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Preface

This volume contains a selection of invited papers presented by the con-
tributors at the sixth Séminaire Européen de Statistique (SemStat) held as
a summer school of the European Mathematical Society (EMS) at Castle
Höhenried in Bernried near Munich in Germany on 12–18 December 2004.
The aim of SemStat is to provide scientists who are at early stages of their
careers with an opportunity to get quickly to the forefront of knowledge and
research in areas of statistical science that are of current major interest. The
chosen theme for this SemStat was “Statistical Methods for Spatio-Temporal
Systems” and the invited papers were presented in either one or a series of
three lectures by leading researchers and scientists in this field. These invited
papers correspond to chapters in this book. Around 40 young researchers from
various European countries participated in the 2004 SemStat summer school.
They gave short presentations of their own research as listed on the following
pages.

As with previous SemStat volumes the book concentrates on important sta-
tistical methods, theoretical aspects, and topical applications. The structure
of the book is not strictly monographic in that each chapter is self-contained,
consisting of a long expository article that starts by introducing the subject
and progresses swiftly to incorporate recent research trends. The study of
other chapters is beneficial but not vital to the understanding of the material
in any single chapter. The order of the chapters is not important and readers
may directly pick a chapter they are particularly interested in, study a collec-
tion of chapters, or read the whole book, ordering the chapters as they prefer.
Applied scientists dealing with spatio-temporal data in a variety of research
areas should benefit from this book, as should statistical researchers interested
in modern statistical methodologies. Lecturers will find a variety of material
suitable for graduate lecture courses in a statistical degree programme.

Spatio-temporal systems are systems that evolve over both space and time.
The statistical viewpoint is to regard spatio-temporal data as realizations
of random variables spread out in space and evolving in time. Statistical or
stochastic models, such as point process models, for example, are used to
provide the probabilistic backbone facilitating statistical inference from data.
Such an approach is described in Chapter 1 where Diggle presents a review
of statistical methods for spatio-temporal point process data. These methods
are illustrated with specific examples of epidemic data on bovine tuberculo-
sis, gastroenteric disease surveillance, and the foot and mouth outbreak in
the U.K. Each of the applications gives rise to different statistical modelling
approaches.
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viii PREFACE

The second chapter by Vedel Jensen et al. is concerned with the important
issue of modelling randomly growing objects as observed in diverse biological
systems such as colonies of bacteria, tumours, and plant populations. The
authors describe recent advances in stochastic growth models based on spatio-
temporal point processes as well as growth models based on Lévy bases.

Readers who are interested in the use of data transformation tools such as
power spectra, wavelets, and empirical orthogonal functions will appreciate
the overview presented in Chapter 3 by Guttorp, Fuentes, and Sampson. The
authors review methods, illustrating their use in a variety of applications in
ecology and air quality. They also develop formal statistical tests verifying
important assumptions such as stationarity and separability of a space-time
covariance. The latter is also central to the following chapter. Geostatistical
approaches to modelling spatio-temporal data rely on parametric covariance
models and rather stringent assumptions, such as stationarity, separability,
and full symmetry. Chapter 4 by Gneiting, Genton, and Guttorp reviews
recent advances in the literature on space-time covariance functions, illus-
trated using wind data from Ireland.

Readers of the previous SemStat conference volume on Extreme Values in
Finance, Telecommunications, and the Environment published in this mono-
graph series (Vol. 99, 2004) will be familiar with statistical approaches to
rainfall or windspeed data based on extreme value theory. In hydrological ap-
plications such as flood risk assessment, the simulation of rainfall data with
high spatial-temporal resolution is required. In Chapter 5, Chandler et al.
describe some stochastic and statistical models that can be used to provide
simulated rainfall sequences for hydrological use. Model construction, infer-
ence, and diagnostics are all discussed. Many of the techniques described have
applicability in more general space-time settings. This is also the case for
the material introduced in Chapter 6 by Higdon, which provides a compre-
hensive primer on space-time modelling on the basis of Gaussian spatial and
space-time models from a Bayesian perspective. Gaussian Markov random
field specifications and Bayesian computational inference via Gibbs sampling
and Markov chain Monte Carlo are central issues of this chapter. The methods
are introduced and illustrated by a variety of examples using data on tempera-
ture surfaces, dioxin concentrations, ozone concentrations, and also simulated
data from a well-established deterministic dynamical weather model.

