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Preface

This book introduces the key ideas and concepts of numerical analysis. The dis-
cussion focuses on how one can represent different mathematical models in a form
that enables their efficient study by means of a computer. The material learned from
this book can be applied in various contexts that require the use of numerical meth-
ods. The general methodology and principles of numerical analysis are illustrated
by specific examples of the methods for real analysis, linear algebra, and differential
equations. The reason for this particular selection of subjects is that these methods
are proven, provide a number of well-known efficient algorithms, and are used for
solving different applied problems that are often quite distinct from one another.

The contemplated readership of this book consists of beginning graduate and se-
nior undergraduate students in mathematics, science and engineering. It may also be
of interest to working scientists and engineers. The book offers a first mathematical
course on the subject of numerical analysis. It is carefully structured and can be read
in its entirety, as well as by selected parts. The portions of the text considered more
difficult are clearly identified; they can be skipped during the first reading without
creating any substantial gaps in the material studied otherwise. In particular, more
difficult subjects are discussed in Sections 2.3.1 and 2.3.3, Sections 3.1.3 and 3.2.7,
parts of Sections 4.2 and 9.7, Section 10.5, Section 12.2, and Chapter 14.

Hereafter, numerical analysis is interpreted as a mathematical discipline. The ba-
sic concepts, such as discretization, error, efficiency, complexity, numerical stability,
consistency, convergence, and others, are explained and illustrated in different parts
of the book with varying levels of depth using different subject material. Moreover,
some ideas and views that are addressed, or at least touched upon in the text, may also
draw the attention of more advanced readers. First and foremost, this applies to the
key notion of the saturation of numerical methods by smoothness. A given method of
approximation is said to be saturated by smoothness if, because of its design, it may
stop short of reaching the intrinsic accuracy limit (unavoidable error) determined by
the smoothness of the approximated solution and by the discretization parameters.
If, conversely, the accuracy of approximation self-adjusts to the smoothness, then the
method does not saturate. Examples include algebraic vs. trigonometric interpola-
tion, Newton-Cotes vs. Gaussian quadratures, finite-difference vs. spectral methods
for differential equations, etc.

Another advanced subject is an introduction to the method of difference potentials
in Chapter 14. This is the first account of difference potentials in the educational
literature. The method employs discrete analogues of modified Calderon’s potentials
and boundary projection operators. It has been successfully applied to solving a
variety of direct and inverse problems in fluids, acoustics, and electromagnetism.

This book covers three semesters of instruction in the framework of a commonly

xi



xii

used curriculum with three credit hours per semester. Three semester-long courses
can be designed based on Parts I, II, and III of the book, respectively. Part I includes
interpolation of functions and numerical evaluation of definite integrals. Part II cov-
ers direct and iterative solution of consistent linear systems, solution of overdeter-
mined linear systems, and solution of nonlinear equations and systems. Part III
discusses finite-difference methods for differential equations. The first chapter in
this part, Chapter 9, is devoted to ordinary differential equations and serves an intro-
ductory purpose. Chapters 10, 11, and 12 cover different aspects of finite-difference
approximation for both steady-state and evolution partial differential equations, in-
cluding rigorous analysis of stability for initial boundary value problems and ap-
proximation of the weak solutions for nonlinear conservation laws. Alternatively,
for the curricula that introduce numerical differentiation right after the interpolation
of functions and quadratures, the material from Chapter 9 can be added to a course
based predominantly on Part I of the book.

A rigorous mathematical style is maintained throughout the book, yet very little
use is made of the apparatus of functional analysis. This approach makes the book
accessible to a much broader audience than only mathematicians and mathematics
majors, while not compromising any fundamentals in the field. A thorough expla-
nation of the key ideas in the simplest possible setting is always prioritized over
various technicalities and generalizations. All important mathematical results are
accompanied by proofs. At the same time, a large number of examples are provided
that illustrate how those results apply to the analysis of individual problems.

This book has no objective whatsoever of describing as many different methods
and techniques as possible. On the contrary, it treats only a limited number of well-
known methodologies, and only for the purpose of exemplifying the most fundamen-
tal concepts that unite different branches of the discipline. A number of important
results are given as exercises for independent study. Altogether, many exercises
supplement the core material; they range from elementary to quite challenging.

Some exercises require computer implementation of the corresponding tech-
niques. However, no substantial emphasis is put on issues related to programming.
In other words, any computer implementation serves only as an illustration of the rel-
evant mathematical concepts and does not carry an independent learning objective.
For example, it may be useful to have different iteration schemes implemented for
a system of linear algebraic equations. By comparing how their convergence rates
depend on the condition number, one can subsequently judge the efficiency from a
mathematical standpoint. However, other efficiency issues, e.g., runtime efficiency
determined by the software and/or computer platform, are not addressed as there is
no direct relation between them and the mathematical analysis of numerical methods.

Likewise, no substantial emphasis is put on any specific applications. Indeed, the
goal is to clearly and concisely present the key mathematical concepts pertinent to
the analysis of numerical methods. This provides a foundation for the subsequent
specialized training. Subjects such as computational fluid dynamics, computational
acoustics, computational electromagnetism, etc., are very well addressed in the lit-
erature. Most corresponding books require some numerical background from the
reader, the background of precisely the kind that the current text offers.
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Chapter 1

Introduction

Modern numerical mathematics provides a theoretical foundation behind the use of
electronic computers for solving applied problems. A mathematical approach to any
such problem typically begins with building a model for the phenomenon of interest
(situation, process, object, device, laboratory/experimental setting, etc.). Classical
examples of mathematical models include definite integrals, equation of a pendulum,
the heat equation, equations of elasticity, equations of electromagnetic waves, and
many other equations of mathematical physics. For comparison, we should also
mention here a model used in formal logics — the Boolean algebra.

Analytical methods have always been considered a fundamental means for study-
ing the mathematical models. In particular, these methods allow one to obtain closed
form exact solutions for some special cases (for example, tabular integrals). There
are also classes of problems for which one can obtain a solution in the form of a
power series, Fourier series, or some other expansion. In addition, a certain role has
always been played by approximate computations. For example, quadrature formu-
lae are used for the evaluation of definite integrals.

The advent of computers in the middle of the twentieth century has drastically
increased our capability of performing approximate computations. Computers have
essentially transformed approximate computations into a dominant tool for the anal-
ysis of mathematical models. Analytical methods have not lost their importance, and
have even gained some additional “functionality” as components of combined ana-
lytical/computational techniques and as verification tools. Yet sophisticated math-
ematical models are analyzed nowadays mostly with the help of computers. Com-
puters have dramatically broadened the applicability range of mathematical meth-
ods in many traditional areas, such as mechanics, physics, and engineering. They
have also facilitated a rapid expansion of the mathematical methods into various
non-traditional fields, such as management, economics, finance, chemistry, biology,
psychology, linguistics, ecology, and others.

Computers provide a capability of storing large (but still finite) arrays of numbers,
and performing arithmetic operations with these numbers according to a given pro-
gram that would run with a fast (but still finite) execution speed. Therefore, comput-
ers may only be appropriate for studying those particular models that are described
by finite sets of numbers and require no more than finite sequences of arithmetic
operations to be performed. Besides the arithmetic operations per se, a computer
model can also contain comparisons between numbers that are typically needed for
the automated control of subsequent computations.

In the traditional fields, one frequently employs such mathematical models as

1



2 A Theoretical Introduction to Numerical Analysis

functions, derivatives, integrals, and differential equations. To enable the use of com-
puters, these original models must therefore be (approximately) replaced by the new
models that would only be based on finite arrays of numbers supplemented by finite
sequences of arithmetic operations for their processing (i.e., finite algorithms). For
example, a function can be replaced by a table of its numerical values; the derivative

d f
dx

= lim
h→0

f (x + h)− f (x)
h

can be replaced by an approximate formula, such as

f ′(x) ≈ f (x + h)− f (x)
h

,

where h is fixed (and small); a definite integral can be replaced by its integral sum; a
boundary value problem for the differential equation can be replaced by the problem
of finding its solution at the discrete nodes of some grid, so that by taking a suitable
(i.e., sufficiently small) grid size an arbitrary desired accuracy can be achieved. In
so doing, among the two methods that could seem equivalent at first glance, one
may produce good results while the other may turn out completely inapplicable. The
reason can be that the approximate solution it generates would not approach the exact
solution as the grid size decreases, or that the approximate solution would turn out
overly sensitive to the small round-off errors.

The subject of numerical analysis is precisely the theory of those models and al-
gorithms that are applicable, i.e., that can be efficiently implemented on comput-
ers. This theory is intimately connected with many other branches of mathematics:
Approximation theory and interpolation of functions, ordinary and partial differen-
tial equations, integral equations, complexity theory for functional classes and algo-
rithms, etc., as well as with the theory and practice of programming languages. In
general, both the exploratory capacity and the methodological advantages that com-
puters deliver to numerous applied areas are truly unparalleled. Modern numerical
methods allow, for example, the computation of the flow of fluid around a given
aerodynamic configuration, e.g., an airplane, which in most cases would present an
insurmountable task for analytical methods (like a non-tabular integral).

Moreover, the use of computers has enabled an entirely new scientific methodol-
ogy known as computational experiment, i.e., computations aimed at verifying the
hypotheses, as well as at monitoring the behavior of the model, when it is not known
ahead of time what may interest the researcher. In fact, computational experiment
may provide a sufficient level of feedback for the original formulation of the problem
to be noticeably refined. In other words, numerical computations help accumulate
the vital information that eventually allows one to identify the most interesting cases
and results in a given area of study. Many remarkable observations, and even dis-
coveries, have been made along this route that empowered the development of the
theory and have found important practical applications as well.

Computers have also facilitated the application of mathematical methods to non-
traditional areas, for which few or no “compact” mathematical models, such as dif-
ferential equations, are readily available. However, other models can be built that
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lend themselves to the analysis by means of a computer. A model of this kind can
often be interpreted as a direct numerical counterpart (such as encoding) of the ob-
ject of interest and of the pertinent relations between its elements (e.g., a language
or its abridged subset and the corresponding words and phrases). The very possi-
bility of studying such models on a computer prompts their construction, which, in
turn, requires that the rules and guiding principles that govern the original object be
clearly and unambiguously identified. On the other hand, the results of computer
simulations, e.g., a machine translation of the simplified text from one language to
another, provide a practical criterion for assessing the adequacy of the theories that
constitute the foundation of the corresponding mathematical model (e.g., linguistic
theories).

Furthermore, computers have made it possible to analyze probabilistic models
that require large amounts of test computations, as well as the so-called imitation
models that describe the object or phenomenon of interest without simplifications
(e.g., functional properties of a telephone network).

The variety of problems that can benefit from the use of computers is huge. For
solving a given problem, one would obviously need to know enough specific detail.
Clearly, this knowledge cannot be obtained ahead of time for all possible scenarios.

Therefore, the purpose of this book is rather to provide a systematic perspective on
those fundamental ideas and concepts that span across different applied disciplines
and can be considered established in the field of numerical analysis. Having mastered
the material of this book, one should encounter little or no difficulties when receiving
subsequent specialized training required for the successful work in a given research
or industrial field. The general methodology and principles of numerical analysis are
illustrated in the book by “sampling” the methods designed for mathematical analy-
sis, linear algebra, and differential equations. The reason for this particular selection
is that the aforementioned methods are most mature, lead to a number of well-known,
efficient algorithms, and are extensively used for solving various applied problems
that are often quite distant from one another.

Let us mention here some of the general ideas and concepts that require the most
thorough attention in every particular setting. These general ideas acquire a concrete
interpretation and meaning in the context of each specific problem that needs to be
solved on a computer. They are the discretization of the problem, conditioning of
the problem, numerical error, and computational stability of a given algorithm. In
addition, comparison of the algorithms along different lines obviously plays a central
role when selecting a specific method. The key criteria for comparison are accuracy,
storage, and operation count requirements, as well as the efficiency of utilization of
the input information. On top of that, different algorithms may vary in how amenable
they are to parallelization — a technique that allows one to conduct computations
simultaneously on multi-processor computer platforms.

