

A ProgrAmmer’s ComPAnion
to Algorithm AnAlysis

C6730_C000a.indd 1 08/14/2006 3:53:08 PM

A ProgrAmmer’s ComPAnion
to Algorithm AnAlysis

ernst l. leiss
University of Houston,

Texas, U.S.A.

C6730_C000a.indd 2 08/14/2006 3:53:08 PM

A ProgrAmmer’s ComPAnion
to Algorithm AnAlysis

ernst l. leiss
University of Houston,

Texas, U.S.A.

C6730_C000a.indd 3 08/14/2006 3:53:08 PM

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 1-58488-673-0 (Softcover)
International Standard Book Number-13: 978-1-58488-673-0 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Leiss, Ernst L., 1952-
A programmer’s companion to algorithm analysis / Ernst L. Leiss.

p. cm.
Includes bibliographical references and index.
ISBN 1-58488-673-0 (acid-free paper)
1. Programming (Mathematics) 2. Algorithms--Data processing. I. Title.

QA402.5.L398 2006
005.1--dc22 2006044552

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

T&F_LOC_A_Master.indd 1 6/14/06 8:56:36 AMC6730_C000a.indd 4 08/14/2006 3:53:08 PM

Preface

The primary emphasis of this book is the transition from an algorithm to a
program. Given a problem to solve, the typical first step is the design of an
algorithm; this algorithm is then translated into software. We will look care-
fully at the interface between the design and analysis of algorithms on the
one hand and the resulting program solving the problem on the other. This
approach is motivated by the fact that algorithms for standard problems are
readily available in textbooks and literature and are frequently used as
building blocks for more complex designs. Thus, the correctness of the algo-
rithm is much less a concern than its adaptation to a working program.

Many textbooks, several excellent, are dedicated to algorithms, their
design, their analysis, the techniques involved in creating them, and how to
determine their time and space complexities. They provide the building
blocks of the overall design. These books are usually considered part of the
theoretical side of computing. There are also numerous books dedicated to
designing software, from those concentrating on programming in the small
(designing and debugging individual programs) to programming in the
large (looking at large systems in their totality). These books are usually
viewed as belonging to software engineering. However, there are no books
that look systematically at the gap separating the theory of algorithms and
software engineering, even though many things can go wrong in taking
several algorithms and producing a software product derived from them.

This book is intended to fill this gap. It is not intended to teach algorithms
from scratch; indeed, I assume the reader has already been exposed to the
ordinary machinery of algorithm design, including the standard algorithms
for sorting and searching and techniques for analyzing the correctness and
complexity of algorithms (although the most important ones will be
reviewed). Nor is this book meant to teach software design; I assume that
the reader has already gained experience in designing reasonably complex
software systems. Ideally, the readers’ interest in this book’s topic was
prompted by the uncomfortable realization that the path from algorithm to
software was much more arduous than anticipated, and, indeed, results
obtained on the theory side of the development process, be they results
derived by readers or acquired from textbooks, did not translate satisfac-
torily to corresponding results, that is, performance, for the developed
software. Even if the reader has never encountered a situation where the
performance predicted by the complexity analysis of a specific algorithm
did not correspond to the performance observed by running the resulting
software, I argue that such occurrences are increasingly more likely, given

C6730_C000.fm Page v Monday, July 3, 2006 2:30 PM

the overall development of our emerging hardware platforms and software
environments.

In many cases, the problems I will address are rooted in the different way
memory is viewed. For the designer of an algorithm, memory is inexhaust-
ible, has uniform access properties, and generally behaves

nicely

 (I will be
more specific later about the meaning of

niceness

). Programmers, however,
have to deal with memory hierarchies, limits on the availability of each class
of memory, and the distinct nonuniformity of access characteristics, all of
which imply a definite absence of niceness. Additionally, algorithm designers
assume to have complete control over their memory, while software design-
ers must deal with several agents that are placed between them and the
actual memory — to mention the most important ones, compilers and oper-
ating systems, each of which has its own idiosyncrasies. All of these conspire
against the software designer who has the naïve and often seriously disap-
pointed expectation that properties of algorithms easily translate into prop-
erties of programs.

The book is intended for software developers with some exposure to the
design and analysis of algorithms and data structures. The emphasis is
clearly on practical issues, but the book is naturally dependent on some
knowledge of standard algorithms — hence the notion that it is a companion
book. It can be used either in conjunction with a standard algorithm text, in
which case it would most likely be within the context of a course setting, or
it can be used for independent study, presumably by practitioners of the
software development process who have suffered disappointments in apply-
ing the theory of algorithms to the production of efficient software.

C6730_C000.fm Page vi Monday, July 3, 2006 2:30 PM

Contents

Foreword .. xiii

Part 1 The Algorithm Side: Regularity,
Predictability, and Asymptotics

1

A Taxonomy of Algorithmic Complexity 3

1.1 Introduction ..3
1.2 The Time and Space Complexities of an Algorithm................................5
1.3 The Worst-, Average-, and Best-Case Complexities of an Algorithm...9

1.3.1 Scenario 1.. 11
1.3.2 Scenario 2..12

1.4 Bit versus Word Complexity..12
1.5 Parallel Complexity ...15
1.6 I/O Complexity ...17

1.6.1 Scenario 1..18
1.6.2 Scenario 2..20

1.7 On-Line versus Off-Line Algorithms ...22
1.8 Amortized Analysis...24
1.9 Lower Bounds and Their Significance ...24
1.10 Conclusion ..30
Bibliographical Notes...30
Exercises ...31

2

Fundamental Assumptions Underlying
Algorithmic Complexity... 37

2.1 Introduction ..37
2.2 Assumptions Inherent in the Determination of

Statement Counts...38
2.3 All Mathematical Identities Hold ...44
2.4 Revisiting the Asymptotic Nature of Complexity Analysis45
2.5 Conclusion ..46
Bibliographical Notes...47
Exercises ...47

