being Able to See an Object from All FOrmsccccoceeiiiiiinnne, 293
Real-World Scenarios: Editing the RegiStryceeeeeeeeeeeeeeeaeees 299
Using SaveSetting and GetSELtNG.......covevueiiiiiiiiiiieiieieeie e 300

Real-World Scenarios: Window’s Termination

I 2110 9Te18 1030 71 1L 20N 305
Real-World Scenarios: Opening a Database............................ 317
Passing String Credentialsccoooiiiiiiiiiii e 318
Obtaining Connection Settings from a .udl Fileccoccooviiiiinnnn. 338
Using ODBC CONNECHONSoooiiiiiiiiiiiiiiiiic e 350
CloSiNg @ DAtADASEveovviiiiiiiiieiie e 358
Real-World Scenarios: Reading a Database...........cceeeeeeeeeneeeee. 367

Using @ DataREAAETcviuiiiiiiiiiiiict e 367

x B The Debugger's Handbook

17 Real-World Scenarios: Searching a Database.........ccccceeeeueeenee 385
QUETYING TADIES ...ttt 386
Using Stored ProCEAUIESciiiiiiiiiiiiieie et 406

INACX c.inneeniiienininieeninsttesicnnstiessnsssssssssssosssnsssesssnsssessonssssssssnssssossanss 449

About the Author

J.F. DiMarzio is an IT manager with 14 years of experience in the
technology industry. His other books have been translated into five

languages and sold worldwide. He currently works as a management
consultant in the southeastern United States.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Acknowledgments

I would also like to thank a number of friends, family, and other important
people who each made this possible in their own way — Mom, Dad,
Matt, Diana, Laura Lewin and the team at Studio B, John Wyzalek, Kimberly
Hackett and the team at Taylor & Francis ... Go Red Sox!

xiii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

About This Title

The Debugger’s Handbook teaches software programmers and testers how
to prevent, identify, and remove everyday bugs from applications. It
provides a guide to good code-writing habits and common testing and
logical debugging techniques. Written from a language-independent per-
spective, the book provides code samples in VB.NET, C#, C++, and Java.
By using this style the book can focus on general programming concepts
that are intended to provide programmers with a mental debugging
toolbox no matter what language they use. Following the complete process
of writing, testing, and debugging an application from beginning to end,
the book begins with an exploration of computer bugs and defines exactly
what they are. It then teaches programmers different techniques for
identifying and avoiding bugs within their code and producing bug-free
code. The book concludes with a number or common real-world scenarios.
After working through this practical guide and reference, programmers
will be able to think in a way that helps them to catch more bugs before
any code is compiled. The book also accomplishes the following:

B Teaches programmers how to recognize, identify, and remove bugs
from a language-independent perspective

B Covers topics such as coding habits, the design process, design
time debugging, and testing

B Provides simple tips and techniques for avoiding common coding
mistakes and making code easier to debug

B Includes exercises at the end of each chapter to test your new
debugging skills

B Provides code examples in VB, VB.NET, C++, and Java

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Introduction

Welcome to The Debugger’s Handbook. The goals of this book are to give
you a better understanding of what makes a computer bug, teach you
how to avoid bugs in your own applications, and show you the tools and
skills needed in removing common bugs once you find them. To achieve
these goals you will be introduced to a broad range of knowledge,
designed to expose you to as many aspects of the debugging process as
possible. In doing so you will have the greatest technical tools set at your
disposal, and your applications will be better for it.

There are a myriad of debugging methods and methodologies taught
in school. The problem with many of these textbook approaches to
debugging is that they treat debugging the same way doctors treat illnesses.
A human walks into a hospital and based on a list of symptoms the doctor
determines what is wrong with the patient and treats him or her accord-
ingly. However, if there is a set of symptoms that is sporadic or hard to
define, the doctor’s job is infinitely harder and may even be impossible.

Debugging should not be treated this way. Because of the nature of
application development, not every bug or type of bug is going to present
itself the same way every single time. Therefore, the best way to debug
an application is to avoid bugs in the first place. That is where this book
sets itself apart. We will not be subscribing to any of the textbook methods
for debugging. Rather, we will focus on making you a natural debugger
by broadening your knowledge base and forcing you to think about bugs
at all stages of application development.

Hopefully by gaining a greater knowledge of applications, systems,
and application structures you can learn to identify and avoid situations
where bugs can manifest. By avoiding bugs you can create code that will
test better, cost less in revisions, and allow you to focus your energies
on other tasks. As technically minded individuals, though, we all know
that it is nearly impossible to avoid every bug; therefore, you will also

Xvii

xviii W The Debugger's Handbook

be exposed to a number of bug-finding skills and techniques. Finding
and eliminating bugs is not hard as long as you have the right information.

Much has been written on the subject of application debugging;
however, we will take a slightly different approach to the subject than
most. Unlike almost any other book written on the subject, we will take
a multifaceted approach to the topic of application debugging. Many
people consider a bug to be something that exists in a finished application;
therefore, application debugging is an action performed on a completed
piece of software. In this book, although we will cover traditional appli-
cation debugging from the point of view of completed applications, we
will also take a step back. We will spend a good part of the book looking
at ways to avoid bugs when writing code. This will introduce you to the
concept of bug avoidance as a form of application debugging.

The first subject we will tackle in this book is defining exactly what
a bug is. The definition of a bug has certainly changed over the years,
and before we can become tried-and-true bug hunters, we need to know
exactly what we are hunting. There is no doubt that you should already
have a preconceived notion of what a bug is, and although your inter-
pretation of a bug is most likely 100% correct, the terms of that definition
may differ when compared to a colleague’s definition of a bug. Therefore,
Chapter 1, “Bugs: Fact or Fiction?,” will ensure that we are all on the same
page when it comes to identifying system anomalies that turn otherwise
good code into a system-destroying mess. We will operationalize our
definition of a bug and explore the history of bugs to learn where they
are most likely to manifest.

Operationalization is that concept whereby a definition con-
tains within itself enough objective critical criteria so that an
uninformed observer can determine if a thing is the thing
defined. In other words, we want to make sure that when we
flag something as a bug, we all know what that means.

Once we have defined bugs and learned how to identify them, we
will begin tackling the complex subject of avoiding them. Through dif-
ferent techniques and actions we will create programs that are as bug-
free as can be expected. By writing the most bug-free code possible, you
will save time and money in future tech support costs and you will save
on development of code revisions. Admittedly the best form of debugging
is to not have bugs in your code to begin with. Therefore, although it
may be considered more of an antibug measure rather than a debug

Introduction ® xix

measure, we will spend considerable time looking at how to keep bugs
out of our code.

However, not every bug can be foreseen or avoided. Do not get a
false sense of security thinking that this book will help you create
completely bulletproof code. In fact, it would be nearly impossible to
anticipate every bug and malicious interaction that could possibly arise.
This book will give you the best toolbox you could have in an effort to
protect yourself against a lot of bugs, but you need to be able to write
code that will adapt to situations and not crumble when presented with
a problem. Success will be measured by helping you achieve a level of
programming where bug anticipation, identification, and removal become
an extension of your daily work flow.