In the rest of the Introduction, we provide a brief overview of the foregoing no-
tions and concepts. It helps create a general perspective on the subject of numerical
mathematics, and establishes a foundation for studying the subsequent material.
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1.1 Discretization

Let f (x) be a function of the continuous argument x ∈ [0, 1]. Assume that this
function provides (some of) the required input data for a given problem that needs to
be approximately solved on a computer. The value of the function f at every given
x can be either measured or obtained numerically. Then, to store this function in
the memory of a computer, one may need to approximately characterize it with a
table of values at a finite set of points: x1, x2, . . . ,xn. This is an elementary example
of discretization: The problem of storing the function defined on the interval [0, 1],
which is a continuum of points, is replaced by the problem of storing a table of its
discrete values at the subset of points x1, x2, . . . ,xn that all belong to this interval.

Let now f (x) be sufficiently smooth, and assume that we need to calculate its
derivative at a given point x. The problem of exactly evaluating the expression

f ′(x) = lim
h→0

f (x + h)− f (x)
h

that contains a limit can be replaced by the problem of computing an approximate
value of this expression using one of the following formulae:

f ′(x) ≈ f (x + h)− f (x)
h

, (1.1)

f ′(x) ≈ f (x)− f (x−h)
h

, (1.2)

f ′(x) ≈ f (x + h)− f (x−h)
2h

. (1.3)

Similarly, the second derivative f ′′(x) can be replaced by the finite formula:

f ′′(x) ≈ f (x + h)−2 f (x)+ f (x−h)
h2 . (1.4)

One can show that all these formulae become more and more accurate as h becomes
smaller; this is the subject of Exercise 1, and the details of the analysis can be found
in Section 9.2.1. Moreover, for every fixed h, each formula (1.1)–(1.4) will only
require a finite set of values of f and a finite number of arithmetic operations. These
formulae are examples of discretization for the derivatives f ′(x) and f ′′(x).

Let us now consider a boundary value problem:

d2y
dx2 − x2y = cosx, 0 ≤ x ≤ 1,

y(0) = 2, y(1) = 3,

(1.5)

where the unknown function y = y(x) is defined on the interval 0 ≤ x ≤ 1. To con-
struct a discrete approximation of problem (1.5), let us first partition the interval
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[0, 1] into N equal sub-intervals of size h = N−1. Instead of the continuous func-
tion y(x), we will be looking for a finite set of its values y0, y1, . . . ,yN on the grid
xk = kh, k = 0,1, . . . ,N. At the interior nodes of this grid: xk, k = 1,2, . . . ,N − 1,
we can approximately replace the second derivative y′′(x) by expression (1.4). After
substituting into the differential equation of (1.5) this yields:

yk+1 −2yk + yk−1

h2 − (kh)2yk = cos(kh), k = 1,2, . . . ,N −1. (1.6)

Furthermore, the boundary conditions at x = 0 and at x = 1 from (1.5) translate into:

y0 = 2, yN = 3. (1.7)

The system of N + 1 linear algebraic equations (1.6), (1.7) contains exactly as many
unknowns y0, y1, . . . ,yN , and renders a discrete counterpart of the boundary value
problem (1.5). One can, in fact, show that the finer the grid, i.e., the larger the N, the
more accurate will the approximation be that the discrete solution of problem (1.6),
(1.7) provides for the continuous solution of problem (1.5). Later, this fact will be
formulated and proven rigorously.

Let us denote the continuous boundary value problem (1.5) by M∞, and the discrete
boundary value problem (1.6), (1.7) by MN . By taking N = 2,3, . . ., we associate an
infinite sequence of discrete problems {MN} with the continuous problem M∞. When
computing the solution to a given problem MN for any fixed N, we only have to work
with a finite array of numbers that specify the input data, and with a finite set of
unknown quantities y0,y1, y2, . . . ,yN . It is, however, the entire infinite sequence of
finite discrete models {MN} that plays the central role from the standpoint of numer-
ical mathematics. Indeed, as those models happen to be more and more accurate, we
can always choose a sufficiently large N that would guarantee any desired accuracy
of approximation.

In general, there are many different ways of transitioning from a given continuous
problem M∞ to the sequence {MN} of its discrete counterparts. In other words, the
approximation (1.6), (1.7) of the boundary value problem (1.5) is by no means the
only one possible. Let {MN} and {M′

N} be two sequences of approximations, and let
us also assume that the computational costs of obtaining the discrete solutions of MN

and M′
N are the same. Then, a better method of discretization would be the one that

provides the same accuracy of approximation with a smaller value of N.
Let us also note that for two seemingly equivalent discretization methods MN and

M′
N , it may happen that one will approximate the continuous solution of problem M∞

with an increasingly high accuracy as N increases, whereas the other will yield “an
approximate solution” that would bear less and less resemblance to the continuous
solution of M∞. We will encounter situations like this in Part III of the book, where
we also discuss how the corresponding difficulties can be partially or fully overcome.

Exercises

1. Let f (x) have as many bounded derivatives as needed. Show that the approximation
error of formulae (1.1), (1.2), (1.3), and (1.4), is O(h), O(h), O(h2), and O(h2).
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1.2 Conditioning

Speaking in most general terms, for any given problem one can basically identify
the input data and the output result(s), i.e., the solution, so that the former determine
the latter. In this book, we will mostly analyze problems for which the solution exists
and is unique. If, in addition, the solution depends continuously on the data, i.e., if
for a vanishing perturbation of the data the corresponding perturbation of the solution
will also be vanishing, then the problem is said to be well-posed.

A somewhat more subtle characterization of the problem, on top of its well-
posedness, is known as the conditioning. It has to do with quantifying the sensitivity
of the solution, or some of its key characteristics, to perturbations of the input data.
This sensitivity may vary strongly for different problems that could otherwise look
very similar. If it is “low” (weak), then the problem is said to be well conditioned; if,
conversely, the sensitivity is “high” then the problem is ill conditioned. The notions
of low and high are, of course, problem-specific. We emphasize that the concept of
conditioning pertains to both continuous and discrete problems. Typically, not only
do ill conditioned problems require excessively accurate definition of the input data,
but also appear more difficult for computations.

Consider, for example, the quadratic equation x2 − 2αx + 1 = 0 for |α| > 1. It
has two real roots that can be expressed as functions of the argument α: x1,2 =
α ±√

α2 −1. We will interpret α as the datum in the problem, and x1 = x1(α) and
x2 = x2(α) as the corresponding solution. Clearly, the sensitivity of the solution
to the perturbations of α can be characterized by the magnitude of the derivatives
dx1,2
dα = 1± α√

α2−1
. Indeed, Δx1,2 ≈ dx1,2

dα Δα . We can easily see that the derivatives

dx1,2
dα are small for large |α|, but they become large when α approaches 1. We can

therefore conclude that the problem of finding the roots of x2 −2αx + 1 = 0 is well
conditioned when |α| 	 1, and ill conditioned when |α| = O(1). We should also
note that conditioning can be improved if, instead of the original quadratic equation,

we consider its equivalent x2 − 1+β 2

β x+1 = 0, where β = α +
√

α2 −1. In this case,

x1 = β and x2 = β−1; the two roots coincide for |β | = 1, or equivalently, |α| = 1.
However, the problem of evaluating β = β (α) is still ill conditioned near |α| = 1.

Our next example involves a simple ordinary differential equation. Let y = y(t) be
the concentration of some substance at the time t, and assume that it satisfies:

dy
dt

−10y = 0.

Let us take an arbitrary t0, 0 ≤ t0 ≤ 1, and perform an approximate measurement of
the actual concentration y0 = y(t0) at this moment of time, thus obtaining:

y
∣∣
t=t0

= y∗0.

Our overall task will be to determine the concentration y = y(t) at all other moments
of time t from the interval [0, 1].
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If we knew the quantity y0 = y(t0) exactly, then we could have used the exact
formula available for the concentration:

y(t) = y0e10(t−t0). (1.8)

We, however, only know the approximate value y∗0 ≈ y0 of the unknown quantity y0.
Therefore, instead of (1.8), the next best thing is to employ the approximate formula:

y∗(t) = y∗0e10(t−t0). (1.9)

Clearly, the error y∗ − y of the approximate formula (1.9) is given by:

y∗(t)− y(t) = (y∗0 − y0)e10(t−t0), 0 ≤ t ≤ 1.

Assume now that we need to measure y∗0 to the the accuracy δ , |y∗0 − y0| < δ , that
would be sufficient to guarantee an initially prescribed tolerance ε for determining
y(t) everywhere on the interval 0 ≤ t ≤ 1, i.e., would guarantee the error estimate:

|y∗(t)− y(t)|< ε, 0 ≤ t ≤ 1.

It is easy to see that max
0≤t≤1

|y∗(t)− y(t)|= |y∗(1)− y(1)|= |y∗0 − y0|e10(1−t0). This

yields the following constraint that the accuracy δ of measuring y0 must satisfy:

δ ≤ εe−10(1−t0). (1.10)

Let y0 be measured at the moment of time t0 = 0. Then, inequality (1.10) would
imply that this measurement has to be e10 times, i.e., thousands of times, more ac-
curate than the required guaranteed accuracy of the result ε . In other words, the
answer y(t) appears quite sensitive to the error in specifying the input data y0, and
the problem is ill conditioned.

On the other hand, if y0 were to be measured at t0 = 1, then δ = ε , and it would be
sufficient to conduct the measurement with a considerably lower accuracy than the
one required in the case of t0 = 0. This problem is well conditioned.

Exercises

1. Consider the problem of computing y(x) = 1+x
1−x as a function of x, for x ∈ (1/2, 1) and

also for x ∈ (−1, 0). On which of the two intervals is this problem better conditioned
with respect to the perturbations of x?

2. Let y =
√

2−1. Equivalently, one can write y = (
√

2+1)−1. Which of the two formu-
lae is more sensitive to the error when

√
2 is approximated by a finite decimal fraction?

Hint. Compare absolute values of derivatives for the functions (x−1) and (x+1)−1.

1.3 Error

In any computational problem, one needs to find the solution given some appropri-
ate input data. If the solution can be obtained with an ideal accuracy, then there is no
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error. Typically, however, there is a certain error content in every feasible numerical
solution. This error may be attributed to (at least) three different mechanisms.

First, the input data are often specified with some degree of uncertainty that, in
turn, will generate uncertainty in the corresponding output. Then, the solution to the
problem of interest may only be obtained with an error called unavoidable error.

Second, even if we eliminate the foregoing uncertainty by fixing the input data,
and subsequently compute the solution using an approximate method, then we still
won’t find the solution that would exactly correspond to the specified data. There
will be error due to the choice of an approximate computational procedure.

Third, the chosen approximate method is not implemented exactly either, because
of round-off errors that arise when performing computations on a real machine.

Therefore, the overall error in the solution consists of unavoidable error, the error
of the method, and round-off error. We will now illustrate these concepts.

1.3.1 Unavoidable Error

Assume that we need to find the value y of some function y = f (x) for a given
x = x0. The quantity x0, as well as the relation f itself that associates the value of the
function with every given value of its argument, are considered the input data of the
problem, whereas the quantity y = y(x0) will be its solution.

Now let the function f (x) be known approximately rather than exactly, say, f (x)≈
sinx, and suppose that f (x) may differ from sinx by no more than a specified ε > 0:

sin x− ε ≤ f (x) ≤ sinx + ε. (1.11)

Let the value of the argument x = x0 be also measured approximately: x = x∗0, so that
regarding the actual x0 we can only say that

x∗0 − δ ≤ x0 ≤ x∗0 + δ , (1.12)

where δ > 0 characterizes the accuracy of the measurement.

δ +−

y

b

a

x

sinx
sinx
sin

ε+

x−ε

0
*xx0

* x*
0 δ

FIGURE 1.1: Unavoidable error.

