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Preface

The meeting on Differential Equations: Inverse and Direct Problems was held
in Cortona, June 21-25, 2004. The topics discussed by well-known specialists
in the various disciplinary fields during the Meeting included, among others:
differential and integrodifferential equations in Banach spaces, linear and non-
linear theory of semigroups, direct and inverse problems for regular and singu-
lar elliptic and parabolic differential and/or integrodifferential equations, blow
up of solutions, elliptic equations with Wentzell boundary conditions, models
in superconductivity, phase transition models, theory of attractors, Ginzburg-
Landau and Schrödinger equations and, more generally, applications to partial
differential and integrodifferential equations from Mathematical Physics.
The reports by the lecturers highlighted very recent, interesting and original
research results in the quoted fields contributing to make the Meeting very
attractive and stimulating also to younger participants.
After a lot of discussions related to the reports, some of the senior lecturers
were asked by the organizers to provide a paper on their contribution or some
developments of them.
The present volume is the result of all this. In this connection we want to
emphasize that almost all the contributions are original and are not expositive
papers of results published elsewhere. Moreover, a few of the contributions
started from the discussions in Cortona and were completed in the very end
of 2005.
So, we can say that the main purpose of the editors of this volume has con-
sisted in stimulating the preparation of new research results. As a consequence,
the editors want to thank in a particular way the authors that have accepted
this suggestion.
Of course, we warmly thank the Italian Istituto Nazionale di Alta Matematica
that made the Meeting in Cortona possible and also the Universitá degli Studi
di Milano for additional support.
Finally, the editors thank the staff of Taylor & Francis for their help and
useful suggestions they supplied during the preparation of this volume.

Angelo Favini and Alfredo Lorenzi

Bologna and Milan, December 2005
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Degenerate first order identification

problems in Banach spaces 1

Mohammed Al-Horani and Angelo Favini

Abstract We study a first order identification problem in a Banach space. We
discuss both the nondegenerate and (mainly) the degenerate case. As a first step,
suitable hypotheses on the involved closed linear operators are made in order to
obtain unique solvability after reduction to a nondegenerate case; the general case
is then handled with the help of new results on convolutions. Various applications
to partial differential equations motivate this abstract approach.

1 Introduction

In this article we are concerned with an identification problem for first order
linear systems extending the theory and methods discussed in [7] and [1]. See
also [2] and [9]. Related nonsingular results were obtained in [11] under differ-
ent additional conditions even in the regular case. There is a wide literature
on inverse problems motivated by applied sciences. We refer to [11] for an
extended list of references. Inverse problems for degenerate differential and
integrodifferential equations are a new branch of research. Very recent results
have been obtained in [7], [5] and [6] relative to identification problems for de-
generate integrodifferential equations. Here we treat similar equations without
the integral term and this allows us to lower the required regularity in time of
the data by one. The singular case for infinitely differentiable semigroups and
second order equations in time will be treated in some forthcoming papers.

The contents of the paper are as follows. In Section 2 we present the non-
singular case, precisely, we consider the problem

u′(t) + Au(t) = f(t)z , 0 ≤ t ≤ τ ,

u(0) = u0 ,

Φ[u(t)] = g(t) , 0 ≤ t ≤ τ ,

1Work partially supported by the Italian Ministero dell’Istruzione, dell’Università e della
Ricerca (M.I.U.R.), PRIN no. 2004011204, Project Analisi Matematica nei Problemi Inversi
and by the University of Bologna, Funds for Selected Research Topics.
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2 M. Al-Horani and A. Favini

where −A generates an analytic semigroup in X, X being a Banach space,
Φ ∈ X∗, g ∈ C1([0, τ ],R), τ > 0 fixed, u0, z ∈ D(A) and the pair (u, f) ∈
C1+θ([0, τ ];X) × Cθ([0, τ ];R), θ ∈ (0, 1), is to be found. Here Cθ([0, τ ]; X)
denotes the space of all X-valued Hölder-continuous functions on [0, τ ] with
exponent θ, and

C1+θ([0, τ ];X) = {u ∈ C1([0, τ ];X); u′ ∈ Cθ([0, τ ];X)}.