C6730_C000.fm Page vii Monday, July 3, 2006 2:30 PM

3

Examples of Complexity Analysis .. 49

3.1 General Techniques for Determining Complexity49
3.2 Selected Examples: Determining the Complexity of

Standard Algorithms...53
3.2.1 Multiplying Two

m

-Bit Numbers ..54
3.2.2 Multiplying Two Square Matrices..55
3.2.3 Optimally Sequencing Matrix Multiplications...........................57
3.2.4 MergeSort ...59
3.2.5 QuickSort ..60
3.2.6 HeapSort ...62
3.2.7 RadixSort ..65
3.2.8 Binary Search ...67
3.2.9 Finding the

K

th Largest Element ...68
3.2.10 Search Trees..71

3.2.10.1 Finding an Element in a Search Tree.............................72
3.2.10.2 Inserting an Element into a Search Tree73
3.2.10.3 Deleting an Element from a Search Tree74
3.2.10.4 Traversing a Search Tree..76

3.2.11 AVL Trees..76
3.2.11.1 Finding an Element in an AVL Tree76
3.2.11.2 Inserting an Element into an AVL Tree.........................77
3.2.11.3 Deleting an Element from an AVL Tree83

3.2.12 Hashing...84
3.2.13 Graph Algorithms ...87

3.2.13.1 Depth-First Search ..88
3.2.13.2 Breadth-First Search ...89
3.2.13.3 Dijkstra’s Algorithm ...91

3.3 Conclusion ..92
Bibliographical Notes...92
Exercises ...93

Part 2 The Software Side: Disappointments and
How to Avoid Them

4

Sources of Disappointments.. 103

4.1 Incorrect Software..103
4.2 Performance Discrepancies ..105
4.3 Unpredictability ...109
4.4 Infeasibility and Impossibility... 111
4.5 Conclusion .. 113
Bibliographical Notes... 114
Exercises ... 115

C6730_C000.fm Page viii Monday, July 3, 2006 2:30 PM

5

Implications of Nonuniform Memory for Software 117

5.1 The Influence of Virtual Memory Management................................... 118
5.2 The Case of Caches ...123
5.3 Testing and Profiling ...124
5.4 What to Do about It ..125
Bibliographical Notes...136
Exercises ...137

6

Implications of Compiler and Systems Issues
for Software ... 141

6.1 Introduction ..141
6.2 Recursion and Space Complexity ...142
6.3 Dynamic Structures and Garbage Collection..145
6.4 Parameter-Passing Mechanisms..150
6.5 Memory Mappings..155
6.6 The Influence of Language Properties ...155

6.6.1 Initialization ...155
6.6.2 Packed Data Structures ..157
6.6.3 Overspecification of Execution Order158
6.6.4 Avoiding Range Checks ...159

6.7 The Influence of Optimization ..160
6.7.1 Interference with Specific Statements ..160
6.7.2 Lazy Evaluation...161

6.8 Parallel Processes ...162
6.9 What to Do about It ..163
Bibliographical Notes...164
Exercises ...164

7

Implicit Assumptions ... 167

7.1 Handling Exceptional Situations...167
7.1.1 Exception Handling ..168
7.1.2 Initializing Function Calls ...169

7.2 Testing for Fundamental Requirements...171
7.3 What to Do about It ..174
Bibliographical Notes...174
Exercises ...175

8

Implications of the Finiteness of the Representation
of Numbers .. 177

8.1 Bit and Word Complexity Revisited...177
8.2 Testing for Equality ...180
8.3 Mathematical Properties...183
8.4 Convergence ...185
8.5 What to Do about It ..186

C6730_C000.fm Page ix Monday, July 3, 2006 2:30 PM

Bibliographical Notes...186
Exercises ...187

9

Asymptotic Complexities and the Selection
of Algorithms .. 189

9.1 Introduction ..189
9.2 The Importance of Hidden Constants..190
9.3 Crossover Points ..193
9.4 Practical Considerations for Efficient Software:

What Matters and What Does Not...196
Bibliographical Notes...197
Exercises ...198

10

Infeasibility and Undecidability: Implications for
Software Development ... 199

10.1 Introduction ..199
10.2 Undecidability ..201
10.3 Infeasibility ...203
10.4 NP-Completeness ..207
10.5 Practical Considerations ...208
Bibliographical Notes...209
Exercises ...210

Part 3 Conclusion

Appendix I: Algorithms Every Programmer Should Know.....................217

Bibliographical Notes...223

Appendix II: Overview of Systems Implicated in Program Analysis ...225

II.1 Introduction ..225
II.2 The Memory Hierarchy ..225
II.3 Virtual Memory Management ...227
II.4 Optimizing Compilers ..228

II.4.1 Basic Optimizations ..229
II.4.2 Data Flow Analysis...229
II.4.3 Interprocedural Optimizations ...230
II.4.4 Data Dependence Analysis..230
II.4.5 Code Transformations ..231
II.4.6 I/O Issues ...231

II.5 Garbage Collection ..232
Bibliographical Notes...234

C6730_C000.fm Page x Monday, July 3, 2006 2:30 PM

Appendix III: NP-Completeness and Higher Complexity Classes.........237

III.1 Introduction ..237
III.2 NP-Completeness ..237
III.3 Higher Complexity Classes..240
Bibliographical Notes...241

Appendix IV: Review of Undecidability..243

IV.1 Introduction ..243
IV.2 The Halting Problem for Turing Machines ...243
IV.3 Post’s Correspondence Problem..245
Bibliographical Note...246

Bibliography ...247

Index ...251

C6730_C000.fm Page xi Monday, July 3, 2006 2:30 PM

C6730_C000.fm Page xii Monday, July 3, 2006 2:30 PM

Foreword

The foremost goal for (most) computer scientists is the creation of efficient and
effective programs. This premise dictates a disciplined approach to software
development. Typically, the process involves the use of one or more suitable
algorithms; these may be standard algorithms taken from textbooks or litera-
ture, or they may be custom algorithms that are developed during the process.
A well-developed body of theory is related to the question of what constitutes
a good algorithm. Apart from the obvious requirement that it must be correct,
the most important quality of an algorithm is its efficiency. Computational
complexity provides the tools for determining the efficiency of an algorithm;
in many cases, it is relatively easy to capture the efficiency of an algorithm in
this way. However, for the software developer the ultimate goal is efficient
software, not efficient algorithms. Here is where things get a bit tricky — it is
often not well understood how to go from a good algorithm to good software.
It is this transition that we will focus on.