The remainder of the book will serve more as a debugger’s reference
guide. The last few chapters will give you many common error codes,
descriptions, and code solutions for use in your everyday programming.
That is, multiple error codes from the larger software manufacturers will
be listed by number and description, accompanied by possible solutions
and code samples for those solutions.

Who This Book Is For

The Debugger’s Handbook is geared toward programmers and project
managers. That is, if your job involves coding, either directly or indirectly,
then you stand to gain from this book. Programmers should gain a greater
direct knowledge of debugging, techniques for avoiding bugs, and tech-
niques to get the most out of testing. Similarly, project managers should,
by getting a look into the processes needed to thoroughly produce bug-
free software, be able to strengthen their skills as managers in that they
can more accurately account for the time needed to complete a project.

If you are a programmer, you should have at least basic, or entry-level,
knowledge of one of the following programming languages:

B Visual Basic®
B Visual Basic .NET
B C#
B Java™
This book tends to teach by example, and in doing so, these languages
are featured prominently (some more than others because of their prev-

alence in the market). However, the topics covered are introduced in a
way that any knowledge of basic programming concepts and practices

xx M The Debugger's Handbook

will help you tremendously in understanding and achieving the goals set
herein.

Although more experienced programmers, and those who are actively
involved in coding projects on a daily basis, can more easily put into
practice what they learn from this book, any level of programmer will be
able to strengthen his or her abilities. However, as previously stated,
programmers are not the only people who will learn valuable lessons
from reading The Debugger’s Handbook.

Project managers, too, should have some experience in programming to
fully understand the concepts contained within. By following along with the
examples and taking the time to understand the outlines given in the first
three chapters, a project manager will be better prepared to anticipate the
needs of the programmers they are working with. Although the more
technical aspects of the book are geared toward programmers, the topics
are presented and ordered in a way that project managers can easily see
how a coding project should be organized.

What This Book Will Not Do

This book is not intended to teach you a specific programming language
or operating system programming technique. Rather, this book will cover
general programming concepts meant to help you no matter what language
you use. As a general rule, most code samples will be provided in four
common programming languages: VB, VB.NET, C#, and Java. This will
give you a broader understanding of solving general bug problems in
most of the popular programming languages.

Getting the Most from This Book

You will get the most from this book if you read it while in a place or
situation where you can try the provided code samples on your own.
This book is packed with code samples and examples that can be used
to further drive home the lessons of each chapter. Code samples are given
in VB6, VB.NET, C#, or Java for some of the examples in the book. This
will help you understand the concepts we are covering no matter what
language you are most comfortable with.

Whether you are directly involved in the programming process as a
programmer, tester, or debugger, or you are indirectly involved in the
process as a project manager or lead, you will be able to extrapolate from
this book a broad range of knowledge. This knowledge will help you in
the day-to-day activities of fighting and preventing bugs in applications.

Introduction ® xxi

However, to get the most from this situation you should be actively
involved in a project or scenario that will allow you to use the skills you
are gaining as you progress through the chapters.

Also, to get the greatest impact from the lessons, it is best to fully
understand each example and each chapter before moving on to the next.
Each chapter builds on the knowledge gained from the last; therefore, if
you do not fully comprehend a given chapter, the book will become
harder to follow as you go on. The later chapters will make more sense
if you have mastered the earlier material. Take all the time needed to
review the given material before moving on — it will prove to be beneficial
in the end.

One tool provided to help you understand this material is a set of
exercises at the end of each chapter. These exercises include questions
on the previous chapter, code samples to debug, and descriptions of
programs to test your new skills. The answers to all of the exercises will
be at the end of the book. It is suggested that you read each chapter,
then attempt the exercises at the conclusion of the chapter; check your
progress with the provided answer key.

Another tool provided within this book to help you understand the
provided lessons is the numerous code samples. Because these code
samples could be presented in one or more programming languages, they
will be formatted in a very specific way. The following is a code sample
from Chapter 1:

Listing 1.1: VB6/VB.NET

Private Function AddMe (numberl AS Integer, number2

AS Integer) AS Integer

AR IR I S I I S I b b A b I S 2 b b b b b I b b R b R b b b b e b b A R b b b b b S b b
‘Function used to add two numbers and return the sum
‘jfd

*05/05/2005

VAR AR AR AR AR AR AR AR AR AR AR A KRNI KR AKR A KR AR AR AR IR AR AR AR XA XX KK

‘Variable Definitions

ARE R IR S b b b b b b b S b S S b I b b I b S R I b b I b b S b S R R e b b S b I S b S
Dim numberl as Integer

Dim number2 as Integer

ARE R I R I I S I I S I S S I S

*Add numberl and number?2

ARE R I R I I I I R S R R I I I S O

xxii W The Debugger's Handbook

AddMe = numberl + number?2
End Function

The first thing you should notice about the example is that the language
it is written in is always listed at the top of the sample. In cases where
multiple examples are presented in multiple languages, each sample will
be separated by this header, which denotes what language the sample
represents.

Finally, each chapter will contain a section entitled “Looking Ahead.”
This section will provide an overview of the concepts discussed in the
following chapter. Having a brief overview will facilitate thought about
the coming material, familiarize you with the concepts being covered, and
provide an element of preparation for each new stage of the book.

One axiom of teaching stresses that any acquired knowledge will
quickly be lost if it is not put to use. The more a new skill is used in the
student’s daily life, the longer it will be retained. This is also true in
computers and computer programming. If you do not use the skills and
techniques taught in this book, you will not retain them very long.

The importance of carefully following the chapters and performing all
of the exercises contained within cannot be stressed enough. Although
this book will explain to you the core knowledge behind application
debugging, that knowledge will not sink in as deep if you do not use it.
By taking part in the post-chapter exercises, you have a chance to use
and gain a better understanding of that chapter’s material.

How the Book Is Organized

The Debugger’s Handbook is organized in a very deliberate way. From
the order of the chapters to the layout of the material within the chapters,
I have taken every precaution to ensure that you get the highest impact
from the logical progression of the information.

The first chapter of this book provides for you all of the information
needed to understand the remainder of the book. The first chapter can
be thought of as the prerequisite for the information covered throughout
the final chapters.

After you have been given the prerequisite knowledge, the book will
progress. The next series of chapters deal with the pre-compile activities
of bug avoidance. That is, topics including project organization, coding,
and design time debugging will be discussed. These are activities that will
take place before the application is compiled.

Once the program has been compiled, the book will move through a
series of chapters that include discussions of applications testing and post-
compile debugging. The specific order of the chapters is deliberate in that

Introduction ® xxiii

they follow the natural project progression. The order in which you would
need or use the knowledge in the book is the order in which it is
presented.

Finally, the last chapters contain a number of the most common real-
world application bugs. These bugs are presented by topic, discussed,
and corrected by example to show you how each was located and
removed.