In Section 3 we consider the possibly degenerate problem

d

dt
((Mu)(t)) + Lu(t) = f(t)z , 0 ≤ t ≤ τ ,

(Mu)(0) = Mu0 ,

Φ[Mu(t)] = g(t) , 0 ≤ t ≤ τ ,

where L, M are two closed linear operators in X with D(L) ⊆ D(M), L
being invertible, Φ ∈ X∗ and g ∈ C1+θ([0, τ ];R), for some θ ∈ (0, 1). In this
possibly degenerate problem, M may have no bounded inverse and the pair
(u, f) ∈ Cθ([0, τ ]; D(L))×Cθ([0, τ ];R) is to be found. This problem was solved
(see [1]) when λ = 0 is a simple pole for the resolvent (λL + M)−1. Here we
consider this problem under the assumption that M and L act in a reflexive
Banach space X with the resolvent estimate

‖λM(λM + L)−1‖L(X) ≤ C, Re λ ≥ 0 ,

or the equivalent one

‖L(λM + L)−1‖L(X) = ‖(λT + I)−1‖L(X) ≤ C, Re λ ≥ 0 ,

where T = ML−1. Reflexivity of X allows to use the representation of X
as a direct sum of the null space N(T ) and the closure of its range R(T ), a
consequence of the ergodic theorem (see [13], pp. 216-217). Here, a basic role
is played by real interpolation space, see [12].

In Section 4 we give some examples from partial differential equations de-
scribing the range of applications of the previous abstract results.

2 The nonsingular case

Let X be a Banach space with norm ‖ · ‖X (sometimes, ‖ · ‖ will be used for
the sake of brevity), τ > 0 fixed, u0, z ∈ D(A), where −A is the generator of
an analytic semigroup in X, Φ ∈ X∗ and g ∈ C1([0, τ ],R). We want to find a
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pair (u, f) ∈ C1+θ([0, τ ];X)× Cθ([0, τ ];R), θ ∈ (0, 1), such that

u′(t) + Au(t) = f(t)z , 0 ≤ t ≤ τ , (2.1)
u(0) = u0 , (2.2)
Φ[u(t)] = g(t) , 0 ≤ t ≤ τ , (2.3)

under the compatibility relation

Φ[u0] = g(0) . (2.4)

Let us remark that the compatibility relation (2.4) follows from (2.2)-(2.3).
To solve our problem we first apply Φ to (2.1) and take equation (2.3) into

account; we obtain the following equation in the unknown f(t):

g′(t) + Φ[Au(t)] = f(t)Φ[z] . (2.5)

Suppose the condition
Φ[z] 6= 0 (2.6)

to be satisfied. Then we can write (2.5) under the form:

f(t) =
1

Φ[z]
{g′(t) + Φ[Au(t)]} , 0 ≤ t ≤ τ , (2.7)

and the solution u of (2.1)-(2.3) is assigned by the formula

u(t) = e−tAu0 +
∫ t

0

e−(t−s)A {g′(s) + Φ[Au(s)]}
Φ[z]

z ds

=
∫ t

0

e−(t−s)A Φ[Au(s)]
Φ[z]

z ds + e−tAu0

+
1

Φ[z]

∫ t

0

e−(t−s)Ag′(s)z ds . (2.8)

Apply the operator A to (2.8) and obtain

Au(t) =
∫ t

0

e−(t−s)A Φ[Au(s)]
Φ[z]

Az ds + e−tAAu0

+
1

Φ[z]

∫ t

0

e−(t−s)Ag′(s)Az ds . (2.9)

Let Au(t) = v(t); then (2.7) and (2.9) can be written, respectively, as follows:

f(t) =
1

Φ[z]
{g′(t) + Φ[v(t)]} , 0 ≤ t ≤ τ , (2.10)

v(t) =
∫ t

0

e−(t−s)A Φ[v(s)]
Φ[z]

Az ds + e−tAAu0

+
1

Φ[z]

∫ t

0

e−(t−s)Ag′(s)Az ds . (2.11)
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Let us introduce the operator S

Sw(t) =
∫ t

0

e−(t−s)A Φ[w(s)]
Φ[z]

Az ds .

Then (2.11) can be written in the form

v − Sv = h (2.12)

where

h(t) = e−tAAu0 +
1

Φ[z]

∫ t

0

e−(t−s)Ag′(s)Az ds .

