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Preface

The general linear model is often first introduced to graduate students during a course
on multiple linear regression, analysis of variance, or experimental design; however,
most students do not fully understand the generality of the model until they have
taken several courses in applied statistics. Even students in graduate statistics pro-
grams do not fully appreciate the generality of the model until well into their program
of study. This is due in part to the fact that theory and applications of the general
linear model are discussed in discrete segments throughout the course of study rather
than within a more general framework. In this book, we have tried to solve this prob-
lem by reviewing the theory of the general linear model using a general framework.
Additionally, we use this general framework to present analyses of simple and com-
plex models, both univariate and multivariate, using data sets from the social and
behavioral sciences and other disciplines.

AUDIENCE

The book is written for advanced graduate students in the social and behavioral
sciences and in applied statistics who are interested in statistical analysis using the
general linear model. The book may be used to introduce students to the general lin-
ear model; at the University of Pittsburgh it is used in a one-semester course on linear
models. The book may also be used as a supplement to courses in applied statistical
methods covering the essentials of estimation theory and hypothesis testing, simple
linear regression, and analysis of variance. They should also have some familiarity
with matrix algebra and with running SAS procedures.

OVERVIEW

Each chapter of this book is divided into two sections: theory and applications.
Standard SAS procedures are used to perform most of the analyses. When standard
SAS procedures are not available, PROC IML code to perform the analysis is dis-
cussed. Because SAS is not widely used in the social and behavioral sciences, SAS
code for analyzing general linear model applications is discussed in detail. The code
can be used as a template.

Chapter 1 provides an overview of the general linear model using matrix algebra
and an introduction to the multivariate normal distribution as well as to the general
theory of hypothesis testing. Applications include the use of graphical methods to

xv



xvi Preface

evaluate univariate and multivariate normality and the use of transformations to nor-
mality. In Chapter 2 the general linear model without restrictions is introduced and
used to analyze multiple regression and ANOVA designs. In Chapter 3 the general
linear model with restrictions is discussed and used to analyze ANCOVA designs
and repeated measurement designs.

Chapter 4 extends the concepts of the first three chapters to general linear mod-
els with heteroscedastic errors and illustrates how the model may be used to perform
weighted least squares regression and to analyze categorical data. Chapter 5 extends
the theory of Chapter 2 to the multivariate case; applications include multivariate
regression analysis, MANOVA, MANCOVA, and analyses of repeated measurement
data. This chapter also extends “standard” hypothesis testing to extended linear hy-
potheses. In Chapter 6, the double multivariate linear model is discussed.

Chapter 7 extends the multivariate linear model to include restrictions and con-
siders the growth curve model. In Chapter 8, the seeming unrelated regression (SUR)
and the restricted GMANOVA models are analyzed. Many of the applications in
this chapter involve PROC IML code. Finally, Chapter 9 includes analyses of hi-
erarchical linear models, and Chapter 10 treats the analysis of incomplete repeated
measurement data.

While the coverage given the general linear model is extensive, it is not exhaus-
tive. Excluded from the book are Bayesian methods, nonparametric procedures, non-
linear models, and generalized linear models, among others.
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For the second edition, we note that the authorship has changed. The former
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The revision includes corrections to the first edition, expanded material, addi-
tional examples, and new material. The theory in Chapters 2, 5, and 8 has been ex-
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expanded to include recent developments in structural equation modeling (SEM),
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CHAPTER 1

Overview of General Linear Model

1.1 INTRODUCTION

In this chapter, we introduce the structure of the general linear model (GLM)
and use the structure to classify the linear models discussed in this book. The multi-
variate normal distribution which forms the basis for most of the hypothesis testing
theory of the linear model is reviewed, along with a general approach to hypoth-
esis testing. Graphical methods and tests for assessing univariate and multivariate
normality are also reviewed. The generation of multivariate normal data, the con-
struction of Quantile-Quantile (Q-Q) plots, chi-square plots, scatter plots, and data
transformation procedures are reviewed and illustrated to evaluate normality.

1.2 GENERAL LINEAR MODEL

Data analysis in the social and behavioral sciences and numerous other disci-
plines is associated with a model known as the GLM. Employing matrix notation,
univariate and multivariate linear models may be represented using the general form

Ω0 : y = Xβ + e (1.1)

where yn×1 is a vector of n observations, Xn×k is a known design matrix of full
column rank k, βk×1 is a vector of k fixed parameters, en×1 is a random vector of
errors with mean zero, E(e) = 0, and covariance matrix Ω = cov(e). If the design
matrix is not of full rank, one may reparameterize the model to create an equivalent
model of full rank. In this book, we systematically discuss the GLM specified by
(1.1) with various structures for X and Ω.

Depending on the structure of X and Ω, the model in (1.1) has many names in
the literature. To illustrate, if Ω = σ2In in (1.1), the model is called the classical
linear regression model or the standard linear regression model. If we partitionX to
have the form X = (X1, X2) where X1 is associated with fixed effects and X2 is
associated with random effects, and if covariance matrix Ω has the form

Ω = X2V X
′
2 + Ψ (1.2)

1
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where V and Ψ are covariance matrices, then (1.1) becomes the general linear mixed
model (GLMM). If we let X and Ω take the general form

X =

⎛
⎜⎜⎜⎝

X1 0 . . . 1
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xp

⎞
⎟⎟⎟⎠ = ⊕pi=1Xi (1.3)

Ω = Σ⊗ In (1.4)

where Σp×p is a covariance matrix, A ⊗ B denotes the Kronecker product of two
matrices A and B (A⊗ = aijB), and ⊕pi=1 represents the direct sum of the matrices
Xi, then (1.1) is Zellner’s seemingly unrelated regression (SUR) model or a multiple
design multivariate (MDM) model. The SUR model may also be formulated as p
separate linear regression models that are not independent

yi = Xiβii + ei (1.5)

cov(yi, yj) = σijIn (1.6)

for i, j = 1, 2, . . . , p where y, β and e in (1.1) are partitioned

y′ =
(
y′1 y′2 . . . y′p

)
where yi : n∗ × 1 (1.7)

β′ =
(
β′

1 β′
2 . . . β′

p

)
where βii : ki × 1 (1.8)

e′ =
(
e′1 e′2 . . . e′p

)
where ei : n∗ × 1 (1.9)

and Σp×p = (σij). Alternatively, we may express the SUR model as a restricted
multivariate regression model. To do this, we write

Ω0 : Yn∗×p = Xn∗×kβ̃k×p + Un∗×p (1.10)

where Y = (y1, y2, . . . , yp), X = (X1, X2, . . . , Xp), U = (e1, e2, . . . , ep) and

β̃ =

⎛
⎜⎜⎜⎝

β11 0 . . . 0
0 β22 . . . 0
...

...
. . .

...
0 0 . . . βpp

⎞
⎟⎟⎟⎠ . (1.11)

Letting X1 = X2 = · · · = Xp = X̃n∗×k and β̃ = (β11, β22, . . . , βpp) in the SUR
model, (1.1) becomes the classical multivariate regression model or the multivariate
analysis of variance (MANOVA) model. Finally, letting

X = X1 ⊗X ′
2 (1.12)

Ω = In ⊗ Σ (1.13)

model (1.1) becomes the generalized MANOVA (GMANOVA) or the generalized
growth curve model. All these models with some further extensions are special forms
of the GLM discussed in this book.
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The model in (1.1) is termed the “classical” model since its orientation is subjects
or observations by variables where the number of variables is one. An alternative
orientation for the model is to assume y′ = (y1, y2, . . . , yn) is a (1 × n) vector of
observations where the number of variables is one. For each observation yi, we may
assume that there are x′i = (x1, x2, . . . , xk) or k independent (possible dummy)
variables. With this orientation (1.1) becomes

y = X ′β + e (1.14)

where X = (x1, x2, . . . , xk), e′ = (e1, e2, . . . , en) and each xi contains k indepen-
dent variables for the ith observation. Model (1.14) is often called the “response-
wise” form. Model (1.1) is clearly equivalent to (1.14) since the design matrix has
the same order for either representation; however, in (1.14)X is of order k×n. Thus,
X ′X using (1.14) becomesXX ′ for the responsewise form of the classical model.

The simplest example of the GLM is the simple linear regression model

y = β0 + β1x+ e (1.15)

where x represents the independent variable, y the dependent variable and e a random
error. Model (1.15) states that the observed dependent variable for each subject is
hypothesized to be a function of a common parameter β0 for all subjects and an
independent variable x for each subject that is related to the dependent variable by a
weighting (i.e., regression) coefficient β1 plus a random error e. For k = p+ 1 with
p variables, (1.15) becomes (1.16)

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + e (1.16)

or using matrix notation, (1.16) is written as

y = x′β + e (1.17)

where x′ = (x0, x1, . . . , xp) denotes k independent variables, and x0 is a dummy
variable in the vector x′. Then for a sample of n observations, (1.17) has the
general form (1.14) where y′ = (y1, y2, . . . , yn), e′ = (e1, e2, . . . , en) and X =
(x1, x2, . . . , xn) of order k × n since each column vector xi in X contains k vari-
ables. When using the classical form (1.1), X ≡ X ′, a matrix of order n × k. In
discussions of the GLM, many authors will use either the classical or the response-
wise version of the GLM, while we will in general prefer (1.1). In some applications
(e.g., repeated measurement designs) form (1.14) is preferred.

1.3 RESTRICTED GENERAL LINEAR MODEL

In specifying the GLM using (1.1) or (1.14), we have not restricted the k-variate
parameter vector β. A linear restriction on the parameter vector β will affect the
characterization of the model. Sometimes it is necessary to add restrictions to the
GLM of the general form

Rβ = θ (1.18)
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where Rs×k is a known matrix with full row rank, rank(R) = s, and θ is a known
parameter vector, often assumed to be zero. With (1.18) associated with the GLM,
the model is commonly called the restricted general linear model (RGLM). Return-
ing to (1.15), we offer an example of this in the simple linear regression model with
a restriction

y = β0 + β1x+ e β0 = 0 (1.19)

so that the regression of y on x is through the origin. For this situation, R ≡ (1, 0)
and θ = (0, 0). Clearly, the estimate of β1 using (1.19) will differ from that obtained
using the general linear model (1.15) without the restriction.