It is not possible to cover all aspects of the conference theme in a single
volume. Currently there are few direct links between the mathematical ap-
proaches to the mechanistic modelling of spatio-temporal systems using, for
example, differential equations, pair approximations, or interactive particle
systems and the stochastic and statistical modelling approaches as intro-
duced here. A major reason for this is that the complexity and mechanis-
tic realism that can be formulated mathematically is much larger than the
model complexity that can be entertained regarding any available data from
such systems. Statistical approaches generally start from the viewpoint of the
data assuming stochastic or statistical modelling approaches as a vehicle for
faciliating inference. It is our hope that the coverage provided by this volume
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will help readers acquaint themselves speedily with current statistical research
issues in modelling spatio-temporal data and that it will enable further under-
standing and possible advances between the mechanistic and the statistical
modelling communities.

The Séminaire Européen de Statistique is an activity of the European
Regional Committee of the Bernoulli Society for Mathematical Statistics and
Probability. The scientific programme was organised by the SemStat steer-
ing group, which, at the time of the conference, comprised Ole Barndorff-
Nielsen (Aarhus), Bärbel Finkenstädt (Warwick), Leonhard Held (Munich),
Alex Lindner (Munich), Enno Mammen (Mannheim), Gesine Reinert
(Oxford), Michael Sørensen (Copenhagen), Ingrid Van Keilegom (Louvain-la-
Neuve), and Aad van der Vaart (Amsterdam). The local organization of the
meeting was in the hands of Leonhard Held (Munich) and the smooth running
was in large part due to the enthusiastic help of Susanne Breitner, Michael
Höhle, and Thomas Kneib (Munich). This SemStat was funded as an EMS
summer school by the European Union under the sixth European framework
(Marie Curie Actions) and some essential additional funding was provided by
the Collaborative Research Centre Sonderforschungsbereich FB386, German
research foundation (DFG). We are very grateful for this support and thanks
are due to Luc Lemaire (Free University, Brussels) for coordinating the EMS
summer school proposals. We would also like to thank all anonymous referees
for reading the chapters and helping in improving their presentation.

On behalf of the steering group,
B. Finkenstädt (Warwick), L. Held (Munich), and V. Isham (London)
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Péter Elek, Eötvös Loránd University (Hungary),
Modelling extreme water discharges: comparison of a GARCH-type model
with conventional hydrologic models.

Georgia Escaramis, University of Barcelona (Spain),
Techniques to estimate confidence intervals of risks in disease mapping.

Francesco Fedele, University of Vermont (USA),
Successive wave crests in Gaussian seas.

Laura Ferracuti, University of Perugia (Italy),
MCEM estimation for multivariate geostatistical non-Gaussian models.

Edith Gabriel, University of Montpellier II (France),
Estimating and testing zones of abrupt change for spatial data.

Axel Gandy, University of Ulm (Germany),
On goodness of fit tests for Aalen’s additive risk model.



C5939 C5939˙C000 September 14, 2006 10:35

xii PARTICIPANTS
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1.1 Introduction

This chapter is concerned with the analysis of data whose basic format is
(xi, ti) : i = 1, . . . , n, where each xi denotes the location and ti the corre-
sponding time of occurrence of an event of interest. We shall assume that the
data form a complete record of all events which occur within a pre-specified
spatial region A and a prespecified time-interval, (0, T ). We call a data-set of
this kind a spatio-temporal point pattern, and the underlying stochastic model
for the data a spatio-temporal point process.

1.1.1 Motivating examples

1.1.1.1 Amacrine cells in the retina of a rabbit

One general approach to analysing spatio-temporal point process data is to
extend existing methods for purely spatial data by considering the time of
occurrence as a distinguishing feature, or mark, attached to each event. Before
giving an example of this, we give an even simpler example of a marked spatial

Figure 1.1 Amacrine cells in the retina of a rabbit. On and off cells are shown as
open and closed circles, respectively. The rectangular region on which the cells are
observed has dimension 1060 by 662 µm.
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point pattern, in which the events are of just two qualitatively different types.
Each event in Figure 1.1 represents the location of an amacrine cell in the
retina of a rabbit. These cells play a fundamental role in mammalian vision.
One type transmits information when a light goes on; the other type similarly
transmits information when a light goes off. The data consist of the locations
of 152 on cells and 142 off cells in a rectangular region of dimension 1060 by
662 µm.