It is easy to notice that h ∈ C([0, τ ];X).
To prove that (2.12) has a unique solution in C([0, τ ];X), it is sufficient to

show that Sn is a contraction for some n ∈ N. For this, we note

‖Sv(t)‖ ≤ M ‖Φ‖X∗

|Φ(z)|
∫ t

0

‖v(s)‖ ‖Az‖ ds

‖S2v(t)‖ ≤ M ‖Φ‖X∗

|Φ(z)|
∫ t

0

‖Tv(s)‖ ‖Az‖ ds

≤
(

M ‖Φ‖X∗ ‖Az‖
|Φ(z)|

)2 ∫ t

0

(∫ s

0

‖v(σ)‖ dσ

)
ds

≤
(

M ‖Φ‖X∗ ‖Az‖
|Φ(z)|

)2 ∫ t

0

(t− σ)‖v(σ)‖ dσ

≤
(

M ‖Φ‖X∗ ‖Az‖
|Φ(z)|

)2

‖v‖∞ t2

2
,

where ‖v‖∞ = ‖v‖C([0,τ ];X) .
Proceeding by induction, we can find the estimate

‖Snv(t)‖ ≤
(

M ‖Φ‖X∗‖Az‖
|Φ(z)|

)n
tn

n!
‖v‖∞ ,

which implies that

‖Snv‖∞ ≤
(

M ‖Φ‖X∗‖Az‖
|Φ(z)| τ

)n 1
n!
‖v‖∞ .

Consequently, Sn is a contraction for sufficiently large n. At last notice that
f(t) z is then a continuous D(A)-valued function on [0, τ ], so that (2.1), (2.2)
has in fact a unique strict solution. However, we want to discuss the maximal
regularity for the solution v = Au, and for this we need some additional
conditions. We now recall that if −A generates a bounded analytic semigroup
in X, then the real interpolation space (X,D(A))θ,∞ = DA(θ,∞) coincides
with {x ∈ X; supt>0 t1−θ‖Ae−tAx‖ < ∞}, (see [3]).
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Consider formula (2.11) and notice that (see [10])

e−tAAu0 ∈ Cθ([0, τ ];X) if and only if Au0 ∈ DA(θ,∞) .

Moreover, if g ∈ C1+θ([0, τ ];R) and Az ∈ DA(θ,∞), then
∫ t

0

e−(t−s)Ag′(s)Az ds ∈ Cθ([0, τ ];X)

and
∫ t

0

e−(t−s)AAz Φ[v(s)] ds =
(
e−tAAz ∗ Φ[v]

)
(t) ∈ Cθ([0, τ ];X) .

See [7] and [6].
Therefore, if we assume

Au0, Az ∈ DA(θ,∞) , (2.13)

then v(t) ∈ Cθ([0, τ ]; X), i.e., Au(t) ∈ Cθ([0, τ ];X) which implies that f(t) ∈
Cθ([0, τ ];R). Then there exists a unique solution (u, f) ∈ C1+θ([0, τ ]; X) ×
Cθ([0, τ ];R).

We summarize our discussion in the following theorem.

THEOREM 2.1 Let −A be the generator of an analytic semigroup, Φ ∈
X∗, u0, z ∈ DA(θ+1,∞) and g ∈ C1+θ([0, τ ];R). If Φ[z] 6= 0 and (2.4) holds,
then problem (2.1)-(2.3) admits a unique solution (u, f) ∈ [C1+θ([0, τ ]; X) ∩
Cθ([0, τ ];D(A))]× Cθ([0, τ ];R).

3 The singular case

Consider the possibly degenerate problem

Dt(Mu) + Lu = f(t)z , 0 ≤ t ≤ τ , (3.1)

(Mu)(0) = Mu0 , (3.2)

Φ[Mu(t)] = g(t) , 0 ≤ t ≤ τ , (3.3)

where L, M are two closed linear operators with D(L) ⊆ D(M), L being
invertible, Φ ∈ X∗ and g ∈ C1+θ([0, τ ];R) for θ ∈ (0, 1). Here M may have
no bounded inverse and the pair (u, f) ∈ C([0, τ ];D(L))× Cθ([0, τ ];R), with
Mu ∈ C1+θ([0, τ ]; X), is to be determined so that the following compatibility
condition must hold:

Φ[Mu(0)] = Φ[Mu0] = g(0) . (3.4)
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Let us assume that the pair (M, L) satisfies the estimate

‖λM(λM + L)−1‖L(X) ≤ C, Re λ ≥ 0 , (3.5)

or the equivalent one

‖L(λM + L)−1‖L(X) = ‖(λT + I)−1‖L(X) ≤ C, Re λ ≥ 0 , (3.6)

where T = ML−1.
Various concrete examples of this relation can be found in [8]. One may

note that λ = 0 is not necessarily a simple pole for (λ + T )−1, T = ML−1.
Let Lu = v and observe that T = ML−1 ∈ L(X). Then (3.1)-(3.3) can be
written as