Assuming (1.1) or (1.16), one first wants to estimate β with β̂ where the estimator
β̂ has some optimal properties like unbiasness and minimal variance. Adding (1.18)
to the GLM, one obtains a restricted estimator of β, β̂r, which in general is not
equal to the unrestricted estimator. Having estimated β, one may next want to test
hypotheses regarding the parameter vector β and the structure of Ω. The general
form of the null hypothesis regarding β is

H : Cβ = ξ (1.20)

where Cg×k is a matrix of full row rank g, rank(C) = g and ξg×1 is a vector of
known parameters, usually equal to zero. The hypothesis in (1.20) may be tested
using the GLM with or without the restriction given in (1.18). Hypotheses in the
form (1.20) are in general testable, provided β is estimable; however, testing (1.20)
assuming (1.18) is more complicated since the matrix C may not contain a row
identical, inconsistent or dependent on the rows of R and the rows of C must re-
main independent. Thus, the rank of the augmented matrix must be greater than s,
rank
(
R
C

)
= s+ g > s.

Returning to (1.15), we may test the null hypotheses

H : β =
(
β0

β1

)
= ξ =

(
ξ0
ξ1

)
(1.21)

where ξ is a known parameter vector. The hypothesis in (1.21) may not be inconsis-
tent with the restriction β0 = 0. Thus, given the restriction, we may test

H : β1 = ξ1 (1.22)

so that (1.22) is not inconsistent or dependent on the restriction.

1.4 MULTIVARIATE NORMAL DISTRIBUTION

To test hypotheses of the form given in (1.20), one usually makes distributional
assumptions regarding the observation vector y or e, namely the assumption of mul-
tivariate normality. To define the multivariate normal distribution, recall that the
definition of a standard normal random variable y is defined by the density

f(y) = (2π)−1/2 exp
(
−1

2
y2

)
(1.23)
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denoted by y ∼ N(0, 1). A random variable y has a normal distribution with mean
μ and variance σ2 > 0 if y has the same distribution as the random variable

μ+ σe (1.24)

where e ∼ N(0, 1). The density for y is given by

f(y) =
1

σ
√

2π
exp
[
−1

2
(y − μ)2

σ2

]

=
(
2πσ2
)−1/2

exp
[
−1

2
(y − μ)2

σ2

]
(1.25)

with this as motivation, the definition for a multivariate normal distribution is as
follows.

Definition 1.1. A p-dimensional random vector y is said to have a multivariate nor-
mal distribution with mean μ and covariance matrix Σ [y ∼ Np(μ,Σ)] if y has the
same distribution as μ + Fe where Fp×p is a matrix of rank p, Σ = FF ′ and each
element of e is distributed: ei ∼ N(0, 1). The density of y is given by

f(y) = (2π)−p/2|Σ|−1/2 exp
[
−1

2
(y − μ)′Σ−1(y − μ)

]
. (1.26)

Letting (diagΣ)−1/2 represent the diagonal matrix with diagonal elements equal
to the square root of the diagonal elements of Σ, the population correlation matrix
for the elements of the vector y is

P = (diagΣ)−1/2Σ(diagΣ)−1/2 =

(
σij

σ
1/2
ii σ

1/2
jj

)
= (ρij). (1.27)

If y ∼ Np(μ,Σ) andw = F−1(y−μ), then the quadratic form (y−μ)′Σ−1(y−
μ) has a chi-square distribution with p degrees of freedom, written as

w′w = (y − μ)′Σ−1(y − μ) ∼ χ2
p. (1.28)

The quantity
[
(y − μ)′Σ−1(y − μ)

]1/2
is called the Mahalanobis distance between

y and μ.
For a random sample of n independent p-vectors (y1, y2, . . . , yn) from a mul-

tivariate normal distribution, yi ∼ INp(μ,Σ), we shall in general write the data
matrix Yn×p in the classical form

Yn×p =

⎛
⎜⎜⎜⎝

y′1
y′2
...
y′n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y11 y12 . . . y1p
y21 y22 . . . y2p

...
...

. . .
...

yn1 yn2 . . . ynp

⎞
⎟⎟⎟⎠ . (1.29)
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The corresponding responsewise representation for Y is

Yp×n =
(
y1 y2 . . . yn

)
=

⎛
⎜⎜⎜⎝

y11 y12 . . . y1n
y21 y22 . . . y2n

...
...

. . .
...

yp1 yp2 . . . ypn

⎞
⎟⎟⎟⎠ . (1.30)

The joint probability density function (pdf) for (y1, y2, . . . , yn) or the likelihood
function is

L = L(μ,Σ|y) =
n∏
i=1

f(yi). (1.31)

Substituting f(y) in (1.26) for each f(yi), the pdf for the multivariate normal distri-
bution is

[(2π)p|Σ|]−n/2 exp

[
−1

2

n∑
i=1

(yi − μ)′Σ−1(yi − μ)

]
. (1.32)

Using the property of the trace of a matrix, tr(x′Ax) = tr(Axx′), (1.32) may be
written as

[(2π)p|Σ|]−n/2 etr

{
−1

2
Σ−1

[
n∑
i=1

(yi − μ)(yi − μ)′
]}

(1.33)

where etr stands for the exponential of a trace of a matrix.
If we let the sample mean be represented by

ȳ = n−1
n∑
i=1

yi (1.34)

and the sum of squares and products (SSP) matrix, using the classical form (1.29), is

E =
n∑
i=1

(yi − ȳ)(yi − ȳ)′ = Y ′Y − nȳȳ′ (1.35)

or using the responsewise form (1.30), the SSP matrix is

E = Y Y ′ − nȳȳ′. (1.36)

In either case, we may write (1.33) as

[(2π)p|Σ|]−n/2 etr
{
−1

2
Σ−1 [E + n(yi − μ)(yi − μ)′]

}
(1.37)

so that by Neyman’s factorization criterion (E, ȳ) are sufficient statistics for estimat-
ing (Σ, μ), (Lehmann, 1991, p. 16).
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Theorem 1.1. Let yi ∼ INp(μ,Σ) be a sample of size n, then ȳ andE are sufficient
statistics for μ and Σ.

It can also be shown that ȳ and E are independently distributed. The distribution
of E is known as the Wishart distribution, a multivariate generalization of the chi-
square distribution, with ν = n− 1 degrees of freedom. The density of the Wishart
distribution is

c|Σ|−ν/2|E|(ν−p−1)/2etr
(
−1

2
Σ−1E

)
(1.38)

where c is an appropriately chosen constant so that the total probability is equal to
one. We write that E ∼WP (ν,Σ). The expectation of E is νΣ.

Given a random sample of observations from a multivariate normal distribution,
we usually estimate the parameters μ and Σ.

Theorem 1.2. Let yi ∼ INp(μ,Σ), then the maximum likelihood estimators (MLEs)
of μ and Σ are ȳ and E/n = Σ̂.

Furthermore, ȳ and

S =
(

n

n− 1

)
Σ̂ =

E

n− 1
(1.39)

are unbiased estimators of μ and Σ, so that E(ȳ) = μ and E(S) = Σ. Hence, the
sample distributions of S is Wishart, (n− 1)S ∼Wp(ν = n− 1,Σ) or S = (sij) ∼
Wp[1,Σ/(n − 1)]. Since S is proportional to the MLE Σ̂ of Σ, the MLE of the
population correlation coefficient matrix is

R = (diagS)−1/2S(diagS)−1/2 =

(
sij

s
1/2
ii s

1/2
jj

)
= (rij), (1.40)

where rij is the sample correlation coefficient.
For a random sample of n independent identically distributed (iid) p-vectors

(y1, y2, . . . , yn) from any distribution with mean μ and covariance matrix Σ, by
the central limit theorem (CLT), the pdf for the random variable z =

√
n(ȳ − μ)

converges in distribution to a multivariate normal distribution with mean 0 and co-
variance matrix Σ,

z =
√
n(ȳ − μ) d→ Np(0,Σ). (1.41)

And, the quadratic form,

n(ȳ − μ)′Σ−1(ȳ − μ) = z′z d→ χ2
p, (1.42)

converges in distribution to a chi-square distribution with p degrees of freedom. The

quantity
[
(ȳ − μ)′Σ−1(ȳ − μ)

]1/2
is the Mahalanobis distance from ȳ to μ.
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The mean μ and covariance matrix Σ are the first two moments of a random
vector y. We now extend the classical measures of skewness and kurtosis, E(y −
μ)3/σ3 and the E(y − μ)4/σ4, to the multivariate case following Mardia (1970).
Letting yi ∼ (μ,Σ), Mardia’s sample measures of multivariate skewness (β1,p) and
kurtosis (β2,p) are based upon the scaled random variables, zi = S−1/2(yi − ȳ),
i = 1, . . . , n. Mardia’s measures of the population values are respectively,

b1,p =
1
n2

n∑
i,j=1

[
(yi − ȳ)′S−1(yi − ȳ)

]3
(1.43)

b2,p =
1
n

n∑
i,j=1

[
(yi − ȳ)′S−1(yi − ȳ)

]2
. (1.44)

When yi ∼ INp(μ,Σ), the population values of the moments are β1,p = 0 and
β2,p = p(p + 2). Under normality, Mardia showed that the statistic X2 = nb1,p/6
converges to a chi-square distribution with ν = p(p + 1)(p + 2)/6 degrees of free-
dom. And, that the multivariate kurtosis statistic converges to a normal distribution
with mean μ = p(p + 2) and variance σ2 = 8p(p + 2)/n. When n > 50, one
may use the test statistics to evaluate multivariate normality. Rejection of normality
indicates either the presence of outliers or that the distribution is significantly dif-
ferent from a multivariate normal distribution. Romeu and Ozturk (1993) performed
a comparative study of goodness-of-fit tests for multivariate normality and showed
that Mardia’s tests are most stable and reliable. They also calculated small sample
empirical critical values for the tests.