The layout within each chapter is also very deliberate. Each chapter
will contain two major parts. The first, as with most books, will be the
presentation of the information. All of the information needed to under-
stand the topics will be presented and discussed in a clear and easy-to-
read manner. This will include multiple examples and code samples to
help bolster the lesson.

After the information of the chapter has been presented and discussed,
review questions will be presented. These questions are designed to help
you think about the material in the chapters and use it in a real-world
sense. The combination of the two major chapter parts will give you the
greatest opportunity to learn the information provided in The Debugger’s
Handbook.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 1

Bugs: Fact or Fiction?

Know your enemy.

—Sun Tzu, from The Art of War

It is fitting that a quote from The Art of War starts off this book. At times
it can seem that we, as application programmers, truly are at war with
elements of design, bugs, and even deadlines. However, the enemy we
fight has no face, has no form, and is born of our own doing. The ongoing
struggle of every programmer is in keeping bugs out of our systems. Bugs
are an enemy of our own creation that we must be ever vigilant of, yet
many of us do not do enough during the programming process to keep
them at bay.

Thousands of hours of university courses have been devised to teach
young programmers the textbook methods for debugging code. However,
bugs are not always textbook. With rapid advancements in technology,
code is always changing and so are bugs. Although they do a good job
of teaching a programmer the basics, the textbook methods of debugging
do not fit every situation. Therefore, the purpose of this book is to teach
you the skills needed to debug code in a natural way, akin to how you
program.

How often is a programming planning session held where one of the
objectives is minimizing bugs? Admittedly, it does not happen nearly as
often as it should. Most people do not consciously think about writing
bug-free code as much as we think about the overall objective of the
project at hand.

-—

2 m The Debugger's Handbook

One of the reasons why we do not think about writing bug-free code
is because a common (possibly mistaken) comparison is made between
bugs and bad code. That is, many people, both technical and nontechnical,
see bugs as being spawned by poorly written, bad code. This comparison,
for many people of both technical and nontechnical backgrounds, can be
easy to understand. The comparison being that bugs are in applications,
applications are written in code, bugs are bad, good applications have
no bugs, and so bad code must produce bugs. Therefore, it is believed
that if you write syntactically correct code, you will write bug-free code.
As solid as that comparison may seem on the surface, it is inherently
incorrect. This common misconception is what will be addressed in this
chapter.

The problem in thinking that poorly written code is at the root of bug
creation, for average business-level programmers, is flawed in that the
compiler guards against this very problem. The compiler, or the portion
of the programming tool that takes code and converts it to machine
language, will identify and alert the programmer to syntactical and struc-
tural errors in blocks of code. The compiler, then, is safeguarding the user
against poorly written code.

It is true, however, that the compiler may not catch every problem in
every line of code. Rare coding errors that may slip through the compiler
could create bugs within the application. However, these instances are
very uncommon, especially given the accuracy of many modern compilers,
making it more likely that the bugs in today’s applications are from
unanticipated interactions rather than bad code. Given the role of the
compiler, we must now look deeper to find the root of a bug.

Not all bugs — in fact very few — are from bad code. The code that
generates bugs is actually good code. The code is syntactically correct,
and in other scenarios may run correctly, but for reasons to be discovered
throughout this chapter, in certain instances, it causes bugs. Therefore, to
say that bugs are born of bad code is a generalization that does not
correctly sum up the situation.

In fact, bugs can be generated from otherwise good code. The role
of the programmer is to recognize and anticipate what code is going to
execute in a way that is harmful to the systems under certain conditions.
Most programmers, even those with basic experience, have a general idea
of the proper execution of code. The more you look at code in its context,
the more you will learn to identify the locations and functions of certain
objects within an application. Unfortunately, this knowledge alone will
only help you to a point. Programmers need to be able to see the oftentimes
subtle indications of a bug and quickly identify the block or code that
generated it. This can prove to be tricky at times, and it is when this
objective is overlooked that bugs manifest themselves in our applications.

Bugs: Fact or Fiction? m 3

It can be easily argued that bugs are indeed the product of
poorly written code in that optimally written code would antic-
ipate any problem and react accordingly. However, a growing
school of thought is that not every programmer or program
can, in good faith, foresee every problem that may exist or arise
in a system. Some processes are better left to the operating
system, such as monitoring application interactions, threads,
and memory usage. By this, bugs are not necessarily the prod-
uct of poorly written code so much as a breakdown in the chain
of management between the application and the operating
system that could not be planned.

At one point, the operating system of a PC was considered to be a
simple host. It would reside on the PC and act as a delivery device for
applications. However, as the application market exploded, applications
began to clash with each other in attempts to access resources such as
volatile memory, video memory, and disk space. Because there was no
feasible way for one application developer to alert every other application
developer as to what its particular application would do on a system,
applications would commonly conflict with each other.

It soon became apparent that one of two things needed to happen:
either the operating system developers needed to publish detailed descrip-
tions of how their systems functioned, in an attempt to help application
developers better understand the platforms their programs would run on,
or the operating systems themselves needed to become more like a referee
and less like a toll booth. Therefore, to this point operating systems have
become a strong element in ensuring applications work well with each other.

The purpose of this chapter is to help you understand exactly what
an application bug is. We all know a bug when we see or experience
one, but like most intangibles, it can be very hard to define. The goal of
this book is not to teach you the textbook definitions or methods of
debugging code. Rather, this book will help you formulate your own
methods and best practices that work in your specific situations. Think
of defining a bug as trying to define an emotion such as happiness or
anger. We can all list examples of things that exude happiness, but how
do you define the feeling of happiness? While if multiple people listed
the items that make them happy there may be some common items
between them, what those items mean to each of those people may be
different.

The same is true of an application bug. We have all experienced at
least one bug, and we can all give examples of common application bugs,

4 m The Debugger's Handbook

but do we each have the same definition of what a bug is? That is, if you
had to explain what a bug is without using an example, would your
definition match that of anyone else’s? Chances are it would not. Without
having a working definition to use in our daily programming, finding bugs
before they externalize themselves can be extremely difficult. It is a
common definition that will give us all a step onto equal footing. Therefore,
no matter your experience or background, we will all be starting at the
same place with a shared common idea of what we are looking for, and
from this point we will better be able to identify and remove bugs.

To achieve this unified definition of what a bug is, we will be looking
at the history of bugs and following how they have changed and mani-
fested over the years. We will trace the roots of the modern bug to see
how it evolved into the system-crashing menace it is today. This definition
will give us something tangible to look for when producing our own
code. Having a working definition of what constitutes a bug and where
they are most likely to exist will help you spot them as you read through
your code, and even prevent them in your writing. That is, even years
after you have finished this book, you will be able to examine practices,
error messages, and even blocks of code and determine if they are prone
to bugs by comparing them with our definition.

Having an operationalized definition of a bug is important because
you need to know exactly what you are trying to prevent before you can
attempt preventing it. Admittedly, attempting to find something without
knowing exactly what it is you are looking for would not be productive.
Let us look at this as a scenario. For example, if you were asked to go
through all of your code and pull out all of the operators, chances are
you would know exactly what you were looking for. As programmers,
we know that operators are generally characters such as <, > or =. It is
easy for you to separate these characters when asked, because everyone
knows the definition of an operator, regardless of the language. Therefore,
extracting the operators from the following block of VB6 code would not
be a very laborious task.