Dt(Tv) + v = f(t)z , 0 ≤ t ≤ τ , (3.7)

(Tv)(0) = Tv0 = ML−1v0 , (3.8)

Φ[Tv(t)] = g(t) , 0 ≤ t ≤ τ , (3.9)

where v0 = Lu0.
Since X is a reflexive Banach space and (3.5) holds, we can represent X as

a direct sum (cfr. [8, p. 153], see also [13], pp. 216-217)

X = N(T )⊕R(T )

where N(T ) is the null space of T and R(T ) is the range of T . Let T̃ = T
R(T )

:
R(T ) → T

R(T )
be the restriction of T to R(T ). Clearly T̃ is a one to one map

from R(T ) onto R(T ) (T̃ is an abstract potential operator in R(T ). Indeed,
in view of the assumptions, −T̃−1 generates an analytic semigroup on R(T ),
(see [8, p. 154]).

Finally, let P be the corresponding projection onto N(T ) along R(T ).
We can now prove the following theorem:

THEOREM 3.1 Let L, M be two closed linear operators in the reflex-
ive Banach space X with D(L) ⊆ D(M), L being invertible, Φ ∈ X∗ and g ∈
C1+θ([0, τ ];R). Suppose the condition (3.5) to hold with (3.4), too. Then prob-
lem (3.1)-(3.3) admits a unique solution (u, f) ∈ Cθ([0, τ ];D(L))×Cθ([0, τ ];R)
provided that

Φ[(I − P )z] 6= 0 , sup
t>0

tθ‖(tT̃ + 1)−1yi‖X < +∞ , i = 1, 2

where y1 = (I − P )Lu0 and y2 = T̃−1(I − P )z.

Proof. Since P is the projection onto N(T ) along R(T ), it is easy to check
that problem (3.7)-(3.9) is equivalent to the couple of problems
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DtT̃ (I − P )v + (I − P )v = f(t)(I − P )z , 0 ≤ t ≤ τ , (3.10)

T̃ (I − P )v(0) = T̃ (I − P )v0 , (3.11)

Φ[T̃ (I − P )v(t)] = g(t) , 0 ≤ t ≤ τ , (3.12)

and
Pv(t) = f(t)Pz . (3.13)

Let w = T̃ (I−P )v, so that (I−P )v = T̃−1w, and hence system (3.10)-(3.12)
becomes

w′(t) + T̃−1w = f(t)(I − P )z , 0 ≤ t ≤ τ , (3.14)
w(0) = w0 = T̃ (I − P )v0 = Tv0 , (3.15)
Φ[w(t)] = g(t) , 0 ≤ t ≤ τ . (3.16)

Then, according to Theorem 2.1, there exists a unique solution (w, f) ∈
C1+θ([0, τ ];R(T )) × Cθ([0, τ ];R) with T̃−1w ∈ Cθ([0, τ ];R(T )) to problem
(3.14)-(3.16) provided that

Φ[(I − P )z] 6= 0 , (I − P )Lu0 , T̃−1(I − P )z ∈ DT̃−1(θ,∞) .

Therefore, (I−P )v ∈ Cθ([0, τ ]; R(T )), Pv ∈ Cθ([0, τ ]; N(T )) and hence there
exists a unique solution (u, f) ∈ Cθ([0, τ ];D(L)) × Cθ([0, τ ];R) with Mu ∈
C1+θ([0, τ ];X) to problem (3.1)-(3.3) . ¤

Our next goal is to weaken the assumptions on the data in the Theorems
1 and 2. To this end we again suppose −A to be the generator of an analytic
semigroup in X of negative type, i.e., ‖e−tA‖ ≤ ce−ωt, t ≥ 0, where c, ω > 0,
g ∈ C1+θ([0, τ ];R), but we take u0 ∈ DA(θ + 1;X), z ∈ DA(θ0,∞), where
0 < θ < θ0 < 1. Our goal is to find a pair (u, f) ∈ C1([0, τ ];X)× C([0, τ ];R),
Au ∈ Cθ([0, τ ];X) such that equations (2.1)-(2.3) hold under the compatibil-
ity relation (2.4).