When one finds that a distribution is not multivariate normal, one usually replaces
the original observations with some linear combination of variables which may be
more nearly normal. Alternatively, one may transform each variable in the vector
using a Box-Cox power transformation, as outlined for example by Bilodeau and
Brenner (1999, p. 95). However, because marginal normality does not ensure en-
sure multivariate normality a joint transformation may be desired. Shapiro and Wilk
(1965) W statistic or Royston (1982, 1992) approximation may be used to test for
univariate normality one variable at a time. Since marginal normality does not ensure
multivariate normality, a multivariate test must be used to evaluate joint normality for
a set of p variables.

1.5 ELEMENTARY PROPERTIES OF NORMAL RANDOM VARIABLES

Theorem 1.3. Let y ∼ INp(μ,Σ) and w = Am×py, then w ∼ INm(Aμ,AΣA′).

Thus, linear combinations of multivariate normal random variables are again nor-
mally distributed. If one assumes that the random variable y is multivariate nor-
mal, y ∼ Nn(Xβ = μ,Ω = σ2I), and β̂ is an unbiased estimate of β such that
β̂ = (X ′X)−1X ′y then by Theorem 1.3,

β̂ ∼ Nk
[
β, cov

(
β̂
)]
. (1.45)
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Given that a random vector y is multivariate normal, one may partition the p
elements of a random vector y into two subvectors y1 and y2 where the number of
elements p = p1 + p2. The joint distribution of the partitioned vector is multivariate
normal and written as

y =
(
y1
y2

)
∼ Np

[(
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
. (1.46)

Given the partition of the vector y, one is often interested in the conditional distri-
bution of y1 given the subset y2, y1|y2. Provided Σ22 is nonsingular, we have the
following general result.

Theorem 1.4. y1|y2 = z ∼ Np1(μ1·2,Σ11·2), where μ1·2 = μ1 +Σ12Σ−1
22 (y2−μ2)

and Σ11·2 = Σ11 − Σ12Σ−1
22 Σ21.

Letting the subset y1 contain a single element, then

y =
(
y1
y2

)
∼ Np

[(
μ1

μ2

)
,

(
σ11 σ′

12

σ21 Σ22

)]
. (1.47)

The multiple correlation coefficient R is the maximum correlation possible between
y1 and the linear combination of the random vector y2, a′y2. Using the Cauchy-
Schwarz inequality, one can show that the multiple correlation coefficient R =
[σ′

12Σ
−1
22 σ21/σ11]1/2 ≥ 0, which is seen to be the correlation between y1 and z =

μ1 + Σ12Σ−1
22 (y2 − μ2). The sample, biased overestimate of R2, the squared mul-

tiple correlation coefficient, is R̂2 = s′12S
−1
22 s21/s11. Even if R2 = 0, E(R̂2) =

(p − 1)/(n − 1). Thus, if the sample size n is small relative to p, the bias can be
large.

The partial correlation coefficient between variables yi and yj is the ordinary
simple correlation ρ between yi and yj with the variables in the subset y2 held fixed
and represented by ρij|y2 . Letting Σ11·2 = (σij|y2 ), the matrix of partial variances
and covariances, the partial correlation between the (i, j) element is

ρij|y2 =
σij|y2

σ
1/2
ii|y2σ

1/2
jj|y2

. (1.48)

Replacing Σ11·2 with the sample estimate S11·2 = (sij|y2 ), the MLE of ρij|y2 is

rij|y2 =
sij|y2

s
1/2
ii|y2s

1/2
jj|y2

. (1.49)

1.6 HYPOTHESIS TESTING

Having assumed a linear model for a random sample of observations, used the
observations to obtain an estimate of the population parameters, and decided upon
the structure of the restriction R (if any) and the hypothesis test matrix C, one
next test hypotheses. Two commonly used procedures for testing hypotheses are
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the likelihood ratio (LR) and union-intersection (UI) test. To construct a LR test,
two likelihood functions are compared for a random sample of observations, L(ω̂),
the likelihood function maximized under the hypothesis H in (1.20), and the likeli-
hood L(Ω̂0), the likelihood function maximized over the entire parameter space Ω0

unconstrained by the hypothesis. Defining λ as the ratio

λ =
L(ω̂)
L(Ω̂0)

(1.50)

the hypothesis is rejected for small values of λ since L(ω̂) < L(Ω̂0) does not favor
the hypothesis. The test is said to be of size α if for a constant λ0, the

P (λ < λ0|H) = α (1.51)

where α is the size of the Type I error rate, the probability of rejecting H givenH is
true. For large sample sizes and under very general conditions, Wald (1943) showed
that −2 lnλ converges in distribution to a chi-square distribution as n → ∞, where
the degrees of freedom ν is equal to the number of independent parameters estimated
under Ω0 minus the number of independent parameters estimated under ω.

To construct a UI test according to Roy (1953), we write the null hypothesis H
as an intersection of an infinite number of elementary tests

H :
⋂
i

Hi (1.52)

and each Hi is associated with an alternative Ai such that

A :
⋃
i

Ai. (1.53)

The null hypothesis H is rejected if any elementary test of size α is rejected. The
overall rejection region being the union of all the rejection regions of the elementary
tests ofHi vs. Ai. Similarly, the region of acceptance forH is the intersection of the
acceptance regions. If Ti is a test statistic for testing Hi vs. Ai, the null hypothesis
H is accepted or rejected if the Ti ≶ cα where the

P

(
sup
i
Ti ≤ cα|H

)
= 1− α (1.54)

and cα is chosen such that the Type I error is α.

1.7 GENERATING MULTIVARIATE NORMAL DATA

In hypothesis testing of both univariate and multivariate linear models, the as-
sumption of multivariate normality is made. The multivariate normal distribution of
a random vector y with p variables has the density function given in (1.26), written
as y ∼ Np(μ,Σ). For p = 1, the density function reduces to the univariate normal
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distribution. Some important properties of normally distributed random variables
were reviewed in Section 1.5. To generate data having a multivariate normal distri-
bution with mean μ′ = (μ1, μ2, . . . , μp) and covariance matrix Σ = (σij), we use
Definition 1.1. Program 1 7.sas uses the IML procedure to generate 50 observations
from a multivariate normal distribution with structure

μ =

⎛
⎜⎜⎝

10
20
30
40

⎞
⎟⎟⎠ and Σ =

⎛
⎜⎜⎝

3 1 0 0
1 4 0 0
0 0 1 4
0 0 4 20

⎞
⎟⎟⎠ .

In Program 1 7.sas, PROC IML is used to produce a matrix Z that contains n =
50 observation vectors with p = 4 variables. Each vector is generated by using the
standard normal distribution,N(0, 1). Using Theorem 1.3, new variables yi = ziA+
μ are created where the matrix A is such that the cov(y) = A′cov(z)A = A′IA =
A′A = Σ and E(y) = μ. The Cholesky factorization procedure is used to obtain
A from Σ: the ROOT function in PROC IML performs the Cholesky decomposition
and stores the result in the matrix named a in the program. Next, the matrix u
is created by repeating the mean row vector u 50 times to produce a 50 × 4 data
matrix. The multivariate normal random variables are created using the statement:
y=(z*a)+uu. The observations are printed and output to the file named 1 7.dat.
The seed in the program allows one to always create the same data set.

1.8 ASSESSING UNIVARIATE NORMALITY

Before one tests hypotheses, it is important that one examines the distributional
assumptions for the sample data under review. While the level of the test (Type
I error) for means is reasonably robust to nonnormality, this is not the case when
investigating the covariance structure. However, very skewed data and extreme out-
liers may result in errors in statistical inference of the population means. Thus, one
usually wants to verify normality and investigate data for outliers.

If a random vector y is distributed multivariate normally, then its components yi
are distributed univariate normal. Thus, one step in evaluating multivariate normality
of a random vector is to evaluate the univariate normality of it components. One
can construct and examine histograms, stem-and-leaf plots, box plots, and Quantile-
Quantile (Q-Q) probability plots for the components of a random p-vector.

Q-Q plots are plots of the observed, ordered quantile versus the quantile values
expected if the observed data are normally distributed. Departures from a straight
line are evidence against the assumption that the population from which the obser-
vations are drawn is normally distributed. Outliers may be detected from these plots
as points well separated from the other observations. The behavior at the ends of the
plots can provide information about the length of the tails of the distribution and the
symmetry or asymmetry of the distribution (Singh, 1993).

One may also evaluate normality by performing the Shapiro and Wilk (1965)
W test when sample sizes are less than or equal to 50. The test is known to show a
reasonable sensitivity to nonnormality (Shapiro, Wilk, & Chen, 1968). For 50 ≤ n ≤
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2000, Royston (1982, 1992) approximation is recommended and is implemented in
the SAS procedure UNIVARIATE.

When individual variables are found to be nonnormal, one can often find a Box
and Cox (1964) power transformation that may be applied to the data to achieve
normality. The Box-Cox power transformation has the general structure for y > 0:

x =

{
(yλ−1)
λ : λ �= 0

log(y) : λ = 0
.

Note that the random dependent random variable y must be positive for all val-
ues. Thus, one may have to add a constant to the sample data before applying the
transformation. After applying a Box-Cox type transformation, one should again
check whether transformed data are more nearly normal.