VB6/VB.NET

Private Function AddMe (numberl AS Integer, number2

AS Integer) AS Integer

ARE R S b I b b b b A b b S 2 b I b b b b b E S b I b I b b e b b R b b b b b S b b 4
‘Function used to add two numbers and return the sum
‘jfd

*05/05/2005

AR I R I S S I S I S I S S S S I S S I R S I S I S S I S S R I I I

Bugs: Fact or Fiction? ®m 5

‘Variable Definitions

AR R S I I S I S b R R S I S S S b S I I R R R I S I S R S I S S R I I I I

Dim numberl as Integer

Dim number2 as Integer

ARE R I I R I I S S I I S I I S S S

*Add numberl and number?2

ARE R I R I I I I I S R I O S I S O

AddMe = numberl + number?2
End Function

Look through the code sample provided and identify the operators.
Obviously, the operators appear in the line

AddMe = numberl + number?2

This scenario was easy to complete because we all know what an
operator is. Programmers already have a common, unified definition of
what an operator is. Therefore, as soon as we see one, we can immediately
identify it as an operator.

When we are talking about bugs however, the task is a bit harder. To
this point we still have not defined what a bug is; this fact makes finding
one quite difficult. There is no character or object identifier to look for
when going through code looking for bugs. Anyone can say, “Go through
that code and remove all the bugs,” but if it were that easy, there would
be no bugs in the code to begin with.

Let us look at a new example. For the purposes of the scenario, this
example will have to be a bit hypothetical. In this scenario, you are asked
to look through a block code and pull out all the bugs. What do you
look for? There is no common object or delimiter to identify bugs by, as
in this fictitious block of C++ code.

C++

//this is my sample program, it contains a bug
//3fd

//05/05/2005

int main()

{

cout<<”Hello World”<<endl;

return O;

//insert bug here

//******************************

6 m The Debugger's Handbook

(This is a bug) //if it were this easy, all bugs
would be in parentheses

//******************************

}

//end sample program

Most of the time, bugs do not present themselves in such an obvious
manner; they are often more abstract and can span multiple lines of code.
For this reason, we must know exactly what we are looking for when
we start to debug code, or else we could be on a wild goose chase.

Here is a block of code that actually contains a bug. Can you find it?
It definitely does not present itself in the way our fictitious bug did.

VB.NET

Public Function LogErrors (ByRef colProcessErrors As
Collection, fileName as Variant) As Boolean

AR I I I S I S S I I I S S S S R S b S S S R S R S I S S S IR I O S S S I

‘Function for logging error

‘Jjfd

*05/05/2005

ARE R I e S bk kS S Ik kO I S S Sk b i S S S IR R Ik e e S b i e S S S

Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

Dim

objFso As Scripting.FileSystemObject

ts As Scripting.TextStream

strFileName As Integer

objProcessError As ProcessError
strLogLine As String

hshParams As Hashtable

strKey As String

strLogDir As String

objCommonMethod As New CommonLib.Method()

strIniDir As String

ARR IR S e S b Ik S I S S I kR R S S Ik b S S S SRR R e S b ik i S e S R R R e e

strIniDir = objCommonMethod.AppPath

Dim objTextIniReader As New
CommonLib.TextIniReader (strIniDir & "\Enviroment.ini")

objFso = New Scripting.FileSystemObject ()
strLogDir = strIniDir & "\ERRORS\"

Bugs: Fact or Fiction? m 7

If Not Directory.Exists(strLogDir) Then
Directory.CreateDirectory (strLogDir)

End If

'Only one log file exists for each month

'Set file name to the beginning of the month

strFileName = fileName

If File.Exists(strLogDir & strFileName) Then
'If file exists, append
ts = objFso.OpenTextFile(strLogDir &
strFileName, Scripting.IOMode.ForAppending)
Else
'If file does not exists, create it

ts = objFso.OpenTextFile(strLogDir &
strFileName, Scripting.IOMode.ForWriting, True)

ts.WriteLine ("Date|Number |Location|Description|
Parameters")
End If
'Loop for each error
For Each objProcessError In colProcessErrors
strLogLine = ""
strLogLine += objProcessError.ErrorDate & "|"
strLogLine += objProcessError.Number & “|"
strLogLine += Chr(34) &
objProcessError.Location & Chr(34) & "|"

strLogLine += Chr(34) &
objProcessError.Description & Chr(34) & "|"

'Add the being " for the params field
strLogLine += Chr(34)

'Add all the params to the LogLine string
For Each strKey In objProcessError.Data.Keys
strLogLine += strKey & "~" &
objProcessError.Data.Item(strKey) & """

Next
'Remove the extra »~ in the params field

8 m The Debugger's Handbook

If objProcessError.Data.Count > 0 Then
strLogLine = Left(strLogLine,
Len (strLogLine) - 1)
End If
'Add the ending " for the params field
strLogLine += Chr(34)
ts.WriteLine (strLogLine)
Next
LogErrors = True
GarbageDump:
objCommonMethod = Nothing
ts.Close()
ts = Nothing
objFso = Nothing
End Function

The bug in this function appears in one of the opening lines:

Dim strFileName As Integer
Here the variable strFileName is being fed by a Variant parameter
to the function. Therefore, the code will compile correctly, and in case
where an integer value is being passed to the function, it will execute
properly as well. The problem occurs as soon as an alpha value is passed
to the function. The function will return an error when it attempts to
assign this alpha value to the variable strFileName.

This scenario gives you a good example of what debugging involves.
The VB.NET code involved is somewhat long, and the bug only involved
one line that would otherwise be fine. In fact, this particular code VB.NET
function should compile without issue and should work under certain
situations. The only time this function would throw an error is if you
attempted to pass an alpha filename to it. If you only pass integer-based
filenames, that function will not throw an error.

Did you recognize the bug? Would you have recognized the error as
a bug? Let us now take a look at the history of bugs so we can begin to
understand and begin to form our definition of a bug.

The History of Bugs

When most of us think of bugs, we think more of glitches in software
and rarely hardware. However, bugs are found in hardware-based systems
as well, though admittedly not as much now as perhaps 20 to 30 years

Bugs: Fact or Fiction? m 9

ago. Although the focus of this book is in fact software bugs, the genesis
of the bug is actually found in hardware. Therefore, it is in the foundations
of hardware that we must look first if we are to trace the history of and
define bugs.

In the beginning, the focus of all computing systems was hardware.
And although hardware is still very important today, we as programmers
would not have a job, nor would there be a reason for this book, if
applications were not the foundation of the modern computing platform.
Whether you took computing classes in school or have just researched
the subject of computer history on your own, you no doubt have heard
of the early relay calculators, vacuum tubes, and punch cards. These old
hardware systems are where we will begin our search for the origin of
the computer bug.