THEOREM 3.2 Let −A be a generator of an analytic semigroup in X
of positive type, 0 < θ < θ0 < 1, g ∈ C1+θ([0, τ ];R), u0 ∈ DA(θ + 1,∞),
z ∈ DA(θ0,∞). If, in addition, (2.4), (2.6) hold, then problem (2.1)-(2.3) has
a unique solution (u, f) ∈ Cθ([0, τ ], D(A))× Cθ([0, τ ];R).

Proof. Recall (see [10, p. 145]) that if u0 ∈ D(A), f ∈ C([0, τ ];R), z ∈
DA(θ0,∞), then problem (2.1)-(2.2) has a unique strict solution. Moreover, if
u0 ∈ DA(θ + 1; X), then the solution u to (2.1)-(2.2) has the maximal regu-
larity u′, Au ∈ C([0, τ ];X) ∩ B([0, τ ];DA(θ0,∞)), where B([0, τ ]; Y ) denotes
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the space of all bounded functions from [0, τ ] into the Banach space Y . In
addition Au ∈ Cθ([0, τ ];X).

In order to prove our statement, we need to study suitably the properties of
the function u and to use carefully some properties of the convolution operator
and real interpolation spaces.

One readily sees that u satisfies

Au(t) =
∫ t

0

Φ[Au(s)]
Φ[z]

Ae−(t−s)A z ds + e−tAAu0

+
1

Φ[z]

∫ t

0

A e−(t−s)A z g′(s) ds

so that v(t) = Au(t) must satisfy

v(t) =
∫ t

0

Ae−(t−s)A z
Φ[v(s)]
Φ[z]

ds + e−tAAu0

+
1

Φ[z]

∫ t

0

A e−(t−s)A z g′(s) ds .

Let us introduce the operator S : C([0, τ ];X) → C([0, τ ];X) by

(Sw)(t) =
∫ t

0

Ae−(t−s)A z
Φ[w(s)]

Φ[z]
ds .

Since z ∈ DA(θ0,∞), i.e.,

‖Ae−tAz‖ ≤ c

t1−θ0
, t > 0 ,

we deduce

‖Sw(t)‖ ≤ c

∫ t

0

‖Φ‖X∗ ‖z‖θ0,∞
‖w(s)‖

(t− s)1−θ0
ds ,

‖S2w(t)‖ ≤ [c‖Φ‖X∗ ‖z‖θ0,∞]
∫ t

0

‖Sw(s)‖
(t− s)1−θ0

ds

≤ [c‖Φ‖X∗ ‖z‖θ0,∞]2
∫ t

0

ds

(t− s)1−θ0

∫ s

0

‖w(σ)‖
(s− σ)1−θ0

dσ

= [c‖Φ‖X∗ ‖z‖θ0,∞]2
∫ t

0

(∫ t

σ

ds

(t− s)1−θ0(s− σ)1−θ0

)
‖w(σ)‖ dσ

= c2
1

[∫ 1

0

dη

(1− η)1−θ0η1−θ0

]
(t− σ)1−2(1−θ0)‖w(σ)‖ dσ ,

where c1 = c‖Φ‖X∗ ‖z‖θ0,∞, ‖ · ‖DA(θ0,∞) denoting the norm in DA(θ0,∞).
Recall that

B(p, q) =
∫ 1

0

(1− η)p−1 ηq−1 dη =
Γ(p) Γ(q)
Γ(p + q)

.
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Then

‖S3w(t)‖ ≤ c3
1

∫ 1

0

dη

(1− η)1−θ0η1−θ0

∫ 1

0

dη

(1− η)1−θ0η2(1−θ0)−1

×
∫ 1

0

(t− σ)2−3(1−θ0) ‖w(σ)‖ dσ

≤ c3
1 B(θ0, θ0)B(θ0, 2θ0)

∫ 1

0

(t− σ)2−3(1−θ0) ‖w(σ)‖ dσ

≤ c3
1

Γ(θ0)3

Γ(3θ0)
t3θ0

3θ0
‖w‖C([0,t];X) .

By induction, we easily verify that

‖Snw(t)‖ ≤ cn
1

Γ(θ0)n

Γ(nθ0)
tnθ0

nθ0
‖w‖C([0,t];X) .