1.8.1 Normally and Nonnormally Distributed Data

Program 1 8 1.sas produces Q-Q plots for the univariate normally distributed
random variables generated by Program 1 7.sas. The Q-Q plots for the normal data
show that the observations lie close to a line, but not exactly; the tail, especially, falls
off from the line (Graph 1.8.1). Recall that we know that these data are normally
distributed. Thus, when using Q-Q plots for diagnostic purposes, we cannot expect
that even normally distributed data will lie exactly on a straight line. Note also that
some of the Shapiro-Wilk test statistics are significant at the nominal α = 0.05 level
even for normal data. When performing tests for sample sizes less than or equal to
50, it is best to reduce the level of the normality test to the nominal α = 0.01 level.

In Program 1 8 1.sas we transform the normal data using the transformations:
ty1 = 1/y2, ty2 = ey , ty3 = log(y), and ty4 = y2 for the four normal variables
and generating Q-Q plots for the transformed nonnormal data (Graph 1.8.2). In-
spection of the plots clearly show marked curvilinear patterns. The plots are not
linear. Next we illustrate how one may find a Box-Cox power transformation using
the transformed variable x = ty4. To achieve normality the value of λ should be
near one-half, the back transformation for the variable. Using the macro %adxgen
and %adxtran in SAS, the value λ = −0.4 (found in the log file) is obtained for
the data; the transformed data are stored in the data set named result. The λ value
is near the correct value of −0.5 (or a square root transformation) for the variable.
The λ plot in the output indicates that the value of λ should be within the interval:
−0.2 ≤ λ ≤ −0.6. While the macro uses the minimal value, one often trys other
values within the interval to attain near normality.

Finally, we introduce an outlier into the normally distributed data, and again
generate Q-Q plots (Graph 1.8.3). Inspection of the Q-Q plot clearly shows the
extreme observation. The data point is far from the line.
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Graph 1.8.1: Q-Q plot of y1-y4
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Graph 1.8.2: Q-Q plot of ty1-ty4
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Graph 1.8.3: Q-Q plot of y1 with an outlier

1.8.2 Real Data Example

To illustrate the application of plots and tests to evaluate normality, data from
Rohwer given in (Timm, 2002, p. 213) are used. The data are in the data set
Rohwer.dat.

The data are for 32 selected school children in an upper-class, white residen-
tial school and contain three standardized tests: Peabody Picture Vocabulary (y1),
Student Achievement (y2), and the Raven Progressive Matrices test (y3) and five
paired-associate, learning-proficiency tasks: Named (x1), Still (x2), Named Still
(x3), Named Action (x4), and sentence still (x5). While we will use the data to
evaluate multivariate prediction in Chapter 5, we use the raw data to investigate the
normality of the three standardized test variables using univariate Q-Q plots and tests
for univariate normality. Also illustrated is the use of the Box-Cox transformation.
The code for the analysis is contained in Program 1 8 2.sas.

The program produces Q-Q plots for each dependent variable (Graph 1.8.4). Re-
view of the plots indicates that the variables y1 and y2 appear normal. However,
this is not the case for the variable y3. Using the Box-Cox power transformation, a
value of λ = 0.4 is used to transform the data to near normality, yt3. The plot is
more nearly linear and the Shapiro-Wilk test appears to marginally support normality
at the nominal level α = 0.01 for the transformed data.

1.9 ASSESSING MULTIVARIATE NORMALITY WITH CHI-SQUARE PLOTS

Even though each variable in a vector of variables is normally distributed, mar-
ginally normality does not ensure multivariate normality. However, multivariate nor-
mality does ensure marginal normality. Thus, one often wants to evaluate whether
or not a vector of random variables follows a multivariate normal distribution. To
evaluate multivariate normality, one may compute the Mahalanobis distance for the
ith observation:

D2
i = (yi − ȳ)′S−1(yi − ȳ) (1.55)
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Graph 1.8.4: Q-Q plot of y1-y3 and yt3
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and plot these distances against the ordered chi-square percentile values qi = χ2
p·

[(i− 1/2)/n] where qi (i = 1, 2, . . . , n) is the 100 (i− 1/2) /n sample quantile of the
chi-square distribution.

Singh (1993) constructed probability plots resembling Shewart-type control
charts, where warning points were placed at the α100% critical value of the dis-
tribution of Mahalanobis distances, and a maximum point limit was also defined.
Thus, any observation falling beyond the maximum limit was considered an outlier,
and any point between the warning limit and the maximum limit required further
investigation.

Singh (1993) constructs multivariate probability plots with the ordered Maha-
lanobis distances versus quantiles from a beta distribution, rather than a chi-square
distribution. The exact distribution of bi = nD2

i /(n − 1)2 follows a beta [a = p/2,
b = (n− p− 1)/2] distribution (Gnanadesikan & Kettenring, 1972). Small (1978)
found that as p gets large (p > 5% of n) relative to n that the chi-square approxi-
mation may not be adequate unless n ≥ 25 and in these cases recommends a beta
plot.

When evaluating multivariate normality, one should also compute measures of
multivariate skewness and kurtosis. If data follow a multivariate normal distribution,
these measures should be near zero. If the distribution is leptokurtic (has heavy tails),
the measure of kurtosis will be large. If the distribution is platykurtic (has light tails)
the kurtosis coefficient will be small.

Mardia (1970) defined the measures of multivariate skewness and kurtosis:

β1,p = E [(x − μ)′Σ−1(y − μ)]3 (1.56)

β2,p = E [(y − μ)′Σ−1(y − μ)]2 (1.57)

where x and y are identically and independently distributed. Sample estimates of
these quantities are:

β̂1,p =
1
n2

n∑
i=1

n∑
j=1

[
(yi − ȳ)′S−1(yj − ȳ)

]3
(1.58)

β̂2,p =
1
n

n∑
i=1

n∑
j=1

[
(yi − ȳ)′S−1(yj − ȳ)

]2
. (1.59)

If y ∼ Np(μ,Σ), then β1,p = 0 and β2,p = p(p + 2). Mardia showed that the
sample estimate of multivariate kurtosisX2 = nβ̂1,p/6 has an asymptotic chi-square
distribution with ν = p(p+ 1)(p+ 2)/6 degrees of freedom. And that Z = [β̂2,p −
p(p+2)]/[8p(p+2)/n]1/2 converges in distribution to a standard normal distribution.
Provided the sample size n ≥ 50 one may develop tests of multivariate normality.
Mardia (1974) developed tables of approximate percentiles for p = 2 and n ≥ 10 and
alternative large sample approximations. Romeu and Ozturk (1993) investigated ten
tests of goodness-of-fit for multivariate normality. They show that the multivariate
tests of Mardia are most stable and reliable for assessing multivariate normality. In
general, tests of hypotheses regarding means are sensitive to high values of skewness
and kurtosis for multivariate data.
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Graph 1.9.1: Chi-square Q-Q plot

Output 1.9.1: MULTNORM Macro Univariate and Multivariate Normality Tests for
y1-y4.

Variable n Test

Multivariate
Skewness &

Kurtosis

Test
Statistic
Value p-value

y1 50 Shapiro-Wilk . 0.95519 0.0560

y2 50 Shapiro-Wilk . 0.99170 0.9775

y3 50 Shapiro-Wilk . 0.95347 0.0475

y4 50 Shapiro-Wilk . 0.96571 0.1540

50 Mardia Skewness 1.0846 9.81142 0.9715

50 Mardia Kurtosis 20.5357 -1.76789 0.0771

While Andrews, Gnanadesikan, and Warner (1971) have developed a multivariate
extension of the Box-Cox power transformation for multivariate data, determination
of the appropriate transformation is complicated (see, Chambers, 1977; Velilla &
Barrio, 1994). In general, one applies the Box-Cox transformation a variable at a
time or uses some linear combination of the variables in the analysis when multivari-
ate normality is not satisfied.

1.9.1 Multivariate Normal Data

To illustrate the construction of a chi-square plot, the data in the multivariate data
set 1 7.dat are used. Program 1 9 1.sas contains the code for the chi-square plots.
The program uses the SAS macro %multnormwhich calculates Mardia’s test statis-
tics for multivariate skewness and kurtosis and also the Shapiro-Wilk W statistics for
each variable. Inspection of the plot and the multivariate statistics indicate that the
data are clearly multivariate normal (Graph 1.9.1, Output 1.9.1).
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1.9.2 Real Data Example

Using the Rohwer data set described in Section 1.8.2, we developed chi-square
plots for the raw data and the transformed data. Program 1 9 2.sas contains the code
for the example. The p-values for Mardia Skewness and Kurtosis for the raw data
are: 0.93807 and 0.05000, respectively. Upon transformation of the third variable,
the corresponding values become: 0.96408 and 0.05286. While the data are nearly
normal, the transformation does not show a significant improvement in joint normal-
ity.

1.10 USING SAS INSIGHT

Outliers in univariate data only occur in the tail of the Q-Q plot since the plots
are based upon ordered variables. However, for multivariate data this is not the case
since multivariate vector observations cannot be ordered. Instead, ordered squared
distances are used so that the location of an outlier within the distribution is uncer-
tain. It may involve any distance in the multivariate chi-square Q-Q plot. To evaluate
the data for potential outliers, one may use the tool SAS INSIGHT interactively.

When SAS is executed, it creates temporary data sets in the Library WORK. To
access the Library interactively, click on Solution → Analysis → Inter-
active Data Analysis. This executes the SAS INSIGHT software. Using
SAS INSIGHT, click on the data set called WORK. The data sets used and created
by the SAS program are displayed. For the multivariate Q-Q plot, select the data set
CHIPLOT. Displayed will be the coordinates of the multivariate Q-Q plot. From the

tool bar select Analyze → Fit(Y X). This will invoke a Fit(Y X) software
window; next, move the variables MAHDIST to the window labeled Y and the vari-
able CHISQ to the window labeled X. Then, select Apply from the menu. This will
produce the multivariate Q-Q plot generated by macro %multnorm (Graph 1.10.1).
The observation number will appear by clicking on a data point. By double click-
ing on a value, the window Examine Observations appears which display the
residual and predicted squared distances (Figure 1.10.1). Also contained in the out-
put is a plot of these values. By clicking on data points, extreme observations are
easily located. To illustrate the use of SAS INSIGHT two data sets using real data
are investigated.