Some of the earliest computers ever built were the Harvard Mark series
of relay calculators created by Howard Aiken and IBM. These hulking
masses of metal and early electronics were mechanical marvels. Basically
a giant math processor, the Mark I was over 50 feet long, weighed 5 tons,
and cost over $300,000 to produce. According to About.com and the
University of Limerick Computer Society, the early Mark I consisted of 78
individual adding machines sequenced together by a rotating shaft, over
700,000 moving parts, and could perform an addition of a 23-digit integer
in 1/3 second. Although by today’s standards this is unbelievably slow
and large, for its time, it was truly a wonder of modern science.

Mark I vs. Today’s PCs

For comparison, the current Pentium 4-based hyper-
threading processors measure but a few inches long,
weigh ounces, and can perform upward of 3 billion
additions per second, as opposed to the Mark I's three
per second. Proving that the progression of technology
over the past 60 years has been truly amazing, comput-
ing hardware has grown in speed by a power of nearly
20 and are about 1/3000th the size.

Itis amazing to look at how far we have come in the
first half century of computing. At its current pace, how
far will we go in the last half century? Computing hard-
ware has been evolving at an astronomical pace; there
is really no telling how far we will go, but it is sure to
be an amazing ride.

In the 1940s a young female Navy officer stood on
the verge of making history with the fledgling successor

10 ®m The Debugger's Handbook

to the Mark |1, the Mark Il. Grace Hopper, one of the
country’s first computer programmers, joined the naval
reserves in 1944. In 1945 she was assigned to work with
Howard Aiken at Harvard University. With Aiken, she
began testing the Mark Il relay calculator. According to
the Naval Surface Warfare Center Computer Museum
in Dahlgren, Virginia, at 3:45 p.m. on September 9, 1945,
Grace Hopper made a historic entry in her manual log-
book. (Courtesy of the Naval Surface Warfare Center,
Dahlgren, VA, 1988.)

Relay Calculators

The relay was first invented to help extend the distance
Morse code signals could be transmitted. We have all
seen a Morse code tapper; they are basically two pieces
of metal that complete an electric circuit when they are
touched together. A relay was very similar in that two
pieces of metal were separated by a third piece of metal
attached to a magnet. This relay was then placed
between two distant Morse points. When the magnet
intercepted the weakened electric signal, it would pull
one side of the relay toward it, thus recreating the signal
and sending the now recreated strengthened signal to
the distant point.

It did not take very long for people to realize that
this type of relay signified something that is still used
in computing to this day, the binary system. A relay is
inherently in one of two states, open or closed. These
two states could then be used to represent the binary
digits of 0 and 1. Therefore, connecting enough relays
could allow for the computation of large numbers.

Early computers or relay calculators leveraged
exactly this kind of hardware. They were series of relays
connected in a way that they could be continually
switched on and off, representing the addition, subtrac-
tion, division, and multiplication of large numbers.

Bugs: Fact or Fiction? m 11

While testing the Mark II, a problem had been recorded with some of
the values produced by the giant calculator. Something did not look correct
with the output, and Grace Hopper decided to investigate. The input, which
consisted of a combination of hard switch settings and punch tape, seemed
to be correct; however, the output was still puzzling. In looking through
the giant apparatus, it was discovered that a moth had become lodged
in the computer and was blocking one of the relays, keeping it in the
open position. The offending moth was removed from the machine and
taped to the logbook adjacent to the following message:

First actual case of bug being found.

(http://www.history.navy. mil/photos/pers-us/uspers-h/g-hoppr.
htm; Photo NH 96566-KN)

With these seven words Grace Hopper landed herself a place in
computer history as the first debugger, literally. Thus, on the surface, we
have our first example of a computer bug, albeit primitive. However, a
close observer would notice something about the implied syntax of her
message. She mentions the problem as being the first actual case of a
bug being found. This implies that the term bug existed before Grace
Hopper used it to describe the problem between the moth and the relay.
We now must look further into the history of computing and electronics
to find the basis for using the term bug in describing the problem Grace
Hopper experienced.

The term bug itself had been used to describe problems in electrical
equipment long before computers. In 1896, the Hawkins' New Catechism
of Electricity described a bug as follows:

To a limited extent to designate any fault or trouble in the
connections or working of electric apparatus.

Now we have two pieces of our puzzle: we have found where the
term bug was coined, and we have found our first written case of it being
used to describe a computing problem. Now we can relate the two and
somehow develop our definition of a bug, because as simplistic as it
would be, we cannot define a bug as a moth the gets lodged within a relay.

So the term bug precedes the first computer by almost 50 years and
the modern computer by almost 80. Therefore, for the first years of
computing a bug was only something that affected hardware; at some
point this had to change. Our view of the process had to be altered by

12 ®m The Debugger's Handbook

some event to move the focus of what a bug was from something that
affected hardware to something that resided with our software.

This is important to understand because although the term bug itself
is meant to describe any fault in a piece of electrical equipment, admittedly
this is not the best definition for our purposes. We need to come up with
a more specific definition for applications and application programming.
We must now take what we have learned about the origin of the bug
and apply it to modern programming. Let us now investigate how the
current computing environment has changed both how we look at pro-
gramming and how we describe bugs.

The Rise of the Modern Programmer

Computers, although driven by software, were seen as a dominant piece
of hardware through the 1970s. That is, like their relay calculator prede-
cessors, the mainframes of the 1960s and 1970s were still considered to
be primarily ruled by hardware. When you think back to the computing
environment of the 1970s, the first thought is large clunky boxes, reel-to-
reel tapes, and monochromatic screens. As evidenced by the Mark II, and
those that followed it, hardware was king and it drove the computer
industry. The software was seen as portable programs that could be run
on anything; it was the hardware that was going to make the real difference
in the quality and speed of the output.

The modern computer age began in the late 1970s with the
advent of the personal computer, the refinement of the silicon
chip, and the greater acceptance of computer science as a
legitimate field of study. Before that time, the costs of training,
hardware, and support, kept the computing field in the dark
ages. It was viewed as a great unknown that only a select few
people understood.

Companies like IBM made their fortunes in selling hardware. As with
all emerging technologies (even today), new, cutting-edge products are
exponentially more expensive when they are first released. In the 1970s,
computers were still extremely expensive, so much so that unless you
were a big business, owning one was very much cost-prohibitive. Given
the expense involved in owning an early computer, training programmers
was not an everyday occurrence. Not only could very few people afford
to be trained on real equipment, but very few people could understand

Bugs: Fact or Fiction? ®m 13

the complex languages and methods used at the time. All of these factors
combined to create an environment where hardware was at the forefront
of the computing market and applications were but an afterthought. The
applications were seen as something that could be used anywhere, and
your big choice was which hardware platform you thought would give
you the best results.

This changed when the computing environment was turned on its
head with the release of the first mass-marketed personal computers.
While some lesser known personal computing devices came and went
over the years, the PC market exploded in 1981 with the releases of both
the IBM PC and Apple II. All of a sudden anyone could own a computer,
and garage development projects sprang up all over the country. Using
languages such as BASIC, everyone could develop their own software.