One can easily see from Figure 1.1
that any point on the interval [a, b] of
variable y, where a = sin(x∗0 − δ )− ε
and b = sin(x∗0 + δ ) + ε , can serve in
the capacity of y = f (x0). Clearly, by
taking an arbitrary y∗ ∈ [a, b] as the ap-
proximate value of y = f (x0), one can
always guarantee the error estimate:

|y− y∗| ≤ |b−a|. (1.13)

For the given uncertainty in the input
data, see formulae (1.11) and (1.12),
this estimate cannot be considerably im-
proved. In fact, the best error estimate
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that one can guarantee is obtained by choosing y∗ exactly in the middle of the interval
[a, b]:

y∗ = y∗opt = (a + b)/2.

From Figure 1.1 we then conclude that

|y− y∗| ≤ |b−a|/2. (1.14)

This inequality transforms into an exact equality when y(x0) = a or when y(x0) = b.
As such, the quantity |b−a|/2 is precisely the unavoidable (or irreducible) error,

i.e., the minimum error content that will always be present in the solution and that
cannot be “dodged” no matter how the approximation y∗ is actually chosen, simply
because of the uncertainty that exists in the input data. For the optimal choice of the
approximate solution y∗opt the smallest error (1.14) can be guaranteed; otherwise, the
appropriate error estimate is (1.13).

We see, however, that the optimal error estimate (1.14) is not that much better than
the general estimate (1.13). We will therefore stay within reason if we interpret any
arbitrary point y∗ ∈ [a, b], rather than only y∗opt, as an approximate solution for y(x0)
obtained within the limits of the unavoidable error. In so doing, the quantity |b−a|
shall replace |b−a|/2 of (1.14) as the estimate of the unavoidable error.

Along with the simplest illustrative example of Figure 1.1, let us consider another
example that would be a little more realistic and would involve one of the most
common problem formulations in numerical analysis, namely, that of reconstructing
a function of continuous argument given its tabulated values at some discrete set of
points. More precisely, let the values f (xk) of the function f = f (x) be known at the
equidistant grid nodes xk = kh, h > 0, k = 0,±1,±2, . . .. Let us also assume that the
first derivative of f (x) is bounded everywhere: | f ′(x)| ≤ 1, and that together with
f (xk), this is basically all the information that we have about f (x). We need to be
able to obtain the (approximate) value of f (x) at an arbitrary “intermediate” point x
that does not necessarily coincide with any of the nodes xk.

A large variety of methods have been developed in the literature for solving this
problem. Later, we will consider interpolation by means of algebraic (Chapter 2)
and trigonometric (Chapter 3) polynomials. There are other ways of building the
approximating polynomials, e.g., the least squares fit, and there are other types of
functions that can be used as a basis for the approximation, e.g., wavelets. Each
specific method will obviously have its own accuracy. We, however, are going to
show that irrespective of any particular technique used for reconstructing f (x), there
will always be error due to incomplete specification of the input data. This error
merely reflects the uncertainty in the formulation; it is unavoidable and cannot be
suppressed by any “smart” choice of the reconstruction procedure.

Consider the simplest case f (xk) = 0 for all k = 0,±1,±2, . . .. Clearly, the func-
tion f1(x) ≡ 0 has the required trivial table of values, and also | f ′1(x)| ≤ 1. Along
with f1(x), it is easy to find another function that would satisfy the same constraints,
e.g., f2(x) = h

π sin
(πx

h

)
. Indeed, f2(xk) = 0, and | f ′2(x)| =

∣∣cos
(πx

h

)∣∣≤ 1. We there-
fore see that there are at least two different functions that cannot be told apart based
on the available information. Consequently, the error max

x
| f1(x)− f2(x)| = O(h) is
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unavoidable when reconstructing the function f (x), given its tabulated values f (xk)
and the fact that its first derivative is bounded, no matter what specific reconstruction
methodology may be employed.

For more on the notion of the unavoidable error in the context of reconstructing
continuous functions from their discrete values see Section 2.2.4 of Chapter 2.

1.3.2 Error of the Method

Let y∗ = sinx∗0. The number y∗ belongs to the interval [a, b]; it can be considered a
non-improvable approximate solution of the first problem analyzed in Section 1.3.1.
For this solution, the error satisfies estimate (1.13) and is unavoidable. The point
y∗ = sinx∗0 has been selected among other points of the interval [a, b] only because it
is given by the formula convenient for subsequent analysis.

To evaluate the quantity y∗ = sinx∗0 on a computer, let us use Taylor’s expansion
for the function sinx:

sinx = x− x3

3!
+

x5

5!
− . . . .

Thus, for computing y∗ one can take one of the following approximate expressions:

y∗ ≈ y∗1 = x∗0,

y∗ ≈ y∗2 = x∗0 −
(x∗0)

3

3!
,

· · · · · · · · · · · · · · ·

y∗ ≈ y∗n =
n

∑
k=1

(−1)k−1 (x∗0)
2k−1

(2k−1)!
.

(1.15)

By choosing a specific formulae (1.15) for the approximate evaluation of y∗, we
select our method of computation. The quantity |y∗ − y∗n| is then known as the error
of the computational method. In fact, we are considering a family of methods param-
eterized by the integer n. The larger the n the smaller the error, see (1.15); and by
taking a sufficiently large n we can always make sure that the associated error will
be smaller than any initially prescribed threshold.

It, however, does not make sense to drive the computational error much further
down than the level of the unavoidable error. Therefore, the number n does not need
to be taken excessively large. On the other hand, if n is taken too small so that the
error of the method appears much larger than the unavoidable error, then one can say
that the chosen method does not fully utilize the information about the solution that
is contained in the input data, or equivalently, loses a part of this information.

1.3.3 Round-off Error

Assume that we have fixed the computational method by selecting a particular n
in (1.15), i.e., by setting y∗ ≈ y∗n. When calculating this y∗n on an actual computer,
we will, generally speaking, obtain a different value ỹ∗n due to rounding. Rounding
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is an intrinsic feature of the floating-point arithmetic on computers, as they only
operate with numbers that can be represented as finite binary fractions of a given
fixed length. As such, all other real numbers (e.g., infinite fractions) may only be
stored approximately in the computer memory, and the corresponding approximation
procedure is known as rounding. The error |y∗n − ỹ∗n| is called the round-off error.

This error shall not noticeably exceed the error of the computational method. Oth-
erwise, a loss of the overall accuracy will be incurred due to the round-off error.

Exercises1

1. Assume that we need to calculate the value y = f (x) of some function f (x), while there
is an uncertainty in the input data x∗: x∗ −δ ≤ x ≤ x∗ +δ .

How does the corresponding unavoidable error depend on x∗ and on δ for the following
functions:

a) f (x) = sinx;

b) f (x) = lnx, where x > 0?

For what values of x∗, obtained by approximately measuring the “loose” quantity x with
the accuracy δ , can one guarantee only a one-sided upper bound for lnx in problem b)?
Find this upper bound.

2. Let the function f (x) be defined by its values sampled on the grid xk = kh, where
h = 1/N and k = 0,±1,±2, . . . . In addition to these discrete values, assume that
max

x

∣∣ f ′′(x)
∣∣≤ 1.

Prove that as the available input data are incomplete, they do not, generally speaking,
allow one to reconstruct the function at an arbitrary given point x with accuracy better
than the unavoidable error ε(h) = h2/π2.

Hint. Show that along with the function f (x) ≡ 0, which obviously has all its
grid values equal to zero, another function, ϕ(x) =

(
h2/π2

)
sin(Nπx), also has all

its grid values equal to zero, and satisfies the condition max
x

∣∣ϕ ′′(x)
∣∣ ≤ 1, while

max
x

| f (x)−ϕ(x)| = h2/π2.

3. Let f = f (x) be a function, such that the absolute value of its second derivative does
not exceed 1. Show that the approximation error for the formula:

f ′(x) ≈ f (x+h)− f (x)
h

will not exceed h.

4. Let f = f (x) be a function that has bounded second derivative: ∀x : | f ′′(x)| ≤ 1. For
any x, the value of the function f (x) is measured and comes out to be equal to some
f ∗(x); in so doing we assume that the accuracy of the measurement guarantees the
following estimate:

| f (x)− f ∗(x)| ≤ ε , ε > 0.

Suppose now that we need to approximately evaluate the first derivative f ′(x).

1Hereafter, we will be using the symbol � to indicate the increased level of difficulty for a given problem.
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a) How shall one choose the parameter h so that to minimize the guaranteed error
estimate of the approximate formula:

f ′(x) ≈ f ∗(x+h)− f ∗(x)
h

.

b) Show that given the existing uncertainty in the input data, the unavoidable error
of evaluating f ′(x) is at least O

(√
ε
)
, no matter what specific method is used.

Hint. Consider two functions, f (x) ≡ 0 and f ∗(x) = ε sin
(
x/
√

ε
)
. Clearly, the

absolute value of the second derivative for either of these two functions does not
exceed 1. Moreover, max

x
| f (x)− f ∗(x)| ≤ ε . At the same time,

∣∣∣∣d f ∗

dx
− d f

dx

∣∣∣∣=
∣∣∣∣√ε cos

x√
ε

∣∣∣∣= O
(√

ε
)
.

By comparing the solutions of sub-problems a) and b), verify that the specific approxi-
mate formula for f ′(x) given in a) yields the error of the irreducible order O

(√
ε
)
; and

also show that the unavoidable error is, in fact, exactly of order O
(√

ε
)
.

5. For storing the information about a linear function f (x) = kx + b, α ≤ x ≤ β , that
satisfies the inequalities: 0 ≤ f (x) ≤ 1, we use a table with six available cells, such that
one of the ten digits: 0,1,2, . . . ,9, can be written into each cell.

What is the unavoidable error of reconstructing the function, if the foregoing six cells
of the table are filled according to one of the following recipes?

a) The first three cells contain the first three digits that appear right after the decimal
point when the number f (α) is represented as a normalized decimal fraction; and
the remaining three cells contain the first three digits after the decimal point in
the normalized decimal fraction for f (β ).

b) Let α = 0 and β = 10−2. The first three cells contain the first three digits in the
normalized decimal fraction for k, the fourth cell contains either 0 or 1 depending
on the sign of k, and the remaining two cells contain the first two digits after the
decimal point in the normalized decimal fraction for b.

c)� Show that irrespective of any specific strategy for filling out the aforementioned
six-cell table, the unavoidable error of reconstructing the linear function f (x) =
kx+b is always at least 10−3.

Hint. Build 106 different functions from the foregoing class, such that the maxi-
mum modulus of the difference between any two of them will be at least 10−3.

1.4 On Methods of Computation

Suppose that a mathematical model is constructed for studying a given object or
phenomenon, and subsequently this model is analyzed using mathematical and com-
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putational means. For example, under certain assumptions the following problem:

d2y
dt2 + y = 0, t ≥ 0,

y(0) = 0,
dy
dt

∣∣∣
t=0

= 1,

(1.16)

can provide an adequate mathematical model for small oscillations of a pendulum,
where y(t) is the pendulum displacement from its equilibrium at the time t.

A study of harmonic oscillations based on this mathematical model, i.e., on the
Cauchy problem (1.16), can benefit from a priori knowledge about the physical na-
ture of the object of study. In particular, one can predict, based on physical reasoning,
that the motion of the pendulum will be periodic. However, once the mathematical
model (1.16) has been built, it becomes a separate and independent object that can be
investigated using any available mathematical tools, including those that have little
or no relation to the physical origins of the problem. For example, the numerical
value of the solution y = sin t to problem (1.16) at any given moment of time t = z
can be obtained by expanding sinz into the Taylor series:

sinz = z− z3

3!
+

z5

5!
− . . . ,

and subsequently taking its appropriate partial sum. In so doing, representation of
the function sin t as a power series hardly admits any tangible physical interpretation.

In general, when solving a given problem on the computer, many different meth-
ods, or different algorithms, can be used. Some of them may prove far superior
to others. In subsequent parts of the book, we are going to describe a number of
established, robust and efficient, algorithms for frequently encountered classes of
problems in numerical analysis. In the meantime, let us briefly explain how the
algorithms may differ.