Since n
√

Γ(nθ0) →∞ as n →∞, we conclude that the operator S has spectral
radius equal to 0. On the other hand, since z ∈ DA(θ0,∞), θ0 > θ, and
g′ ∈ Cθ([0, τ ];R), we deduce by [6] (Lemma 3.3) that the convolution

∫ t

0

g′(s)Ae−(t−s)A z ds

belongs to Cθ([0, τ ];X).
Moreover, since Au0 ∈ DA(θ,∞), e−tAAu0 ∈ Cθ([0, τ ]; X). It follows that
equation (2.12), i.e.,

v − Sv = h ,

with

h(t) = e−tAAu0 +
1

Φ[z]

∫ t

0

Ae−(t−s)A z g′(s) ds

has a unique solution v ∈ C([0, τ ]; X). In order to obtain more regularity for
v, we use Lemma 3.3 in [6] (see also [7]) again. To this end, we introduce the
following Lp-spaces related to any positive constant δ:

Lp
δ((0, τ); X) =

{
u : (0, τ) → X : e−tδu ∈ Lp((0, τ); X)

}
,

endowed with the norms ‖u‖δ,0,p = ‖e−tδu‖Lp((0,τ);X). Moreover,

‖g‖δ,θ,∞ = ‖e−tδg‖Cθ([0,τ ];X) .

Lemma 3.3 in [6] establishes that, in fact, if z ∈ DA(θ0,∞)), 0 < θ < θ0 < 1,
then

∥∥∥
∫ t

0

Ae−(t−s)A z Φ[v(s)] ds
∥∥∥

δ,θ,∞
≤ c δ−θ0+θ+1/p ‖Φ[v(.)]‖δ,0,p
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provided that (θ0 − θ)−1 < p. Now,
∫ t

0

|Φ[v(t)]|p e−δpt dt ≤ ‖Φ‖p
X∗ ‖v‖p

Lp
δ((0,τ);X)

≤ τ ‖Φ‖p
X∗ ‖v‖p

δ,θ,∞ .

Choose δ suitably large and recall that h ∈ Cθ([0, τ ];X). Then the norm of
S as an operator from Cθ([0, τ ]; X) (with norm ‖ · ‖δ,θ,∞) into itself is less
than 1, so that we can deduce that the solution v = Au has the regularity
Cθ([0, τ ];X), as desired. ¤

As a consequence, Theorem 3.1 has the following improvement.

THEOREM 3.3 Let L, M be two closed linear operators in the reflexive
Banach space X with D(L) ⊆ D(M), L being invertible, Φ ∈ X∗ and g ∈
C1+θ([0, τ ];R). Suppose (3.4), (3.5) to hold.
If 0 < θ < θ0 < 1 and Φ[(I−P )z] 6= 0 , sup

t>0
tθ0‖(tT +1)−1(I−P )z‖X < +∞,

sup
t>0

tθ‖(tT + 1)−1(I − P )Lu0‖X < +∞, then problem (3.1)-(3.3) admits a

unique solution (u, f) ∈ Cθ([0, τ ];D(L))×Cθ([0, τ ];R) with Mu ∈ C1+θ([0, τ ];
X).

4 Applications

In this section we show that our abstract results can be applied to some con-
crete identification problems. For further examples for which the theory works
we refer to [8].

Problem 1. Consider the following identification problem related to a bounded
region Ω in Rn with a smooth boundary ∂Ω

Dtu(x, t) =
n∑

i,j=1

Dxi
(aij(x)Dxj

u(x, t)) + f(t)v(x) , (x, t) ∈ Ω× [0, τ ] ,

u(x, t) = 0 , ∀ (x, t) ∈ ∂Ω× [0, τ ] ,
u(x, 0) = u0(x) , x ∈ Ω ,

Φ[u(x, t)] =
∫

Ω

η(x)u(x, t) dx = g(t) , ∀ t ∈ [0, τ ] ,

where the coefficients aij enjoy the properties

aij ∈ C(Ω) , aij = aji , i, j = 1, 2, ..., n

n∑

i,j=1

aij(x) ξi ξj ≥ c0|ξ|2 ∀x ∈ Ω , ∀ ξ ∈ Rn ,
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c0 being a positive constant. Moreover, g ∈ C1([0, τ ];R). We take

Au = −
n∑

i,j=1

Dxi(aijDxj u) , D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω) ,

where 1 < p < +∞ is assumed. Concerning η, we suppose η ∈ Lq(Ω), where
1/p + 1/q = 1. As it is well known, −A generates an analytic semigroup in
Lp(Ω) and thus we can apply Theorem 3.2 provided that u0 ∈ DA(θ + 1;∞),
i.e., Au0 ∈ DA(θ,∞), v ∈ DA(θ0;∞), 0 < θ < θ0 < 1. On the other hand,
the interpolation spaces DA(θ,∞) are well characterized. Then our problem
admits a unique solution

(u, f) ∈ Cθ([0, τ ];W 2,p(Ω) ∩W 1,p
0 (Ω))× Cθ([0, τ ];R),

if g ∈ C1+θ([0, τ ];R), g(0) =
∫
Ω

η(x)u0(x) dx and
∫
Ω

η(x) v(x) dx 6= 0.