For the first time, computers were being marketed as educational tools,
personal and small business management tools, and to a minor extent
entertainment devices. It did not take long for the general public to see
the new, smaller, personal computers as more than a business machine
and as something that could positively impact their lives.

Though still expensive, more people could now own, and better yet
experiment on, computers. This put the tools for developing and imple-
menting all kinds of software into the hands of the average person. The
development of homegrown applications flourished as more people began
to try coding with the more user-friendly programming languages that
were introduced with the personal computers. Through the 1980s and
1990s the world experienced an unprecedented rate of new developments,
and before long software was the new king of the computer industry.

The hardware of a computer was still important, but users now looked
for specific applications to help them with their everyday lives. It would
not be long before the forward progress and trends in computing were
governed by the development of software and not the capacity of hard-
ware. By the late 1990s users would buy hardware based on its ability to
run specific hardware, which is a complete turnaround from how com-
puting started.

In the early 1980s, almost any preteen Generation X (Atari age) indi-
vidual could make a decent argument for needing a home computer;
more, though admittedly not many, schools accepted printed homework
rather than handwritten, educational software promised to teach us the
mysteries of the world, and computers were just supposed to make you
smarter (all according to the media at the time). Therefore, more computers
kept popping up in homes across the country. These early home com-
puters really did not do very much on their own, and software support
was fairly limited. However, one thing most new personal computers had
was a built-in development environment.

14 m The Debugger's Handbook

The early PCs could be thought of more as application development
kits than modern computers. My first computer, a Tandy TRS-80 Color
Computer II, did little more than run a few cartridge-based games, but it
did come with its own small version of BASIC to program with. Given
the small amount of memory registers, the nongraphic environment, and
the storage media (at the time the most common was a standard audio-
cassette), the average homegrown application was not very large. How-
ever, they represented the earliest forms of an industry that was about to
explode. The following is an example of a 14-line program written in
1982 on the TRS-80 CCII.

BASIC

10 Print “Welcome to the ninja battle.”

20 Print “You are fighting 3 ninjas.”

30 Let a = RND(10)

40 Input “Please select a number from 1 to 10” b
50 If a > b then Print “The red ninja won with a %, a
60 Print “You are fighting the black ninja.”

70 Let a = RND(15)

80 Input "“Please select a number from 1 to 15” b
90 If a > b then Print “The black ninja won with a %, a
100 Print “You are fighting the white ninja.”

110 Let a = RND(20)

120 Input “Please select a number from 1 to 20”7 b
130 If a > b then Print “The red ninja won with a “, a
140 Run

This program, however simplistic, was written by a nine-year-old in
1982. A generation before, something on this level would have been
unheard of. However, here we are on the verge of an application revo-
lution. Children are controlling the computers, and software is about to
become king.

Anyone with a PC and a desire to be creative could now be a
programmer. By today’s standards very little could be done on these
machines programmatically. There were a few registers that could be
written to and read from, and if you were lucky you had a cassette drive
or tape-style printer to interact with. The really brave programmers
attempted plotting pixels and crude geometric shapes on the screen.

However, from early games to business applications, mom-and-pop soft-
ware development houses were rising up all over the country. The average

Bugs: Fact or Fiction? ®m 15

citizen now had the tools needed to turn the hulking Mark II’s of the
world into the sleek necessities we are used to now.

Today software is the core of the computing world. There are more
software developers now than ever before, and our job could not be more
complicated. Many of the world’s programmers use one of three popular
platforms for their applications: Microsoft® Windows®, UNIX, or Linux. In
an effort to keep up with the growing needs and demands of programmers,
operating system developers have had to increase efforts in producing
more robust systems and platforms for running applications.

Whereas the hardware industry once dictated the direction of the
computing market as a whole, the hardware vendors now find themselves
keeping up with the demands of the software developers. As soon as
new hardware can be developed, software developers will already have
applications that will take advantage of its power. This leads to rapid
development of hardware and the development of software on fledgling
systems that may or may not be fully tested.

The combination of these factors may be the leading cause in the
development of bugs, the main cause being the speed at which new
advancements in technology are made, and a lesser factor being the “every
man” aspect to the programming community. Examining how the two
have combined to produce modern bugs will give us the definition we
are looking for.

Killing Bugs Is Just a Game

Since the advent of the personal computer, advances in software devel-
opment have been quick and consistent. That is, as the hobbyist program-
mers of the 1980s became the computer professionals of the late 1990s
they realized how much more these machines were capable of and pushed
them to their limits. However, this quest to push the limits of the current
computing environment may have been what led to the modern bug. Let
us examine how these factors came together to create the bug.

The following generalization does not apply to any one soft-
ware developer, but rather the overall climate in the software
industry in the late 1980s and early 1990s.

In an effort to be the first out with a revolutionary new product, some
software development houses may not thoroughly check every aspect of
every program for potential conflicts with other products. The fact is that to
check every product against every other product would take too much time
and require too many man-hours. The added cost in testing new software

16 ®m The Debugger's Handbook

against all existing applications on the market would leave the price of most
new products out of the budget of consumers. Yet, this was almost the
situation the software industry was in as the early 1990s rolled around.

With most consumer operating systems only treating applications as
items to be served up when called and not mitigating communications
between them, applications commonly stepped on each other within the
operating environment. Developers did not know who else was program-
ming for the environment, or how many other applications might be
fighting for the same resources, nor should they.

The smaller software developers were left to fend for themselves when
testing their applications for conflict problems between their products and
those of other. Many products were released that, when installed in
conjunction with other applications, would cause crashes, corruptions in
data, and other unanticipated behaviors.

As consumers we came to expect a certain level of “bugginess” in the
applications released at the time. It was known, and sometimes expressed
directly in the manuals, that software product A could not be used with
software product Z. Nowhere was this more evident than in the world of
PC gaming.

PC games had been around since the advent of the PC. From simple
text-based games to the earliest crude graphics, people have always
enjoyed a little entertainment with their business or education. However,
when PCs were first released, they were not initially meant solely for
gaming. Therefore, the types of games that could be run on a PC were
primitive at best, and nothing near in quality of that which could be seen
in the now thriving arcades. At this time, PC game developers (what few
existed) were not considered legitimate PC developers in the application
inner circles. This viewpoint would quickly change.

In the early 1990s PC gaming was just coming out of its infancy. By
this time people had been playing games on PCs for a few years, and
game makers were now legitimate PC application developers. However,
the platform that PC game makers had to work with was not stable. The
operating system at the time was MS-DOS (Microsoft’s disk operating
system — also referred to simply as DOS), and a major software package
was on the market that wanted to use all of DOS’s available resources,
Microsoft Windows. At this time Windows was not yet an operating system
unto itself; it still ran on top of DOS. This situation created havoc in the
world of game design. Games had to be designed within a DOS environ-
ment, but must work with Windows. Many times the solution was to shut
down Windows and run the game in DOS.

Games, which even today test the limits of desktop computing, his-
torically require nearly every resource a PC can offer up. It was not
uncommon to have bugs in games that would cause memory leaks,

Bugs: Fact or Fiction? m 17

graphics problems, and sound issues when used with Windows. Because
debugging Windows was almost unheard of at the time, the fix offered
by many developers was to create a customized boot disk that would
load the user’s PC clean of Windows, thus eliminating most of the bugs.