The primary goal for the analysis of these data is to discriminate between
two competing developmental hypotheses. The first hypothesis is that the
pattern forms initially in two separate layers, corresponding to their pre-
determined functionality; the second is that the pattern forms initially in
a single, undifferentiated layer with function determined at a later develop-
mental stage. One way to formalise this in statistical terms is to ask whether
the two component patterns are statistically independent. Approximate inde-
pendence would favour the first hypothesis. As we shall discuss in Section 1.2,
this statement is a slight over-simplification but it provides a sensible starting
point for an analysis of the data.

Our description and later analysis of these data are based on material in
Diggle et al. (2005a). For a general discussion of the biological background,
see Hughes (1985).

1.1.1.2 Bovine tuberculosis in Cornwall, U.K.

Our second example concerns the spatio-temporal distribution of reported
cases of bovine tuberculosis (BTB) in the county of Cornwall, U.K., over the
years 1991 to 2002. Individual cases are identified from annual inspections of
farm herds; hence the effective time-resolution of the data is 1 year.

The prevalence of BTB has been increasing during the 12-year period
covered by the data, but the observed annual counts exaggerate this effect
because the scale of the annual inspection programme has also increased.
Each recorded case is classified genetically, using the method of spoligotyping
(Durr et al., 2000). The main scientific interest in these data lies not so much
in the overall spatio-temporal distribution of the disease, but rather in the
degree of spatial segregation amongst the different spoligotypes, and whether
this spatial segregation is or is not stable over time. If the predominant mode
of transmission is through local cross-infection, we might expect to find a sta-
ble pattern of spatial segregation, in which locally predominant spoligotypes
persist over time; whereas if the disease is spread primarily by the introduc-
tion of animals from remote locations which are bought and sold at market,
the resulting pattern of spatial segregation should be less stable over time
(Diggle et al., 2005c).

Figure 1.2 shows the spatial distributions of cases corresponding to each of
the four most common spoligotypes. The visual impression is one of strong
spatial segregation, with each of the four types predominating in particular
sub-regions.
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Figure 1.2 Spatial distributions of the four most common spoligotype data over
the 14 years. Top row: spoligotype 9 (left) and spoligotype 12 (right). Bottom row:
spoligotype 15 (left) and spoligotype 20 (right).

1.1.1.3 Gastroenteric disease in Hampshire, U.K.

Our third example concerns the spatio-temporal distribution of gastroenteric
disease in the county of Hampshire, U.K., over the years 2001 and 2002. The
data are derived from calls to NHS Direct, a 24-hour, 7-day phone-in service
operating within the U.K. National Health Service. Each call to NHS Direct
generates a data-record which includes the caller’s post-code, the date of the
call and a symptom code (Cooper et al., 2003). Figure 1.3 shows the locations
of the 7167 calls from patients resident in Hampshire whose assigned symptom
code corresponded to acute, non-specific gastroenteric disease. The spatial
distribution of cases largely reflects that of the population of Hampshire, with
strong concentrations in the large cities of Southampton and Portsmouth, and



C5939 C5939˙C001 September 13, 2006 9:55

INTRODUCTION 5

420000 440000 460000 480000

10
00

00
12

00
00

14
00

00
16

00
00

Figure 1.3 Locations of 7167 incident cases of non-specific gastroenteric disease
in Hampshire, 1 January 2001 to 31 December 2002.

smaller concentrations in other towns and villages. Inspection of a dynamic
display of the space-time coordinates of the cases suggests the kind of pattern
typical of an endemic disease, in which cases can occur at any point in the
study region at any time during the 2-year period. Occasional outbreaks of
gastroenteric disease, which arise as a result of multiple infections from a
common source, should result in anomalous spatially and temporally localised
concentrations of cases.