This book consists of two complementary parts. In the first part we
describe the idealized universe that algorithm designers inhabit; in the
second part we outline how this ideal can be adapted to the real world in
which programmers must dwell. While the algorithm designer’s world is
idealized, it nevertheless is not without its own distinct problems, some
having significance for programmers and others having little practical rel-
evance. We describe them so that it becomes clear which are important in
practice and which are not. For the most part, the way in which the algo-
rithm designer’s world is idealized becomes clear only once it is contrasted
with the programmer’s.

In Chapter 1 we sketch a taxonomy of algorithmic complexity. While

complexity

 is generally used as a measure of the performance of a program,
it is important to understand that there are several different aspects of com-
plexity, all of which are related to performance but reflect it from very
different points of view. In Chapter 2 we describe precisely in what way the
algorithm designer’s universe is idealized; specifically, we explore the
assumptions that fundamentally underlie the various concepts of algorith-
mic complexity. This is crucially important since it will allow us to under-
stand how disappointments may arise when we translate an algorithm into
a program.

This is the concern of the second part of this book. In Chapter 4 we explore
a variety of ways in which things can go wrong. While there are many causes
of software behaving in unexpected ways, we are concerned only with those
where a significant conceptual gap may occur between what the algorithm
analysis indicates and what the eventual observations of the resulting

C6730_C000.fm Page xiii Monday, July 3, 2006 2:30 PM

program demonstrate. Specifically, in this chapter we look at ways in which
slight variations in the (implied) semantics of algorithms and software may
cause the software to be incorrect, perform much worse than predicted by
algorithmic analysis, or perform unpredictably. We also touch upon occa-
sions where a small change in the goal, a seemingly innocuous generaliza-
tion, results in (quite literally) impossible software. In order for this
discussion to develop in some useful context, Part 1 ends (in Chapter 3) with
a discussion of analysis techniques and sample algorithms together with
their worked-out analyses. In Chapter 5 we discuss extensively the rather
significant implications of the memory hierarchies that typically are encoun-
tered in modern programming environments, whether they are under the
direct control of the programmer (e.g., out-of-core programming) or not (e.g.,
virtual memory management). Chapter 6 focuses on issues that typically are
never under the direct control of the programmer; these are related to actions
performed by the compiling system and the operating system, ostensibly in
support of the programmer’s intentions. That this help comes at a sometimes
steep price (in the efficiency of the resulting programs) must be clearly
understood. Many of the disappointments are rooted in memory issues;
others arise because of compiler- or language-related issues.

The next three chapters of Part 2 are devoted to somewhat less central
issues, which may or may not be of concern in specific situations. Chapter
7 examines implicit assumptions made by algorithm designers and their
implications for software; in particular, the case is made that exceptions must
be addressed in programs and that explicit tests for assumptions must be
incorporated in the code. Chapter 8 considers the implications of the way
numbers are represented in modern computers; while this is mainly of inter-
est when dealing with numerical algorithms (where one typically devotes a
good deal of attention to error analysis and related topics), occasionally
questions related to the validity of mathematical identities and similar topics
arise in distinctly nonnumerical areas. Chapter 9 addresses the issue of
constant factors that are generally hidden in the asymptotic complexity
derivation of algorithms but that matter for practical software performance.
Here, we pay particular attention to the notion of crossover points. Finally,
in Chapter 10 we look at the meaning of undecidability for software devel-
opment; specifically, we pose the question of what to do when the algorithm
text tells us that the question we would like to solve is undecidable. Also
examined in this chapter are problems arising from excessively high com-
putational complexities of solution methods.

Four appendices round out the material. Appendix I briefly outlines which
basic algorithms should be familiar to all programmers. Appendix II presents
a short overview of some systems that are implicated in the disappointments
addressed in Part 2. In particular, these are the memory hierarchy, virtual
memory management, optimizing compilers, and garbage collection. Since
each of them can have dramatic effects on the performance of software, it is
sensible for the programmer to have at least a rudimentary appreciation of
them. Appendix III gives a quick review of NP-completeness, a concept that

C6730_C000.fm Page xiv Monday, July 3, 2006 2:30 PM

for many programmers appears rather nebulous. This appendix also looks
at higher-complexity classes and indicates what their practical significance
is. Finally, Appendix IV sketches undecidability, both the halting problem
for Turing machines and the Post’s Correspondence Problem. Since unde-
cidability has rather undesirable consequences for software development,
programmers may want to have a short synopsis of the two fundamental
problems in undecidability.

Throughout, we attempt to be precise when talking about algorithms;
however, our emphasis is clearly on the practical aspects of taking an algo-
rithm, together with its complexity analysis, and translating it into software
that is expected to perform as close as possible to the performance predicted
by the algorithm’s complexity. Thus, for us the ultimate goal of designing
algorithms is the production of efficient software; if, for whatever reason,
the resulting software is not efficient (or, even worse, not correct), the initial
design of the algorithm, no matter how elegant or brilliant, was decidedly
an exercise in futility.

A Note on the Footnotes

The footnotes are designed to permit reading this book at two levels. The
straight text is intended to dispense with some of the technicalities that are
not directly relevant to the narrative and are therefore relegated to the foot-
notes. Thus, we may occasionally trade precision for ease of understanding
in the text; readers interested in the details or in complete precision are
encouraged to consult the footnotes, which are used to qualify some of the
statements, provide proofs or justifications for our assertions, or expand on
some of the more esoteric aspects of the discussion.