Assume that for computing the solution y to a given problem we can employ two
algorithms, A1 and A2, that yield the approximate solutions y∗1 = A1(X) and y∗2 =
A2(X), respectively, where X denotes the entire required set of the input data. In so
doing, a variety of situations may occur.

1.4.1 Accuracy

The algorithm A2 may be more accurate than the algorithm A1, that is:

|y− y∗1| 	 |y− y∗2|.

For example, let us approximately evaluate y = sinx
∣∣
x=0.1 using the expansion:

y∗n =
n

∑
k=1

(−1)k−1 x2k−1

(2k−1)!
. (1.17)
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The algorithm A1 will correspond to taking n = 1 in formula (1.17), and the algorithm
A2 will correspond to taking n = 2 in formula (1.17). Then, obviously,

|sin0.1− y∗1| 	 |sin 0.1− y∗2|.

1.4.2 Operation Count

Both algorithms may provide the same accuracy, but the computation of y∗1 =
A1(X) may require many more arithmetic operations than the computation of y∗2 =
A2(X). Suppose, for example, that we need to find the value of

y = 1 + x + x2 + . . .+ x1023
(

clearly, y =
1− x1024

1− x

)
for x = 0.99. Let A1 be the algorithm that would perform the computations directly
using the given formula, i.e., by raising 0.99 to the powers 1,2, . . . ,1023 one after
another, and subsequently adding the results. Let A2 be the algorithm that would
perform the computations according to the formula:

y =
1−0.991024

1−0.99
.

The accuracy of these two algorithms is the same — both are absolutely accurate
provided that there are no round-off errors. However, the first algorithm requires
considerably more arithmetic operations, i.e., it is computationally more expensive.
Namely, for successively computing

x, x2 = x · x, . . . , x1023 = x1022 · x,
one will have to perform 1022 multiplications. On the other hand, to compute
0.991024 one only needs 10 multiplications:

0.992 = 0.99 ·0.99, 0.994 = 0.992 ·0.992, . . . , 0.991024 = 0.99512 ·0.99512.

1.4.3 Stability

The algorithms, again, may yield the same accuracy, but A1(X) may be computa-
tionally unstable, whereas A2(X) may be stable. For example, to evaluate y = sinx
with the prescribed tolerance ε = 10−3, i.e., to guarantee |y − y∗| ≤ 10−3, let us
employ the same finite Taylor expansion as in formula (1.17):

y∗1 = y∗1(x) =
n

∑
k=1

(−1)k−1 x2k−1

(2k−1)!
, (1.18)

where n = n(ε) is to be chosen to ensure that the inequality

|y− y∗1| ≤ 10−3
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will hold. The first algorithm A1 will compute the result directly according to (1.18).
If |x| ≤ π/2, then by noticing that the following inequality holds already for n = 5:

1
(2n−1)!

(π
2

)2n−1
≤ 10−3,

we can reduce the sum (1.18) to

y∗1 = x− x3

3!
+

x5

5!
− x7

7!
.

Clearly, the computations by this formula will only be weakly sensitive to round-
off errors when evaluating each term on the right-hand side. Moreover, as for |x| ≤
π/2, those terms rapidly decay when the power grows, there is no room for the
cancellation of significant digits, and the algorithm A1 will be computationally stable.

Consider now |x| 	 1; for example, x = 100. Then, for achieving the prescribed
accuracy of ε = 10−3, the number n should satisfy the inequality:

1002n−1

(2n−1)!
≤ 10−3,

which yields an obvious conservative lower bound for n: n > 49. This implies that
the terms in sum (1.18) become small only for sufficiently large n. At the same
time, the first few leading terms in this sum will be very large. A small relative error
committed when computing those terms will result in a large absolute error; and since
taking a difference of large quantities to evaluate a small quantity sinx (|sinx| ≤ 1)
is prone to the loss of significant digits (see Section 1.4.4), the algorithm A1 in this
case will be computationally unstable.

On the other hand, in the case of large x a stable algorithm A2 for evaluating sinx is
also easy to build. Let us represent a given x in the form x = lπ + z, where |z| ≤ π/2
and l is integer. Then,

sinx = (−1)l sinz,

y∗2 = A2(x) = (−1)l
(

z− z3

3!
+

z5

5!
− z7

7!

)
.

This algorithm has the same stability properties as the algorithm A1 for |x| ≤ π/2.

1.4.4 Loss of Significant Digits

Most typically, numerical instability manifests itself through a strong amplifica-
tion of the small round-off errors in the course of computations. A key mechanism
for the amplification is the loss of significant digits, which is a purely computer-
related phenomenon that only occurs because the numbers inside a computer are
represented as finite (binary) fractions (see Section 1.3.3). If computers could oper-
ate with infinite fractions (no rounding), then this phenomenon would not take place.
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Consider two real numbers a and b represented in a computer by finite fractions
with m significant digits after the decimal point:

a = 0.a1a2a3 . . .am,

b = 0.b1b2b3 . . .bm.

We are assuming that both numbers are normalized and that they have the same
exponent that we are leaving out for simplicity. Suppose that these two numbers are
close to one another, i.e., that the first k out of the total of m digits coincide:

a1 = b1, a2 = b2, . . . , ak = bk.

Then the difference a−b will only have m− k < m significant digits (provided that
ak+1 > bk+1, which we, again, assume for simplicity):

a−b = 0.0 . . .0︸ ︷︷ ︸
k

ck+1 . . .cm.

The reason for this reduction from m to m− k, which is called the loss of significant
digits, is obvious. Even though the actual numbers a and b may be represented by
the fractions much longer than m digits, or by infinite fractions, the computer simply
has no information about anything beyond digit number m. Even if the result a− b
is subsequently normalized:

a−b = 0.ck+1 . . .cm cm+1 . . .cm+k︸ ︷︷ ︸
artifacts

·β−k,

where β is the radix, or base (β = 2 for all computers), then the digits from cm+1

through cm+k will still be completely artificial and will have nothing to do with the
true representation of a−b.

It is clear that the loss of significant digits may lead to a very considerable degra-
dation of the overall accuracy. The error once committed at an intermediate stage
of the computation will not disappear and will rather “propagate” further and con-
taminate the subsequent results. Therefore, when organizing the computations, it
is not advisable to compute small numbers as differences of large numbers. For
example, suppose that we need to evaluate the function f (x) = 1− cosx for x which
is close to 1. Then cosx will also be close to 1, and significant digits could be lost
when computing A1(x) = 1− cosx. Of course, there is an easy fix for this difficulty.
Instead of the original formula we should use f (x) = A2(x) = 2sin2 x

2 .
The loss of significant digits may cause an instability even if the original continu-

ous problem is well conditioned. Indeed, assume that we need to compute the value
of the function f (x) =

√
x−√

x−1. Conditioning of this problem can be judged by
evaluating the maximum ratio of the resulting relative error in the solution over the
eliciting relative error in the input data:

sup
Δx

|Δ f |/| f |
|Δx|/|x| ≈ | f ′(x)| |x|| f | =

1
2

∣∣∣∣ 1√
x
− 1√

x−1

∣∣∣∣ |x|∣∣√x−√
x−1

∣∣ =
|x|

2
√

x
√

x−1
.
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For large x the previous quantity is approximately equal to 1
2 , which means that the

problem is perfectly well conditioned. Yet we can expect to incur a loss of signifi-
cant digits when x 	 1. Consider, for example, x = 12345, and assume that we are
operating in a six-digit decimal arithmetic. Then:

√
x−1 =111.10355529865 . . .≈ 111.104,√

x =111.10805551354 . . .≈ 111.108,

and consequently, A1(x) =
√

x−√
x−1 ≈ 111.108−111.104= 0.004. At the same

time, the true answer is f (x) = 0.004500214891 . . ., which implies that our approx-
imate computation carries an error of roughly 11%. To understand where this error
is coming from, consider f as a function of two arguments: f = f (t1,t2) = t1 − t2,
where t1 =

√
x and t2 =

√
x−1. Conditioning with respect to the second argument

t2 can be estimated as follows: ∣∣∣∣ ∂ f
∂ t2

∣∣∣∣ · |t2|| f | =
t2

|t1 − t2| ,

and we conclude that this number is large when t2 is close to t1, which is precisely
the case for large x. In other words, although the entire function is well conditioned,
there is an intermediate stage that is ill conditioned, and it gives rise to large errors in
the course of computation. This example illustrates why it is practically impossible
to design a stable numerical procedure for an ill conditioned continuous problem.

A remedy to overcome the previous hurdle is quite easy to find:

f (x) = A2(x) =
1√

x +
√

x−1
≈ 1

111.104 + 111.108
= 0.00450020701 . . ..

This is a considerably more accurate answer.
Yet another example is given by the same quadratic equation x2 −2αx + 1 = 0 as

we considered in Section 1.2. The roots x1,2(α) = α ±√
α2 −1 have been found to

be ill conditioned for α close to 1. However, for α 	 1 both roots are clearly well
conditioned. In particular, for x2 = α −√

α2 −1 we have:

∣∣∣∣dx2(α)
dα

∣∣∣∣ · |α|
|x2| =

α√
α2 −1

−→ 1, as α −→ +∞.

Nevertheless, the computation by the formula x2(α) = α −√
α2 −1 will obviously

be prone to the loss of significant digits for large α . A cure may be to compute
x1(α) = α +

√
α2 −1 and then x2 = 1/x1. Note that even for the equation x2 −

2αx− 1 = 0, for which both roots x1,2(α) = α ±√
α2 + 1 are well conditioned for

all α , the computation of x2(α) = α−√
α2 + 1 is still prone to the loss of significant

digits and as such, to instability.
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1.4.5 Convergence

Finally, the algorithm may be either convergent or divergent. Suppose we need to
compute the value of y = ln(1 + x). Let us employ the power series:

y = ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . (1.19)

and set

y∗(x) ≈ y∗n =
n

∑
k=1

(−1)k+1 xk

k
. (1.20)

In doing so, we will obtain a method of approximately evaluating y = ln(1 + x) that
will depend on n as a parameter.

If |x| = q < 1, then lim
n→∞

y∗n(x) = y(x), i.e., the error committed when computing

y(x) according to formula (1.20) will be vanishing as n increases. If, however, x > 1,
then lim

n→∞
y∗n(x) = ∞, because the convergence radius for the series (1.19) is r = 1.

In this case the algorithm based on formula (1.20) diverges, and cannot be used for
computations.

1.4.6 General Comments

Basically, the properties of continuous well-posedness and numerical stability, as
well as those of ill and well conditioning, are independent. There are, however,
certain relations between these concepts.

• First of all, it is clear that no numerical method can ever fix a continuous ill-
posedness.2

• For a well-posed continuous problem there may be stable and unstable dis-
cretizations.

• Even for a well conditioned continuous problem one can still obtain both stable
and unstable discretizations.

• For an ill-conditioned continuous problem a discretization will typically be
unstable.

Altogether, we can say that numerical methods cannot improve things in the per-
spective of well-posedness and conditioning.

In the book, we are going to discuss some other characteristics of numerical algo-
rithms as well. We will see the algorithms that admit easy parallelization, and those
that are limited to sequential computations; algorithms that automatically adapt to
specific characteristics of the input data, such as their smoothness, and those that
only partially take it into account; algorithms that have a straightforward logical
structure, as well as the more elaborate ones.

2The opposite of well-posedness, when there is no continuous dependence of the solution on the data.
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Exercises

1. Propose an algorithm for evaluating y = ln(1+x) that would also apply to x > 1.

2. Show that the intermediate stages of the algorithm A2 from page 17 are well condi-
tioned, and there is no danger of losing significant digits when computing:

f (x) = A2(x) =
1√

x+
√

x−1
.