Problem 2. Let Ω be a bounded region in Rn with a smooth boundary ∂Ω.
Let us consider the identification problem

Dtu(x, t) =
n∑

i,j=1

Dxi(aij(x)Dxj u(x, t)) + f(t)v(x) , (x, t) ∈ Ω× [0, τ ] ,

u(x, t) = 0 , (x, t) ∈ ∂Ω× [0, τ ] ,

u(x, 0) = u0(x) , x ∈ Ω ,

Φ[u(x, t)] = u(x, t) = g(t) , t ∈ [0, τ ] ,

where x ∈ Ω is fixed, and the pair (f, u) is the unknown.
Here we take

X = C0(Ω) =
{
u ∈ C(Ω), u(x) = 0 ∀x ∈ ∂Ω

}
,

endowed with the sup norm ‖u‖X = ‖u‖∞.
If the coefficients aij are assumed as in Problem 1, and

Au = −
n∑

i,j=1

Dxi(aij(x)Dxj u(x)) , D(A) =
{
u ∈ C0(Ω) ; Au ∈ C0(Ω)

}
,

then −A generates an analytic semigroup in X. The interpolation spaces
DA(θ;∞) have no simple characterization, in view of the boundary condi-
tions imposed to Au. Hence we notice that Theorem 3.2 applies provided that
u0 ∈ D(A2) and v0 ∈ D(A), 0 < θ < 1, g ∈ C1+θ([0, τ ];R), u0(x) = g(0) and
v(x) 6= 0.

Notice that we could develop a corresponding result to Theorem 3.2 related
to operators A with a nondense domain, but this is not so simple and the
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problem will be handled elsewhere.

Problem 3. Let us consider the following identification problem on a bounded
region Ω in R, n ≥ 1, with a smooth boundary ∂Ω:

Dt[m(x)u] = ∆u + f(t)w(x), (x, t) ∈ Ω× [0, τ ] , (4.1)

u = 0 on ∂Ω× [0, τ ] , (4.2)

(mu)(x, 0) = m(x)u0(x) , x ∈ Ω , (4.3)∫

Ω

η(x) (mu)(x, t) dx = g(t) , ∀t ∈ [0, τ ] , (4.4)

where m ∈ L∞(Ω), ∆ : H1
0 (Ω) :→ H−1(Ω) is the Laplacian, u0 ∈ H1

0 (Ω),
w ∈ H−1(Ω), η ∈ H1

0 (Ω), g ∈ C1+θ([0, τ ];R), 0 < θ < 1, and the pair (u, f) ∈
Cθ([0, τ ];H1

0 (Ω))×Cθ([0, τ ];R) is the unknown. Of course, the integral in (4.4)
stands for the duality between H−1(Ω) and H1

0 (Ω). Theorem 3.3 applies with
X = H−1(Ω), see [8, p. 75]. We deduce that if g(0) =

∫
Ω

η(x) m(x)u0(x) dx,
w(x) = m(x)ζ(x) for some ζ ∈ H1

0 (Ω),
∫
Ω

η(x)m(x)ζ(x) dx 6= 0 and (∆u0)(x)
= m(x)ζ1(x) for some ζ1 ∈ H1

0 (Ω), then problem (4.1)-(4.4) has a unique
solution (u, f) ∈ Cθ([0, τ ]; H1

0 (Ω))×Cθ([0, τ ];R), mu ∈ C1+θ([0, τ ];H−1(Ω)).