The data were collected as part of the AEGISS project (Diggle et al., 2003),
whose overall aim was to improve the timeliness of the disease surveillance sys-
tems currently used in the U.K. The specific statistical aims for the analysis of
the data are to establish the normal pattern of spatial and temporal variation
in the distribution of reported cases, and hence to develop a method of real-
time surveillance to identify as quickly as possible any anomalous incidence
patterns which might signal the onset of an outbreak requiring some form of
public health intervention.

1.1.1.4 The U.K. 2001 epidemic of foot-and-mouth disease

Foot-and-mouth disease (FMD) is a highly infectious viral disease of farm live-
stock. The virus can be spread directly between animals over short distances
in contaminated airborne droplets, and indirectly over longer distances, for
example via the movement of contaminated material. The U.K. experienced a
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Figure 1.4 (SEE COLOR INSERT FOLLOWING PAGE 142) Locations
of at-risk farms (black) and FMD case-farms (red) in Cumbria (left-hand panel) and
in Devon (right-hand panel).

major FMD epidemic in 2001, which resulted in the slaughter of more than 6
million animals. Its estimated total cost to the U.K. economy was around £8
billion (U.K. National Audit Office, 2002). The epidemic affected 44 counties,
and was particularly severe in the counties of Cumbria, in the north-west of
England, and Devon, in the south-west. Figure 1.4 shows the spatial distribu-
tions of all farms in Cumbria and Devon which were at risk at the start of the
epidemic, and of the farms which experienced the disease. In sharp contrast
to the data on gastroenteric disease in Hampshire, the case-farms are strongly
concentrated in sub-regions within each of the two counties. Dynamic plot-
ting of the space-time locations of case-farms confirms the typical pattern of
a highly infectious, epidemic disease. The predominant pattern is of transmis-
sion between near-neighbouring farms, but there are also a few, apparently
spontaneous outbreaks of the disease far from any previously infected farms.

The main control strategies used during the epidemic involved the pre-
emptive slaughter of animal holdings at farms thought to be at high risk of
acquiring, and subsequently spreading, the disease. Factors which could af-
fect whether a farm is at high risk include, most obviously, its proximity to
infected farms, but also recorded characteristics such as the size and species
composition of its holding. One objective in analysing these data is to formu-
late and fit a model for the dynamics of the disease which incorporates these
effects. A model of this kind could then provide information on what forms
of control strategy would be likely to prove effective in any future epidemic.

1.1.2 Chapter outline

In Section 1.2 we give a brief review of statistical methods for spatial point
patterns, illustrated by an analysis of the amacrine cell data shown in Fig-
ure 1.1. We refer the reader to Diggle (2003) or Møller and Waagepetersen
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(2003) for more detailed accounts of the methodology, and to Diggle et al.
(2005a) for a full account of the data-analysis.

In Section 1.3 we discuss strategies for analysing spatio-temporal point
process data. We argue that an important distinction in practice is between
data for which the individual events (xi, ti) occur in a space-time continuum,
and data for which the time-scale is either naturally discrete, or is made so
by recording only the aggregate spatial pattern of events over a sequence of
discrete time-periods. Our motivating examples include instances of each of
these scenarios. Other scenarios which we do not consider further are when
the locations are coarsely discretised by assigning each event to one of a num-
ber of sub-regions which form a partition of A. Methods for the analysis of
spatially discrete data are typically based on Markov random field models.
An early, classic reference is Besag (1974). Book-length treatments include
Cressie (1991), Banerjee et al. (2003), and Rue and Held (2005).

In later sections we describe some of the available models and methods
through their application to our motivating examples. This emphasis on spe-
cific examples is to some extent a reflection of the author’s opinion that generic
methods for analysing spatio-temporal data-sets have not yet become well
established; certainly, they are less well established than is the case for purely
spatial data. Nevertheless, in the final section of the chapter we will attempt
to draw some general conclusions which go beyond the specific examples con-
sidered, and can in that sense be regarded as pointers towards an emerging
general methodology.