Although Windows itself could just be shut down, leaving you
in the DOS operating environment, this would not solve the
problems or bug. Windows would often use resources and not
release them, even upon its closure. Therefore, a disk that
would allow you to boot clean of Windows was often the only
choice.

Telling consumers that to use an application bug-free they
need to create a boot disk with custom memory settings, and
leave behind Windows, would spell doom for a developer in
today’s market. Modern consumers do not accept products
unless they work perfectly out of the box. Software program-
mers began to develop a better sense of what to look for when
creating applications. Several characteristics of buggy software
were assembled and used as a guide of what to avoid when
developing.

The most common bugs found at the time were:

Memory bugs
Graphic errors
System crashes
Resource locking

From this list we can now define what a bug is, then look at how one
company has worked to eliminate them (or at least make the task of
finding them easier).

Reading through the last few sections, one theme should be clear:
many bugs are created by adverse reactions or conflicts with other software
products. That is to say that when two or more products fight over
resources, the resulting conflict can be called a bug. A resource can be
memory, a particular function, a printer, or anything that can be accessed
by more than one object.

In a broad sense this will be our working definition of a bug. Analyzing
this definition, it is visible that one common element blamed for creating
bugs may seem to be absent — bad code (going back to our discussion
for earlier in this book about the fact that bad code does not necessarily
equal bad code, and vice versa).

18 ®m The Debugger's Handbook

Most common compilers do a better job than ever before of finding
and labeling bad code. Bad code, as in code with major syntactical errors,
accounts for very few of the bugs in today’s software. However, even the
best programmers in the world still miss a variable call or a parameter in
a function. Therefore, our definition of bug is really twofold.

We can start our definition of a bug by describing what we now know
about bugs. Looking back over the last section, we can start our definition
as follows: A bug is an unanticipated error or reaction created by application-
level conflicts with other objects in the process of gaining, releasing, or
locking resources. Bugs are also evident in code that has not been fully
realized, traced, or is syntactically incorrect.

This definition states that a bug is any part of an application that causes
a conflict when attempting to use any of the computer’s resources. We
go on to add that bugs can also be found in code that has not been fully
realized, traced, or is syntactically incorrect. Together these represent parts
1 and 2 of our bug definition.

Having the definition is really only half the battle; we must now
interpret what this definition means and how it affects us as programmers
in our daily lives. We need to answer the following questions:

B What does this definition mean?
B How does it affect our attitude toward debugging?

Now that we have our definition, let us discuss what it means to today’s
programmers.

Dissecting a Bug: Definition
Let us take a look at the first half of our definition of a bug:

An unanticipated error or reaction created by conflicts with
other objects in the process of gaining, releasing, or locking
resources.

If you have been programming for any amount of time, especially with
an object-oriented language such as C++, the first thought that might have
come to your mind here may have been memory conflicts. One of the
most common bug conditions is in fact some form of memory conflict.
Memory conflicts or bugs can be caused by either of the following:

B Not allocating enough memory for a given object
B Not releasing memory when it is no longer needed

Let us discuss the first point: not allocating enough memory for a given
object.

Bugs: Fact or Fiction? m 19

In some languages such as VB, memory allocation and de-
allocation problems are mostly handled by the runtime envi-
ronment. VB programmers have very little control over how or
when memory is allocated for specific objects. However, this
has changed in VB.NET. The user now has more say over pro-
cesses such as garbage collection and memory de-allocation.

When a programmer does not allocate enough memory for a given
variable or object, it can easily cause an application crash. A simple
example of this would be if a programmer creates a 16-bit integer variable
and then, during runtime, attempts to place a 32-bit value into the variable.
This situation would cause the application to immediately halt or throw
an error to the operating system. Such situations are more localized
examples of memory bugs because they are contained to, and generally
affect only, the application to which they are confined.

This is true for most object-oriented languages, such as Java and C++.
Memory allocation bugs can also be found in smaller support languages,
such as T-SQL. That is, especially in some languages such as T-SQL, the
amount of memory to be used by each parameter, column, and various
other objects must be specified with the object’s definition. Subsequently,
any further calls to that object must be prepared to handle the correct
amount of data.

These kinds of local memory bugs can be fairly easy to find. While
the compiler may or may not pick up on such a situation as that previously
described, a programmer would definitely see it upon running the appli-
cations, either for the first time or in debug mode. However, given the
ease of detecting such a local memory bug, they are also fairly common.

Debug mode and other debugging environments and tech-
niques will be discussed later in this book.

Conversely, the second type of memory bug — not releasing
memory when it is no longer needed — can be harder to find
and more destructive. Knowing when to release resources is a
bit trickier than creating the object in the first place. Every
programmer can easily find the point at which memory should
be allocated to an object: the first time the object is defined,
called, or otherwise used. However, tracking the last time an
object is needed, so that its memory can be released, can be
a bit harder, especially if the object is shared across multiple
blocks of code.

20 ®m The Debugger's Handbook

As in the previous example, a programmer should allocate memory
for the objects needed throughout the application. This memory must also
be de-allocated when it is no longer needed. By de-allocating the once
used portions of memory, you are telling the operating system it is okay
to use that memory for other functions. When this memory does not get
de-allocated, the operating system never realizes those segments can be
reused. Thus, the memory is dead and cannot be accessed. Such dead
memory segments can be very harmful to a system if not monitored.

This kind of memory bug, also known as a memory leak, can manifest
itself in a few different ways. First, the overall performance of the PC will
begin to slow. This is due to the fact that the PC now has less memory to
run on. The operating system may now have to juggle segments of data
to work around the dead memory that was not de-allocated by the appli-
cation. Over time, and possibly after several uses of the offending application,
the memory leak may build to a point that the PC has no operating memory
and crashes.

Think of the results this way. Run an application that uses a lot of
memory at one time without releasing it, such as a small game. Now
attempt to run another application; you should notice that there is a little
bit of lag, but nothing that is unbearable. Close the application but leave
the game open. If you can, open a second instance of that game. Now
reopen the application you opened before. Does it open slower? Does it
open at all? Chances are that the system is running pretty slow at this
point. This is the same effect that memory leaks have on a system.

However, system freezing and crashes are not the only hazard of
memory leaks. Another symptom of memory leaks, and the one that makes
them fairly difficult to find and diagnose, is that in a weakened state these
bugs may affect applications other than those creating them. That is, one
program may cause the memory leak, and although this leak may not be
large enough to crash the system, another program could attempt accessing
the dead memory and fail. This failure could cause the second application
to crash or become corrupt. The slowness caused by the buildup of dead
memory can also make it difficult, if not impossible, to open diagnostic
tools, making troubleshooting such problems a hard project.

Over the years, the major operating system manufacturers have made
great strides in creating programmer-friendly environments. Windows in
particular has changed greatly over the past 15 years. Where once pro-
grammers shuddered at the thought of producing code on Windows, opting
to shut Windows down and run application in DOS, they now flock to
Windows, making it one of the most dominant programming platforms.