3. Consider the problem of evaluating the sequence of numbers x0, x1, . . . ,xN that satisfy
the difference equations:

2xn −xn+1 = 1+n2/N2, n = 0,1, . . . ,N −1,

and the additional condition:
x0 +xN = 1. (1.21)

We introduce two algorithms for computing xn. First, let

xn = un +cvn, n = 0,1, . . . ,N. (1.22)

Then, in the algorithm A1 we define un, n = 0,1, . . . ,N, as solution of the system:

2un −un+1 = 1+n2/N2, n = 0,1, . . . ,N −1, (1.23)

subject to the initial condition:
u0 = 0. (1.24)

Consequently, the sequence vn, n = 0,1, . . . ,N, is defined by the equalities:

2vn −vn+1 = 0, n = 0,1, . . . ,N −1, (1.25)

v0 = 1, (1.26)

and the constant c of (1.22) is obtained from the condition (1.21). In so doing, the
actual values of un and vn are computed consecutively using the formulae:

un+1 =2un − (1+n2/N2), n = 0,1, . . . ,

vn+1 =2n+1, n = 0,1, . . . .

In the algorithm A2, un, n = 0,1, . . . ,N, is still defined as solution to system (1.23),
but instead of the condition (1.24) an alternative condition uN = 0 is employed. The
sequence vn, n = 0,1, . . . ,N, is again defined as a solution to system (1.25), but instead
of the condition (1.26) we use vN = 1.

a) Verify that the second algorithm, A2, is stable while the first one, A1, is (“vio-
lently”) unstable.

b) Implement both algorithms on the computer and try to compare their perfor-
mance for N = 10 and for N = 100.
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Interpolation of Functions.
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One of the key concepts in mathematics is that of a function. In the simplest case,
the function y = f (x), a ≤ x ≤ b, can be specified in the closed form, i.e., defined by
means of a finite formula, say, y = x2. This formula can subsequently be transformed
into a computer code that will calculate the value of y = x2 for every given x. In real-
life settings, however, the functions of interest are rarely available in the closed form.
Instead, a finite array of numbers, commonly referred to as the table, would often be
associated with the function y = f (x). By processing the numbers from the table in
a particular prescribed way, one should be able to obtain an approximate value of
the function f (x) at any point x. For instance, a table can contain several leading
coefficients of a power series for f (x). In this case, processing the table would mean
calculating the corresponding partial sum of the series.

Let us, for example, take the function

y = ex, 0 ≤ x ≤ 1, ex = 1 +
x
1!

+
x2

2!
+ . . .+

xn

n!
+ . . . ,

for which the power series converges for all x, and consider the table

1,
1
1!

,
1
2!

, . . . ,
1
n!

of its n + 1 leading Taylor coefficients, where n > 0 is given. The larger the n, the
more accurately can one reconstruct the function f (x) = ex from this table. In so
doing, the formula

ex ≈ 1 +
x
1!

+
x2

2!
+ . . .+

xn

n!
is used for processing the table.

In most cases, however, the table that is supposed to characterize the function
y = f (x) would not contain its Taylor coefficients, and would rather be obtained by
sampling the values of this function at some finite set of points x0,x1, . . . ,xn ∈ [a, b].
In practice, sampling can be rendered by either measurements or computations. This
naturally gives rise to the problem of reconstructing (e.g., interpolating) the function
f (x) at the “intermediate” locations x that do not necessarily coincide with any of
the nodes x0,x1, . . . ,xn.

The two most widely used and most efficient interpolation techniques are alge-
braic interpolation and trigonometric interpolation. We are going to analyze both
of them. In addition, in the current Part I of the book we will also consider the
problem of evaluating definite integrals of a given function when the latter, again, is
specified by a finite table of its numerical values. The motivation behind considering
this problem along with interpolation is that the main approaches to approximate
evaluation of definite integrals, i.e., to obtaining the so-called quadrature formulae,
are very closely related to the interpolation techniques.

Before proceeding further, let us also mention several books for additional reading
on the subject: [Hen64, IK66, CdB80, Atk89, PT96,QSS00,Sch02,DB03].
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Chapter 2

Algebraic Interpolation

Let x0,x1, . . . ,xn be a given set of points, and let f (x0), f (x1), . . . , f (xn) be values of
the function f (x) at these points (assumed known). The one-to-one correspondence

x0 x1 . . . xn
f (x0) f (x1) . . . f (xn)

will be called a table of values of the function f (x) at the nodes x0,x1, . . . ,xn. We
need to realize, of course, that for actual computer implementations one may only
use the numbers that can be represented as finite binary fractions (Section 1.3.3 of
the Introduction), whereas the values f (x j) do not necessarily have to belong to this
class (e.g.,

√
3). Therefore, the foregoing table may, in fact, contain rounded rather

than true values of the function f (x).
A polynomial Pn(x) ≡ Pn(x, f ,x0,x1, . . . ,xn) of degree no greater than n that has

the form
Pn(x) = c0 + c1x + . . .+ cnxn

and coincides with f (x0), f (x1), . . . , f (xn) at the nodes x0,x1, . . . ,xn, respectively, is
called the algebraic interpolating polynomial.

2.1 Existence and Uniqueness of Interpolating Polyno-
mial

2.1.1 The Lagrange Form of Interpolating Polynomial

THEOREM 2.1
Let x0,x1, . . . ,xn be a given set of distinct interpolation nodes, and let the values
f (x0), f (x1), . . . , f (xn) of the function f (x) be known at these nodes. There is
one and only one algebraic polynomial Pn(x) ≡ Pn(x, f ,x0,x1, . . . ,xn) of degree
no greater than n that would coincide with the given f (xk) at the nodes xk,
k = 0,1, . . . ,n.

PROOF We will first show that there may be no more than one interpo-
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lating polynomial, and will subsequently construct it explicitly.
Assume that there are two algebraic interpolating polynomials, P(1)

n (x) and
P(2)

n (x). Then, the difference between these two polynomials, Rn(x) = P(1)
n (x)−

P(2)
n (x), is also a polynomial of degree no greater than n that vanishes at the

n + 1 points x0,x1, . . . ,xn. However, for any polynomial that is not identically
equal to zero, the number of roots (counting their multiplicities) is equal to the
degree. Therefore, Rn(x) ≡ 0, i.e., P(1)

n (x) ≡ P(2)
n (x), which proves uniqueness.

Let us now introduce the auxiliary polynomials

lk(x) =
(x− x0)(x− x1) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x0)(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)
.

It is clear that each lk(x) is a polynomial of degree no greater than n, and that
the following equalities hold:

lk(x j) =

{
1, x j = xk,

0, x j = xk,
j = 0,1, . . . ,n.

Then, the polynomial Pn(x) given by the equality

Pn(x)
def= Pn(x, f ,x0,x1, . . . ,xn)
= f (x0)l0(x)+ f (x1)l1(x)+ . . .+ f (xn)ln(x)

(2.1)

is precisely the interpolating polynomial that we are seeking. Indeed, its
degree is no greater than n, because each term f (x j)l j(x) is a polynomial of
degree no greater than n. Moreover, it is clear that this polynomial satisfies
the equalities Pn(x j) = f (x j) for all j = 0,1, . . . ,n.

Let us emphasize that not only have we proven Theorem 2.1, but we have also
written the interpolating polynomial explicitly using formula (2.1). This formula
is known as the Lagrange form of the interpolating polynomial. There are other
convenient forms of the unique interpolating polynomial Pn(x, f ,x0,x1, . . . ,xn). The
Newton form is used particularly often.

2.1.2 The Newton Form of Interpolating Polynomial. Di-
vided Differences

Let f (xa), f (xb), f (xc), f (xd), etc., be values of the function f (x) at the given
nodes xa, xb, xc, xd , etc. A Newton’s divided difference of order zero f (xk) of the
function f (x) at the point xk is defined as simply the value of the function at this
point:

f (xk) = f (xk), k = a,b,c,d, . . . .

A divided difference of order one f (xk,xm) of the function f (x) is defined for an
arbitrary pair of points xk, xm (xk and xm do not have to be neighbors, and we allow
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xk ≷ xm) through the previously introduced divided differences of order zero:

f (xk,xm) =
f (xm)− f (xk)

xm − xk
.

In general, a divided difference of order n: f (x0,x1, . . . ,xn) for the function f (x) is
defined through the preceding divided differences of order n−1 as follows:

f (x0,x1, . . . ,xn) =
f (x1,x2, . . . ,xn)− f (x0,x1, . . . ,xn−1)

xn − x0
. (2.2)

Note that all the points x0,x1, . . . ,xn in formula (2.2) have to be distinct, but they do
not have to be arranged in any particular way, say, from the smallest to the largest
value of x j or vice versa.

Having defined the Newton divided differences1 according to (2.2), we can now
represent the interpolating polynomial Pn(x, f ,x0,x1, . . . ,xn) in the following Newton
form:

Pn(x, f ,x0,x1, . . . ,xn) = f (x0)+ (x− x0) f (x0,x1)+ . . .

+(x− x0)(x− x1) . . . (x− xn−1) f (x0,x1, . . . ,xn).
(2.3)

Formula (2.3) itself will be proven later. In the meantime, we will rather establish
several useful corollaries that it implies.

COROLLARY 2.1
The following equality holds:

Pn(x, f ,x0,x1, . . . ,xn) =Pn−1(x, f ,x0,x1, . . . ,xn−1)
+(x− x0)(x− x1) . . . (x− xn−1) f (x0,x1, . . . ,xn).

(2.4)

PROOF Immediately follows from formula (2.3).

COROLLARY 2.2
The divided difference f (x0,x1, . . . ,xn) of order n is equal to the coefficient cn

in front of the term xn in the interpolating polynomial

Pn(x, f ,x0,x1, . . . ,xn) = cnxn + cn−1xn−1 + . . .+ c0.

In other words, the following equality holds:

f (x0,x1, . . . ,xn) = cn. (2.5)

1A more detailed account of divided differences and their role in building the interpolating polynomials
can be found, e.g., in [CdB80].
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PROOF It is clear that the monomial xn on the right-hand side of expres-
sion (2.3) is multiplied by the coefficient f (x0,x1, . . . ,xn).

COROLLARY 2.3
The divided difference f (x0,x1, . . . ,xn) may be equal to zero if and only if the

quantities f (x0), f (x1), . . . , f (xn) are nodal values of some polynomial Qm(x) of
degree m that is strictly less than n (m < n).

PROOF If f (x0,x1, . . . ,xn) = 0, then formula (2.3) implies that the degree
of the interpolating polynomial Pn(x, f ,x0,x1, . . . ,xn) is less than n, because ac-
cording to equality (2.5) the coefficient cn in front of xn is equal to zero. As the
nodal values of this interpolating polynomial are equal to f (x j), j = 0,1, . . . ,n,
we can simply set Qm(x) = Pn(x). Conversely, as the interpolating polyno-
mial of degree no greater than n is unique (Theorem 2.1), the polynomial
Qm(x) with nodal values f (x0), f (x1), . . . , f (xn) must coincide with the inter-
polating polynomial Pn(x, f ,x0,x1, . . . ,xn) = cnxn +cn−1xn−1 + . . .+c0. As m < n,
equality Qm(x) = Pn(x) implies that cn = 0. Then, according to formula (2.5),
f (x0,x1, . . . ,xn) = 0.

COROLLARY 2.4
The divided difference f (x0,x1, . . . ,xn) remains unchanged under any arbitrary
permutation of its arguments x0,x1, . . . ,xn.

PROOF Due to its uniqueness, the interpolating polynomial Pn(x) will not
be affected by the order of the interpolation nodes. Let x′0,x

′
1, . . . ,x

′
n be a per-

mutation of x0,x1, . . . ,xn; then, ∀x : Pn(x, f ,x0,x1, . . . ,xn) = Pn(x, f ,x′0,x
′
1, . . . ,x

′
n).

Consequently, along with formula (2.3) one can write

Pn(x, f ,x0,x1, . . . ,xn) = f (x′0)+ (x− x′0) f (x′0,x
′
1)+ . . .

+(x− x′0)(x− x′1) . . . (x− x′n−1) f (x′0,x
′
1, . . . ,x

′
n).