Bibliographical Notes

The two (occasionally antagonistic) sides depicted in this book are analysis
of algorithms and software engineering. While numerous other fields of
computer science and software production turn out to be relevant to our
discussion and will be mentioned when they arise, we want to make at least
some reference to representative works of these two sides. On the algorithm
front, Knuth’s

The Art of Computer Programming

 is the classical work on
algorithm design and analysis; in spite of the title’s emphasis on program-
ming, most practical aspects of modern computing environments, and espe-
cially the interplay of their different components, hardly figure in the
coverage. Another influential work is Aho, Hopcroft, and Ullman’s

The

C6730_C000.fm Page xv Monday, July 3, 2006 2:30 PM

Design and Analysis of Computer Algorithms

. More references are given at the
end of Chapter 1.

While books on algorithms have hewn to a fairly uniform worldview over
the decades, the software side is considerably more peripatetic; it has tradi-
tionally been significantly more trendy, prone to fads and fashions, perhaps
reflecting the absence of a universally accepted body of theory that forms
the backbone of the discipline (something clearly present for algorithms).
The list below reflects some of this.

Early influential works on software development are Dijkstra, Dahl, et al.:

Structured Programming

; Aron:

The Program Development Process

; and Brooks:

The Mythical Man Month

. A historical perspective of some aspects of software
engineering is provided by Brooks:

No Silver Bullet: Essence and Accidents of
Software Engineering

 and by Larman and Basili:

Iterative and Incremental Devel-
opment: A Brief History

. The persistence of failure in developing software is
discussed in Jones:

Software Project Management Practices: Failure Versus Suc-
cess

; this is clearly a concern that has no counterpart in algorithm design.
Software testing is covered in Bezier:

Software Testing Techniques

; Kit:

Software
Testing in the Real World: Improving the Process

; and Beck:

Test Driven Devel-
opment: By Example

. Various techniques for and approaches to producing
code are discussed in numerous works; we give, essentially in chronological
order, the following list, which provides a bit of the flavors that have ani-
mated the field over the years: Liskov and Guttag:

Abstraction and Specification
in Program Development

; Booch:

Object-Oriented Analysis and Design with Appli-
cations

; Arthur:

Software Evolution

; Rumbaugh, Blaha, et al.:

Object-Oriented
Modeling and Design

; Neilsen,

Usability Engineering

; Gamma, Helm, et al.:

Design Patterns: Elements of Reusable Object-Oriented Software

; Yourdon:

When
Good-Enough Software Is Best

; Hunt and Thomas:

The Pragmatic Programmer:
From Journeyman to Master

; Jacobson, Booch, and Rumbaugh:

The Unified
Software Development Process

; Krutchen:

The Rational Unified Process: An Intro-
duction

; Beck and Fowler:

Planning Extreme Programming

; and Larman:

Agile
and Iterative Development: A Manager's Guide

.
Quite a number of years ago, Jon Bentley wrote a series of interesting

columns on a variety of topics, all related to practical aspects of programming
and the difficulties programmers encounter; these were collected in two
volumes that appeared under the titles

Programming Pearls

 and

More Pro-
gramming Pearls: Confessions of a Coder

. These two collections are probably
closest, in goals and objectives as well as in emphasis, to this book.

C6730_C000.fm Page xvi Monday, July 3, 2006 2:30 PM

Part 1

The Algorithm Side:
Regularity, Predictability,

and Asymptotics

This part presents the view of the designer of algorithms. It first outlines the
various categories of complexity. Then it describes in considerable detail the
assumptions that are fundamental in the process of determining the algo-
rithmic complexity of algorithms. The goal is to establish the conceptual as
well as the mathematical framework required for the discussion of the prac-
tical aspects involved in taking an algorithm, presumably a good or perhaps
even the best (defined in some fashion), and translating it into a good piece
of software.

1

The general approach in Chapter 1 will be to assume that an algorithm is
given. In order to obtain a measure of its goodness, we want to determine
its complexity. However, before we can do this, it is necessary to define what
we mean by

goodness

 since in different situations, different measures of
quality might be applicable. Thus, we first discuss a taxonomy of complexity
analysis. We concentrate mainly on the standard categories, namely time
and space, as well as average-case and worst-case computational complex-
ities. Also in this group of standard classifications falls the distinction

1

 It is revealing that optimal algorithms are often a (very legitimate) goal of algorithm design,
but nobody would ever refer to optimal software.

C6730_S001.fm Page 1 Friday, June 9, 2006 3:18 PM

2

A Programmer’s Companion to Algorithm Analysis

between word and bit complexity, as does the differentiation between on-
line and off-line algorithms. Less standard perhaps is the review of parallel
complexity measures; here our focus is on the EREW model. (While other
models have been studied, they are irrelevant from a practical point of view.)
Also, in preparation of what is more extensively covered in Part 2, we
introduce the notion of I/O complexity. Finally, we return to the fundamental
question of the complexity analysis of algorithms, namely what is a good
algorithm, and establish the importance of lower bounds in any effort
directed at answering this question.

In Chapter 2 we examine the methodological background that enables the
process of determining the computational complexity of an algorithm. In
particular, we review the fundamental notion of statement counts and dis-
cuss in some detail the implications of the assumption that statement counts
reflect execution time. This involves a detailed examination of the memory
model assumed in algorithmic analysis. We also belabor a seemingly obvious
point, namely that mathematical identities hold at this level. (Why we do
this will become clear in Part 2, where we establish why they do not neces-
sarily hold in programs.) We also discuss the asymptotic nature of complex-
ity analysis, which is essentially a consequence of the assumptions
underlying the statement count paradigm.

Chapter 3 is dedicated to amplifying these points by working out the
complexity analysis of several standard algorithms. We first describe several
general techniques for determining the time complexity of algorithms; then
we show how these are applied to the algorithms covered in this chapter.
We concentrate on the essential aspects of each algorithm and indicate how
they affect the complexity analysis.