Problem 4. Consider the degenerate parabolic equation

Dtv = ∆[a(x)v] + f(t)w(x) , (x, t) ∈ Ω× [0, τ ] , (4.5)

together with the initial-boundary conditions

a(x)v(x, t) = 0 , (x, t) ∈ ∂Ω× [0, τ ] , (4.6)
v(x, 0) = v0(x) , x ∈ Ω , (4.7)

and the additional information
∫

Ω

η(x)v(x, t) dx = g(t) , t ∈ [0, τ ] . (4.8)

Here Ω is a bounded region in Rn, n ≥ 1, with a smooth boundary ∂Ω, a(x) ≥
0 on Ω and a(x) > 0 almost everywhere in Ω is a given function in L∞(Ω),
w ∈ H−1(Ω), v0 ∈ H1

0 (Ω), η ∈ H1
0 (Ω), g is a real valued-function on [0, τ ], at

least continuous, and the pair (v, f) is the unknown. Of course, we shall see
that functions w, v0 and g need much more regularity. Call a(x)v = u. Then,
if m(x) = a(x)−1 and u0(x) = a(x)v0(x) we obtain a system like (4.1)-(4.4).
Let M be the multiplication operator by m from H1

0 (Ω) into H−1(Ω) and let
L = −∆ be endowed with Dirichlet condition, that is, L : H1

0 (Ω) → H−1(Ω),
as previously. Take X = H−1(Ω). Then it is seen in [8, p. 81] that (3.5) holds
if
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i) a−1 ∈ L1(Ω), when n = 1,

ii) a−1 ∈ Lr(Ω) with some r > 1, when n = 2,

iii) a−1 ∈ L
n
2 (Ω), when n ≥ 3.

In order to apply Theorem 3.3 we suppose u0(x) = a(x)v0(x) ∈ H1
0 (Ω). As-

sumption (3.4) reads
∫

Ω

η(x)v0(x) dx =
∫

Ω

η(x)
u0(x)
a(x)

dx = g(0) .

Take g ∈ C1+θ([0, τ ];R), 0 < θ < 1. Since R(T ) = R((1/a)∆−1), let aw =
ζ ∈ H1

0 (Ω), a∆u0 = a∆(av0) = ζ1 ∈ H1
0 (Ω),

∫
Ω

η(x) ζ(x)
a(x) dx 6= 0.

Then we conclude that there exists a unique pair (v, f) satisfying (4.5)-(4.8)
with regularity

∆(av) ∈ Cθ([0, τ ];H−1(Ω)) , v ∈ C1+θ([0, τ ];H−1(Ω)) .

In many applications a(x) is comparable with some power of the distance
of x to the boundary ∂Ω and hence the assumptions depend heavily from
the geometrical properties of the domain Ω. For example, if Ω = (−1, 1),
a(x) = (1− x2)α or a(x) = (1− x)α(1 + x)β , 0 < α, β < 1 are allowed.
More generally, in Rn, one can handle a(x) = (1−‖x‖2)α for some α > 0 with
Ω = {x ∈ Rn : ‖x‖ < r}, r > 0. Precisely, if n = 2, then 0 < α < 1, if n ≥ 3
then 0 < α < 2/n.

Problem 5. Let us consider another degenerate parabolic equation, precisely

Dtv = x(1− x)D2
xv + f(t)w(x), (x, t) ∈ (0, 1)× (0, τ), (4.9)

with the initial condition

v(x, 0) = v0(x), x ∈ (0, 1), (4.10)

but with a Wentzell boundary condition (basic in probability theory and in
applied sciences)

lim
x→0

x(1− x)D2
xv(x, t) = 0, t ∈ (0, 1).

We add the additional information:

Φ[v(·, t)] = v(x̄, t) = g(t), t ∈ [0, τ ], (4.11)

where x̄ ∈ (0, 1) is fixed. Here we take X = H1(0, 1), with the norm

‖u‖2X := ‖u‖2L2(0,1) + ‖u′‖2L2(0,1) + |u(0)|2 + |u(1)|2.
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Introduce operator (A,D(A)) defined by

D(A) :=
{
u ∈ H1(0, 1); u′′ ∈ L1

loc(0, 1) and x(1− x)u′′ ∈ H1
0 (0, 1)

}
,

Au = −x(1− x)u′′, u ∈ D(A).

Then −A generates an analytic semigroup in H1(0, 1), see [8, pp. 249-250],
[4]. So, we can apply Theorem 3.2; therefore, if 0 < θ < θ0 < 1, g ∈
C1+θ([0, τ ];R), v0 ∈ DA(θ + 1,∞), w ∈ DA(θ0,∞) (in particular, v0 ∈
D(A2), w ∈ D(A)), g(0) = v0(x̄), w(x̄) 6= 0, then there exists a unique
pair (v, f) ∈ Cθ([0, τ ]; D(A))×Cθ([0, τ ];R) satisfying (4.9)–(4.11) and Dtv ∈
Cθ([0, τ ];H1(0, 1)). Of course, general functionals Φ in the dual space H(0, 1)∗

could be treated.
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