1.10.1 Ramus Bone Data

To illustrate the use of SAS INSIGHT for the location of outliers Ramus bone
data from Elston and Grizzle (1962) are used. The data are in the data set Ramus.dat.
Using Program 1 10 1.sas, the data are investigated for normality. One observes
that while all variables are univariate normal, the test of multivariate normality is
rejected (Output 1.10.1). This is due in part to the small sample size. Following the
procedure discussed above, we observe that observation 9 appears extreme (Graph
1.10.1). Removing this observation from the data set using Program 1 10 1a.sas, the
data become more normal, but remain skewed (Output 1.10.2). For a multivariate
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Graph 1.10.1: Chi-square Q-Q plot generated by SAS INSIGHT
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Figure 1.10.1: Examine Observations
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Output 1.10.1: MULTNORM Macro Univariate and Multivariate Normality Tests
for Ramus Bone Data.

Variable n Test

Multivariate
Skewness &

Kurtosis

Test
Statistic
Value p-value

y1 20 Shapiro-Wilk . 0.9479 0.3360

y2 20 Shapiro-Wilk . 0.9628 0.6020

y3 20 Shapiro-Wilk . 0.9578 0.5016

y4 20 Shapiro-Wilk . 0.9180 0.0905

20 Mardia Skewness 11.3431 46.1170 0.0008

20 Mardia Kurtosis 28.9174 1.5871 0.1125

Output 1.10.2: MULTNORM Macro Univariate and Multivariate Normality Tests
for Ramus Bone Data without Observation 9.

Variable n Test

Multivariate
Skewness &

Kurtosis

Test
Statistic
Value p-value

y1 19 Shapiro-Wilk . 0.9436 0.3064

y2 19 Shapiro-Wilk . 0.9519 0.4249

y3 19 Shapiro-Wilk . 0.9533 0.4490

y4 19 Shapiro-Wilk . 0.9210 0.1180

19 Mardia Skewness 11.0359 43.0477 0.0020

19 Mardia Kurtosis 29.0259 1.5810 0.1139

analysis of this data set, one should consider linear combination of the Ramus data
over the years of growth since the skewness is not easily removed from the data.

1.10.2 Risk-Taking Behavior Data

For our second example, data from a large study by Dr. Stanley Jacobs and Mr.
Ronald Hritz at the University of Pittsburgh are used. Students were assigned to
three experimental conditions and administered two parallel forms of a test given
under high and low penalty. The data set is in the file Stan Hz.dat. Using Program
1 10 2.sas, the data are investigated for multivariate normality. The test of multivari-
ate normality is clearly rejected (Output 1.10.3). Using SAS INSIGHT, observation
number 82 is clearly an outlier (Graph 1.10.2). Removing the observation (Program
1 10 2a.sas), the data are restored to multivariate normality (Output 1.10.4). These
examples clearly indicate the importance of removing outliers from multivariate data.
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Graph 1.10.2: Chi-square Q-Q plot of risk-taking behavior data
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Output 1.10.3: MULTNORM Macro Univariate and Multivariate Normality Tests of
Risk-taking Behavior Data.

Variable n Test

Multivariate
Skewness &

Kurtosis

Test
Statistic
Value p-value

resL 87 Shapiro-Wilk . 0.9888 0.6674

resH 87 Shapiro-Wilk . 0.9520 0.0027

87 Mardia Skewness 0.7450 11.4348 0.0221

87 Mardia Kurtosis 10.7652 3.2240 0.0013

Output 1.10.4: MULTNORM Macro Univariate and Multivariate Normality Tests of
Risk-taking Behavior Data with Observation 82.

Variable n Test

Multivariate
Skewness &

Kurtosis

Test
Statistic
Value p-value

resL 86 Shapiro-Wilk . 0.98969 0.7354

resH 86 Shapiro-Wilk . 0.97449 0.0863

86 Mardia Skewness 0.13474 2.04568 0.7274

86 Mardia Kurtosis 7.04198 -1.11054 0.2668
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Graph 1.11.1: Bivariate Normal Distribution with u=(0, 0), var(y1)=3, var(y2)=4,
cov(y1,y2)=1, r=.289
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1.11 THREE-DIMENSIONAL PLOTS

Three dimensional scatter plots of multivariate data often help with the visual-
ization of data. They are generated using the G3D procedure in SAS. The first part
of Program 1 11.sas (adapted from Khattree & Naik, 1995, p. 65) produces a plot of
a bivariate normal distribution with mean and covariance matrix:

μ =
(

0
0

)
and Σ =

(
3 1
1 4

)
.

This is the covariance matrix of variables y1 and y2 from the simulated mul-
tivariate normal data generated by Program 1 7.sas. The three-dimensional plot is
given in Graph 1.11.1.

To see how plots vary, a second plot is generated in Program 1 11.sas using
variables y1 and y4 from the simulated data in data set 1 7.dat. The covariance
matrix for population parameters for the plot are:

μ =
(

0
0

)
and Σ =

(
3 0
0 20

)
.

The plot is displayed in Graph 1.11.2.
For the first plot, a cross-wise plot would result in an oval shape, whereas in the

second plot, a circular shape results. This is due to the structure of the covariance
matrix. Using SAS INSIGHT for the data set, one may generate contour plots for
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Graph 1.11.2: Bivariate Normal Distribution with u=(0, 0), var(y1)=3, var(y2)=20,
cov(y1,y2)=0, r=0
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the data. See Khattree and Naik (1995) for more graphical displays of multivariate
data using SAS.



CHAPTER 2

Unrestricted General Linear Models

2.1 INTRODUCTION

Unrestricted (univariate) linear models are linear models that specify a relation-
ship between a set of random, independent, identically distributed (iid) dependent
variables y′ = (y1, y2, . . . , yn) and a matrix of fixed, nonrandom, independent vari-
ables X = (xik) such that

E(yi) = xi1β1 + xi2β2 + · · ·+ xikβk i = 1, 2, . . . , n. (2.1)

The variance of each yi is constant (σ2) or homogeneous, and the relationship is lin-
ear in the unknown, nonrandom parameters β′ = (β1, β2, . . . , βk). Special classes
of such models are called multiple linear regression models, analysis of variance
(ANOVA) models, and intraclass covariance models. In this chapter, we review both
ordinary least squares (OLS) and maximum likelihood (ML) estimation of the model
parameters, hypothesis testing, model selection and prediction in multiple linear re-
gression model, and the general linear mixed model (GLMM) is introduced. Estima-
tion theory and hypothesis testing for the GLMM are not discussed until Chapter 11.
Applications discussed include multiple linear regression analyses and the analysis
of variance for several experimental designs.

2.2 LINEAR MODELS WITHOUT RESTRICTIONS

For multiple regression, ANOVA, and intraclass covariance models, we assume
that the covariance matrix for the vector y has the structure

Ω = σ2In (2.2)

where In is an n × n identity matrix. The error structure for the observation is said
to be homogeneous or spherical. Models of the form (1.1) with covariance structure
(2.2) are called unrestricted (univariate) linear models.

To estimate β, the vector of unknown, nonrandom, fixed effects regression coeffi-
cients, the method of OLS is commonly utilized. The least squares criterion requires
minimizing the error sum of squares,

∑n
i=1 e

2
i = tr(ee′), where tr(·) is the trace

25
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operator. Minimizing the error sum of squares leads to the normal equations

(X ′X)β̂ = X ′y. (2.3)

Because X has full column rank, rank(X) = k, the ordinary least squares estimator
(OLSE) of β is the unique solution to the normal equation (2.3),

β̂ = (X ′X)−1X ′y. (2.4)

This is also called the best linear unbiased estimator (BLUE) of β since among all
parametric functions ψ = c′β, ψ̂ = c′β̂ is unbiased for ψ and has smallest variance.
The mean and variance of the parametric functions are

E(ψ̂) = ψ (2.5)

var(ψ̂) = σ2c′(X ′X)−1c. (2.6)

If the matrix X is not of full rank k, one may either reparameterize the model to
full rank or use a generalized inverse of X ′X in (2.4) to solve the normal equations.

Definition 2.1. A generalized inverse of a real matrixA is any matrixG that satisfies
the condition AGA = A. The generalized inverse of A is written as G = A−.

Because A− is not unique, (2.3) has no unique solution if X ′X is not full rank
k; however, linear combinations of β, ψ = c′β, may be found that are unique even
though a unique estimate of β is not available. Several SAS procedures use a full rank
design matrix while others do not; more will be said about this when the applications
are discussed. For a thorough discussion of the analysis of univariate linear models
see Searle (1971) and Milliken and Johnson (1984). Following Searle (1987), and
Timm and Carlson (1975), we will usually assume in our discussion in this chapter
that the design matrix X is of full rank.