1.2 Statistical methods for spatial point processes

1.2.1 Descriptors of pattern: spatial regularity, complete spatial
randomness, and spatial aggregation

A convenient, and conventional, starting point for the analysis of a spatial
point pattern is to apply one or more tests of the hypothesis of complete
spatial randomness (CSR), under which the data are a realisation of a homo-
geneous Poisson process. A homogeneous Poisson process is a point process
that satisfies two conditions: the number of events in any planar region A
follows a Poisson distribution with mean λ|A|, where | · | denotes area and the
constant λ is the intensity, or mean number of events per unit area; and the
numbers of events in disjoint regions are independent. It follows that, condi-
tional on the number of events in any region A, the locations of the events
form an independent random sample from the uniform distribution on A (see,
for example, Diggle, 2003, Section 4.4). Hence, CSR embraces two quite dif-
ferent properties: a uniform marginal distribution of events over the region A;
and independence of events. We emphasise that this is only a starting point,
and that the hypothesis of CSR is rarely of any scientific interest. Rather,
CSR is a dividing hypothesis (Cox, 1977), a test of which leads to a qualita-
tive classification of an observed pattern as regular, approximately random or
aggregated.
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Figure 1.5 Examples of a regular (upper-left panel), a completely random (upper-
right panel), and an aggregated (lower panel) spatial point pattern.

We do not attempt a precise mathematical definition of the descriptions
“regular” and “aggregated.” Roughly speaking, a regular pattern is one in
which events are more evenly spaced throughout A than would be expected
under CSR, and typically arises through some form of inhibitory dependence
between events. Conversely, an aggregated pattern is one in which events
tend to occur in closely spaced groups. Patterns of this type can arise as a
consequence of marginal non-uniformity, or a form of attractive dependence, or
both. In general, as shown by Bartlett (1964), it is not possible to distinguish
empirically between underlying hypotheses of non-uniformity and dependence
using the information presented by a single observed pattern. Figure 1.5 shows
an example of a regular, a completely random, and an aggregated spatial point
pattern. The contrasts amongst the three are clear.

1.2.2 Functional summary statistics

Tests of CSR which are constructed from functional summary statistics of an
observed pattern are useful for two reasons: when CSR is conclusively rejected,
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their behaviour gives clues as to the kind of model which might provide a rea-
sonable fit to the data; and they may suggest preliminary estimates of model
parameters. Two widely used ways of constructing functional summaries are
through nearest neighbour and second-moment properties. Third and higher-
order moment summaries are easily defined, but appear to be rarely (possibly
too rarely) used in data-analysis; an exception is Peebles and Groth (1975).
They do feature, for example, in the theoretical analysis of ecological models,
as discussed in Murrell, Dieckmann and Law (2004), and undoubtedly offer
potential insights which are not captured by second-moment properties.

Two nearest neighbour summaries are the distribution functions of X, the
distance from an arbitrary origin of measurement to the nearest event of the
process, and of Y , the distance from an arbitrary event of the process to the
nearest other event. We denote these by F (x) and G(y), respectively. The em-
pirical counterpart of F (x) typically uses the distances, di say, from each of
m points in a regular lattice arrangement to the nearest event, leading to the
estimate F̃ (x) = m−1

∑
I(di ≤ x) where I(·) is the indicator function. Simi-

larly, if ei is the distance from each of n events to its nearest neighbour, then
G̃(y) = n−1

∑
I(ei ≤ y). Edge-corrected versions of these simple estimators

are sometimes preferred, and are necessary if we wish to compare empirical
estimates with the corresponding theoretical properties of a stationary point
process.

Derivations, and further discussion, of results in the remainder of this sec-
tion can be found, for example, in Diggle (2003, Chapter 4).

Under CSR, F (x) = G(x) = 1 − exp(−λπx2), where λ is the intensity, or
mean number of events per unit area. Typically, in a regular pattern G(x) <
F (x), whereas in an aggregated pattern G(x) > F (x).

To describe the second-moment properties of a spatial point process, we
need some additional notation. Let dx denote an infinitesimal neighbourhood
of the point x, and N(dx) the number of events in dx. Then, the intensity
function of the process is

λ(x) = lim
|dx|→0

{
E[N(dx)]

|dx|

}

.