Most of the points we make in these three chapters (and all of the ones
we make in Chapter 2) will be extensively revisited in Part 2 because many
of the assumptions that underlie the process of complexity analysis of algo-
rithms are violated in some fashion by the programming and execution
environment that is utilized when designing and running software. As such,
it is the discrepancies between the model assumed in algorithm design, and
in particular in the analysis of algorithms, and the model used for software
development that are the root of the disappointments to be discussed in Part
2, which frequently sneak up on programmers. This is why we spend con-
siderable time and effort explaining these aspects of algorithmic complexity.

C6730_S001.fm Page 2 Friday, June 9, 2006 3:18 PM

3

1

A Taxonomy of Algorithmic Complexity

About This Chapter

This chapter presents various widely used measures of the performance of
algorithms. Specifically, we review time and space complexity; average,
worst, and best complexity; amortized analysis; bit versus word complexity;
various incarnations of parallel complexity; and the implications for the
complexity of whether the given algorithm is on-line or off-line. We also
introduce the input/output (I/O) complexity of an algorithm, even though
this is a topic of much more interest in Part 2. We conclude the chapter with
an examination of the significance of lower bounds for good algorithms.

1.1 Introduction

Suppose someone presents us with an algorithm and asks whether it is good.
How are we to answer this question? Upon reflection, it should be obvious that
we must first agree upon some criterion by which we judge the quality of the
algorithm. Different contexts of this question may imply different criteria.

At the most basic level, the algorithm should be correct. Absent this quality,
all other qualities are irrelevant. While it is by no means easy to ascertain
the correctness of an algorithm,

1

 we will assume here that it is given. Thus,
our focus throughout this book is on performance aspects of the given
(correct) algorithm. This approach is reasonable since in practice we are most
likely to use algorithms from the literature as building blocks of the ultimate
solution we are designing. Therefore, it is sensible to assume that these
algorithms are correct. What we must, however, derive ourselves is the

1

 There are different aspects of correctness, the most important one relating to the question of
whether the algorithm does in fact solve the problem that is to be solved. While techniques exist
for demonstrating formally that an algorithm is correct, this approach is fundamentally predi-
cated upon a formal definition of what the algorithm is supposed to do. The difficulty here is that
problems in the real world are rarely defined formally.

C6730_C001.fm Page 3 Friday, August 11, 2006 7:35 AM

4

A Programmer’s Companion to Algorithm Analysis

complexity of these algorithms. While the literature may contain a complex-
ity analysis of an algorithm, it is our contention that complexity analysis
offers many more potential pitfalls when transitioning to software than
correctness. As a result, it is imperative that the software designer have a
good grasp of the principles and assumptions involved in algorithm analysis.

An important aspect of the performance of an algorithm is its dependence
on (some measure of) the input. If we have a program and want to determine
some aspect of its behavior, we can run it with a specific input set and

observe

its behavior on that input set. This avenue is closed to us when it comes to
algorithms — there is no execution and therefore no observation. Instead,
we desire a much more universal description of the behavior of interest,
namely a description that holds for any input set. This is achieved by
abstracting the input set and using that abstraction as a parameter; usually,
the size of the input set plays this role. Consequently, the description of the
behavior of the algorithm has now become a function of this parameter. In
this way, we hope to obtain a universal description of the behavior because
we get an answer for any input set. Of course, in this process of abstracting
we have most likely lost information that would allow us to give more
precise answers. Thus, there is a tension between the information loss that
occurs when we attempt to provide a global picture of performance through
abstraction and the loss of precision in the eventual answer.

For example, suppose we are interested in the number of instructions
necessary to sort a given input set using algorithm A. If we are sorting a set
S of 100 numbers, it stands to reason that we should be able to determine
accurately how many instructions will have to be executed. However, the
question of how many instructions are necessary to sort any set with 100
elements is likely to be much less precise; we might be able to say that we
must use at least this many and at most that many instructions. In other
words, we could give a range of values, with the property that no matter
how the set of 100 elements looks, the actual number of instructions would
always be within the given range. Of course, now we could carry out this
exercise for sets with 101 elements, 102, 103, and so on, thereby using the
size

n

 of the set as a parameter with the property that for each value of

n

,
there is a range

F(n)

 of values so that any set with

n

 numbers is sorted by
A using a number of instructions that falls in the range

F(n)

.
Note, however, that knowing the range of the statement counts for an

algorithm may still not be particularly illuminating since it reveals little
about the likelihood of a value in the range to occur. Clearly, the two
extremes, the smallest value and the largest value in the range

F(n)

 for a
specific value of

n

 have significance (they correspond to the best- and the
worst-case complexity), but as we will discuss in more detail below, how
often a particular value in the range may occur is related to the average
complexity, which is a significantly more complex topic.

While the approach to determining explicitly the range

F(n)

 for every value
of

n

 is of course prohibitively tedious, it is nevertheless the conceptual basis
for determining the computational complexity of a given algorithm. Most

C6730_C001.fm Page 4 Friday, August 11, 2006 7:35 AM

A Taxonomy of Algorithmic Complexity

5

importantly, the determination of the number of statements for solving a
problem is also abstracted, so that it typically is carried out by examining
the syntactic components, that is, the statements, of the given algorithm.

Counting statements is probably the most important aspect of the behavior
of an algorithm because it captures the notion of execution time quite accu-
rately, but there are other aspects. In the following sections, we examine
these qualities of algorithms.

1.2 The Time and Space Complexities of an Algorithm

The most burning question about a (correct) program is probably, “How long
does it take to execute?” The analogous question for an algorithm is, “What
is its time complexity?” Essentially, we are asking the same question (“How
long does it take?”), but within different contexts. Programs can be executed,
so we can simply run the program, admittedly with a specific data set, and
measure the time required; algorithms cannot be run and therefore we have
to resort to a different approach. This approach is the statement count. Before
we describe it and show how statement counts reflect time, we must mention
that time is not the only aspect that may be of interest; space is also of concern
in some instances, although given the ever-increasing memory sizes of
today’s computers, space considerations are of decreasing import. Still, we
may want to know how much memory is required by a given algorithm to
solve a problem.