2.3 HYPOTHESIS TESTING

Once the parameter β has been estimated, the next step is usually to test hypothe-
ses about β. For hypothesis testing, we assume that the vector e follows a spherical
multivariate normal distribution,

y ∼ Nn(μ = Xβ,Ω = σ2In). (2.7)

The MLE of the population parameters β and σ2 assuming normality are

β̂MLE = (X ′X)−1X ′y (2.8)

σ̂2
MLE =

(y −Xβ̂)′(y −Xβ̂)
n

=
(y′y − nȳ2)

n
(2.9)
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where the likelihood function using (1.31) has the form

L(σ2, β|y) = (2πσ2)−n/2 exp
[
− (y −Xβ)′(y −Xβ)

2σ2

]
. (2.10)

We see that the OLSE (2.4) and the MLE (2.8) estimate of β are identical.
To test the hypothesis H : Cβ = ξ (1.20), we may create a likelihood ratio

test which requires maximizing (2.10) with respect to β and σ2 under the hypothesis
L(ω̂) and over the entire parameter space L(Ω̂0). Over the entire parameter space,
Ω0, the MLE of β and σ2 are given in (2.8). The corresponding estimates under the
hypothesis are

β̂ω = β̂ − (X ′X)−1C′[C(X ′X)−1C′]−1(Cβ̂ − ξ) (2.11)

σ̂2
ω =

(y −Xβ̂ω)′(y −Xβ̂ω)
n

(2.12)

(see Timm, 1975, p. 178). Substituting the estimates under ω and Ω0 into the likeli-
hood function (2.10), the likelihood ratio defined in (1.50) becomes

λ =
L(ω̂)

L(Ω̂0)
=

(2πσ̂2
ω)−n/2

(2πσ̂2)−n/2

=

[
(y −Xβ̂)′(y −Xβ̂)

(y −Xβ̂ω)′(y −Xβ̂ω)

]n/2
(2.13)

so that

Λ = λ2/n =
E

E +H
(2.14)

where

E = y′y − nȳ2 = y′(I −X(X ′X)−1X ′)y (2.15)

H = (Cβ̂ − ξ)′[C(X ′X)−1C′]−1(Cβ̂ − ξ). (2.16)

Details are provided in Timm (1975, 1993b, Chapter 3) and Searle (1987, Chapter
8).

The likelihood ratio test is to reject

H : Cβ = ξ if Λ < c (2.17)

where c is determined such that the P (Λ < c|H) = α. The statistic Λ is related
to a beta distribution represented generally as Up,νh,νe where p is the number of
variables, νh is the degrees of freedom for the hypothesis, νh = rank(C) = g, and
νe is the degrees of freedom for error, νe = n− rank(X).

Theorem 2.1. When p = 1,
[
νe(1− U1,νh,νe)
νhU1,νh,νe

]
= Fνh,νe . (2.18)
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From Theorem 2.1, we see that rejecting H for small values of U is equivalent
to rejecting H for large values F where

F =
H/νh
E/νe

=
MSh
MSe

(2.19)

is the F statistic, and MSh refers to the mean square for hypothesis and MSe refers
to the mean square for error.

2.4 SIMULTANEOUS INFERENCE

While the parametric function that led to the rejection ofH may not be of interest
to the researcher, one can easily find the combination of the parameters β that led to
rejection. To find the function ψmax = c′β, observe that by (2.19) and (2.15)-(2.16)
with ψ̂ = Cβ̂ that

(ψ̂ − ψ)′(C(X ′X)−1C′)−1(ψ̂ − ψ) > gMSeF
1−α (2.20)

where F 1−α is the upper 1 − α percentage value of the F distribution. using the
Cauchy-Schwarz (C-S) inequality, (X ′y)2 ≤ (X ′x)(y′y), with x = Fa and y =
F−1b and G = F ′F , we have that (a′b)2 ≤ (a′Ga)(b′G−1b). Letting b = (ψ̂ − ψ)
and G = C(X ′X)−1C′, the

sup
a

[a′(ψ̂ − ψ)]2

a′C(X ′X)−1C′a
≤ (ψ̂ − ψ)′(C(X ′X)−1C′)−1(ψ̂ − ψ) (2.21)

or for (2.20), the

sup
a

[a′(ψ̂ − ψ)]2

a′C(X ′X)−1C′a
≥ (gMSeF

1−α)1/2. (2.22)

By again applying the C-S inequality

(a′a)2 ≤ (a′a)(a′a) or (a′a) ≤ [(a′a)(a′a)]1/2,

we have that

[a′(ψ̂ − ψ)]2 ≤ a′(ψ̂ − ψ)(ψ̂ − ψ)′a. (2.23)

Hence, for (2.22) the

sup
a

a′G1a

a′G2a
≥ (gMSeF

1−α) (2.24)

where G1 = (ψ̂ − ψ)(ψ̂ − ψ)′ and G2 = C(X ′X)−1C′. Recall, however, that the
supremum of the ratio of two quadratic forms is the largest characteristic root of the
determinantal equation |G1 − λG2| = 0 with associated eigenvector a∗. Solving
|G−1

2 G1 − λI| = 0, we find that there exists a matrix P say such that G−1
2 G1P =
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ΛP where Λ are the roots and P is the matrix of associated eigenvectors of the
determinantal equation. For (2.24), we have that

G−1
2 G1|G−1

2 (ψ̂ − ψ)| = G−1
2 (ψ̂ − ψ)(ψ̂ − ψ)′G1−

2 (ψ̂ − ψ)

= [(ψ̂ − ψ)′G−1
2 (ψ̂ − ψ)]G−1

2 (ψ̂ − ψ)

= λG−1
2 (ψ̂ − ψ) (2.25)

so that a∗ = G−1
2 (ψ̂ − ψ) is the eigenvector of G−1

2 G1 for the maximum root
of |G−1

2 G1 − λI| = 0. Thus, the eigenvector a∗ may be used to find the linear
parametric function of β that is most significantly different from ξ. The function is

ψmax = (a′∗C)β = c′β. (2.26)

The Scheffé-type simultaneous confidence interval for ψ = c′β for all nonnull vec-
tors c′ such that the

∑
i ci = 0 and the ci are elements of the vector c is given by

ψ̂ − c0σ̂ψ̂ ≤ ψ ≤ ψ̂ + c0ψ̂ψ̂ (2.27)

where ψ = c′β, ψ̂ = c′β̂, σ̂ψ̂ is an estimate of the standard error of ψ̂ given by (2.6)
and

c20 = gF 1−α
g,νe (2.28)

where g = νh (see Scheffé, 1959, p. 69).
With the rejection of the test of size α for the null overall hypothesis H : Cβ =

0, one may invoke Scheffé’s S2-method to investigate the infinite, nonhierarchical
family of contrasts orthogonal to the significant contrast c found using the S-method.
Any contrast ψ̂ is significantly different from zero if

|ψ̂| > [(νh − 1)F 1−α
νh−1,νe

]1/2 = S2 (2.29)

where νh is the degrees of freedom of the null hypothesis, and F 1−α
νh−1,νe

is the upper
(1 − α) 100% critical value of the F distribution with degrees of freedom νh − 1
and νe. Scheffé (1970) showed that the experimentwise Type I error rate for the
procedure is controlled at the nominal level α, the level of the overall test. However,
the Per-Family Error Rate (PFE), the expected number of Type I errors within the
family will increase, Klockars, Hancock, and Krishnaiah (2000). Because these tests
are guaranteed to control the overall experimentwise error rate at the level α, they are
superior to Fisher’s protected t-tests which only weakly control the experimentwise
Type I error rate, due to the protection of the significant overall F test, Rencher and
Scott (1990).

To construct an UI test of H : Cβ = ξ one writes the null hypothesis as the
intersection hypothesis

H =
⋂
a

Ha (2.30)
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where a is a nonnull g-dimensional vector. Hence, H is the intersection of a set of
elementary tests Ha. We would reject H if we can reject Ha for any a. By the UI
principle, it follows that if we could reject for any a, we could reject for the a = a∗
that maximizes (2.22); thus, the UI test for this situation is equivalent to the F test
or a likelihood ratio test. For additional details, see for example Casella and Berger
(1994, Section 11.2.2).

2.5 MULTIPLE LINEAR REGRESSION

Multiple linear regression procedures are widely applied in the social and physi-
cal sciences, in business and industry, and in the health sciences to explain variation
in a dependent (criterion) variable by employing a set of independent (predictor) vari-
ables using observational (nonexperimental) data. In these studies, the researcher’s
objective is to establish an optimal model by selecting a subset of available predic-
tors that accounts for the variation in the dependent variable. In such studies, the
primary goal is to discover the relationship between the dependent variable and the
“best” subset of predictor variables. Multiple linear regression analysis is also used
with experimental data. In these situations, the regression coefficients are employed
to evaluate the marginal or partial effect of a predictor on the dependent variable
given the other predictor variables in the model. In both of these cases, one is usu-
ally concerned with estimating model parameters, model specification and variable
selection. The primary objective is to develop an “optimal” model using a sampling
plan with fixed or random predictors, based upon an established theory. Generally
speaking, one is concerned with model calibration using sample data that employs
either fixed or random predictors. A second distinct phase of the study may involve
model validation. For this phase of the study, one needs to define a measure of pre-
dictive precision.

Regression models are also developed to predict some random continuous out-
come variable. In these situations, predictor variables are selected to maximize the
predictive power of the linear regression model. Studies in this class are not con-
cerned with model calibration, but predictive precision. As a result, regression co-
efficients are not interpreted as indices of the effects of a predictor variable on the
criterion. And, variable selection methods that maximize prediction accuracy and/or
minimize the mean squared error of prediction are of primary interest. While the pre-
dictors may be fixed, they are usually considered to be random when investigation
prediction.

Even though both paradigms are widely used in practice and appear to be inter-
related, they are distinct and depend on a set of model assumptions. And, the corre-
sponding model assumptions affect measures of model fit, prediction, model valida-
tion, and variable selection which are not always clearly understood when put into
practice. Model calibration studies are primarily concerned with understanding the
relationship among the predictors to account for variation in the criterion variable
and prediction studies are primarily concerned with selecting variables that maxi-
mize predictive precision.

Regression models may be applied using a random dependent variable and sev-
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eral fixed predictors making specific assumptions regarding the random errors: (i)
the classical multiple linear regression (CR) model. Models are also developed with
fixed predictors, assuming that the random errors have normal structure: (ii) the
classical normal multiple linear regression (CNR) model. The CR model and CNR
model are called the general linear model and the normal general linear model, re-
spectively. For these models the set of predictors is not random; it remains fixed
under repeated stratified sampling of the dependent variable. For the CR or CNR
models, the model calibration phase of the study and the model validation phase of
a study are usually separated into two distinct phases called model calibration and
model validation. The validation phase of the study may require a second data set
to initiate the cross-validation process. The second data set may be obtained from a
single sample by splitting the sample or by obtaining an independent set of observa-
tions.