According to Corollary 2.2, one can therefore conclude that

f (x′0,x
′
1, . . . ,x

′
n) = cn. (2.6)

By comparing formulae (2.5) and (2.6), one can see that f (x0,x1, . . . ,xn) =
f (x′0,x

′
1, . . . ,x

′
n).

COROLLARY 2.5
The following equality holds:

f (x0,x1, . . . ,xn) =
f (xn)−Pn−1(xn, f ,x0,x1, . . . ,xn−1)
(xn − x0)(xn − x1) . . . (xn − xn−1)

. (2.7)
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PROOF Let us set x = xn in equality (2.4); then its left-hand side becomes
equal to f (xn), and formula (2.7) follows.

THEOREM 2.2
The interpolating polynomial Pn(x, f ,x0,x1, . . . ,xn) can be represented in the

Newton form, i.e., equality (2.3) does hold.

PROOF We will use induction with respect to n. For n = 0 (and n = 1)
formula (2.3) obviously holds. Assume now that it has already been justified
for n = 1,2, . . . ,k, and let us show that it will also hold for n = k + 1. In other
words, let us prove the following equality:

Pk+1(x, f ,x0,x1, . . . ,xk,xk+1) = Pk(x, f ,x0,x1, . . . ,xk)
+ f (x0,x1, . . . ,xk,xk+1)(x− x0)(x− x1) . . . (x− xk).

(2.8)

Notice that due to the assumption of the induction, formula (2.3) is valid for
n ≤ k. Consequently, the proofs of Corollaries 2.1 through 2.5 that we have
carried out on the basis of formula (2.3) will also remain valid for n ≤ k.

To prove equality (2.8), we will first demonstrate that the polynomial
Pk+1(x, f ,x0,x1, . . . ,xk,xk+1) can be represented in the form:

Pk+1(x, f ,x0,x1, . . . ,xk,xk+1) = Pk(x, f ,x0,x1, . . . ,xk)

+
f (xk+1)−Pk(xk+1, f ,x0,x1, . . . ,xk)

(xk+1 − x0)(xk+1 − x1) . . . (xk+1 − xk)
(x− x0)(x− x1) . . . (x− xk).

(2.9)

Indeed, it is clear that on the right-hand side of formula (2.9) we have a
polynomial of degree no greater than k + 1 that is equal to f (x j) at all nodes
x j, j = 0,1, . . . ,k + 1. Therefore, the expression on the the right-hand side of
(2.9) is actually the interpolating polynomial

Pk+1(x, f ,x0,x1, . . . ,xk,xk+1),

which proves that (2.9) is a true equality. Next, by comparing formulae (2.8)
and (2.9) we see that in order to justify (2.8) we need to establish the equality:

f (x0,x1, . . . ,xk,xk+1) =
f (xk+1)−Pk(xk+1, f ,x0,x1, . . . ,xk)

(xk+1 − x0)(xk+1 − x1) . . . (xk+1 − xk)
. (2.10)

Using the same argument as in the proof of Corollary 2.4, and also employing
Corollary 2.1, we can write:

Pk(x, f ,x0,x1, . . . ,xk) =Pk(x, f ,x1,x2, . . . ,xk,x0)
=Pk−1(x, f ,x1,x2, . . . ,xk)
+ f (x1,x2, . . . ,xk,x0)(x− x1)(x− x2) . . . (x− xk).

(2.11)
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Then, by substituting x = xk+1 into (2.11), we can transform the right-hand
side of equality (2.10) into:

f (xk+1)−Pk(xk+1, f ,x0,x1, . . . ,xk)
(xk+1 − x0)(xk+1 − x1) . . . (xk+1 − xk)

=
1

xk+1 − x0

f (xk+1)−Pk−1(xk+1, f ,x1, . . . ,xk)
(xk+1 − x1) . . . (xk+1 − xk)

− f (x1,x2, . . . ,xk,x0)
xk+1 − x0

.

(2.12)

By virtue of Corollary 2.5, the minuend on the right-hand side of equality
(2.12) is equal to:

1
xk+1 − x0

f (x1,x2, . . . ,xk,xk+1),

whereas in the subtrahend, according to Corollary 2.4, one can change the
order of the arguments so that it would coincide with

f (x0,x1, . . . ,xk)
xk+1 − x0

.

Consequently, the right-hand side of equality (2.12) is equal to

f (x1,x2, . . . ,xk+1)− f (x0,x1, . . . ,xk)
xk+1 − x0

def= f (x0,x1, . . . ,xk+1).

In other words, equality (2.12) coincides with equality (2.10) that we need to
establish in order to justify formula (2.8). This completes the proof.

THEOREM 2.3
Let x0 < x1 < .. . < xn; assume also that the function f (x) is defined on the

interval x0 ≤ x ≤ xn, and is n times differentiable on this interval. Then,

n! f (x0,x1, . . . ,xn) =
dn f
dxn

∣∣∣
x=ξ

≡ f (n)(ξ ), (2.13)

where ξ is some point from the interval [x0,xn].

PROOF Consider an auxiliary function

ϕ(x) def= f (x)−Pn(x, f ,x0,x1, . . . ,xn) (2.14)

defined on [x0,xn]; it obviously has a minimum of n + 1 zeros on this interval
located at the nodes x0,x1, . . . ,xn. Then, according to the Rolle (mean value)
theorem, its first derivative vanishes at least at one point in between every two
neighboring zeros of ϕ(x). Therefore, the function ϕ ′(x) will have a minimum
of n zeros on the interval [x0,xn]. Similarly, the function ϕ ′′(x) vanishes at
least at one point in between every two neighboring zeros of ϕ ′(x), and will
therefore have a minimum of n−1 zeros on [x0,xn].
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By continuing this line of argument, we conclude that the n-th derivative
ϕ(n)(x) will have at least one zero on the interval [x0,xn]. Let us denote this
zero by ξ , so that ϕ(n)(ξ ) = 0. Next, we differentiate identity (2.14) exactly n
times and subsequently substitute x = ξ , which yields:

0 = ϕ(n)(ξ ) = f (n)(ξ )− dn

dxn Pn(x, f ,x0,x1, . . . ,xn)
∣∣∣
x=ξ

. (2.15)

On the other hand, according to Corollary 2.2, the divided difference
f (x0,x1, . . . ,xn) is equal to the leading coefficient of the interpolating polyno-
mial Pn, i.e., Pn(x, f ,x0,x1, . . . ,xn) = f (x0,x1, . . . ,xn)xn +cn−1xn−1 + . . .+c0. Con-
sequently, dn

dxn Pn(x, f ,x0,x1, . . . ,xn) = n! f (x0,x1, . . . ,xn), and therefore, equality
(2.15) implies (2.13).

THEOREM 2.4
The values f (x0), f (x1), . . . , f (xn) of the function f (x) are expressed through

the divided differences f (x0), f (x0,x1), . . ., f (x0,x1, . . . ,xn) by the formulae:

f (x j) = f (x0)+ (x j − x0) f (x0,x1)+ (x j − x0)(x j − x1) f (x0,x1,x2)
+(x j − x0)(x j − x1) . . . (x j − xn−1) f (x0,x1, . . . ,xn), j = 0,1, . . . ,n,

i.e., by linear combinations of the type:

f (x j) = a j0 f (x0)+ a j1 f (x0,x1)+ . . .+ a jn f (x0,x1, . . . ,xn), j = 0,1, . . . ,n.
(2.16)

PROOF The result follows immediately from formula (2.3) and equalities
f (x j) = P(x, f ,x0,x1, . . . ,xn)

∣∣
x=x j

for j = 0,1, . . . ,n.

2.1.3 Comparison of the Lagrange and Newton Forms

To evaluate the function f (x) at a point x that is not one of the interpolation nodes,
one can approximately set: f (x) ≈ Pn(x, f ,x0,x1, . . . ,xn).

Assume that the polynomial Pn(x, f ,x0,x1, . . . ,xn) has already been built, but in
order to try and improve the accuracy we incorporate an additional interpolation
node xn+1 and the corresponding function value f (xn+1). Then, to construct the
interpolating polynomial Pn+1(x, f ,x0,x1, . . . ,xn+1) using the Lagrange formula (2.1)
one basically needs to start from the scratch. At the same time, to use the Newton
formula (2.3), see also Corollary 2.1:

Pn+1(x, f ,x0,x1, . . . ,xn+1) =Pn(x, f ,x0,x1, . . . ,xn)
+(x− x0)(x− x1) . . . (x− xn) f (x0,x1, . . . ,xn+1)

one only needs to obtain the correction

(x− x0)(x− x1) . . . (x− xn) f (x0,x1, . . . ,xn+1).

Moreover, one will immediately be able to see how large this correction is.



32 A Theoretical Introduction to Numerical Analysis

2.1.4 Conditioning of the Interpolating Polynomial

Let all the interpolation nodes x0,x1, . . . ,xn belong to some interval a ≤ x ≤ b.
Let also the values f (x0), f (x1), . . ., f (xn) of the function f (x) at these nodes be
given. Hereafter, we will be using a shortened notation Pn(x, f ) for the interpolating
polynomial Pn(x) = Pn(x, f ,x0,x1, . . . ,xn).

Let us now perturb the values f (x j) by some quantities δ f (x j), j = 0,1, . . . ,n.
Then, the interpolating polynomial Pn(x, f ) will change and become Pn(x, f + δ f ).
One can clearly see from the Lagrange formula (2.1) that Pn(x, f +δ f ) = Pn(x, f )+
Pn(x,δ f ). Therefore, the corresponding perturbation of the interpolating polynomial,
i.e., its response to δ f , will be Pn(x,δ f ). For a given fixed set of x0,x1, . . . ,xn, this
perturbation depends only on δ f and not on f itself. As such, one can introduce the
minimum number Ln such that the following inequality would hold for any δ f :

max
a≤x≤b

|Pn(x,δ f )| ≤ Ln max
j

|δ f (x j)|. (2.17)

The numbers Ln = Ln(x0,x1, . . . ,xn,a,b) are called the Lebesgue constants.2 They
provide a natural measure for the sensitivity of the interpolating polynomial to the
perturbations δ f (x j) of the interpolated function f (x) at the nodes x j. The Lebesgue
constants are known to grow as n increases. Their specific behavior strongly depends
on how the interpolation nodes x j, j = 0,1, . . . ,n, are located on the interval [a, b].

If, for example, n = 1, x0 = a, x1 = b, then L1 = 1. If, however, x0 = a and/or
x1 = b, then L1 ≥ b−a

2|x1−x0| , i.e., if x1 and x0 are sufficiently close to one another, then

the interpolation may appear arbitrarily sensitive to the perturbations of f (x). The
reader can easily verify the foregoing statements regarding L1.

In the case of equally spaced interpolation nodes:

x j = a + j ·h, j = 0,1, . . . ,n, h =
b−a

n
,

one can show that

2n > Ln > 2n−2 1√
n
· 1

n−1/2
. (2.18)

In other words, the sensitivity of the interpolant to any errors committed when spec-
ifying the values of f (x j) will grow rapidly (exponentially) as n increases. Note
that in practice it is impossible to specify the values of f (x j) without any error, no
matter how these values are actually obtained, i.e., whether they are measured (with
inevitable experimental inaccuracies) or computed (subject to rounding errors).

For a rigorous proof of inequalities (2.18) we refer the reader to the literature
on the theory of approximation, in particular, the monographs and texts cited in
Section 3.2.7 of Chapter 3. However, an elementary treatment can also be given,
and one can easily provide a qualitative argument of why the Lebesgue constants for
equidistant nodes grow exponentially as the grid dimension n increases. From the

2Note that the Lebesgue constant Ln corresponds to interpolation on n+1 nodes: x0, . . . ,xn .
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Lagrange form of the interpolating polynomial (2.1) and definition (2.17) it is clear
that:

Ln = O

(
max

a≤x≤b

n

∑
k=0

|lk(x)|
)

(2.19)

(later, see Section 3.2.7 of Chapter 3, we will prove an even more precise statement).
Take k ≈ n/2 and x very close to one of the edges a or b, say, x−a = η � h. Then,

|lk(x)| =
∣∣∣∣ (x− x0)(x− x1) . . . (x− xk−1)(x− xk+1) . . . (x− xn)
(xk − x0)(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

∣∣∣∣
≈ η ·h2k−1 · (2k)!/k

(hkk!)2 = η ·h · (2k)!
k(k!)2

=η ·h · (2 ·4 ·6 · . . . ·2k)(1 ·3 ·5 · . . .· (2k−1))
k(k!)2

≈η ·h · (2 ·4 ·6 · . . . ·2k)2

(k!)2 = η ·h · 22k(k!)2

(k!)2 ≈ η ·h ·2n.