Given algorithm A (assumed to be correct) and a measure

n

 of the input
set (usually the size of all the input sets involved), the

time complexity

 of
algorithm A is defined to be the number

f(n)

 of atomic instructions or oper-
ations that must be executed when applying A to any input set of measure

n

. (More specifically, this is the worst-case time complexity; see the discus-
sion below in Section 1.3.) The

space complexity

 of algorithm A is the amount
of space, again as a function of the measure of the input set, that A requires
to carry out its computations, over and above the space that is needed to
store the given input (and possibly the output, namely if it is presented in
memory space different from that allocated for the input).

To illustrate this, consider a vector

V

 of

n

 elements (of type integer;

V

 is
of type [1:

n

] and

n

≥

 1) and assume that the algorithm solves the problem
of finding the maximum of these

n

 numbers using the following approach:

Algorithm Max

 to find the largest integer in the vector

V

[1:

n

]:

1. Initialize TempMax to

V

[1].

2. Compare TempMax with all other elements of

V

 and update Temp-
Max if TempMax is smaller.

C6730_C001.fm Page 5 Friday, August 11, 2006 7:35 AM

6

A Programmer’s Companion to Algorithm Analysis

Let us count the number of atomic operations

2

 that occur when applying
the algorithm Max to a vector with

n

 integers. Statement 1 is one simple
assignment. Statement 2 involves

n

−

 1 integers, and each is compared to
TempMax; furthermore, if the current value of TempMax is smaller than the
vector element examined, that integer must be assigned to TempMax. It is
important to note that no specific order is implied in this formulation; as
long as all elements of

V

 are examined, the algorithm works. At this point,
our statement count stands at

n

, the 1 assignment from statement 1 and the

n

−

 1 comparisons in statement 2 that must always be carried out. The
updating operation is a bit trickier, since it only arises if TempMax is smaller.
Without knowing the specific integers, we cannot say how many times we
have to update, but we can give a range; if we are lucky (if V[1] happens to
be the largest element), no updates of TempMax are required. If we are
unlucky, we must make an update after every comparison. This clearly is
the range from best to worst case. Consequently, we will carry out between
0 and

n

−

 1 updates, each of which consists of one assignment. Adding all
this up, it follows that the number of operations necessary to solve the
problem ranges from

n

 to 2

n

−

 1. It is important to note that this process
does not require any execution; our answer is independent of the size of

n

.
More bluntly, if

n

 = 10

10

 (10 billion), our analysis tells us that we need between
10 and 20 billion operations; this analysis can be carried out much faster
than it would take to run a program derived from this algorithm.

We note as an aside that the algorithm corresponds in a fairly natural way
to the following pseudo code

3

:

TempMax := V[1];

for

 i:=2

to

 n

do
{

if

 TempMax < V[i]

then

 TempMax := V[i]

}

;
Max := TempMax

However, in contrast to the algorithm, the language requirements impose
on us a much greater specificity. While the algorithm simply referred to
examining all elements of

V

 other than

V

[1], the program stipulates a (quite
unnecessarily) specific order. While any order would do, the fact that the
language constructs typically require us to specify one has implications that
we will comment on in Part 2 in more detail.

We conclude that the algorithm Max for finding the maximum of

n

 integers
has a time complexity of between

n

 and 2

n

−

 1. To determine the space
complexity, we must look at the instructions again and figure out how much
additional space is needed for them. Clearly, TempMax requires space (one

2

 We will explain in Chapter 2 in much more detail what we mean by

atomic operations

. Here, it
suffices to assume that these operations are arithmetic operations, comparisons, and assign-
ments involving basic types such as integers.

3

 We use a notation that should be fairly self-explanatory. It is a compromise between C notation
and Pascal notation; however, for the time being we sidestep more complex issues such as the
method used in passing parameters.

C6730_C001.fm Page 6 Friday, August 11, 2006 7:35 AM

A Taxonomy of Algorithmic Complexity

7

unit

4

 of it), and from the algorithm, it appears that this is all that is needed.
This is, however, a bit misleading, because we will have to carry out an
enumeration of all elements of

V

, and this will cost us at least one more
memory unit (for example for an index variable, such as the variable

i

 in
our program). Thus, the space complexity of algorithm Max is 2, independent
of the size of the input set (the number of elements in vector

V

). We assume
that

n

, and therefore the space to hold it, was given.
It is important to note that the time complexity of any algorithm should

never be smaller than its space complexity. Recall that the space complexity
determines the additional memory needed; thus, it stands to reason that this
is memory space that should be used in some way (otherwise, what is the
point in allocating it?). Since doing anything with a memory unit will require
at least one operation, that is, one time unit, the time complexity should
never be inferior to the space complexity.

5

It appears that we are losing quite a bit of precision during the process of
calculating the operation or statement count, even in this very trivial exam-
ple. However, it is important to understand that the notion of complexity is
predominantly concerned with the

long

-

term behavior

 of an algorithm. By
this, we mean that we want to know the growth in execution time as

n

 grows.
This is also called the

asymptotic behavior

 of the complexity of the algorithm.
Furthermore, in order to permit easy comparison of different algorithms
according to their complexities (time or space), it is advantageous to lose
precision, since the loss of precision allows us to come up with a relatively
small number of categories into which we may classify our algorithms. While
these two issues, asymptotic behavior and comparing different algorithms,
seem to be different, they turn out to be closely related.

To develop this point properly requires a bit of mathematical notation.
Assume we have obtained the (time or space) complexities

f

1

(

n

) and

f

2

(

n

) of
two different algorithms, A

1

 and A

2

 (presumably both solving the same
problem correctly, with

n

 being the same measure of the input set). We say
that the function

f

1

(

n

) is

on the order of

 the function

f

2

(

n

), and write

f

1

(

n

) = O(

f

2

(

n

)),

or briefly

f

1

 =

O

(

f

2

) if

n

 is understood, if and only if there exists an integer

n

0

≥

 1 and a constant

c

 > 0 such that

f

1

(

n

)

≤

 c⋅f2(n) for all n ≥ n0.