An alternative framework for model development occurs when the dependent
variable and the set of predictors are obtained from a multivariate population as a
random sample of independent and identically distributed observations. If one devel-
ops linear models of the joint variation of all variables in the study, we have what is
called the (iii) random, classical (distribution-free) multiple linear regression (RCR)
model. For the RCR model, the joint distribution of the dependent and independent
random variables is unknown. While one may employ robust regression procedures
to develop a RCR model, in most applications of multiple linear regression, one
assumes a structural linear model where the dependent and independent variables
follow a multivariate normal distribution: this is the (iv) jointly normal multiple lin-
ear regression (JNR) model. Another model closely related to the JNR model is
the (iv) random, classical normal multiple linear regression (RCN) model. For the
RCN model, the conditional distribution of the dependent variable is assumed to be
normal and the marginal distribution of the independent variables is unknown. For
both the JNR and RCN models, model calibration and model validation need not be
separated. They may be addressed in a single study without cross-validation.

In the following sections, model assumptions, sampling plans, model calibration
and model prediction, goodness of model fit criteria, model selection criteria, predic-
tive precision, mean squared error of prediction in multiple linear regression models,
and model validation when the independent variables are consider fixed or random
are reviewed. While the concepts of variation free-ness and weak exogeneity may
also be of interest, the topic of exogeneity in linear regression models is discussed in
detail by Ericsson (1994) and will not be reviewed here.

2.5.1 Classical and Normal Regression Models

Estimation

The CR model is most commonly used in experimental and observational studies
to “discover” the relationship between a random dependent variable y and p fixed
independent variables xi. The goal of the study is model specification or model cali-
bration. Assuming the relationship between y and the independent variable is linear
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in the elements of the parameter vector β the linear regression model is represented
as y = β0+β1x1+· · ·+βpxp+ewhere the unknown parameter vector β′ = (β0, β

′
�),

and the vector of regression coefficients β′
� = (β1, . . . , βp) is associated with the p

independent variables and β0 is the model’s intercept. The random unknown error e
is assumed to have mean zero, E(e) = 0, and common unknown error variance σ2,
V (e) = σ2. Organizing the n observations into a vector, the observation vector is
y and the n fixed row vectors x′i in the matrix X = (1, X�) is the n × k (design)
matrix of fixed variables with full rank k = p+1 for a model with p parameters. The
vector 1 is a column vector of n 1’s and the matrixX� contains the independent vari-
ables. The linear model y = Xβ + e has mean E(y) = Xβ and covariance matrix
Ω = σ2In. The primary goal of an analysis is to estimate the unknown parameter
vector β and σ2 using the collected data, the calibration sample.

To estimate the unknown parameter vector β, the n row vectors x′i of the matrix
X are fixed for some set of (optimally) defined values that define the strata for the
ith subpopulation. For each subpopulation or strata, a single observation yi is se-
lected and the n observations are organized to form the elements of the observation
vector y. Using the stratified sampling scheme, the elements in y are independent,
but not identically distributed since they are obtained from distinct subpopulations.
Given this sampling process (for an elementary discussion of this sampling scheme,
one may consult Graybill, 1976, p. 154-158), it is not meaningful to estimate the
population mean or variance of the row vectors in the matrix X since each row is
not sampled from the joint distribution of independent variables. Furthermore, σ2 is
the variance of the random variable y given x′i and the means E(yi|x′i) = x′iβ = μi
are the conditional means of yi given x′i with population mean vector μ = Xβ. For
the CR model, we are not directly concerned with estimating the marginal or un-
conditional mean of y, E(yi) = μy , or the marginal or unconditional variance of y,
V (yi) = σ2

y for all i. In the CR model, the variance of the unknown random error e is
the same as variance of y, namely σ2. Thus, as correctly noted by Goldberger (1991,
p. 179), the sample estimator

∑
i(yi−ȳ)2/(n−1) = SST/(n−1) = σ̃2

y is not an un-
biased estimator of the population variance of y. Using properties of quadratic forms,
the expected value of the sample estimator is E|σ̃2

y | = σ2 + β′
�(X

′
�P1X�)β�/(n− 1)

where P1 = (I − 1(1′1)−11′) is the projection (symmetric and idempotent) matrix
for the CR model. Furthermore, because the matrix X is fixed in the CR model
the sample covariance matrix associated with the independent variables may not be
used as an estimate of the unknown population covariance matrix Σxx since X is
not a random matrix. The row vectors x′i are not selected from the joint multivariate
distribution of the independent variables. Given the CR model, the OLSE for the
parameter vector is given in (2.4). Adding the assumption of normality to the CR
model yields the CNR model. Then the MLE of the parameters is given in (2.8). The
mean squared error “risk” of the estimate β̂, assuming either a CR or CNR model, is

E [(β − β̂)′(β − β̂)] = σ2tr[(X ′X)−1]. (2.31)

While the OLS estimator is the best linear unbiased estimator, shrinkage estimators
due to Stein may have uniformly smaller risk (Dempster, Laird, & Rubin, 1977;
Srivastava & Bilodeau, 1989).
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Having found the estimate of β, the vector ŷ = Xβ̂ characterizes the empirical
relationship or fit between the random variable y and the vector of fixed independent
variables x′ = (x0, x1, . . . , xp) where x0 = 1, based upon the sampling plan. The
vector e = y − ŷ is the vector of estimated errors or the vector of residuals, where
the residuals ei = yi − ŷi have mean zero. Letting SSE =

∑n
i (yi − ŷi)2 = ‖e‖2

represent the error sum of squares, the minimum variance unbiased estimator and
maximum likelihood estimators of σ2 are, respectively,

s2 =
SSE

(n− k) = MSE (2.32)

and

σ̂2 =
SSE

n
. (2.33)

These variance estimates are estimates of the conditional variance of the random
variable y given the fixed vector of observations.

Model Fit

Having established the relationship between y and x it is customary to report
a measure of the proportion of the variation about the sample mean y, ȳ, that can
be accounted for by the regression function. The measure of sample fit is Fisher’s
correlation-like ratio, η̃2, defined as

η̃2 =
‖ŷ − 1ȳ‖2
‖y − 1ȳ‖2 =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

=
SSB

SST

= 1− SSE

SST
= 1− ‖e‖2

(y′y − nȳ2)

= 1−
∑n
i e

2
i∑n

i (yi − ȳ)2 (2.34)

where the vector 1 represents a vector of n 1’s and from an analysis of the variation
about the mean, the total sum of squares (SST ) is equal to the sum of the squares
deviations between the fitted values and the mean (SSB) plus the sum of the squares
error (SSE). The correlation-like ratio lies between zero and one (provided an in-
tercept is included in the model). If the relationship between y and x is linear, then
Fisher’s correlation-like ratio becomes the coefficient of multiple determination, R̃2.
And, expression (2.34) becomes

η̃2 = R̃2 =
(β̂′Xy − nȳ2)
(y′y − nȳ2)

=
SSR

SST
= 1− SSE

SST
(2.35)

where the deviations between the fitted values and the mean are replaced by devi-
ations due to the linear relationship, represented by (SSR), and is called the sum
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of square regression. The coefficient of determination R̃2 = 1 if e = 0, and the
vector y = Xβ so that y is an exact linear function of the variables in x. The sample
fit is exact in that all the variation in the elements of the vector y is accounted for
(linearly) or explained by the variation among the elements in the vector x. When
the coefficient of determination R̃2 = 0, each element of the vector ŷ is identical
to the sample mean of the observations, ŷi = ȳ for all i observations. Then, the
best regression equation is the sample mean vector ȳ = 1ȳ so that none of the vari-
ation in y is accounted for (linearly) by the variation in the independent variables.
Thus the quantity R̃2 is often used as a measure of goodness-of-fit for the estimated
regression model. However, since R̃2 tends to increase as additional independent
variables are included in the CR or CNR model, many authors suggest the adjusted
coefficient of determination as a measure of goodness of model fit which takes into
account the size of k relative to n. While one may account for the size of k relative
to n in any number of ways, the most popular correction is the adjusted coefficient
of determination defined as

R̃2
a = 1−

(
n− 1
n− k

)(
SSE

SST

)
= 1−

(
SSE/(n− k)

SST/(n− 1)

)

= 1− MSE

σ̃2
y

= 1− (n− 1)(1− R̃2)
n− k . (2.36)

While the numerator MSE is an unbiased estimate of σ2, the denominator of the
ratio is not an unbiased estimate of the variance of y for either the CR or CNR
models. Although R̃2

a may be expressed using a “sample variance-like” formula

R̃2
a = 1− s2y·x

σ̃2
y

. (2.37)

Neither R̃2 or R̃2
a is an estimator of the population coefficient of determination R2

since we have selected the rows of the matrix X selectively and not at random.
Furthermore, with a fixed matrix X , we can always find a design matrix X that
makes R̃2 = R̃2

a = 1. Since the matrix X is not randomly created, but fixed, one
can always obtain a set of n-linearly independent n × 1 column vectors to create a
basis for the matrix X . Then, y may be represented by y = Xβ exactly making
the coefficient of determination or adjusted coefficient of determination unity. Given
these limitations, Goldberger (1991, p. 177) concluded that the most important thing
about R̃2 and R̃2

a for the CR and CNR models is that they are not very useful.
In summary, for the CR or CNR models: (i) the predictor variables are nonran-

dom and fixed, (ii) the sampling plan for the model employs a stratified sampling
process where the criterion variable is obtained for fixed values of the predictor so
that the dependent variables are independent, but are not identically distributed, (iii)
because the predictors are fixed, the values of the predictors may be chosen to cre-
ate an optimal design to minimize the mean square error of the estimate β̂, and (iv)
neither R̃2 or R̃2

a are necessarily very useful in the evaluation of model fit.
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Model Selection