After the release of Windows 95, when Windows moved from a DOS
application to a full-fledged operating system, Microsoft began to realize

Bugs: Fact or Fiction? m 21

that it needed to create an environment that would not only be easier to
program on, but also allow multiple developers’ products to work together
without fear of adverse interactions.

Consequently, with the release of Visual Studio .NET, Microsoft has
made even more strides and taken even greater precautions in avoiding
exactly these kind of memory errors. Features such as dynamic memory
allocation and garbage removal will help programmers avoid some mem-
ory bugs; however, you must still be aware of their existence and the
steps needed to find and eliminate them.

So, we have concluded that the first part of our definition of a bug
(an unanticipated error or reaction created by conflicts with other objects
in the process of gaining, releasing, or locking resources) not only is the
most common type of bug you will experience, but also can be the most
destructive. Throughout this book we will focus on comparing this defi-
nition against our code to help find and eliminate bugs. Let us now look
at the second half of our bug definition:

Bugs are also evident in code that has not been fully realized,
followed through, or is syntactically incorrect.

This, the second part of our definition, is by far the more complex of the
two halves of the bug definition, and it covers much more ground. Where
the first part of our definition focused on one specific type of bug, a
memory bug, the second half of the definition covers the more general
bugs you are likely to come across.

Whereas memory bugs are quite specific in their symptoms, yet can
be hard to track down, these more general code bugs can have symptoms
that are best described as quirky in nature but are relatively easy to fix.
The majority of the bugs that fall under the second half of our definition
are also considered bad code or sloppy work by some, but for our
purposes they will be called code bugs, as opposed to memory bugs.

Through the remainder of this book bugs will be referred to
in one of two ways, memory bugs or code bugs. Although
memory bugs are ultimately caused by an error in coding, for
the purposes of separating the bugs’ techniques and symp-
toms, they will be referred to thusly.

According to the definition of a bug, code bugs can be separated into
three different categories:

22 ®m The Debugger's Handbook

1. Code that has not been fully realized
2. Code that has not been followed through
3. Code that is syntactically incorrect

Let us briefly look at how each of these can materialize in your code.

Fully Realized Code

Most projects begin on a white board, or in some other type of planning
session. Here, all of the different components are laid out and connected
in a way that makes the target application seem more achievable. Different
ideas are put down, everyone’s input is gathered, and eventually a working
model is created that can be used as a reference during the programming
stage of the project.

However, many things can change when it comes to the actual coding
of the application. Some features may turn out to be a little ambitious for
the level of coding being done, the timeline may not be realistic, or the
fact that everyone has his or her own way of interpreting ideas and writing
code may turn the earlier plans on their side. These situations are a sample
of what may lead to code not being fully realized.

Fully realized code is code that is complete in every aspect. That is,
everything that was set to be done has been done. For example, a basic
representation of this concept would be the omnipresent “Hello World”
application. Our goal is to create a VB6 application that will display a
dialog box with the phrase “Hello World!”

VB6

Private Sub Form_Load()

ER R I b I S b I I I I S b I I b b b b b 4

‘Hello World

*5/1/2005

‘—-jfd

ANE R P S b b I b b I b b b b b e b b b b b

msgbox “Hello World!” ‘Displays —-Hello World dialog box
ANE R R I S Ik b b b b b E b b b b b b S b b

End Sub

However simple it is, this small VB6 application is fully realized.
Everything that we set out to do has been done. Although this may seem
to state to obvious — finish what you set out to do when you are dealing

Bugs: Fact or Fiction? m 23

with multiple programmers and thousands of lines of code — things can
get overlooked. Whether it is an error handler in an obscure function or
a modal Windows form in place of a nonmodal one, code that is not fully
realized can cause bugs.

The problem with bugs that are caused from code that is not fully
realized is that they may only materialize in very specific conditions. That
is, the use of the region of code that has not been fully realized will
generate the bug. The following VB6 function accepts two numeric input
values, adds them, and returns the sum; however, the code is not fully
realized and contains a bug.

VB6

Public Function AddMe (ivVall as Variant, iVal2 as
Variant) as Integer

AR I I I b b b b I I b b b b b b I b I b b b b b I I b b b b b b b b b b b b b b b 4

*AddME

‘function to add values and return sum

*5/1/2005

‘—-jfd

AR I I b b b b b I I b b b b b b I b I b b b b b I I b b b b b b b b b b b b b b b 4

AddMe = ivall + ival2

AR I I S S S I S S I I S S I S I I S S R I S S I S R I O

End Function

Even if you are not proficient in Visual Basic 6 code, just follow
along. As we move through the book, all examples will be in
VB6, VB.NET, C++, or Java. However, where these are very basic
samples to further the discussion, they are just in VB6.

If you execute this code with parameters of 2 and 3, the function will
return 5, and supplying values of 130 and 6 will yield 136. This function,
as written, definitely does do what we wanted it to do; we feed it two
numbers and it will add them and supply us a sum. Look at the code
again and see if you can spot where this code has not been fully realized;
where is the bug?

What if the user supplies an A and a 4, what will the function yield?
An error. The parameters iVall and iVal2 are dimensioned as variants.
However, the function is fully expecting to add two integers. This is a

24 m The Debugger's Handbook

bug that will materialize in a fairly specific situation, but it is a bug
nonetheless. To be fully realized, this VB6 function needs some form of
error trapping or integer validating. There are a few ways to fully realize
this code. One would be to use the internal VB6 function IsNumeric
to test the parameters before adding them.

VB6
Public Function AddMe(iVall as Variant, iVval2 as

Variant) as Integer

ARE R IR S b I S b b b b b b b b b b b b b b b b b b h b b b b I b b S b b i b b i 4
‘AdAME v.2 - using IsNumeric

‘function to add values and return sum
*5/1/2005

‘—-jfd

ARE R R I b b I b b b b b b b S b b S b b e b b R b b b b b b b S b b I b b b
AREGE R IR S b b S b b I b b I b b S b b S b b e b b S b b S b b S b b S S S I b S
‘if the supplied parameters are numeric, add them
AREE R IR S b b I b b I b b I b b e E b e b b e b b b S b b b b b S b I I I S b
If IsNumeric(iVall) and IsNumeric(ival2) Then
AddMe = ivall + ival2

End If

ARE R R b b I b b b b A b b b b b b b b b S b b b b b b I b I b b S b b I b b b b
End Function

Another way to fully realize this code would be to throw in an error
handler. Just to be safe, we will use both the numeric test and the error
handler; this will give us a good, fully realized VB6 function.

VB6

Public Function AddMe (ivVall as Variant, iVal2 as
Variant) as Integer

AR P I b b b I b I b b b b b b b P b b b b b I b b b b b b b I b b b b b b b 3
‘AddMe v.3 using an error handler

‘function to add values and return sum

*5/1/2005

‘-3fd

AR I S I I S I S S I R S I I S R I I S S O S S I S IR R I S I I S