4 We assume here that one number requires one unit of memory. We discuss the question of what
one unit really is in much greater detail in Chapter 2 (see also the discussion of bit and word com-
plexity in Section 1.4).
5 Later we will see an example where, owing to incorrect passing of parameters, this assertion is
violated.

C6730_C001.fm Page 7 Friday, August 11, 2006 7:35 AM

8 A Programmer’s Companion to Algorithm Analysis

Intuitively, f1 = O(f2) means that f1 does not grow faster asymptotically than
f2; it is asymptotic growth because we are only interested in the behavior
from n0 onward. Finally, the constant c simply reflects the loss of precision
we have referred to earlier. As long as f1 stays “close to” f2 (namely within
that constant c), this is fine.

Example: Let f(n) = 5⋅n⋅log2 (n) and g(n) = n2/100 − 32n. We claim that f =
O(g). To show this, we have to find n0 and c such that f(n) ≤ c⋅g(n) for all
n ≥ n0. There are many (in fact, infinitely many) such pairs (n0,c). For example,
n0 = 10,000, c = 1, or n0 = 100,000, c = 1, or n0 = 3,260, c = 100.

In each case, one can verify that f(n) ≤ c ⋅ g(n) for all n ≥ n0. More interesting
may be the fact that g ≠ O(f); in other words, one can verify that there do
not exist n0 and c such that g(n) ≤ c ⋅ f(n) for all n ≥ n0.

It is possible that both f1 = O(f2) and f2 = O(f1) hold; in this case we say that
f1 and f2 are equivalent and write f1 ≡ f2.

Let us now return to our two algorithms A1 and A2 with their time com-
plexities f1(n) and f2(n); we want to know which algorithm is faster. In general,
this is a bit tricky, but if we are willing to settle for asymptotic behavior, the
answer is simple: if f1 = O(f2), then A1 is no worse than A2, and if f1 ≡ f2, then
A1 and A2 behave identically.6

Note that the notion of asymptotic behavior hides a constant factor; clearly
if f(n) = n2 and g(n) = 5⋅n2, then f ≡ g, so the two algorithms behave identically,
but obviously the algorithm with time complexity f is five times faster than
that with time complexity g.

However, the hidden constant factors are just what we need to establish
a classification of complexities that has proven very useful in characterizing
algorithms. Consider the following eight categories:

ϕ1 = 1, ϕ2 = log2(n), ϕ3 = , ϕ4 = n, ϕ5 = n⋅log2(n), ϕ6 = n2, ϕ7 = n3, ϕ8 = 2n.

(While one could define arbitrarily many categories between any two of
these, those listed are of the greatest practical importance.) Characterizing a
given function f(n) consists of finding the most appropriate category ϕi for
the function f. This means determining ϕi so that f = O(ϕi) but f ≠ O(ϕi − 1).7
For example, a complexity n2/log2(n) would be classified as n2, as would be
(n2 − 3n +10)⋅(n4 − n3)/(n4

 + n2
 + n + 5); in both cases, the function is O(n2),

but not O(n⋅log2(n)).
We say that a complexity of ϕ1 is constant, of ϕ2 is logarithmic (note that the

base is irrelevant because loga(x) and logb(x) for two different bases a and b

6 One can develop a calculus based on these notions. For example, if f1 ≡ g1 and f2 ≡ g2, then f1 +
f2 ≡ g1 + g2, f1 − f2 ≡ g1 − g2 (under some conditions), and f1 * f2 ≡ g1 * g2. Moreover, if f2 and g2 are
different from 0 for all argument values, then f1/f2 ≡ g1/g2. A similar calculus holds for functions
f and g such that f = O(g): fi = O(gi) for i = 1,2 implies f1 � f2 = O(g1 � g2) for � any of the four basic
arithmetic operations (with the obvious restriction about division by zero).
7 Note that if f = O(ϕi), then f = O(ϕi + j) for all j > 0; thus, it is important to find the best category
for a function.

n2

C6730_C001.fm Page 8 Friday, August 11, 2006 7:35 AM

A Taxonomy of Algorithmic Complexity 9

are related by a constant factor, which of course is hidden when we talk
about the asymptotic behavior of complexity8), of ϕ4 is linear, of ϕ6 is quadratic,
of ϕ7 is cubic, and of ϕ8 is exponential.9 It should be clear that of all functions
in a category, the function that represents it should be the simplest one. Thus,
from now on, we will place a given complexity into one of these eight
categories, even though the actual complexity may be more complicated.

So far in our discussion of asymptotic behavior, we have carefully avoided
addressing the question of the range of the operation counts. However,
revisiting our algorithm Max, it should be now clear that the time complexity,
which we originally derived as a range from n to 2n − 1, is simply linear.
This is because the constant factor involved (which is 1 for the smallest value
in the range and 2 for the largest) is hidden in the asymptotic function that
we obtain as final answer.

In general, the range may not be as conveniently described as for our
algorithm Max. Specifically, it is quite possible that the largest value in the
range is not a constant factor of the smallest value, for all n. This then leads
to the question of best-case, average-case, and worst-case complexity, which
we take up in the next section.

Today, the quality of most algorithms is measured by their speed. For this
reason, the computational complexity of an algorithm usually refers to its
time complexity. Space complexity has become much less important; as we
will see, typically, it attracts attention only when something goes wrong.

1.3 The Worst-, Average-, and Best-Case Complexities of an
Algorithm

Recall that we talked about the range of the number of operations that
corresponds to a specific value of (the measure of the input set) n. The worst-
case complexity of an algorithm is thus the largest value of this range, which
is of course a function of n. Thus, for our algorithm Max, the worst-case
complexity is 2n − 1, which is linear in n. Similarly, the best-case complexity
is the smallest value of the range for each value of n. For the algorithm Max,
this was n (also linear in n).