Similarly, the second-moment intensity function is

λ2(x, y) = lim
|dx|→0
|dy|→0

{
E[N(dx)N(dy)]

|dx||dy|

}

,

and the covariance density is

γ(x, y) = λ2(x, y) − λ(x)λ(y).

The process is stationary and isotropic if its statistical properties do not
change under translation and rotation, respectively. If we now assume that
the process is stationary and isotropic, the intensity function reduces to a
constant, λ, equal to the expected number of events per unit area. Also, the
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second-moment intensity reduces to a function of distance, λ2(x, y) = λ2(r)
where r = ||x− y|| is the distance between x and y, and the covariance den-
sity is γ(r) = λ2(r) − λ2. In this case, the scaled quantity ρ(r) = λ2(r)/λ2 is
called, somewhat misleadingly, the pair correlation function. For a homoge-
neous Poisson process, g(r) = 1 for all r.

A more tangible interpretation of the pair correlation function is obtained
if we integrate over a disc of radius s. This gives the reduced second-moment
measure, or K-function,

K(s) = 2π
∫ s

0

ρ(r)r dr. (1.1)

Ripley (1976, 1977) introduced the K-function as a tool for data-analysis. One
of its advantages over the pair correlation function is that it can be interpreted
as a scaled expectation of an observable quantity. Specifically, let E(s) denote
the expected number of further events within distance s of an arbitrary event.
Then,

K(s) = λ−1E(s). (1.2)

The result (1.2) leads to several useful insights. First, it suggests a method
of estimating K(s) directly by the method of moments, without the need for
any smoothing; this is especially useful for relatively small data-sets. Second,
it explains why K(s) is a good descriptor of spatial pattern. For a completely
random pattern, events are positioned independently; hence E(s) = λπs2 and
K(s) = πs2. This gives a benchmark against which to assess departures from
CSR. For aggregated patterns, K(s) is relatively large at small distances s be-
cause each event typically forms part of a “cluster” of mutually close events.
Conversely, for regular patterns, K(s) is relatively small at small distances s
because each event tends to be surrounded by empty space. Another useful
property is that K(s) is invariant to random thinning, i.e., retention or dele-
tion of events according to a series of independent Bernoulli trials. This follows
immediately from (1.2), which expresses K(s) as the ratio of two quantities,
both of which vary by the same constant of proportionality under random
thinning.

We use the following edge-corrected method of moments estimator proposed
originally by Ripley (1976, 1977). For data xi ∈ A : i = 1, . . . , n, a natural
estimator for E(s) is

Ẽ(s) = n−1
n∑

i=1

∑

j �=i

I(rij ≤ s), (1.3)

where rij = ||xi−xj ||. Except for very small values of s, this estimator suffers
from substantial negative bias because events outside A are not recorded in
the data. A remedy is to replace the simple count in (1.3) by a sum of weights
wij , where w−1

ij is the proportion of the circumference of the circle with centre
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Figure 1.6 Estimates K̂(s)−πs2 for a regular (dashed line), a completely random
(Poisson process, solid line), and an aggregated or clustered (dotted line) point
pattern.

xi and radius rij which lies within A. Finally, we estimate λ by (n − 1)/|A|,
where |A| denotes the area of A, to give

K̂(s) = |A|{n(n− 1)}−1
n∑

i=1

∑

j �=i

wijI(rij ≤ s). (1.4)

Ripley used n/|A| to estimate λ. Our preference for (n−1)/|A| has a slightly
arcane theoretical justification which is discussed in Chetwynd and Diggle
(1998) but this is clearly of no great consequence when n is large.

Figure 1.6 shows estimates K̂(s)− πs2 for each of the three point patterns
shown in Figure 1.5. Subtraction of the CSR benchmark, K(s) = πs2, em-
phasises departures from CSR, in effect acting as a magnifying glass applied
to the estimate K̂(s).