The foregoing estimate for |lk(x)|, along with the previous formula (2.19), do imply
the exponential growth of the Lebesgue constants on uniform (equally spaced) inter-
polation grids. Let now a = −1, b = 1, and let the interpolation nodes on [a, b] be
rather given by the formula:

x j = −cos
(2 j + 1)π
2(n + 1)

, j = 0,1, . . . ,n. (2.20)

It is possible to show that placing the nodes according to (2.20) guarantees a much
better estimate for the Lebesgue constants (again, see Section 3.2.7):

Ln ≤ 2
π

ln(n + 1)+ 1. (2.21)

We therefore conclude that in contradistinction to the previous case (2.18), the
Lebesgue constants may, in fact, grow slowly rather than rapidly, as they do on
the non-equally spaced nodes (2.20). As such, even the high-degree interpolating
polynomials in this case will not be overly sensitive to perturbations of the input
data. Interpolation nodes (2.20) are known as the Chebyshev nodes. They will be
discussed in detail in Chapter 3.

2.1.5 On Poor Convergence of Interpolation with Equidis-
tant Nodes

One should not think that for any continuous function f (x), x∈ [a, b], the algebraic
interpolating polynomials Pn(x, f ) built on the equidistant nodes x j = a+ j ·h, x0 = a,
xn = b, will converge to f (x) as n increases, i.e., that the deviation of Pn(x, f ) from
f (x) will decrease. For example, as has been shown by Bernstein, the sequence
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of interpolating polynomials obtained for the function f (x) = |x| on equally spaced
nodes diverges at every point of the interval [a, b] = [−1, 1] except at {−1, 0, 1}.

The next example is attributed to Runge. Consider the function f (x) = 1
x2+1/4

on the same interval [a, b] = [−1, 1]; not only is this function continuous, but also
has continuous derivatives of all orders. It is, however, possible to show that for
the sequence of interpolating polynomials with equally spaced nodes the maximum
difference max

−1≤x≤1
| f (x)−Pn(x, f )| will not approach zero as n increases.

Moreover, by working on Exercise 4 below, one will be able to see that the areas
of no convergence for this function are located next to the endpoints of the interval
[−1,1]. For larger intervals the situation may even deteriorate and the sequence
of interpolating polynomials Pn(x, f ) may diverge. In other words, the quantity
max

a≤x≤b
| f (x)−Pn(x, f )| may become arbitrarily large for large n’s (see, e.g., [IK66]).

Altogether, these convergence difficulties can be accounted for by the fact that on the
complex plane the function f (z) = 1

z2+1/4
is not an entire function of its argument z,

and has singularities at z = ±i/2.
On the other hand, if, instead of the equidistant nodes, we use Chebyshev nodes

(2.20) to interpolate either the Bernstein function f (x) = |x| or the Runge function
f (x) = 1

x2+1/4
, then in both cases the sequence of interpolating polynomials Pn(x, f )

converges to f (x) uniformly as n increases (see Exercise 5).

Exercises

1. Evaluate f (1.14) by means of linear, quadratic, and cubic interpolation using the fol-
lowing table of values:

x 1.08 1.13 1.20 1.27 1.31
f (x) 1.302 1.386 1.509 1.217 1.284

Implement the interpolating polynomials in both the Lagrange and Newton form.

2. Let x j = j · h, j = 0,±1,±2, . . ., be equidistant nodes with spacing h. Verify that the
following equality holds:

f (xk−1,xk,xk+1) =
f (xk+1)−2 f (xk)+ f (xk−1)

2!h2 .

3. Let a = x0, a < x1 < b, x2 = b. Find the value of the Lebesgue constant L2 when x1 is
the midpoint of [a, b]: x1 = (a+b)/2. Show that if, conversely, x1 → a or x1 → b, then
the Lebesgue constant L2 = L2(x0,x1,x2,a,b) grows with no bound.

4. Plot the graphs of f (x) = 1
x2+1/4 and Pn(x, f ) from Section 2.1.5 (Runge example) on

the computer and thus corroborate experimentally that there is no convergence of the
interpolating polynomial on equally spaced nodes when n increases.

5. Use Chebyshev nodes (2.20) to interpolate f (x) = |x| and f (x) = 1
x2+1/4 on the interval

[−1,1], plot the graphs of each f (x) and the corresponding Pn(x, f ) for n = 10,20,40,
and 80, evaluate numerically the error max

−1≤x≤1
| f (x)−Pn(x, f )|, and show that it de-

creases as n increases.
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2.2 Classical Piecewise Polynomial Interpolation

High sensitivity of algebraic interpolating polynomials to the errors in the tabu-
lated values of f (x), as well as the “iffy” convergence of the sequence Pn(x, f ) on
uniform grids, prompt the use of piecewise polynomial interpolation.

2.2.1 Definition of Piecewise Polynomial Interpolation

Let the function f (x), x ∈ [a, b], be defined by the table { f (x0), f (x1), . . . , f (xn)}
of its numerical values at the nodes {a = x0 < x1 < x2 < .. . < xn = b}. To reconstruct
this function in between the nodes x0,x1, . . . ,xn, one can use an auxiliary function that
would coincide with a polynomial of a given low degree (say, the first, the second,
the third, etc.) between every two neighboring nodes of the interpolation grid. This
approach is known as piecewise polynomial interpolation; in particular, it may be
piecewise linear, piecewise quadratic, piecewise cubic, etc.

In the case of piecewise linear interpolation on the interval xk ≤ x ≤ xk+1, one
uses the linear interpolating polynomial P1(x, f ,xk,xk+1) to approximate the func-
tion f (x). In the case of piecewise quadratic interpolation on the interval xk ≤
x ≤ xk+1, one can use either of the two polynomials: P2(x, f ,xk,xk+1,xk+2) or
P2(x, f ,xk−1,xk,xk+1).

Piecewise polynomial interpolation of an arbitrary degree s is obtained similarly.
There is always some flexibility in constructing the interpolant, and to approximate
the function f (x) on the interval xk ≤ x ≤ xk+1 one can basically use any of the poly-
nomials Ps(x, f ,xk− j,xk− j+1, . . . ,xk− j+s), where j is one of the integers 0,1, . . . ,s−1.
It is, however, desirable that the smaller interval [xk,xk+1] be located maximally close
to the middle of the larger interval [xk− j,xk− j+s] (see Section 2.1.4). For equidistant
nodes, the latter requirement translates into choosing j maximally close to s/2. In
general, once the strategy for selecting j has been adopted, one can reconstruct f (x)
on [a, b] in the form of a piecewise polynomial of degree s. It will be composed of the
individual interpolating polynomials that correspond to different intervals [xk,xk+1],
k = 0,1, . . . ,n−1. For simplicity, we will hereafter denote the piecewise polynomial
as follows:

Ps(x, f ,xk− j,xk− j+1, . . . ,xk− j+s) = Ps(x, fk j).

2.2.2 Formula for the Interpolation Error

Let us estimate the error

Rs(x)
def= f (x)−Ps(x, fk j), xk ≤ x ≤ xk+1, (2.22)

that arises when the function f (x) is approximately replaced by the polynomial
Ps(x, fk j). To do so, we will need to exploit the following general theorem:
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THEOREM 2.5
Let the function f = f (t) be defined on α ≤ t ≤ β , with a continuous derivative
of order s + 1 on this interval. Let t0,t1, . . . ,ts be an arbitrary set of distinct
points that all belong to [α,β ], and let f (t0), f (t1), . . . , f (ts) be the values of
the function f (t) at these points. Finally, let Ps(t) ≡ Ps(t, f ,t0,t1, . . . ,ts) be
the algebraic interpolating polynomial of degree no greater than s built for
these given points and function values. Then, the interpolation error Rs(t) =
f (t)−Ps(t) can be represented on [α,β ] as follows:

Rs(t) =
f (s+1)(ξ )
(s+ 1)!

(t − t0)(t − t1) . . . (t − ts), (2.23)

where ξ = ξ (t) is some point from the interval (α,β ).

PROOF We first notice that formula (2.23) does hold for all nodes t j,
j = 0,1, . . . ,s, themselves, because on one hand ∀t j : f (t j)−Ps(t j) = 0, and on
the other hand, Rs(t j) = 0, where Rs(t) is defined by formula (2.23). Let us
now take an arbitrary t̄ ∈ [α,β ] that does not coincide with any of t0,t1, . . . ,ts.
To prove formula (2.23) for t = t̄, we introduce an auxiliary function:

ϕ(t) = f (t)−Ps(t)− k(t − t0)(t − t1) . . . (t − ts) (2.24)

and choose the parameter k so that ϕ(t̄) = 0, which obviously implies

k =
f (t̄)−Ps(t̄)

(t̄ − t0)(t̄ − t1) . . . (t̄ − ts)
. (2.25)

The numerator in formula (2.25) coincides with the value of the error Rs(t̄),
therefore, this formula yields:

Rs(t̄) = k(t̄ − t0)(t̄ − t1) . . . (t̄ − ts). (2.26)

The auxiliary function ϕ of (2.24) clearly has a minimum of s+ 2 zeros on
the interval [α,β ] located at the points t̄,t0,t1, . . . ,ts. Then, its first derivative
ϕ ′(t) will have a minimum of s+1 zeros on the (open) interval (α,β ), because
according to the Rolle (mean value) theorem, the derivative ϕ ′(t) has to van-
ish at least once in between every two neighboring points where ϕ(t) itself
vanishes. Similarly, ϕ ′′(t) will have at least s zeros on (α,β ), ϕ(3)(t) will have
at least s− 1 zeros, etc., so that finally the derivative ϕ(s+1)(t) will have to
have a minimum of one zero on the interval (α,β ). Let us denote this zero by
ξ ∈ (α,β ), so that ϕ(s+1)(ξ ) = 0.

Next, we note that
ds+1

dts+1 ts+1 = (s+ 1)!

and that (t − t0)(t − t1) . . . (t − ts) = ts+1 +Qs(t), where Qs(t) is a polynomial of
degree no greater than s. We also note that

ds+1

dts+1 Ps(t) ≡ ds+1

dts+1 Qs(t) ≡ 0.
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Using the previous two expressions, we differentiate the function ϕ(t) defined
by formula (2.24) s+ 1 times and obtain:

ϕ(s+1)(t) = f (s+1)(t)− k(s+ 1)!.

Substituting t = ξ into the last equality, and recalling that ϕ(s+1)(ξ ) = 0, we
arrive at the following expression for k:

k =
f (s+1)(t)
(s+ 1)!

.

Finally, by substituting k into equality (2.26) we obtain a formula for Rs(t̄)
that would actually coincide with formula (2.23) because t̄ ∈ [α,β ] has been
chosen arbitrarily.

THEOREM 2.6
Under the assumptions of the previous theorem, the following estimate holds:

max
α≤t≤β

|Rs(t)| ≤ 1
(s+ 1)!

max
α≤t≤β

| f (s+1)(t)|(β −α)s+1. (2.27)

PROOF We first note that ∀t ∈ [α,β ] the absolute value of each expression
t − t0, t − t1, ..., t − ts will not exceed β −α. Then, we use formula (2.23):

|Rs(t)| = 1
(s+ 1)!

| f (s+1)(ξ )(t − t0)(t − t1) . . . (t − ts)|

≤ 1
(s+ 1)!

max
α≤t≤β

| f (s+1)(t)|(β −α)s+1.