Before we turn our attention to the average complexity (which is quite a
bit more complicated to define than best- or worst-case complexity), it is
useful to relate these concepts to practical concerns. Worst-case complexity
is easiest to motivate: it simply gives us an upper bound (in the number of
statements to be executed) on how long it can possibly take to complete a
task. This is of course a very common concern; in many cases, we would
8 Specifically, loga(x) = c · logb(x) for c = loga(b) for all a, b > 1.
9 In contrast to logarithms, exponentials are not within a constant of each other: specifically, for
a > b > 1, an ≠ O(bn). However, from a practical point of view, exponential complexities are usually
so bad that it is not really necessary to differentiate them much further.

C6730_C001.fm Page 9 Friday, August 11, 2006 7:35 AM

10 A Programmer’s Companion to Algorithm Analysis

like to be able to assert that under no circumstances will it take longer than
this amount of time to complete a certain task. Typical examples are
real-time applications such as algorithms used in air-traffic control or power-
plant operations. Even in less dramatic situations, programmers want to be
able to guarantee at what time completion of a task is assured. Thus, even
if everything conspires against earlier completion, the worst-case time com-
plexity provides a measure that will not fail. Similarly, allocating an amount
of memory equal to (or no less than) the worst-case space complexity assures
that the task will never run out of memory, no matter what happens.

Average complexity reflects the (optimistic) expectation that things will
usually not turn out for the worst. Thus, if one has to perform a specific task
many times (for different input sets), it probably makes more sense to be
interested in the average behavior, for example the average time it takes to
complete the task, than the worst-case complexity. While this is a very
sensible approach (more so for time than for space), defining what one might
view as average turns out to be rather complicated, as we will see below.

The best-case complexity is in practice less important, unless you are an
inveterate gambler who expects to be always lucky. Nevertheless, there are
instances where it is useful. One such situation is in cryptography. Suppose
we know about a certain encryption scheme, that there exists an algorithm
for breaking this scheme whose worst-case time complexity and average
time complexity are both exponential in the length of the message to be
decrypted. We might conclude from this information that this encryption
scheme is very safe — and we might be very wrong. Here is how this could
happen. Assume that for 50% of all encryptions (that usually would mean
for 50% of all encryption keys), decryption (without knowledge of the key,
that is, breaking the code) takes time 2n, where n is the length of the message
to be decrypted. Also assume that for the other 50%, breaking the code takes
time n. If we compute the average time complexity of breaking the code as
the average of n and 2n (since both cases are equally likely), we obviously
obtain again approximately 2n (we have (n + 2n)/2 > 2n − 1, and clearly 2n − 1

= O(2n)). So, both the worst-case and average time complexities are 2n, but
in half of all cases the encryption scheme can be broken with minimal effort.
Therefore, the overall encryption scheme is absolutely worthless. However,
this becomes clear only when one looks at the best-case time complexity of
the algorithm.

Worst- and best-case complexities are very specific and do not depend on
any particular assumptions; in contrast, average complexity depends cru-
cially on a precise notion of what constitutes the average case of a particular
problem. To gain some appreciation of this, consider the task of locating an
element x in a linear list containing n elements. Let us determine how many
probes are necessary to find the location of x in that linear list. Note that the
number of operations per probe is a (very small) constant; essentially, we
must do a comparison. Then we must follow a link in the list, unless the
comparison was the last one (determining this requires an additional simple
test). Thus, the number of probes is the number of operations up to a constant

C6730_C001.fm Page 10 Friday, August 11, 2006 7:35 AM

A Taxonomy of Algorithmic Complexity 11

factor — providing additional justification for our systematic hiding of
constant factors when determining the asymptotic complexity of algorithms.
It should be clear what are the best and worst cases in our situation. The
best case occurs if the first element of the linear list contains x, resulting in
one probe, while for the worst case we have two possibilities: either it is the
last element of the linear list that contains x or x is not in the list at all. In
both of these worst cases, we need n probes since x must be compared with
each of the n elements in the linear list. Thus, the best-case time complexity
is O(1) and the worst case complexity is O(n), but what is the average time
complexity?

The answer to this question depends heavily on the probability distribu-
tion of the elements. Specifically, we must know what is the likelihood for
x to be in the element of the linear list with number i, for i = 1, …, n. Also,
we must know what is the probability of x not being in the linear list. Without
all this information, it is impossible to determine the average time complexity
of our algorithm, although it is true that, no matter what our assumptions
are, the average complexity will always lie between the best- and worst-case
complexity. Since in this case the best-case and worst-case time complexities
are quite different (there is no constant factor relating the two measures, in
contrast to the situation for Max), one should not be surprised that different
distributions may result in different answers. Let us work out two scenarios.

1.3.1 Scenario 1

The probability pnot of x not being in the list is 0.50; that is, the likelihood
that x is in the linear list is equal to it not being there. The likelihood pi of x
to occur in position i is 0.5/n; that is, each position is equally likely to contain
x. Using this information, the average number of probes is determined as
follows:

To encounter x in position i requires i probes; this occurs with probability
pi = 0.5/n. With probability 0.5, we need n probes to account for the case that
x is not in the linear list. Thus, on average we have

1 ⋅ p1 + 2 ⋅ p2 + 3 ⋅ p3 + … + (n – 1) ⋅ pn−1 + n ⋅ pn + n ⋅ 0.5 =
(1 + 2 + 3 + … + n) · 0.5/n + n⋅0.5 =
(n + 1)/4 + n/2 = (3n + 1)/4.10

Thus, the average number of probes is (3n + 1)/4.

10 In this computation, we used the mathematical formula Σi = 1, …, ni = n⋅(n + 1)/2. It can be proven
by induction on n.

C6730_C001.fm Page 11 Friday, August 11, 2006 7:35 AM