Because X is fixed and not random in the CR and CRN models, the matrix X
may represent an over fitted model. Letting Xt represent the true model and Xu

an under fitted model, the relationship among the variables are often assumed to
be nested in that Xu ⊆ Xt ⊆ X with corresponding parameter vectors βu, βt,
and β, respectively. Next, suppose a sample of n observations from an over fitted
model is used to estimate the unknown parameter vector β so that the estimator has
the expression given in (2.4). Then, if we obtain n new observations y where the
observations have the linear identical form y = Xβ + e, the predicted value of y is
ŷ = Xβ̂. Since the matrix X is fixed, the average mean squared error of prediction
for the n new observations is

δ2f =
E [(y − ŷ)′(y − ŷ)]

n
=
E [(Xβ −Xβ̂)′(Xβ −Xβ̂)]

n
=
E [e′e]
n

=
tr[(X ′X)σ2(X ′X)−1]

n
+
nσ2

n

= σ2

(
1 +

k

n

)
. (2.38)

The quantity δ2f is called the final prediction error (FPE).
An unbiased estimator of δ2f is obtained by substituting for σ2 in (2.38), the un-

biased estimator given in (2.32). An unbiased estimate of the FPE and its associated
variance follow

δ̂2u = s2
(

1 +
k

n

)
, (2.39)

var(δ̂2u) =
(

2σ4

n− k
)(

1 +
2k
n

+
k2

n

)
, (2.40)

Picard and Berk (1990). For the CNR model, the errors follow a multivariate normal
distribution so the MLE of the FPE is

δ̂2MLE =
SSE

(n− k)
(
n+ k

n

)
=
SSE

n

(
n+ k

n− k
)

= σ̂2

(
n+ k

n− k
)

= σ̂2

(
1 +

2k
n− k

)
(2.41)

where σ̂2 is given in (2.33). As the number of parameters vary, the final prediction
error balances the variance between the best linear predictor of y and the variance
of Xβ̂. Models with small final prediction error are examined to select the “best”
candidate model. The effect of data splitting on the estimate of FPE is discussed by
Picard and Berk (1990).
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Mallows (1973) took an alternative approach in developing a model selection
criterion, again for fixed X . There are 2p − 1 possible submodels. Let subscript j
represent different models where j = 1, . . . , (2p − 1) and kj represents number of
parameters in the jth model. He considered the relative error of estimating y for a
submodel ŷj = Xj β̂j defined by

Jj =
E [(y − ŷj)′(y − ŷj)]

σ2

=
∑n

i var(ŷi)2 +
∑n
i (bias in ŷi)2

σ2

= kj +
(β̂j − β)′X ′X(β̂j − β)

2σ2
= kj + λ̂j (2.42)

where λj = E(λ̂j) is the noncentrality parameter in the CR and CNR models. Letting
SSEj = ‖ej‖2 for kj parameters, Mallows proposed an estimator Ĵj = SSEj/s

2−
n+2kj of Jj by obtaining unbiased estimators of the numerator and denominator of
the relative error ratio. His familiar Cp criterion for model selection is

Cp =
(
SSEj
s2

− n+ 2kj

)
. (2.43)

Mallows (1995) suggests that any model in which Cp < kj may be a potential
candidate model. Both the FPE and Cp criteria may be used with either the CR
and CNR models.

In 1973, Hirotugu Akaike derived an estimator of the (relative) Kullback-Leibler
distance based on Fisher’s maximized log-likelihood for the CNR model. His mea-
sure for model selection is called Akaike’s information criterion (AIC).
Akaike (1973) criterion is defined as

AIC = −2 log(likelihood) + 2(number of parameters estimated). (2.44)

For the CNR model,

−2 log(likelihood) = n log(2π) + n log(σ2) +
(y −Xβ)′(y −Xβ)

σ2
(2.45)

and since the number of parameters to be estimated is kj for β and 1 for σ2
j , the AIC

criterion is

AICj = n log(2π) + n log(σ2
j ) + n+ 2(kj + 1). (2.46)

Ignoring the constants, the AIC criterion becomesAICj = n log(σ2) + 2d, for d =
kj + 1. Substituting a MLE and an unbiased estimator for the unknown parameter
σ2
j , the AIC criteria follow

AICMLE = n log(σ̂2
j ) + 2d (2.47)

AICu = n log(s2j) + 2d. (2.48)
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The model with the smallest AIC value is said to fit best. McQuarrie and Tsai scale
the AIC criterion by dividing it by the sample size n.

When using Akaike’s AIC fit criterion, one selects a model with too many vari-
ables (an overfit model) when there are too many parameters relative to the sample
size n, [n/d < 40]. For this situation, Sugiura (1978) proposed a corrected AIC
(CAIC) criterion defined as

CAICj = AICj +
2d(d+ 1)
n− d− 1

. (2.49)

A word of caution, most statistical packages do not calculate CAICj , but calculate
AICMLE . Users must make their own adjustments. One may simply, for example,
substitute AICMLE for the AICj . Monte Carlo studies performed by McQuarrie
and Tsai (1998) use both the statisticAICu and the criterionCAIC, where the latter
includes the biased MLE for the variance estimate and Suguira’s penalty correction.
An estimate of AIC that includes an unbiased estimate of the variance and Suguira’s
penalty correction is represented by CAICu, a “doubly” corrected criterion.

Schwarz (1978) and Akaike (1978) developed model selection criteria using a
Bayesian approach which incorporates a large penalty factor for over fitting. The
criteria select models based upon the largest posterior probability of being correct.
In large samples, their posterior probabilities are approximated using a Taylor series
expansion. Scaling the first two terms in the series by n their criterion is labeled BIC
for Bayesian information criterion (or also SIC for Schwarz information criterion or
SBC for Schwarz-Bayesian criterion). Hannan and Quinn (1979) developed another
criterion when analyzing autoregressive time series models. Applying their criterion
to CNR models, the criterion is represented by HQ. Formula for the two criteria are

BICj = n log(σ2
j ) + d log(n), (2.50)

HQj = n log(σ2
j ) + 2d log[log(n)]. (2.51)

One may again substitute either a MLE for σ2
j , σ̂2

j , or the minimum variance unbiased
estimator, s2j . When an unbiased estimate is substituted, the criteria are represented
byBICu, andHQu, respectively. In either case, one investigates potential candidate
models for a subset of variables that have the smallest BIC and HQ values. For very
large samples, the HQ criterion behaves very much like the AIC criterion. Using the
scaling factor n/(n− d− 1) for the HQ criteria, the scaled corrected criteria (CHQ)
proposed by McQuarrie and Tsai (1998, p. 35) is defined

CHQj = log(σ̂2
j ) +

2kj log[log(n)]
n− d− 1

. (2.52)

Many authors suggest the investigation of models that minimize s2j or equiva-
lently the sum of squares error criterion SSEj since s2j = SSEj/(n − kj). How-

ever, since 1− R̃2
a = s2j/(SST/n), the denominator is constant as kj varies, so that

minimizing s2j is equivalent to selecting a model that maximizes that statistic R̃2
a.
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One may also relate Mallow’s criterion to R̃2. Letting R̃2
j denote the coefficient of

determination for the submodel,

Cp =

(
1− R̃2

j

1− R̃2

)
(n− k)− n+ 2kj. (2.53)

A common practice in the CR or CNR models with fixed X is to assume that the
“true” model is within the class of models under study, a nested set of models. Thus,
the best model is defined by a parameter space defined by a subset of the collected
variables. Model selection criteria that select the true nested model asymptotically
with probability one are said to be consistent. The criteria BIC and HQ are consistent.
This is not the case for the selection criteria AIC, Cp, and R̃2

a. When using these
criteria, one tends to select a model with too many independent variables, McQuarrie
and Tsai (1998, p. 42 & 370); however, the AICu and CAIC criteria tend to overfit
least. If a researcher is not sure that the “true” model is among the nested variables,
the model is nonnested; however, one may still want to locate a model that is an
approximation to the true model. In this case, the approximation is usually evaluated
by comparing the average minimum mean square error of prediction for any two
models.

In large samples, a model selection criterion that chooses the model with min-
imum mean squared error is said to be asymptotically efficient. The FPE criterion
δ2f , and the criteria AIC, Cp, and R̃2

a are all asymptotically efficient criteria. But, in
small samples, they may lead to overfitting. No selection criterion is both consistent
and asymptotically efficient, so there is not a single criterion that is best for all situ-
ations. However, based on extensive Monte Carlo studies conducted by McQuarrie
and Tsai (1998) using random normal errors, they found that the asymptotically ef-
ficient criterion CAIC and the consistent criterion CHQ performed best. The criteria
were most likely to find the correct or closest candidate model. They are least likely
to under fit and minimize over fitting. For weakly identified models no criterion is
best; however, criteria with weak penalty functions tend to overfit excessively.

Finally, the Cp and FPE criteria may only be used to select a submodel from
within the class of nested models. The information criteria allow one to rank order
potential candidate models whether the models are nested or nonnested. For a com-
prehensive review of model selection criteria for nonnested models, one may consult
McAleer (1995).

Model Selection, Likelihood Ratio Tests

For the CNR model, the likelihood ratio test statistic for testing the null hypoth-
esis that a subset of the regression coefficients βi associated with any h = p − m
variables (excluding the intercept-even thought it is included in the regression model)
is zero versus the alternative hypothesis that the coefficients are not zero, one may
employ the F statistic

F =
(n− k)
n

· (R̃
2 − R̃2

m)
(1 − R̃2)

∼ F (νh, νe) (2.54)