(2.28)

As t ∈ [α,β ] on the left-hand side of formula (2.28) is arbitrary, the required
estimate (2.27) follows.

Let us emphasize that we have proven inequality (2.27) for an arbitrary distribution
of the (distinct) interpolation nodes t0,t1, . . . ,ts on the interval [α,β ]. For a given
fixed distribution of nodes, estimate (2.27) can often be improved. For example,
consider a piecewise linear interpolation and assume that the nodes t0 and t1 coincide
with the endpoints α and β , respectively, of the interval α ≤ t ≤ β . Then,

|R1(t)| =
∣∣∣∣ f ′′(ξ )
(s+ 1)!

(t −α)(t −β )
∣∣∣∣

≤ 1
2

max
α≤t≤β

| f ′′(t)| max
α≤t≤β

|(t −α)(t −β )|= 1
8

max
α≤t≤β

| f ′′(t)|(β −α)2,

which yields

max
α≤t≤β

|R1(t)| ≤ 1
8

max
α≤t≤β

| f ′′(t)|(β −α)2, (2.29)
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whereas estimate (2.27) for s = 1 transforms into

max
α≤t≤β

|R1(t)| ≤ 1
2

max
α≤t≤β

| f ′′(t)|(β −α)2.

We will now use Theorems 2.5 and 2.6 to estimate the error (2.22) of piecewise
polynomial interpolation of the function f (x) on the interval xk ≤ x ≤ xk+1. First, let

α = xk− j, β = xk− j+s, t0 = α = xk− j, t1 = xk− j+1, . . . , ts = β = xk− j+s.

Then, it is clear that

max
xk≤x≤xk+1

|Rs(x, fk j)| ≤ max
α≤x≤β

|Rs(x, fk j)|,

and according to (2.27) we obtain

max
xk≤x≤xk+1

|Rs(x, fk j)| ≤ 1
(s+ 1)!

max
xk− j≤x≤xk− j+s

| f (s+1)(x)|(xk− j+s − xk− j)s+1. (2.30)

If the quantity | f (s+1)(x)| undergoes strong variations on the interval [a, b], then,
in order for the estimate (2.30) to guarantee some prescribed accuracy, it will be
advantageous to have the grid size (distance between the neighboring nodes) and the
value of xk− j+s − xk− j smaller in those parts of [a, b] where | f (s+1)(x)| is larger.

In the case of equidistant nodes x0,x1, . . . ,xn, estimate (2.30) implies

max
xk≤x≤xk+1

|Rs(x, fk j)| ≤ ss+1

(s+ 1)!
max

xk− j≤x≤xk− j+s
| f (s+1)(x)|hs+1, (2.31)

where h = (b−a)/n = xk+1−xk is the size of the interpolation grid. Inequality (2.31)
can be recast as

max
xk≤x≤xk+1

|Rs(x, fk j)| ≤ const · max
xk− j≤x≤xk− j+s

| f (s+1)(x)|hs+1, (2.32)

where the key consideration is that the constant on the right-hand side of (2.32) does
not depend on the grid size h.

To conclude this section, let us specifically mention the case of piecewise linear
interpolation: s = 1, α = xk, and β = xk+1. Then, according to estimate (2.29), we
have:

max
xk≤x≤xk+1

|R1(x)| ≤ 1
8

max
xk≤x≤xk+1

| f ′′(x)|(xk+1 − xk)2 =
h2

8
max

xk≤x≤xk+1
| f ′′(x)|. (2.33)

2.2.3 Approximation of Derivatives for a Grid Function

THEOREM 2.7
Let the function f = f (x) be defined on the interval [α,β ], and let it have a

continuous derivative of order s+1 on this interval. Let xk− j,xk− j+1, . . . ,xk− j+s
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be a set of interpolation nodes, such that α = xk− j < xk− j+1 < .. . < xk− j+s = β .
Then, to approximately evaluate the derivatives

dq f (x)
dxq , q = 1,2, . . . ,s,

of the function f (x) on the interval xk ≤ x ≤ xk+1, one can employ the inter-
polating polynomial Ps(x, fk j) and set

dq f (x)
dxq ≈ dq

dxq Ps(x, fk j), xk ≤ x ≤ xk+1. (2.34)

In so doing, the approximation error will satisfy the estimate:

max
xk≤x≤xk+1

∣∣∣∣dq f (x)
dxq − dq

dxq Ps(x, fk j)
∣∣∣∣

≤ 1
(s−q + 1)!

max
xk− j≤x≤xk− j+s

| f (s+1)(x)|(xk− j+s − xk− j)s−q+1.

(2.35)

PROOF Consider an auxiliary function ϕ(x) def= f (x)−Ps(x, fk j); it obvi-
ously vanishes at all s + 1 interpolation nodes xk− j,xk− j+1, . . . ,xk− j+s. There-
fore, its first derivative ϕ ′(x) will have a minimum of s zeros on the interval
xk− j ≤ x ≤ xk− j+s, because according to the Rolle (mean value) theorem, there
is a zero of the function ϕ ′(x) in between any two neighboring zeros of ϕ(x).
Similarly, the function dqϕ(x)

dxq will have at least s−q + 1 zeros on the interval
xk− j ≤ x ≤ xk− j+s. This implies that the derivative dq f (x)

dxq and the polynomial
dq

dxq Ps(x, fk j) of degree no greater than s−q coincide at s−q+1 distinct points.

In other words, the polynomial P(q)
s (x, fk j) can be interpreted as an interpolat-

ing polynomial of degree no greater than s−q for the function f (q)(x) on the
interval xk− j ≤ x ≤ xk− j+s, built on some set of s−q + 1 interpolation nodes.

Moreover, the function f (q)(x) has a continuous derivative of order s−q+1
on [α,β ]:

ds−q+1

dxs−q+1 f (q)(x) =
ds+1

dxs+1 f (x).

Consequently, one can use Theorem 2.6 and, by setting α = xk− j, β = xk− j+s,
obtain the following estimate [cf. formula (2.27)]:

max
xk− j≤x≤xk− j+s

∣∣∣ f (q)(x)−P(q)
s (x, fk j)

∣∣∣
≤ 1

(s−q + 1)!
max

xk− j≤x≤xk− j+s
| f (s+1)(x)|(xk− j+s − xk− j)s−q+1.

As α = xk− j ≤ xk < xk+1 ≤ xk− j+s = β , it immediately yields (2.35).
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2.2.4 Estimate of the Unavoidable Error and the Choice of
Degree for Piecewise Polynomial Interpolation

Let the function f = f (x) be defined on the interval [0,π ], and let its values be
known at the nodes of the uniform grid: xk = kπ/n ≡ kh, k = 0,1, . . . ,n. Using
only the tabulated values of the function f (x0), f (x1), . . . , f (xn), one cannot, even
in principle, obtain an exact reconstruction of f (x) in between the nodes, because
different functions may have identical tables, i.e., may coincide at the nodes xk, k =
0,1, . . . ,n, and at the same time be different elsewhere. If, for example, in addition to
the table of values nothing is known about the function f (x) except that it is simply
continuous, then one cannot guarantee any accuracy at all when reconstructing f (x)
at x = xk, k = 0,1, . . . ,n.

Assume now that f (x) has a bounded derivative of the maximum order s+ 1:

max
x

| f (s+1)(x)| ≤ Ms = const. (2.36)

It is easy to find two different functions from the class characterized by Ms = 1:

f1(x) =
sinnx
ns+1 and f2(x) = − sinnx

ns+1 ,

that would deviate from one another by the value of order hs+1:

max
0≤x≤π

| f1(x)− f2(x)| = max
0≤x≤π

2

∣∣∣∣ sinnx
ns+1

∣∣∣∣= 2
π s+1 hs+1, (2.37)

and for which the tables would nonetheless fully coincide (both will be trivial):

f1(xk) = f2(xk) = 0, k = 0,1, . . . ,n.

We therefore conclude that given the tabulated values of the function f (x), and only
estimate (2.36) in addition to that, one cannot, even in theory, reconstruct the function
f (x) on the interval 0≤ x ≤ π with the accuracy better than O(hs+1). In other words,
the error O(hs+1) is unavoidable when reconstructing the function f (x), 0 ≤ x ≤ π ,
using its table of values on a uniform grid with size h.

It is also clear that

max
0≤x≤π

∣∣∣∣dq f1(x)
dxq − dq f2(x)

dxq

∣∣∣∣= 2
1

ns−q+1 =
2

π s−q+1 hs−q+1, (2.38)

which means that the unavoidable error when reconstructing the derivative dq f (x)
dxq is

at least O(hs−q+1).
By comparing equalities (2.37) and (2.38) with estimates of the error obtained in

Sections 2.2.2 and 2.2.3 for the piecewise polynomial interpolation of the function
f (x) and its derivatives, we conclude that the interpolation error and the unavoidable
error have the same asymptotic order (of smallness) with respect to the grid size h.
If, under the condition (2.36), one still chooses to use interpolating polynomials of
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degree r < s, then the interpolation error (for the function itself) will be O(hr+1). In
other words, there will be an additional loss of the order of accuracy, on top of the
uncertainty-based unavoidable error O(hs+1) that is due to the specification of f (x)
through its discrete table of values.

On the other hand, the use of interpolation of a higher degree r > s cannot increase
the order of accuracy beyond the threshold set by the unavoidable error O(hs+1),
and therefore cannot speed up the convergence as h −→ 0. As such, the degree s of
piecewise polynomial interpolation is optimal for the functions that satisfy (2.36).

REMARK 2.1 The considerations of the current section pertain primarily
to the asymptotic behavior of the error as h −→ 0. For a given fixed h > 0,
interpolation of some degree r < s may, in fact, appear more accurate than
the interpolation of degree s. Besides, in practice the tabulated values f (xk),
k = 0,1, . . . ,n, may only be specified approximately, rather than exactly, with
a finite fixed number of decimal (or binary) digits. In this case, the loss of
interpolation accuracy due to rounding is going to increase as s increases,
because of the growth of the Lebesgue constants (defined by formula (2.18)
of Section 2.1.4). Therefore, the piecewise polynomial interpolation of high
degree (higher than the third) is not used routinely.

REMARK 2.2 Error estimate (2.32) does, in fact, imply uniform conver-
gence of the interpolant Ps(x, fk j) (a piecewise polynomial) to the interpolated
function f (x) with the rate O(hs+1) as the grid is refined, i.e., as h −→ 0.
Estimate (2.33), in particular, indicates that piecewise linear interpolation
converges uniformly with the rate O(h2). Likewise, estimate (2.35) in the
case of a uniform grid with size h will imply uniform convergence of the q-th
derivative of the interpolant P(q)

s (x, fk j) to the q-th derivative of the interpo-
lated function f (q)(x) with the rate O(hs−q+1) as h −→ 0.

REMARK 2.3 The notion of unavoidable error as presented in this sec-
tion (see also Section 1.3) illustrates the concept of Kolmogorov diameters for
compact sets of functions (see Section 12.2.5 for more detail). Let W be a
linear normed space, and let U ⊂W . Introduce also an N-dimensional linear
manifold W (N) ⊂W , for example, W (N) = span

{
w(N)

1 ,w(N)
2 , . . . ,w(N)

N

}
, where the

functions w(N)
n ∈W , n = 1,2, . . . ,N, are given. The N-dimensional Kolmogorov

diameter of the set U with respect to the space W is defined as:

κN(U,W ) = inf
W (N)⊂W

sup
u∈U

inf
w∈W (N)

‖w−u‖W . (2.39)

This quantity tells us how accurately we can approximate an arbitrary u from a
given set U ⊂W by selecting the optimal approximating subspace W (N) whose
dimension N is fixed. The Kolmogorov diameter and related concepts play a
fundamental role in the modern theory of approximation; in particular, for the
analysis of the so-called best approximations, for the analysis of saturation of
numerical methods by smoothness (Section 2.2.5), as well as in the theory of
ε-entropy and related theory of transmission and processing of information.