Multivariate extensions of the K-function and its estimator were proposed
by Lotwick and Silverman (1982). For a stationary, isotropic process let λj :
j = 1, . . . ,m denote the intensity of type j events. Define functions Kij(s) =
λ−1
j Eij(s), where Eij(s) is the expected number of further type j events within

distance s of an arbitrary type i event. Note that Kij(s) = Kji(s). Although
this equality is not obvious from the above definitions, it follows immediately
from the multivariate analogue of our earlier definition (1.1) of K(s) as an
integrated version of the pair correlation function. However, direct extension
of (1.4) to the multivariate case leads to two different estimates K̃ij(s) and
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K̃ji(s) which, following Lotwick and Silverman (1982), we can combine to give
the single estimate

K̂ij(s) = {niK̃ij(s) + njK̃ji(s)}/(ni + nj). (1.5)

Two useful benchmark results for multivariate K-functions are:

1. If type i and type j events form independent processes, then Kij(s) =
πs2;

2. If type i and type j events form a random labelling of a univariate
process with K-function K(s), then Kii(s) = Kjj(s) = Kij(s) =
K(s).

1.2.3 Functional summary statistics for the amacrines data

Figure 1.7 shows estimates K̂ij(s) − πs2 for the amacrine cell data. Our in-
terpretation of the three estimates is as follows. First, the near-equality of
K̂11(s) and K̂22(s) suggests that the underlying biological process may be
the same for both types of cell. Informally, the difference between K̂11(s) and
K̂22(s) gives an upper bound to the size of the sampling fluctuations in the
estimates. Second, both estimates show a strong inhibitory effect, with no two
cells of the same type occurring within a distance of around 30 µm. Third, the
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Figure 1.7 Estimates of the K-functions for the amacrine cell data. Each plotted
function is K̂(s)−πs2. The dashed line corresponds to K̂11(s) (on cells), the dotted
line to K̂22(s) (off cells), and the solid line to K̂12(s). The parabola −πs2 is also
shown as a solid line.
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estimate K̂12(s) fluctuates around a value close to zero at small distances s,
suggesting that the two component patterns are approximately independent.
More specifically, K̂12(s) does not show the strong inhibitory effect exhibited
by both K̂11(s) and K̂22(s).

Collectively, these results are consistent with the first of the two develop-
mental hypotheses for these data, namely that the component patterns of on
and off cells form initially in two separate layers which later fuse to form the
mature retina. Specifically, the separate layer hypothesis would imply statisti-
cal independence between the two component patterns; hence K12(s) = πs2.
In fact, as we discuss below, the component patterns cannot strictly be inde-
pendent because of the physical space required by each cell body. The data
are clearly not compatible with random labelling of an initially undifferenti-
ated pattern, as this would require all three estimated K-functions to be equal
to within sampling variation. Furthermore, it is difficult to imagine how any
biologically plausible labelling process could preserve strict inhibition between
any two cells of the same type without imposing a similar constraint on two
cells of opposite type. Hence, the analysis summarised in Figure 1.7 strongly
favours the separate layer hypothesis.

1.2.4 Likelihood-based methods

Classical maximum likelihood estimation is straightforward for Poisson pro-
cesses, but notoriously intractable for other point process models. Two more
tractable alternatives are maximum pseudo-likelihood and Monte Carlo max-
imum likelihood. Both are particularly well suited to estimation in a class of
models known as pairwise interaction point processes, and it is in this context
that we discuss them here.

A third variant of likelihood-based estimation uses a partial likelihood. This
method is best known in the context of survival analysis (Cox, 1972, 1975). We
describe its adaptation to spatio-temporal point processes in Section 1.3.2.2.

1.2.4.1 Pairwise interaction point processes

Pairwise interaction processes form a sub-class of Markov point processes
(Ripley and Kelly, 1977). They are defined by their likelihood ratio, f(·),
with respect to a Poisson process of unit intensity. Hence, if χ = {x1, . . . , xn}
denotes a configuration of n points in a spatial region A, then f(χ) measures
in an intuitive sense how much more likely is the configuration χ than it
would be as a realisation of a Poisson process of unit intensity. For a pairwise
interaction process, we need to specify a parameter β which governs the mean
number of events per unit area and an interaction function h(r), where r
denotes distance. Intuitively, h(r) is related to the likelihood that the model
will generate pairs of events separated by a distance r, in the sense that the
likelihood for a particular configuration of events depends on the product of
h(||xi − xj ||) over all distinct pairs of events. Hence, for example, a value
h(r) = 0 for all r < δ would imply that no two events can be separated by


